Table of Contents

Solution Explorer	
Creating Projects	
Opening Projects and Solutions	
Adding New Projects	
Adding Existing Projects	1
Saving Changes to Solutions and	Projects 1'
Solution Properties	110 12
Setting Startup Projects	12
Setting Project Dependencies	
Setting Configuration Propert	ies1′
Configuration Manager	
Creating Solution Con	figurations2
Editing Solution Confi	igurations22
Editing Solution Platfo	orms
Specifying Debug Source File	es24
Navigation Window	
Language Editor	
Editing the Contents of Language	e Containers
Block Library	
Deployment View	3
Devices	
Networks	
Connections	
Deployment View Keyboard Sho	rtcuts 42
Variable Dependencies	
Properties Window	
Collection Editor	
Locked Variables Viewer	
ISaVIEW	
Creating ISaVIEW Screens	
Exporting ISaVIEW Screens as T	Semplates
Inserting Objects	

Arc	
Arrow	
Ellipse	
Rectangle	60
Rounded Rectangle	61
Triangle	
Image	63
Web Container	64
Button	65
Edit Box	
Gauge	67
Slider	70
Line	73
Bar Meter	74
Polygon	
Editing Objects	77
Selecting Objects	
Editing the Properties of Objects	79
Cutting, Copying, and Pasting Objects	80
Deleting Objects	
Moving Objects	
Resizing Objects	
Grouping Objects	
Aligning Objects	
Moving Objects to the Front and Back	
Defining Animation Effects for Objects	
Action	
Color	90
Displacement	92
Rotation	94
Size	96
Text	
Visibility	
Previewing ISaVIEW Screens	101
Previewing Selections	
Previewing Animation Effects (Editable)	
Toolbox	107
Variable Selector	113

Creating Variables	117
Creating Multiple Variables Using Quick Declaration	118
Editing Existing Variables	120
Cutting, Copying, and Pasting Variables	121
Deleting Variables	122
Sorting Columns	123
Filtering Variables	124
Block Selector	125
Parameters Display	129
Parameters View	131
Generating Documentation	135
Find and Replace Utility	141
Quick Find	142
Quick Replace	144
Spy Lists	147
Add-in Manager	153
External Tools	155
Working in the Development Environment	157
Displaying the Output Window	158
Using the Error List	160
Navigating in the Development Environment	162
Customizing Toolbars	165
Creating Toolbars	166
Customizing Commands	167
Importing and Exporting Settings	171
Export Selected Environment Settings	172
Naming a Settings File	173
Settings Export in Progress	174
Import Selected Environment Settings	175
Choosing a Collection of Settings to Import	176
Choosing Settings to Import	177
Settings Import in Progress	178
Reset all Settings	179
Settings Reset in Progress	180
Operations Summary	181
Development Environment Keyboard Shortcuts	182
Options for the Development Environment	187

Setting Environment Options	188
Find and Replace	. 190
Fonts and Colors	. 191
Import and Export Settings	. 192
International Settings	. 193
Shortcut Keyboard Combinations	.194
Startup	. 197
Specifying Project Options	198
Build Options	.200
Interrupts Options	.201
Online Settings	.202
Specifying Source Control Settings	203
Plug-in Selection	.204
Subversion Environment	.205
Subversion User Tools	.207
Specifying Block Library Settings	208
Specifying CAM3 Settings	209
Specifying Deployment View Settings	210
Specifying Device View Options	211
Specifying Documentation Generator Options	212
Word Settings	.213
Setting Grid Options	214
Arrays View	.215
Defined Words View	.216
Dictionary View	.217
Parameters Grid	.218
Structures View	.219
Variable Groups View	.220
Variable Selector	.221
Defining CAM 3 I/O Device Settings	222
Defining CAM 5 I/O Device Settings	223
Setting IEC Language Options	224
Function Block Diagram	.225
IEC 61499	.229
Ladder Diagram	.233
SAMA	.236
Sequential Function Chart	.238
Structured Text	.242
Setting ISaVIEW Options	245

ISaVIEW Animation Settings	246
ISaVIEW Edition Settings	247
ISaVIEW Objects Settings	248
Arc Settings	249
Arrow Settings	250
Bar Meter Settings	251
Button Settings	252
Edit Box Settings	253
Ellipse Settings	254
Gauge Settings	255
Group Settings	256
Image Settings	257
Line Settings	258
Polygon Settings	259
Rectangle Settings	260
Rounded Rectangle Settings	261
Slider Settings	262
Triangle Settings	
Web Container Settings	264
Defining Spy List Settings	265
Offline Grid Settings	266
Online Grid Settings	267
Description Window	269

ISaGRAF 3 Concrete Automation Model 271

Creating a Project	
Devices	
Programs	
Functions	
Function Blocks	
Variables	
Targets	
Networks and Connections	
TCP/IP	
Serial	
Importing an ISaGRAF 3 Project	
Creating a Library	
Importing an ISaGRAF 3 Library	

Using a Library in a Project	294
Importing and Exporting Variables Data	296
Generating Code	299
Building Solutions and Project Elements	300
Rebuilding Solutions	302
Cleaning Solutions and Project Elements	303
Running an Application Online	304
Downloading Code to Targets	305
Debugging	306
Forcing the Values of Variables	. 309
Simulating	311
Monitoring	312
Error Messages	313
Getting Started	323
System Requirements for Development Platforms	325
Naming Conventions and Limitations	327
Introducing the Automation Collaborative Platform (ACP)	330
Walking Through an Existing Application	350
Starting with a Basic Application	362
Importing an Existing Application	376
Dictionary	383
Defined Words Grid	385
Variables Grid	388
Device View	393
I/O Wiring	395
I/O Devices	397
I/O Channels	400
I/O Conversions	403
Conversion Tables	.404
Conversion Functions	.406
I/O Wiring Keyboard Shortcuts	407
FBD Language	409
FBD Diagram Main Format	410
Execution Order of FBD Programs	413
Debugging FBD Programs	414
FBD Elements	415
Blocks	416

Variables	418
Vertical Bars	
Labels	
Jumps	
Returns	
Rungs	
Left Power Rails	
Right Power Rails	
Coils	
Direct Coil	
Reverse Coil	
Set Coil	
Reset Coil	
Contacts	437
Direct Contact	
Reverse Contact	440
Pulse Rising Edge Contact	
Pulse Falling Edge Contact	
Regions	
Comments	444
FBD Keyboard Shortcuts	445
LD Language	449
Debugging LD Programs	451
LD Elements	453
Rungs	454
Blocks	456
Coils	
Direct Coil	
Reverse Coil	
Pulse Rising Edge Coil	
Pulse Falling Edge Coil	
Set Coil	
Reset Coil	
Contacts	471
Direct Contact	
Reverse Contact	474
Pulse Rising Edge Contact	475
Pulse Falling Edge Contact	476
Jumps	477
1	

Returns	479
Branches	481
LD Keyboard Shortcuts	482
ST Language	485
ST Main Syntax	486
Expressions and Parentheses	490
Calling Functions	492
Calling Function Blocks	493
Debugging ST Programs	494
ST Basic Elements and Statements	495
Assignments	496
CASE Statement	497
EXIT Statement	498
FOR Statement	499
IF-THEN-ELSIF-ELSE-END_IF Statement	501
REPEAT Statement	503
RETURN Statement	504
WHILE Statement	505
ST Extensions	506
TSTART Statement	507
TSTOP Statement	509
GSTART Statement in SFC Action	511
GFREEZE Statement in SFC Action	512
GKILL Statement in SFC Action	513
GSTATUS Statement in SFC Action	514
GRST Statement in SFC Action	516
ST Keyboard Shortcuts	517
Language Reference	521
Programs	522
Functions	524
Function Blocks	525
Execution Rules	526
Reserved Keywords	527
Variables	529
Directly Represented Variables	531
Defined Words	532
Data Types	534
Boolean Data Type	535

Double Integer Data Type	536
Real Data Type	
Time Data Type	539
Message Data Type	
Operators	543
Multiplication	544
Addition	545
Subtraction	546
Division	548
1 GAIN	550
AND	551
BOO	553
CAT	554
Equal	555
Greater Than or Equal	556
Greater Than	557
ANA	558
REAL	559
SYSTEM	560
Less Than or Equal	565
Less Than	566
MSG	567
NEG	568
Not Equal	569
OPERATE	570
OR	571
TMR	572
XOR	573
Functions	575
ABS	577
ACOS	578
AND MASK	579
ARCREATE	580
ARREAD	582
ARWRITE	583
ASCII	585
ASIN	586
ATAN	587

CHAR	588
COS	589
DAY TIME	590
DELETE	591
EXPT	593
F CLOSE	594
F EOF	595
F ROPEN	597
F WOPEN	598
FĀ READ	599
FA WRITE	601
FM READ	604
FM WRITE	606
FIND	608
INSERT	609
LEFT	611
LIMIT	613
LOG	614
MAX	615
MID	616
MIN	618
MLEN	619
MOD	621
MUX4	622
MUX8	624
NOT MASK	626
ODD	627
OR MASK	628
POW	629
RAND	630
REPLACE	632
RIGHT	634
ROL	636
ROR	637
SEL	638
SHL	639
SHR	640
SIN	642
SQRT	643

TRUNC	TAN	644
XOR_MASK 646 Function Blocks 647 AVERAGE 648 BLINK 650 CMP 651 CTD 653 CTU 655 CTUD 657 DERIVATE 659 F_TRIG 661 HYSTER 662 INTEGRAL 663 LIM_ALRM 665 R_TRIG 667 RS 668 SEMA 670 SR 671 SIG_GEN 673 STACKINT 675 TOF 677 TON 678 TP 679 Glossary 681 Licensing 695 ISaGRAF 5 Concrete Automation Model 697 Creating a Project 698 Devices 702 Resources 702 Resources 702 Programs 712 Function Blocks 717 Variables 720 Choosing Project Templates for Targets<	TRUNC	645
Function Blocks 647 AVERAGE 648 BLINK 650 CMP 651 CTD 653 CTU 655 CTUD 657 DERIVATE 659 F_TRIG 661 HYSTER 662 INTEGRAL 663 LIM_ALRM 665 R_TRIG 667 RS 668 SEMA 670 SR 670 SR 671 SIG_GEN 673 STACKINT 675 TOF 677 TON 678 TP 679 Glossary 681 Licensing 695 ISaGRAF 5 Concrete Automation Model 697 Creating a Project 698 Devices 702 Resources 705 Programs 712 Function Blocks 715 Function Blocks 715 Choosing Project Templates for Targets 722 Creating a	XOR_MASK	646
AVERAGE 648 BLINK 650 CMP 651 CTD 653 CTU 655 CTUD 657 DERIVATE 659 F_TRIG 661 HYSTER 662 INTEGRAL 663 LIM_ALRM 665 R_TRIG 667 RS 668 SEMA 670 SR 671 SIG GEN 673 STACKINT 675 TOF 677 TON 678 TP 679 Glossary 681 Licensing 695 ISaGRAF 5 Concrete Automation Model 697 Creating a Project 698 Devices 702 Resources 705 Programs 712 Function Blocks 711 Variables 720 Choosing Project Templates for Targets 722 Creating a Library 724	Function Blocks	647
BLINK 650 CMP 651 CTD 653 CTU 655 CTUD 657 DERIVATE 659 F_TRIG 661 HYSTER 662 INTEGRAL 663 LIM_ALRM 665 R_TRIG 667 RS 668 SEMA 670 SR 671 SIG_GEN 673 STACKINT 675 TOF 677 TON 678 TP 679 Glossary 681 Licensing 695 ISaGRAF 5 Concrete Automation Model 697 Creating a Project 698 Devices 702 Resources 705 Programs 712 Functions 715 Function Blocks 717 Variables 720 Choosing Project Templates for Targets 722 Creating a Library 724	AVERAGE	648
CMP 651 CTD 653 CTU 655 CTUD 657 DERIVATE 659 F_TRIG 661 HYSTER 662 INTEGRAL 663 LIM_ALRM 665 R_TRIG 667 RS 668 SEMA 670 SR 671 SIG_GEN 673 STACKINT 675 TOF 677 TOF 677 TOF 677 TOF 677 TOF 677 TOF 679 Glossary 681 Licensing 695 ISaGRAF 5 Concrete Automation Model 697 Creating a Project 698 Devices 702 Resources 705 Programs 712 Function Blocks 717 Variables 720 Choosing Project Templates for Targets 722 Creating a Library 724	BLINK	650
CTD 653 CTU 655 CTUD 657 DERIVATE 659 F_TRIG 661 HYSTER 662 INTEGRAL 663 LIM_ALRM 665 R_TRIG 667 RS 668 SEMA 670 SR 671 SIG_GEN 673 STACKINT 675 TOF 677 TON 678 TP 679 Glossary 681 Licensing 695 ISaGRAF 5 Concrete Automation Model 697 Creating a Project 698 Devices 702 Resources 705 Programs 712 Function Blocks 715 Function Blocks 717 Variables 720 Choosing Project Templates for Targets 722 Creating a Library 724	СМР	651
CTU 655 CTUD 657 DERIVATE 659 F_TRIG 661 HYSTER 662 INTEGRAL 663 LIM_ALRM 665 R_TRIG 667 RS 668 SEMA 670 SR 671 SIG_GEN 673 STACKINT 675 TOF 677 TON 678 TP 679 Glossary 681 Licensing 695 ISaGRAF 5 Concrete Automation Model 697 Creating a Project 698 Devices 702 Resources 705 Programs 712 Function Blocks 715 Function Blocks 717 Variables 720 Choosing Project Templates for Targets 722 Creating a Library 724	CTD	653
CTUD 657 DERIVATE 659 F_TRIG 661 HYSTER 662 INTEGRAL 663 LIM_ALRM 665 R_TRIG 667 RS 668 SEMA 670 SR 671 SIG_GEN 673 STACKINT 675 TOF 677 TON 678 TP 679 Glossary 681 Licensing 695 ISaGRAF 5 Concrete Automation Model 697 Creating a Project 698 Devices 702 Resources 705 Programs 712 Function Blocks 717 Variables 720 Choosing Project Templates for Targets 722 Creating a Library 724	СТИ	655
DERIVATE 659 F_TRIG. 661 HYSTER 662 INTEGRAL 663 LIM_ALRM 665 R_TRIG. 667 RS 668 SEMA 670 SR 671 SIG_GEN 673 STACKINT 675 TOF. 677 TON 678 TP 679 Glossary 681 Licensing 695 ISaGRAF 5 Concrete Automation Model 697 697 Creating a Project 698 Devices 702 Resources 705 Programs 712 Function Blocks 717 Variables 720 Choosing Project Templates for Targets 722 Creating a Library 724	CTUD	657
F_TRIG	DERIVATE	659
HYSTER. 662 INTEGRAL 663 LIM_ALRM 665 R_TRIG 667 RS 668 SEMA 670 SR 671 SIG_GEN. 673 STACKINT. 675 TOF 677 TON 678 TP 679 Glossary 681 Licensing. 695 ISaGRAF 5 Concrete Automation Model 697 Creating a Project. 698 Devices 702 Resources 705 Programs 712 Function Blocks 717 Variables 720 Choosing Project Templates for Targets 722 Creating a Library 724	F_TRIG	661
INTEGRAL 663 LIM_ALRM 665 R_TRIG 667 RS 668 SEMA 670 SR 671 SIG_GEN 673 STACKINT 675 TOF 677 TON 678 TP 679 Glossary 681 Licensing 695 ISaGRAF 5 Concrete Automation Model 697 Creating a Project 698 Devices 702 Resources 705 Programs 712 Functions 715 Function Blocks 717 Variables 720 Choosing Project Templates for Targets 722 Creating a Library 724	HYSTER	662
LIM_ALRM 665 R_TRIG 667 RS 668 SEMA 670 SR 671 SIG_GEN 673 STACKINT 675 TOF 677 TON 678 TP 679 Glossary 681 Licensing 695 ISaGRAF 5 Concrete Automation Model 697 Creating a Project 698 Devices 702 Resources 705 Programs 712 Functions 715 Function Blocks 717 Variables 720 Choosing Project Templates for Targets 722 Creating a Library 724	INTEGRAL	663
R_TRIG 667 RS 668 SEMA 670 SR 671 SIG_GEN 673 STACKINT 675 TOF 677 TON 678 TP 679 Glossary 681 Licensing 695 ISaGRAF 5 Concrete Automation Model697 Creating a Project 698 Devices 702 Resources 705 Programs 712 Functions 715 Function Blocks 717 Variables 720 Choosing Project Templates for Targets 722 Creating a Library 724	LIM_ALRM	665
RS 668 SEMA 670 SR 671 SIG_GEN 673 STACKINT 675 TOF 677 TON 678 TP 679 Glossary 681 Licensing 695 ISaGRAF 5 Concrete Automation Model 697 Creating a Project 698 Devices 702 Resources 705 Programs 712 Functions 715 Function Blocks 711 Variables 720 Choosing Project Templates for Targets 722 Creating a Library 724	R_TRIG	667
SEMA 670 SR 671 SIG_GEN 673 STACKINT 675 TOF 677 TON 678 TP 679 Glossary 681 Licensing 695 ISaGRAF 5 Concrete Automation Model 697 Creating a Project 698 Devices 702 Resources 705 Programs 712 Functions 715 Function Blocks 717 Variables 720 Choosing Project Templates for Targets 722 Creating a Library 724	RS	668
SR 671 SIG_GEN 673 STACKINT 675 TOF 677 TON 678 TP 679 Glossary 681 Licensing 695 ISaGRAF 5 Concrete Automation Model 697 Creating a Project 698 Devices 702 Resources 705 Programs 712 Functions 715 Function Blocks 717 Variables 720 Choosing Project Templates for Targets 722 Creating a Library 724	SEMA	670
SIG_GEN	SR	671
STACKINT	SIG_GEN	673
TOF677TON678TP679Glossary681Licensing695ISaGRAF 5 Concrete Automation Model697Creating a Project698Devices702Resources705Programs712Functions715Function Blocks717Variables720Choosing Project Templates for Targets722Creating a Library724	STACKINT	675
TON678TP679Glossary681Licensing695ISaGRAF 5 Concrete Automation Model697Creating a Project698Devices702Resources705Programs712Functions715Function Blocks717Variables720Choosing Project Templates for Targets722Creating a Library724	TOF	677
TP 679 Glossary 681 Licensing 695 ISaGRAF 5 Concrete Automation Model 697 Creating a Project 698 Devices 702 Resources 705 Programs 712 Functions 715 Function Blocks 717 Variables 720 Choosing Project Templates for Targets 722 Creating a Library 724	TON	
Glossary681Licensing695ISaGRAF 5 Concrete Automation Model697Creating a Project698Devices702Resources705Programs712Functions715Function Blocks717Variables720Choosing Project Templates for Targets722Creating a Library724	ТР	679
Licensing.695ISaGRAF 5 Concrete Automation Model697Creating a Project.698Devices702Resources.705Programs.712Functions715Function Blocks.717Variables.720Choosing Project Templates for Targets722Creating a Library.724	Glossary	681
ISaGRAF 5 Concrete Automation Model697Creating a Project	Licensing	695
Creating a Project698Devices702Resources705Programs712Functions715Function Blocks717Variables720Choosing Project Templates for Targets722Creating a Library724	ISaGRAF 5 Concrete Automation Model	697
Devices702Resources705Programs712Functions715Function Blocks717Variables720Choosing Project Templates for Targets722Creating a Library724	Creating a Project	
Resources705Programs712Functions715Function Blocks717Variables720Choosing Project Templates for Targets722Creating a Library724	Devices	
Programs712Functions715Function Blocks717Variables720Choosing Project Templates for Targets722Creating a Library724	Resources	
Functions 715 Function Blocks 717 Variables 720 Choosing Project Templates for Targets 722 Creating a Library 724	Programs	
Function Blocks 717 Variables 720 Choosing Project Templates for Targets 722 Creating a Library 724	Functions	
Variables	Function Blocks	
Choosing Project Templates for Targets	Variables	
Creating a Library	Choosing Project Templates for Targets	
0 5	Creating a Library	

Using a Library in a Project	726
Setting Project Access Control	728
Setting Target Access Control	730
Importing Target Definitions	732
Importing and Exporting Elements	733
Importing and Exporting Variables Data	736
Generating Code	740
Building Solutions and Project Elements	741
Rebuilding Solutions	743
Cleaning Solutions and Project Elements	744
Running an Application Online	745
Target Management	746
Downloading Code to Targets	.747
Uploading Code from Targets	.749
Stopping and Starting Resources	.750
Performing Online Changes	.751
Debugging	755
Accessing Diagnostic Information (System Variables)	.758
Logging Target Execution Events	.762
Forcing the Values of Variables	.764
Simulating	768
Monitoring	769
Getting Started	771
System Requirements for Development Platforms	773
Differences with Previous Versions	775
Naming Conventions and Limitations	779
Introducing the Automation Collaborative Platform (ACP)	784
Walking Through an Existing Application	806
Starting with a Basic Application	819
Importing an Existing Application	838
Version Source Control	845
Using the Repository Explorer	848
Using the Working Copy Explorer	851
Committing Dending Changes	854
Commung rending Changes	833 859
Detuing versions of Elements	030 861
Revenuing versions of Elements	901

Creating a Working Copy from a Repository	868
Locking and Unlocking Elements	870
Viewing the History of Elements	871
Comparing Element Versions	873
Canceling Local Modifications	876
Version Source Control Keyboard Shortcuts	877
Dictionary	879
Arrays Grid	881
Structures Grid	885
Defined Words Grid	888
Variables Grid	891
Cross Reference Browser	897
Device View	901
Controller Status	905
I/O Wiring	907
I/O Devices	909
I/O Channels	912
I/O Wiring Keyboard Shortcuts	917
Bindings	919
Bindings View	924
Failover Mechanism	931
Configuring a Failover Mechanism	935
Monitoring the Failover Mechanism	939
Implementing Failover Mechanisms on a Windows Platform	941
Limitations for Failover Mechanisms	944
IEC 61499 Language	945
IEC 61499 Program Main Format	946
Cycle Execution Time in IEC 61499 Programs	948
Debugging IEC 61499 Programs	949
IEC 61499 Function Block Main Format	950
Basic IEC 61499 Function Blocks	952
States	957
Transitions	959
Sequence Controls	961
Selection Divergences	962
Selection Convergences	964
Simultaneous Divergences	965

Simultaneous Convergences	
Jumps to Steps	967
Coding Action Blocks for Steps	968
Boolean Actions	
Pulse Actions	
Non-Stored Actions	
Coding Conditions for Transitions	974
Conditions Programmed in ST	975
Conditions Programmed in LD	976
Calling Functions from Transitions	977
Calling Function Blocks from Transitions	
Composite IEC 61499 Function Blocks	979
Function Blocks	
Variables	
Links	
Regions	
Comments	
Execution Control Chart Behavior	985
IEC 61499 Keyboard Shortcuts	987
FBD Language	991
FBD Diagram Main Format	992
Execution Order of FBD Programs	994
Debugging FBD Programs	997
FBD Elements	1001
Blocks	1002
Variables	1005
Vertical Bars	1007
Labels	1008
Jumps	1010
Returns	1012
Rungs	1013
Left Power Rails	1014
Right Power Rails	1015
Coils	1016
Direct Coil	1018
Reverse Coil	1019
Set Coil	1020
Reset Coil	1022
Contacts	1024

Direct Contact	1026
Reverse Contact	1027
Pulse Rising Edge Contact	1028
Pulse Falling Edge Contact	1029
Regions	1030
Comments	1032
Configuring Function Block Instances	. 1033
FBD Keyboard Shortcuts	. 1036
LD Language	. 1039
Debugging LD Programs	. 1041
LD Elements	. 1045
Rungs	1046
Blocks	1048
Coils	1053
Direct Coil	1056
Reverse Coil	1057
Pulse Rising Edge Coil	1058
Pulse Falling Edge Coil	1059
Set Coil	1060
Reset Coil	1062
Contacts	1064
Direct Contact	1066
Reverse Contact	1067
Pulse Rising Edge Contact	1068
Pulse Falling Edge Contact	1069
Jumps	1070
Returns	1072
Branches	1074
Configuring Function Block Instances	. 1075
LD Keyboard Shortcuts	. 1078
ST Language	. 1081
ST Main Syntax	. 1082
Expressions and Parentheses	. 1086
Calling Functions	. 1088
Calling Function Blocks	. 1089
Debugging ST Programs	. 1090
ST Basic Elements and Statements	. 1093
Assignments	1094

CASE Statement	1095
EXIT Statement	1097
FOR Statement	1098
IF-THEN-ELSIF-ELSE-END IF Statement	1100
REPEAT Statement	1102
RETURN Statement	1103
WHILE Statement	1104
ST Extensions	1105
GSTART Statement in SFC Action	1106
GFREEZE Statement in SFC Action	1108
GKILL Statement in SFC Action	1110
GSTATUS Statement in SFC Action	1112
GRST Statement in SFC Action	1114
ST Keyboard Shortcuts	1116
SFC Language	1121
SFC Main Format	1122
SFC Execution Behavior	1124
SFC Program Hierarchy	1126
Child SFC POUs	1128
Debugging SFC Programs	1129
Breakpoint on Step Activation	1131
Breakpoint on Step Deactivation	1132
Breakpoint on Transition	1134
Transition Clearing Forcing	1135
SFC Elements	1136
Steps	1138
Transitions	1140
Sequence Controls	1141
Selection Divergences	1142
Selection Convergences	1144
Simultaneous Divergences	1145
Simultaneous Convergences	1146
Jumps to Steps	1147
Coding Action Blocks for Steps	1149
Boolean Actions	1151
Pulse Actions	1152
Non-Stored Actions	1154
SFC Actions	1156
Coding Conditions for Transitions	1158

Conditions Programmed in ST	1159
Conditions Programmed in LD	1160
Calling Functions from Transitions	1161
Calling Function Blocks from Transitions	1162
SFC Keyboard Shortcuts	1163
SAMA Language	1165
SAMA Diagram Main Format	1166
Execution Order of SAMA Programs	1167
Debugging SAMA Programs	1168
SAMA Elements	1169
Alarm Signal	1170
Averaging	1171
Bias	1173
Derivative	1175
Difference	1177
Dividing	1178
Equal To	1179
Exponential	1180
Greater Than	1181
High Selecting	1182
Integral	1183
IPID	1185
Lesser Than	1190
Logical AND	1191
Logical OR	1193
Logical Signal	1195
Low Selecting	1196
Measuring or Readout	1197
Multiplying	1198
NOT	1199
Root Extraction	1200
SAMA Variable	1201
Server Monitored Variable	1202
Signal Monitor	1203
Summing	1205
Transfer	1206
Variable Signal Generator	1208
Mapping Chart of SAMA Elements with IEC 61131-3 Elements	1209
SAMA Keyboard Shortcuts	1210

Language Reference	1213
Programs	1214
Functions	1216
Function Blocks	1217
Execution Rules	1218
Reserved Keywords	1219
Variables	1221
Directly Represented Variables	1224
Defined Words	1226
Data Types	1227
Elementary IEC 61131-3 Types	1228
ANY Data Type	1230
ANY_ELEMENTARY Data Type	1231
Boolean Data Type	1232
Short Integer Data Type	1233
Unsigned Short Integer or BYTE Data Type	1234
Integer Data Type	1235
Unsigned Integer or Word Data Type	1236
Double Integer Data Type	1237
Unsigned Double Integer or Double Word Data Type	1238
Long Integer Data Type	1239
Unsigned Long Integer or Long Word Data Type	1240
Real Data Type	1241
Long Real Data Type	1242
Time Data Type	1243
Date Data Type	1245
String Data Type	1246
Safety Type	1248
Safety Boolean Data Type	1249
Derived Types: Arrays	1250
Derived Types: Structures	1251
Literal Values	1252
Operators	1253
Multiplication	1255
Addition	1257
Subtraction	1259
Division	1261
1 GAIN	1263
AND	1264

ANY_TO_BOOL	1266
ANY_TO_SINT	1268
ANY_TO_USINT	1270
ANY_TO_BYTE	1272
ANY_TO_INT	1274
ANY_TO_UINT	1276
ANY_TO_WORD	1278
ANY_TO_DINT	1280
ANY_TO_UDINT	1282
ANY_TO_DWORD	1284
ANY_TO_LINT	1286
ANY_TO_ULINT	1288
ANY_TO_LWORD	1290
ANY_TO_REAL	1292
ANY_TO_LREAL	1294
ANY_TO_TIME	1296
ANY_TO_DATE	1297
ANY_TO_STRING	1298
Equal	1300
Greater Than or Equal	1302
Greater Than	1304
Less Than or Equal	1306
Less Than	1308
NEG	1310
NOT	1311
Not Equal	1312
OR	1314
XOR	1316
Functions	1319
ABS	1321
ACOS	1322
AND MASK	1323
ASCII	1324
ASIN	1325
ATAN	1326
CHAR	1327
COS	1328
CURRENT ISA DATE	1329
DELETE	1330

EXPT	1332
FIND	1333
INSERT	1334
LEFT	1336
LIMIT	1338
LOCK CPU	1339
LOG	1340
MAX	1341
MID	1342
MIN	1344
MLEN	1345
MOD	1347
MUX4	1348
MUX8	1350
NOT MASK	1352
ODD	1353
OR MASK	1354
POW	1355
RAND	1356
REPLACE	1357
RIGHT	1359
ROL	1361
ROR	1362
SEL	1363
SHL	1364
SHR	1365
SIN	1367
SQRT	1368
SUB DATE DATE	1369
TAN.	1370
TRUNC	1371
UNLOCK CPU	1372
XOR MASK	1373
Function Blocks	1375
AVERAGE	1376
BLINK	1378
СМР	1379
CONNECT	1381
CTD	1384

	CTU	1386
	CTUD	1387
	DERIVATE	1389
	F_TRIG	1391
	HYSTER	1392
	INTEGRAL	1393
	LIM_ALRM	1395
	R_TRIG	1397
	RS	1398
	SR	1400
	SIG_GEN	1402
	STACKINT	1404
	TOF	1406
	TON	1408
	ТР	1410
	URCV_S	1412
	USEND_S	1414
Nor	mative Function Blocks	1419
	E CTU	1421
	E CYCLE	1422
	E D FF	1423
	E DELAY	1424
	E DEMUX	1425
	E F TRIG	1426
	E MERGE	1427
	E N TABLE	1428
	E PERMIT	1430
	E R TRIG	1431
	E_REND	1432
	E_RESTART	1433
	E_RS	1434
	E_SELECT	1435
	E_SPLIT	1436
	E_SR	1437
	E_SWITCH	1438
	E_TABLE	1439
	E_TABLE_CTRL	1441
	E_TRAIN.	1442
	LocalEventInput	1444

Glossary	1445
Licensing	1467

Windows Runtime Modules

1469

ISAEDEE TOT 1471
ISAFKEE-TOT
Target Features
Installing Windows Run-time Modules
Setting Networks and Connections
ETCP 1485
HSD
ISaRSI
Configuring I/O Devices
Modbus/TCP Client Implementation
Target Preparation
Importation of Drivers in the Workbench
Properties of Modbus/TCP Client Devices
Modbus/TCP Prefixes
Modbus/TCP Message Descriptions
Modbus/TCP Server Implementation
Target Preparation
Importation of Drivers in the Workbench
Properties of Modbus/TCP Server Devices
Modbus/TCP Prefixes
Modbus/TCP Message Descriptions
Modbus/TCP Exception Codes
Defining Ports Usage
Error Messages 1523
Functions 1567
ABS I REAL 1569
ACOS IRFAI 1570
AND MASK BYTE 1571
AND MASK DWORD 1572
AND MASK I WORD
AND MASK WORD
ASIN I REAL 1575
ATAN IRFAI 1576
COS LEEAL 1577

EXPT_LREAL	1578
GET_TIME_STRING	1579
ISA_SERIAL_CLOSE	1580
ISA_SERIAL_CONNECT	1581
ISA_SERIAL_DISCONNECT	1584
ISA_SERIAL_OPEN	1585
ISA_SERIAL_RECEIVE	1587
ISA_SERIAL_SEND	1589
ISA_SERIAL_SET	1591
ISA_SERIAL_STATUS	1593
LOG_LREAL	1595
NOT_MASK_BYTE	1596
NOT_MASK_DWORD	1597
NOT_MASK_LWORD	1598
NOT_MASK_WORD	1599
OR_MASK_BYTE	1600
OR_MASK_DWORD	1601
OR_MASK_LWORD	1602
OR_MASK_WORD	1603
POW_LREAL	1604
ROL_BYTE	1605
ROL_DWORD	1606
ROL_LWORD	1607
ROL_WORD	1608
ROR_BYTE	1609
ROR_DWORD	1610
ROR_LWORD	1611
ROR_WORD	1612
SET_PRIORITY	1613
SHL_BYTE	1614
SHL_DWORD	1615
SHL_LWORD	1616
SHL_WORD	1617
SHR_BYTE	1618
SHR_DWORD	1619
SHR_LWORD	1620
SHR_WORD	1621
SIN_LREAL	1622
SQRT_LREAL	1623

	TAN LREAL	1624
	TRUNC LREAL	1625
	XOR MASK BYTE	1626
	XOR MASK DWORD	1627
	XOR MASK LWORD	1628
	XOR_MASK_WORD	1629
Fund	ction Blocks	1631
	GET TIME STRUCT	1634
	NOW	1636
	ANALOGALARM	1637
	BATCHSWITCH	1646
	BATCHTOTALIZER	1648
	BIAS	1651
	BIASCALIBRATION	1652
	CHARACTERIZER	1654
	COMPARATOR	1656
	DIGITALALARM	1657
	FLIPFLOP	1662
	IPIDCONTROLLER	1664
	LEADLAGCONTROLLER	1674
	LEADLAGBACONTROLLER	1677
	LIMITER	1681
	PID_AL	1682
	RATELIMITER	1685
	RATIO	1687
	RATIOCALIBRATION	1688
	RETENTIVEONTIMER	1690
	SCALER	1692
	SETPOINT	1693
	SIGNALSELECTOR	1695
	TRACKANDHOLD	1696
	TRANSFERSWITCH	1697
	Matrix2 Operations	1698
	COPY_ROW_MATRIX	1700
	COPY_COL_MATRIX	1703
	TRANSPOSE_MATRIX	1706
	INVERT_MATRIX	1708
	ADD_MATRIX	1711
	SUBTRACT_MATRIX	1714

MULTIPLY MATRIX	1717
SCALAR MATRIX	1720
PRINT MATRIX	1723
GET_VERSION	1725
Matrix Operations	1727
NEW_MATRIX	1729
FREE_MATRIX	1731
GET_I_MATRIX	1733
PUT_I_MATRIX	1735
GET F MATRIX	1737
PUT_F_MATRIX	1739
DUP_MATRIX	1741
COPY_MATRIX	1743
COPY_ROW_MATRIX	1745
COPY_COL_MATRIX	1747
TYPE_MATRIX	1749
ROWS_MATRIX	1751
COLS_MATRIX	1753
TRANSPOSE_MATRIX	1755
INVERT_MATRIX	1757
ADD_MATRIX	1759
SUBTRACT_MATRIX	1761
MULTIPLY_MATRIX	1763
SCALAR_I_MATRIX	1765
SCALAR_F_MATRIX	1767
PRINT_MATRIX	1769
Motion Control Function Blocks	1771
MC AbortTrigger	1780
MC AccelerationProfile	1782
MC CamIn	1784
MC ⁻ CamOut	1787
MC ⁻ CamTableSelect	1788
MC DigitalCamSwitch	1790
MC GearIn	1792
MC_GearInPos	1795
MC_GearOut	1798
MC_Halt	1799
MC_Home	1801
MC_MoveAbsolute	1803

MC	MoveAdditive	1806
MC		1808
MC		1811
MC		1814
MC		1816
MC	MoveVelocity	1818
MC	Phasing	1820
MC	PositionProfile	1823
MC	Power	1825
MC	ReadActualPosition	1827
MC		1828
MC	ReadActualVelocity	1830
MC	ReadAxisError	1832
MC		1834
MC	ReadDigitalInput	1837
MC	ReadDigitalOutput	1839
MC	ReadParameter	1841
MC	ReadStatus	1844
MC	Reset	1847
MC	SetOverride	1848
MC	SetPosition	1850
MC	Stop	1852
MC	TorqueControl	1854
MC	TouchProbe	1857
MC	VelocityProfile	1859
MC	WriteBoolParameter	1861
MC	WriteDigitalOutput	1864
MC	WriteParameter	1866
SAMA Elements and Eurotions		1869
Hig	h Limiting	1871
Inte	egrate or Totalize	1872
Loy	v Limiting	1874
MA	Transfer	1875
MA	TransferSet	1877
Me	mory (Basic)	1879
Me	mory (So Dominant)	1881
Me	mory (Ro Dominant)	1883
Pro	portional	1885
Pro	portional and Integral	1886
110	r · · · · · · · · · · · · · · · · · · ·	

Proportional and Derivative	1888
Pulse Duration	1890
Pulse Duration Of The Lesser Time	1892
Reverse Proportional	1894
Time Delay On Initiation	1896
Time Delay On Termination	1898
Tri-State Signal	1900
Velocity Limiting	1902
Safety Function Blocks	1903
SF AND	1906
SF Antivalent	1907
SF_EDM	1909
SF_EmergencyStop	1912
SF_EnableSwitch	1915
SF_Equivalent	1918
SF_ESPE	1920
SF_GuardLocking	1922
SF_GuardMonitoring	1925
SF_ModeSelector	1928
SF_MutingPar	1934
SF_MutingPar_2Sensor	1938
SF_MutingSeq	1942
SF_OutControl	1946
SF_SafelyLimitedSpeed	1949
SF_SafeStop1	1952
SF_SafeStop2	1954
SF_SafetyRequest	1956
SF_TestableSafetySensor	1958
SF_TwoHandControlTypeII	1962
SF_TwoHandControlTypeIII	1964

Introducing the Automation Collaborative Platform

The Automation Collaborative Platform is a complete suite for building multi-process control projects and Human-Machine Interface applications. The Automation Collaborative Platform's environment includes development tools and other technologies simplifying design, development, and deployment of applications. You develop projects on a Windows development platform, from the Workbench and language editors.

The Workbench graphically represents and organizes devices, and networks. The development process consists of creating projects made up of devices, representing individual target nodes. The development environment is made up of multiple windows and tools:

- Solution Explorer
- Navigation Window
- Language Editors
- Dictionary
- Block Library
- Deployment View
- Controller Status
- Variable Dependencies
- Properties Window
- Collection Editor
- Locked Variables Viewer
- ISaVIEW

- Toolbox
- Variable Selector
- Block Selector
- Parameters View
- Document Generator
- Error list
- Find and Replace Utility
- Output Window
- Spy List
- Add-in Manager
- Description Window

Solution Explorer

The Solution Explorer is an interface that displays a graphical view of solutions. The Solution Explorer helps manage two types of conceptual containers used by the workbench, the solutions and projects. Projects include sets of program source files and related metadata, such as references and build instructions. Solution contain elements that represent the references, data connections, folders, and files that are needed to create an application. A solution can house multiple projects and a project can house multiple programs. From the Solution Explorer, double-clicking project elements displays their contents in the appropriate editor or tool.

When creating new projects, the solution is automatically created as the container for your project. You can create standalone or temporary projects. A stand-alone project is any solution that contains only one project.

In a multi-project solution, the first project created is designated as the startup project and is displayed in bold font in the Solution Explorer. When you build or debug the solution, startup projects are run first. You can choose to set one or multiple start-up projects to run using the debugger.

The Solution Explorer displays the contents of solutions in a logically organized tree view, providing access to project elements. The physical locations of project files can differ from that represented in the tree view structure. From the tree view, you can conduct many project management tasks using contextual menus for project elements, including adding elements, cutting or copying elements, deleting or removing elements, moving elements, and renaming elements. The Solution Explorer toolbar provides access to available commands for selected elements. You can update the commands available in the toolbar by clicking project elements. You can select multiple project elements and execute batch commands using toolbar commands. When selecting multiple elements, the toolbar and contextual menu only display the options available to all selected files.

Displays the Properties Window for the element selected

Toggles between simple and regular tree view. In simple view, the device, resource (if supported by the CAM), and library elements are removed from the structure. Refreshes the selected item

The Solution Explorer displays all related commands available for stand-alone or multi-project solutions. For stand-alone projects, you can choose to display or hide the solution container within the Solution Explorer.

To access the Solution Explorer

• From the View menu, click Solution Explorer (or press Ctrl+Alt+L).

The Solution Explorer is displayed.

To cut or copy elements

- 1. Select one or more elements, right-click the selection, then do one of the following:
 - To cut the selection, click **Cut**
 - To copy the selection, click **Copy.**
- 2. Right-click the required destination, then click Paste.

To move elements

You can move elements using the contextual menus. You can also drag project elements, changing their order of appearance.

- 1. To move elements using the contextual menus, perform the following:
 - a) Select one or more elements, right-click the selection, and then click Cut.
 - b) Right-click the required destination, then click Paste.
- 2. To move elements by dragging, select an element, then drag it to the required location.

To delete or remove elements

- 1. To permanently delete elements, select one or more elements, right-click the selection, then click **Delete**.
- 2. To remove elements, select one or more elements, right-click the selection, then click Cut.

To rename elements

• Right-click an element, click **Rename**, then type a new name in the space provided.

To hide the solution container

For stand-alone projects, you can choose to hide the solution container.

1. From the Tool menu, click **Options**

The Options dialog box is displayed.

- 2. Expand Projects, then click General.
- 3. From the options displayed, clear *Always show solution*.

The solution container is no longer displayed in the Solution Explorer.

See Also Creating Projects Adding New Projects

Creating Projects

You can create projects in either the current solution or in a new solution. Project templates enable creating projects containing one or more devices as well as files and folder appropriate for the project type. When you select a project type, the available templates are displayed.

When creating a project for a new solution, you provide a name and storage location for the project. The directory structure for the solution is automatically created. The default solution name is the same as the project name. You can define unique names for the solution and project. When creating stand-alone projects, no solution is defined. You create projects based on templates. When creating a project, you can choose to add it to an existing solution or create a new solution. When creating a new solution, you can specify to create the directory structure for the solution. Project names must begin with a letter or underscore followed by letters, digits, and single underscores. Project names cannot contain the following characters:

Pound (#)	Double quotation mark (")
Percent (%)	Less than (<)
Ampersand (&)	Greater than (>)
Asterisk (*)	Question mark (?)
Vertical bar ()	Forward slash (/)
Backslash (\)	Leading or trailing spaces (' ')
Colon (:)	Names reserved for Windows or DOS such as "nul", "aux",
	"con", "com1", and "lpt1"

You can choose to display templates using small iii or medium icons.

To create a project

- 1. From File menu, point to New, then click Project (or press Ctrl+Shift+N).
- 2. From the New Project dialog box, select the type of project and a template.
- **3.** Define the project name and storage location.
 - a) In the *Name* field, type a unique project name.
 - **b)** In the *Location* field, define the project folder by typing the path, selecting from the drop-down combo-box, or browsing for the require location.
- 4. Create a folder for the solution and define the solution name (optional).

- a) Select Create directory for solution.
- **b)** Type the desired solution name.

5. Click OK.

The project is created.

Opening Projects and Solutions

You can open existing projects with their solutions. When opening an existing project within a solution, you add the project to the solution. You can also add projects using the contextual menu for the solution item within the Solution Explorer.

When opening solutions, all projects and files associated with the solution are opened.

When opening a project, you can choose to add the project to the solution that is currently open or close the current solutions and open the projects in a new solution.

To open a project or solution from the Workbench

- 1. From the File menu, point to **Open**, then click **Project/Solution** (or press **Ctrl+Shift+O**).
- 2. In the Open Project dialog box, locate the required project or solution.
- **3.** Specify whether to add the project to the open solution or close the current solution before opening the project.
- 4. Click Open.

The project or solution is displayed.

To open a project or solution from the Projects directory

- From the Windows Explorer, access the Projects directory and perform one of the following:
 - Double-click the required *.isasln file.
 - Drag the *.acfproj or *.isasln file onto the desktop Workbench icon.

The workbench opens displaying the required project or solution.
Adding New Projects

You can create new projects for inclusion in open solutions. Project templates enable creating projects containing one or more devices as well as files and folders appropriate for the project type. Project templates are organized into types. When selecting a project type, the available templates are displayed.

When adding a project, you provide a name and storage location for the project. You add projects based on templates. Project names cannot contain the following characters:

Pound (#)	Double quotation mark (")
Percent (%)	Less than (<)
Ampersand (&)	Greater than (>)
Asterisk (*)	Question mark (?)
Vertical bar ()	Forward slash (/)
Backslash (\)	Leading or trailing spaces ('')
Colon (:)	Names reserved for Windows or DOS such as
	"nul", "aux", "con", "com1", and "lpt1"

You can choose to display templates using large or small icons.

To add a new project to an existing solution

- 1. From the File menu, point to Add, then click New Project.
- 2. From the Add New Project dialog box, select the required project template.
- 3. In the *Name* field, type a unique name.
- 4. In the *Location* field, define the storage location for the project by typing the path or browsing to select an existing folder. When browsing, you can choose to make a new folder.
- 5. Click OK.

The project is displayed.

To add a temporary project

1. From the Tool menu, click **Options**

The Options dialog box is displayed.

- 2. Expand Projects, then click General.
- 3. From the options displayed, clear Save new projects when created.
- 4. From the File menu, point to Add, then click New Project.
- 5. In the Add New Project dialog box, select a template, type the required information in the fields provided, and click **OK**.

The temporary project is added.

Adding Existing Projects

You can add existing projects to open solutions. When adding projects to solutions, you can access projects from local or network directories.

To add existing projects to a solution

- 1. From the File menu, point to Add, then click Existing Project.
- 2. From the Add Existing Project dialog box, locate and select the required project file, then click **OK**.

The project is added to the open solution.

Saving Changes to Solutions and Projects

You can save changes to projects and solutions. When closing projects and solutions, you are prompted to save changes to projects and solutions.

To save changes to solutions

- 1. From the File menu, click Close Solution.
- 2. In the save changes dialog box, click Yes.

To save changes to items open in the workspace

- 1. From the File menu, click Close.
- 2. In the save changes dialog box, click Yes.

Solution Properties

You can manage builds using the following options available for solutions:

• Setting the start-up projects

To access the Solution Property Pages

- 1. In the Solution Explorer, select the solution element.
- 2. From the View menu, click Property Pages.

The Solution Property Pages dialog box is displayed.

Setting Startup Projects

You can set projects to run when you start online debugging. You can also modify the order in which projects run during debugging. The startup feature is not available for simulation.

- Current selection, enables running only the project currently selected
- Single startup project, enables running a single specified project
- Multiple startup projects, enables running more than one project

Running multiple projects requires building the startup projects. You set the debugging order of projects by moving them up or down in the list. You also need to specify the action to apply to individual projects belonging to the solution when the debugger starts:

- None where the project remains in edit mode
- Start where the project runs
- Start without debugging where the project runs without debugging

Projects using startup options must respect the following folder hierarchy structure. This hierarchy is the default structure when creating projects in a solution.

Solution folder (*.isasln)

Project1 folder (*.isaproj) Project2 folder (*.isaproj) Project3 folder (*.isaproj)

For projects not using this hierarchy structure, you need to manually build the structure by manually copying the projects, then adding the existing projects to the solution from the Solution Explorer using the contextual menu.

To set startup projects

- 1. In the Solution Explorer, select and right-click the solution element, then click Set Startup Projects.
- 2. From the Solution Property Pages dialog box, expand Common Properties, then click Startup Project.

- 3. Specify which projects to run and debug when the debugger starts, then click **OK**.
 - To run and debug the project currently selected in the Solution Explorer, click **Current selection.**
 - To run a single project within the solution, click **Single startup project**, then select the project from the drop-down combo-box.
 - To run multiple projects within the solution, click **Multiple startup projects**, then define debug order and action to apply to each project belonging to the solution.

Projects run in the order of appearance in the list.

- 4. To reorder the projects in the list, select the individual projects, then click \uparrow or \downarrow .
- 5. To save changes, click Apply.

Setting Project Dependencies

Note: The Project Dependencies feature is not implemented for use.

For **ISaGRAF** projects, you add dependencies on libraries. For more information, refer to "Using a Library in a Project" for the respective Concrete Automation Model (CAM).

Setting Configuration Properties

You can define how solutions and projects are built and run. For each project in the solution, you define properties for multiple configurations, including simulation and online configurations. You can define the build and platform options for individual configurations. You can also choose to set the options for all configurations.

When setting the configuration properties, you can define the following information:

• Configuration, enables selecting from the list of configurations:

Option	Description
Active(configuration)	Enables defining the platform and build options for the configuration type currently selected in the Solution Configurations drop-down combo-box
Online	Enables defining the platform and build options for the online configuration type
Simulation	Enables defining the platform and build options for the simulation configuration type
All Configurations	Enables changing the platform and build options for all configurations types (simulation and online) for each project in the solution

• Platform, enables choosing the development platform on which to run projects and solutions

ISaGRAF 6 supports the *Any CPU* platform only.

• Project Contexts, for each project listed, enables defining platforms and build options for each configuration:

Project	Configuration	Platform	Build
Lists of projects making up the solution	Options for the configuration type (simulation or online)	Options for the development platform used for each project when running the solution	Indication of whether to build the project when building the solution

You can also access the Configuration Manager where you can create and edit configurations.

To set configuration properties

- 1. From the Solution Explorer, click the solution element.
- 2. From the View menu, click Property Pages.
- **3.** From the Solution Properties Pages dialog box, expand **Configuration Properties**, then click **Configuration**.
- 4. Define the properties for configurations.
 - a) In the *Configuration* drop-down combo-box, select the required configuration.
 - **b)** In the *Project contexts* table, for the required project, verify the configuration and platform displayed, then click the check box in the *Build* column.
- 5. Click Apply, then click OK.

The configuration properties are set for the solution.

Configuration Manager

You can create and edit solution configurations. Changes made using the Configuration Manager are reflected in the Solution Property Pages. When creating and editing configurations, you need to define the following information:

- Active solution configuration, the available configurations. You can create solution configurations and rename existing ones.
- Active solution platform, the available platforms. **ISaGRAF 6** supports the *Any CPU* platform only. You can rename the existing solution platform.

ISaGRAF 6 supports the *Any CPU* platform type only.

• Project Contexts, for each project listed, enables defining platforms and build options for each configuration:

Project	Configuration	Platform	Build
Lists of projects making up the solution	Options for the configuration type (simulation or online)	Options for the development platform used for each project when running the solution	Indication of whether to build the project when building the solution

From the Configuration Manager you can also perform the following tasks:

- Create solution configurations
- Edit solution configurations
- Edit solution platforms

To access the Configuration Manager

- 1. From the Solution Explorer, click the solution element.
- 2. From the View menu, click **Property Pages**.
- 3. From the Solution Property Pages dialog box, click **Configuration Manager**.

The Configuration Manager is displayed.

To set configuration properties

- 1. From the Configuration Manager, define the properties for configurations.
 - a) In the *Active solution configuration* drop-down combo-box, select the required configuration.
 - **b)** In the *Project contexts* table, for the required project, verify the configuration and platform displayed, then click the check box in the *Build* column.

2. Click Close.

The configuration properties are reflected in the Solution property pages.

See Also

Setting Configuration Properties

Creating Solution Configurations

You can create solution configurations using the Configuration Manager. When creating solution configurations, you define the name and settings for the solution configurations. You also choose whether to create project configurations corresponding to the solution configuration.

To create a solution configuration

- 1. From the Configuration Manager, in the *Active Solution Configuration* drop-down combo-box, select <New...>.
- 2. From the New Solution Configuration dialog box, do the following:
 - a) In the *Name* field, type a name for the build configuration.
 - **b)** From the *Copy setting from* drop-down combo-box, copy the settings from another build configuration by selecting the configuration name.
 - c) To create corresponding project configurations, select Create new project configurations.
- 3. Click OK.

The solution configuration is ready for use.

Editing Solution Configurations

You edit solution configurations from the Configuration Manager. When editing solution configurations, you choose to rename or remove these.

To edit a configuration name or remove a solution build configuration

- 1. From the Configuration Manager dialog box, in the *Active Solution Configuration* drop-down combo-box, select <**Edit...**>
- 2. From the Edit Solution Configurations dialog box, do the following:
 - To change the name of a configuration, select the configuration name, click **Rename**, then type a new name.
 - To remove a configuration, select the configuration name, then click **Remove**.

3. Click Close.

The solution configuration is ready for use.

Editing Solution Platforms

You can rename existing solution platforms from the Configuration Manager.

To edit a solution platform name

- 1. From the Configuration Manager, in the *Active solution platform* drop-down combo-box, select <**Edit...**>
- 2. From the Edit Solution Platforms dialog box, select the platform name, click **Rename**, then type a new name.

3. Click Close.

The solution platform name is displayed in the Solution Property Pages and Configuration Manager.

Specifying Debug Source Files

Note: The Debug Source Files feature is not implemented for use.

Navigation Window

The Navigation Window is a graphical environment enabling navigation through many aspects and elements making up projects. The available elements vary on the CAM. The environment provides a global view listing the devices contained in one or more projects within a solution. The navigation window consists of vertical links on the left pane and a breadcrumbs trail in the address field. When you click a specific vertical link, the view for that aspect or element is displayed in the workspace. For example, clicking a device instance displays the Device View in the workspace. From the navigation window, you can navigate to the following views:

- Deployment View
- Device View
- Bindings View (if supported by the CAM)
- I/O Device View (if supported by the CAM)
- POU instances
- Parameters View
- Dictionary instances

To access the Navigation Window

1. From the View menu, click Navigation Window.

The Navigation Window is displayed in the workspace.

To access various views from the Navigation Window

The initial aspects and elements displayed vary depending on the item selected in the Solution Explorer.

1. To access the Deployment View, from the Navigation Window, click Deployment View.

The Deployment View is displayed in the workspace.

2. To access the Device View, click the Global arrow in the Navigation View, then click the required device from the available devices.

The required device is displayed in the Device View.

3. To access the Bindings view, from the Navigation window, in the required Device section, click **Bindings**.

The Bindings View is displayed in the workspace.

4. To access the I/O Device view, select the required resource in the Solution Explorer, then from the resource section in the Navigation Window, click **I/O Device**.

The I/O Device view is displayed in the workspace.

5. To access a POU instance, from the Navigation Window, click the required POU.

The POU is displayed in the language container.

6. To access the Parameters for a user-defined function or function block, select the required instance in the Solution Explorer, then click **Parameters** in the Navigation Window.

The Parameters for the required user-defined function or function block are displayed.

7. To access Dictionary instances, select the required POU in the Solution Explorer, then from the Navigation Window, click **Global Variables** or **Local Variables**.

The Dictionary instance is displayed in the workspace.

Language Editor

The language editor is the environment where you develop the contents of POUs. You develop these POUs using language containers. Language containers hold elements of a given IEC 61131-3 or IEC 61499 programming language. A POU can only have one language container. Description containers hold non-semantic information. When building projects, the compiler excludes information from description and HMI containers.

From the language editor, you can edit multiple POUs simultaneously. Individual POUs are opened in separate workspaces each having a tab indicating the POU name. The tabs enable moving from one POU to another.

When working in the language editor, you can choose to expand the workspace to a full-screen view.

You can edit the contents of language containers in the editor workspace.

The document overview enables focusing on areas within the workspace. When clicking inside the document overview, the workspace displays the area inside the focus box, indicated with a blue outline. Using the focus box you can define the area to display, i.e., zoom, in the workspace. Decreasing the size of the focus box increases the zoom. Whereas, increasing the size of the focus box decreases the zoom. You can focus on another area within the document overview by clicking the location.

To expand the workspace to the full-screen view

• From the View menu, click **Full Screen**.

To use the document overview

- 1. From the View menu, click **Document Overview**.
- 2. To focus on an area of the workspace, click inside the document overview.

The area inside the focus box is displayed within the workspace.

3. To define the focus area, do one of the following:

- Increase the zoom by decreasing the size of the focus box.
- Decrease the zoom by increasing the size of the focus box.
- Drag the focus box to another location within the workspace.

Editing the Contents of Language Containers

You develop POUs using language containers. When developing POUs, you can only insert elements from the corresponding language Toolbox into the open language container. POUs can have only one language container.

- Selecting elements
- Inserting elements
- Inserting identifiers
- Inserting blocks
- Moving elements
- Shifting elements
- Resizing elements
- Deleting elements

For graphical POUs, the workbench displays an error symbol (1) below elements having errors in the programming logic. Pausing on this symbol displays a description of the error.

To select elements

In the workspace, you can select individual or multiple elements within a language container. Selected elements are displayed with a colored handles. When selecting multiple elements, the handles of the first element are green and subsequent elements are turquoise.

When aligning multiple elements, the reference point differs depending on the programming language.

- 1. To select one element, click the element in the language container.
- 2. To select multiple elements, do one of the following:
 - Starting from empty workspace, drag the pointer over the elements.
 - While pressing SHIFT, use the pointer to select elements individually.

To insert elements

You can insert elements of a given language into its corresponding language container within the workspace.

• From the Toolbox, drag the element into the language container.

To insert an identifier

You can insert identifiers, i.e., variables, from the Dictionary. You can also create new variables, enter literal values into a POU, and access the parameters of functions or function blocks. When creating a new variable, you need to assign a unique name, specify its type, and define its scope in relation to the POU.

When inserting identifiers, you can choose to insert a constant or variable automatically via the Variable Selector.

- 1. From the Toolbox, drag the variable element into the language container.
- 2. From the Variable Selector, perform one of the following, then click OK.:
 - In the *Name* field, type a literal value.

When inserting literal values that begin with a letter or an underscore, enclose the variable name in single quotes as follows: 'abc'

Select the required variable from the lists of variables.

The variable is displayed.

To insert a block

You insert blocks into language containers of graphical programs from the Toolbox. Following insertion, you specify the type of block, i.e., operator, function, or function block, in the Block Selector accessed by double-clicking the block. For programs, the available items are operators (OPE), standard functions (SFU), standard function blocks (SFB), user IEC 61131-3 Functions (IFU), user IEC 61131-3 Function Blocks (IFB) and all "C" Functions (CFU) and Function Blocks (CFB) supported by the target type.

- 1. From the Toolbox, drag the block element into the language container.
- 2. In the Block Selector, in the list of blocks, locate the required block:
 - a) To limit the blocks displayed, you can sort the block list and filter the block list.
 - **b)** From the list of available blocks, select a block, then click **OK**.

To move elements within a language container

You can move elements within a language container.

- 1. In the language container, select one or more elements.
- 2. Drag the elements to another position.

To shift elements within an FBD language container

You can shift elements within an FBD language container towards the left, towards the right, towards the top (up), or towards the bottom (down) by a number of grid spaces. When shifting elements towards the left or right, you displace all elements located to the right of the cursor position by a number of grid spaces from their leftmost edge. When shifting elements up or down, you displace all elements located below the cursor position by a number of grid spaces from their topmost edge.

The following example shows the location in which to place the cursor and the shift options enabling the displacement of the block and output variable towards the right by 10 grid spaces, in reference to the leftmost edge of the block. The input variables to the left of the cursor remain in the same location following the shift operation.

- 1. In the language container, right click to access the contextual menu at the location from which to reference the elements to displace.
 - To displace elements towards the left or right, place the cursor to the left of the required elements.
 - To displace elements towards the top (up) or the bottom (down), place the cursor above the required elements.
- 2. Right-click, point to **Shift**, then point to the required shift direction, and then click the number of grid spaces.

To resize an element

When developing POUs using certain graphical programming languages, you can change the dimensions of specific individual elements.

- 1. In the language container, select an element.
- 2. Place the cursor over the element handles, then drag to the required size.

To delete elements

You can delete one or more elements from a language container. Deleting a variable element does not remove the variable from the dictionary.

- In the language container, select one or more elements, then do one of the following:
 - Right-click the selection, then click **Delete**.
 - Press DELETE.

Block Library

The block library provides a graphical view of all operators, functions, and function blocks available for the POUs of a project. When developing POUs, you can drag and drop blocks from the library to the language container. You can sort blocks displayed in the library according to alphabetical order, categories, or scope as well as limit a search based on names. You can also display the blocks in either tile or list views.

The following types of blocks may be available from the block library:

- Standard operators
- Standard functions
- Standard function blocks
- User IEC 61131 functions
- User IEC 61131 function blocks
- User C functions
- User C function blocks

• User functions and function blocks from a library

Blocks are sorted by scope:

- Standard blocks
- Library blocks (a scope for each library dependency)
- Target-specific C blocks

To access the block library

The block library displays the blocks applicable to the project template and target.

• From the View menu, click **Block Library**.

Note: The block library can also be accessed using the keyboard shortcut Ctrl+Alt+T.

To insert a block in a POU

• In the block library, locate the required block, then click and hold the mouse on the block while dragging to the destination in the POU container.

To sort blocks in the library

• Right-click in the block library window, then click Category or Scope.

To limit searches

You can perform searches for blocks by entering any part a block name. As you type text in the library search field, the library displays only the blocks containing these characters.

• In the field in the block library window, type the required text.

To toggle the blocks view in the library

• Right-click in the block library window, then click Tile View or List View.

Deployment View

The deployment of a project constitutes the devices, networks, and connections making up the project. The Deployment view graphically displays the devices, networks, and connections of a project. From this view, you can manage the following aspects of a project:

- Devices
- Networks linking devices
- Connections between devices and networks

Devices displayed in the Deployment view are also present in the Solution Explorer. Therefore, modifications to the devices in the Deployment view are reflected in the Solution Explorer.

To access the Deployment view

• In the View menu, click Deployment View.

The Deployment view is displayed in the workspace.

Devices

A device corresponds to a programmable logic controller. A device must be connected to a network supporting the device's target type. In the Deployment view, a device is represented by a rounded rectangle containing the target name, device icon, and device source. The target name is indicated above the device icon. The device source is displayed as *ProjectName.DeviceName* and is indicated below the device icon. The following targets are supported in **ISaGRAF**:

While debugging, devices in the Deployment View are displayed using default or user-defined colors to represent the following different statuses:

Break status	Displayed when the device encounters a breakpoint (if supported by the CAM)
Error status	Displayed when the device encounters an error
Idle status	Displayed when the device is idle
Offline status	Displayed when the device is offline
Run status	Displayed when the device is running
Stop status	Displayed when the device is stopped
Unknown status	Displayed when the device status is unknown

To add a new device from template

1. Right-click in the Deployment view, and then click Add New Device From Template.

The Add New Project dialog box appears.

2. From the Add New Project dialog box, select the required project template, then click OK.

The device belonging to the new project is added to the Deployment view.

3. In the **Properties** window for the device, define the required properties.

To add a new device

1. Right-click in the Deployment view, point to **Add New Device**, then point to the required project, and then click the required target type.

The new device is added to the Deployment view.

2. In the **Properties** window for the device, define the required properties.

To delete a device

- 1. In the **Deployment** view, click the device.
- 2. From the Edit menu, click Delete.

Networks

Networks provide the means for communication between devices. The target attached to the device must support the network connected to the device. You define network properties at the time of creation. These properties are specific to the network type.

A project can have an unlimited number of networks.

In the Deployment view, networks are displayed as horizontal lines.

When multiple networks are defined (or if the target is not defined in the project), the workbench uses the first default network. When one is not defined, the workbench uses the second default network. When neither default networks are defined, the first network defined for the target is used.

To add a network

You define network properties at the time of creation.

1. Right-click in the Deployment view, then point to Add New Network, and then click the required network.

The network is added to the workspace.

2. In the Properties window for the network, define the required properties.

To delete a network

You can delete networks from the Deployment View.

- 1. In the **Deployment** view, click the network element.
- 2. From the Edit menu, click Delete.

Connections

Connections between networks and devices enable communications to flow. You need to connect each device to one or more networks. Similarly, a network can be linked to many devices.

In the Deployment view, connections are displayed as vertical lines. After connecting devices to networks, you can move these by dragging.

To connect a device to a network

You can create connections between devices and networks.

- 1. In the **Deployment** view, click on the network and drag to the device.
- 2. In the **Properties** window for the connection, define the required IP address for the connection.

To delete a connection between a device and network

You can remove existing connections between devices and networks.

• In the **Deployment** view, click the connection line and press DELETE.

Deployment View Keyboard Shortcuts

The following keyboard shortcuts are available for use with the Deployment view.

Ctrl+=	Zoom in
Ctrl+-	Zoom out
Shift+Alt+Enter	Toggles between full-screen and windowed modes
Ctrl+Page Up	Jumps to the top of the language container
Ctrl+Page Down	Jumps to the bottom of the language container
Ctrl+Home	Jumps to the top of the language container
Ctrl+End	Jumps to the bottom of the language container
Up Arrow	Scrolls up
Down Arrow	Scrolls down
Left Arrow	Scrolls left
Right Arrow	Scrolls right
Ctrl+Up Arrow	Scrolls up
Ctrl+Down Arrow	Scrolls down
Ctrl+Left Arrow	Scrolls left
Ctrl+Right Arrow	Scrolls right

Variable Dependencies

You can view the dependencies of a variable in both ascending and descending directions. Ascending dependencies display the variables affecting the variable while descending dependencies display the variables affected by the variable. These dependencies are displayed as structures leading to the right for ascending dependencies and to the left for descending dependencies. When viewing the dependencies of a variable, the variable identification indicates its source such as the program name, device name, and ending with the variable name.

You can view dependencies of variables while editing, debugging, or running online. While online, you can monitor and force the values of variables from the dependencies.

The following example shows the dependencies of the Alarm_Memo variable where the variables on the right, ascending, affect its value while the variable affects the values of the variables to the left, descending.

Descending Dependencies

Ascending Dependencies

When viewing the dependencies of a variable, you can perform the following tasks:

- Display the dependencies of variables within the dependencies structures
- Add variables to a Spy list
- Access dictionary instances containing selected variables
- Access the POU where a variable is used
- Adjust the zoom factor for individual dependencies windows

Furthermore, you can also force the values of variables while debugging.

To display the dependencies of a variable

You can access the dependencies of variables from graphic programs or dictionary instances.

Note: Before accessing the dependencies of variables, you need to generate the cross references for a project.

• From a graphic program or a dictionary instance, right-click the variable, then click **Dependencies**.

The dependencies structure is displayed for the variable.

To display the dependencies of a variable within the dependencies structures

You can display the dependencies of variables from the ascending or descending structures.

• From the dependencies structure for a variable, double-click the variable from the ascending or descending structure for which to display the dependencies.

The dependencies structure for the selected variable is displayed in another window.

To add a variable to a Spy List

You can add variables from dependencies structures to a Spy List.

• From the dependencies structure for a variable, select the variable to add to the Spy List, right-click, and then click **Add to Spy List**.

The variable is added to the Spy List window.

To force the value of a variable

You can force, i.e., write, the value of a variable from the ascending or descending structures.

- 1. From the dependencies structure for a variable, select the variable for which to force the value, right-click, and then click **Write Variable**.
- 2. In the Write Logical Value dialog box, write the value for the variable.
- **3.** To lock the value for the variable, click **Lock**.
4. Click Write.

The variable displays the written value within the dependencies structure.

To access the dictionary instance containing a variable

You can access the dictionary instance containing a variable for variables displayed in dependencies structures.

• From the dependencies structure for a variable, select the variable for which to access the dictionary instance, right-click, and then click **Variables**.

The dictionary instance having the variable is displayed.

To access the POUs where a variable is used

For any variable selected in the dependencies structure, you can access all occurrences where the variable is used.

- 1. From the dependencies structure for a variable, select the variable for which to access the POUs where it is used.
- 2. From the list of the variable usage occurrences below the dependencies structure, double-click the required occurrence to open its usage location.

(DNT) (BOOL) (CURRENT_POSITION) = SENSOR3	Zoon 1
<spc>,(DEVICE1,RESOURCE1,USINAGEMOVE);T3:(0,72) (1),READING FROM_DEVICE1</spc>	RESOURCE1_GLOBAL.CURRENT_POSITION.(0.0).44.0.6
<sfc> (DEVICE1 RESOURCE1 USINAGEMOVE) T5 (0,120) (1) READING FROM, DEVICE</sfc>	1 RESOURCE1_GLOBAL CURRENT_POSITION.(0.0).66.0.6
<spc>(DEV/CE1.RESOURCE1.USINAGEMOVE).T10(48.72)(1).READING FROM_DEV/C <spc>(DEV/CE1.RESOURCE1.USINAGEMOVE).T12(48.120)(1).READING FROM_DEV/U 2010).READING FROM_DEV/U 20</spc></spc>	E1 RESOURCE1_GLOBAL CURRENT_POSITION.(0:0):91.0.6 E1 RESOURCE1_GLOBAL CURRENT_POSITION.(0:0):103.0.6

To set the zoom of a dependencies window

You can adjust the magnification factor for individual dependencies windows.

• From the dependencies window for a variable, slide the zoom scale to the required magnification factor.

Properties Window

The Properties window enables viewing and editing the properties of items selected within language containers, ISaVIEW instances, the Solution Explorer, and the Deployment View. You can also use the Properties window to view and edit file, project, and solution properties. You can view the common properties for multiple objects and elements. When selecting multiple objects, the Properties window displays only the properties that are common to all the objects and elements.

In the Properties window, properties are organized into categories displayed alphabetically. You can expand the categories to view the property information including property names and values. For ISavIEW objects, you can also choose to display either basic or extended (all) properties. Note that properties displayed in gray are read-only.

You edit property values using the plain text fields and drop-down combo-boxes provided. Where required, links to custom editors or dialogs are displayed in the property value fields.

The Properties window toolbar containing the following:

•	Displays the name of the item or group of items selected.
	Displays the property names and values organized into categories. You click \boxdot to expand categories and \boxminus to collapse categories.
A↓	Displays the properties sorted in alphabetical order
	Displays the basic (subset of extended) properties for a selected ISaVIEW object. You can choose to include individual properties as basic properties.
E	Displays the extended (all) properties for a selected ISaVIEW object
	Displays the Properties Pages for the Solution

To access the Properties window

• From the View menu, click **Properties Window**. The **F4** or **Alt+Enter** keyboard shortcuts are also available.

Collection Editor

The collection editor enables creating and editing individual members of collections. The properties available for editing depend on the collection. The collection editor is made up of a members list and a properties grid. You can perform the following tasks in the collection editor:

- Add members to the list. You add members by selecting a member, then clicking Add. Clicking the first time adds an initial member.
- Remove members from the list. You remove members by selecting a member, then clicking Remove.
- Reorder members in the list. You reorder members by selecting the member, then clicking the up or down arrows.
- Edit the properties of a member. You edit properties by selecting the member, then editing its properties in the grid.

To access a Collection Editor

The Collection Editor is displayed.

See Also

Properties Window

Locked Variables Viewer

The Locked Variables window enables unlocking locked variables while debugging, running online, and simulating an application. This window lists all locked variables and their source throughout an application. When viewing locked variables, the variable identification indicates its source such as the program name, device name, and ending with the variable name.

Locked Variables	▼ □ ×
i 🗸 🗙 🖕	aa 🗛
DEMO_ENERGY.Control_Room.Control.Capacity_W	Vind
DEMO_ENERGY.Control_Room.Control.Sun	
DEMO_ENERGY.Hydraulic_Station.Hydraulic.Dry	/ness
DEMO_ENERGY.SolarFarm.Solar.Capacity_Solar	
DEMO_ENERGY.WindFarm.Wind.Percent_wind	
DEMO_ENERGY.WindFarm.Wind.Windy	

From the Locked Variables window, you can perform the following tasks:

- Find variables within the list of locked variables based on any part of their source name
- Unlock variables from the list of locked variables

To access the list of locked variables

You can only access the Locked Variables window while debugging, running online, or simulating an application. The window lists all locked variables throughout the application.

• From the Debug menu, click Locked Variables.

To find variables from the list of locked variables

You can perform searches based on any part of the variable identification displayed in the viewer such as the complete or partial variable, resource (if supported by the CAM), device, or project name. For example, to locate the DEMO_ENERGY.SolarFarm.Solar.Consumption variable, the following are some possible search entries: Solar, Farm, Consumption.

- In the search field, enter text contained in the identification of the required variable, then do one of the following:
 - To find the first instance of the variable, click $\stackrel{\text{de}}{\longrightarrow}$.
 - To find the next instance of the variable, click $\stackrel{\texttt{M}}{\longrightarrow}$.

To unlock variables from the list of locked variables

You can unlock one or more variables from the list of locked variables.

In the list of locked variables, select the variables to unlock or click to select all the variables in the list, then click to unlock them.

ISaVIEW

You can create graphical interfaces, i.e., ISaVIEW screens, within the workbench. From these screens, you can monitor or run control processes on local computers or remote locations using internet or network connections. You can add ISaVIEW screens to Solutions at the device, resource (if supported by the CAM), and program level.

You create and develop ISaVIEW screens in the Workbench while editing a project or running online (simulation or debugging). Developing ISaVIEW screens consists of inserting graphic objects and defining animation behaviors for execution at run-time.

While running online, you can switch between design mode and animation mode. Design mode enables editing objects contained in screens. Animation mode launches the execution of animation effects defined for objects contained in screens.

From the ISaVIEW toolbar, you can perform the following operations:

1

Design Mode, enables editing objects contained in screens while running online (simulation or debugging)

- No Preview, enables graphically editing objects contained in a screen without displaying any animation effects. You can modify, add, delete, move, group, or ungroup objects.
- 2

Preview Selection, enables visualizing some animation effects defined for selected objects in a screen

Animation Preview (Editable), enables visualizing and graphically modifying some animation effects defined for all objects contained in a screen. You cannot modify, add, delete, move, group, or ungroup objects.

Group Selection, enables grouping selected objects

•_

Ungroup Selection, enables dissociating a selected group of objects

See Also

Creating ISaVIEW Screens

Inserting Objects Defining Animation Effects for Objects

Creating ISaVIEW Screens

While editing a Workbench project or running online (simulating or debugging), you can create and develop ISaVIEW screens. While simulating or debugging, you need to switch the ISaVIEW screen to design mode.

You can create ISaVIEW screens from blank documents or from a template. Developing screens consists of inserting objects available from the Toolbox. You can define animation effects for objects by modifying their properties. You can also group objects together, then define animation effects for the group.

To create an ISaVIEW screen from a blank document

1. From the Solution Explorer, right-click the required device, resource (if supported by the CAM), or program element, point to Add, then click New ISaVIEW.

An ISaVIEW screen is added in the Solution Explorer.

- 2. Open the screen by double-clicking in the Solution Explorer.
- 3. Proceed to inserting objects and defining animation effects.

To create an ISaVIEW screen from a template

ISaVIEW templates have the *.hmi extension.

- 1. From the Solution Explorer, right-click the required device, resource (if supported by the CAM), or program element, point to Add, then click ISaVIEW from Template.
- 2. In the Select the ISaVIEW Template dialog box, browse to locate the required template, then click **Open**.
- **3.** In the Import ISaVIEW Template dialog box, specify a screen name and associate the required variables where required, then click **OK**.

An ISaVIEW screen is added in the Solution Explorer.

- 4. Open the screen by double-clicking in the Solution Explorer.
- 5. Proceed to inserting objects and defining animation effects.

See Also

ISaVIEW Exporting ISaVIEW Screens as Templates

Exporting ISaVIEW Screens as Templates

ISaVIEW templates are screens that you export as templates. These templates are assigned the *.hmi extension. When creating a template, you develop an ISaVIEW screen then export the screen to template. The default names of templates are the same as the screen names. When adding an ISaVIEW screen from a template, you are automatically prompted to choose from the available templates.

ISaVIEW templates are stored in the following location:

 $\label{eq:programFiles} \ensuremath{\sc s} \ensur$

To export an ISaVIEW screen as template

- 1. Develop an ISaVIEW screen.
- 2. From the Solution Explorer, right-click the ISaVIEW item, then click Export as Template.

Inserting Objects

You insert objects into an ISaVIEW screen from the Toolbox. The available objects are the following:

- Arc
- Arrow
- Ellipse
- Rectangle
- Rounded Rectangle
- Triangle
- Image
- Web Container
- Button
- Edit Box
- Gauge
- Slider
- Line
- Bar Meter
- Polygon

You can overlap or superimpose objects and groups of objects. Using the contextual menu options, you can group objects and move objects to the front or back. Note that web containers always remain on top of other objects.

Arc

An arc is any unbroken part of the circumference of a circle. An arc can represent, for example, a container displaying a changing quantity of liquid as it flows to or from another object. An arc object is made up of a starting angle and an angle length:

You define the properties for the arc object using the Properties Window. For the arc object, you can define properties for Action, Color, Displacement, Size, Text, and Visibility. The arc object also has the following specific properties:

Starting Angle Size of the angle prior to the start of the arc

To insert an arc

• From the Toolbox, drag the arc object into the workspace.

See Also

Arrow

The arrow object is a directional shape having a rectangular shaft and triangular head. You define the properties for the arrow object using the Properties Window. For the arrow object, you can define properties for Action, Color, Displacement, Rotation, Size, Text, and Visibility. The arrow also has frame color and width properties.

Frame Color	Color for the frame of the object. Possible colors are custom, web, and system colors.
Frame Width	Width of the frame for the object. Possible values are literal values.

You define fill color for objects in the Color properties.

To insert an arrow

• From the Toolbox, drag the arrow object into the workspace.

See Also

Ellipse

An ellipse can represent items such as a container displaying a changing quantity of liquid as it flows to or from another object. You define the properties for the ellipse object using the Properties Window. For the ellipse object, you can define properties for Action, Color, Displacement, Rotation, Size, Text, and Visibility. The ellipse also has frame color and width properties.

Frame Color	Color for the frame of the object. Possible colors are custom, web, and system colors.
Frame Width	Width of the frame for the object. Possible values are literal values.

You define fill color for objects in the Color properties.

To insert an ellipse

• From the Toolbox, drag the ellipse object into the workspace.

See Also

Rectangle

A rectangle can represent, for example, pipes indicating a flow from one object to another with a change of color or a container displaying a changing quantity of liquid as it flows to or from another object. You define the properties for the rectangle object using the Properties Window. For the rectangle object, you can define properties for Action, Color, Displacement, Rotation, Size, Text, and Visibility. The rectangle also has frame color and width properties.

Frame Color	Color for the frame of the object. Possible colors are custom, web, and system colors.
Frame Width	Width of the frame for the object. Possible values are literal values.

You define fill color for objects in the Color properties.

To insert a rectangle

• From the Toolbox, drag the rectangle object into the workspace.

See Also

Rounded Rectangle

A rounded rectangle is a rectangular shape having its corners rounded. You define the properties for the rounded rectangle object using the Properties Window. For the rounded rectangle object, you can define properties for Action, Color, Displacement, Size, and Text, and Visibility. The rounded rectangle also has frame color and width properties.

Frame Color	Color for the frame of the object. Possible colors are custom, web, and system colors.
Frame Width	Width of the frame for the object. Possible values are literal values.
Corner Radius	Radius of the corners for a rounded rectangle. Possible values are literal values.

You define fill color for objects in the Color properties.

To insert a rounded rectangle

• From the Toolbox, drag the rounded rectangle object into the workspace.

See Also

Triangle

A triangle object is a triangular shape. You define the properties for the triangle object using the Properties Window. For the triangle object, you can define properties for Action, Color, Displacement, Rotation, Size, Text, and Visibility. The triangle also has frame color and width properties.

Frame Color	Color for the frame of the object. Possible colors are custom, web, and system colors.
Frame Width	Width of the frame for the object. Possible values are literal values.

You define fill color for objects in the Color properties.

To insert a triangle

• From the Toolbox, drag the triangle object into the workspace.

See Also

Image

The image object can hold file formats such as GIF, JPEG, BMP, PNG, and TIFF. You cannot rotate image objects.

You define the properties for the image object using the Properties Window. For the image object, you can define properties for Action, Displacement, Size, Text, and Visibility. The image object also has the Image Path property.

Image Path Path to the image to display

To insert an image

• From the Toolbox, drag the image object into the workspace.

See Also

Web Container

The web container object has a rectangular shape. You define the properties for the web container object using the Properties Window. For the web container object, you can define properties for Action, Displacement, Size, Text, and Visibility. The web container object also has frame and object-specific properties:

Link Page	Target URI to display in the object
Frame Color	Color for the frame of the object. Possible colors are custom, web, and system colors.

Within a screen, the web container always remains on top of other objects.

To insert a web container

• From the Toolbox, drag the web container object into the workspace.

See Also

Button

The button object displays text and has a rectangular shape. You define the properties for the button object using the Properties Window. For the button object, you can define properties for Action, Color, Displacement, Size, Text, and Visibility.

To insert a button

• From the Toolbox, drag the button object into the workspace.

See Also

Edit Box

The edit box object enables displaying and entering text and has a rectangular shape. You define the properties for the edit box object using the Properties Window. For the edit box object, you can define properties for Action, Color, Displacement, Size, Text, and Visibility. You can also choose to display a border outlining the edit box:

Border Indication of whether the object has a border. Possible values are True or False.

To insert an edit box

• From the Toolbox, drag the edit box object into the workspace.

See Also

Gauge

The gauge object is a circular dial having a needle and range of values representing a traditional meter or dial. The gauge's needle moves around the dial indicating the changing value.

You define the properties for the gauge object using the Properties Window. For the gauge object, you can define properties for Action, Color, Displacement, Size, Text, and Visibility. The gauge object also has frame and object-specific properties:

Frame Color	Color for the frame of the object. Possible colors are custom, web, and system colors.
Frame Width	Width of the frame for the object. Possible values are literal values.
Background Shape	Shape of the measuring object. Possible shapes are rectangle, ellipse, hexagon, and octagon.
Indicator Value Variable	Variable controlling the indicator of the measuring object. Possible variable data types are SINT, USINT, BYTE, INT, UINT, WORD, DINT, UDINT, DWORD, LINT, ULINT,
	LWORD, REAL, and LREAL. Clicking enables selecting a variable.
Indicator Color	Color for the interior of the indicator. Possible colors are custom, web, and system colors.
Indicator Constant Length	Indication of whether the indicator maintains the same length when traveling along the scale of the measuring object. Possible values are True or False.
Indicator Frame Color	Color for the outline of the indicator. Possible colors are custom, web, and system colors.
Indicator Frame Width	Width of the outline for the indicator. Possible values are literal values.
Indicator Thickness	Width of the indicator. Possible values are literal values.
Indicator Value	Initial value of the measuring object. Possible values are literal values.
Margin Bottom Right	Margin from the gauge dial to the bottom and right sides of the object perimeter. Possible values are literal values.

Margin Top Left	Margin from the gauge dial to the top and left sides of the object perimeter. Possible values are literal values.
Maximum	Maximum value of the scale on the measuring object. Possible values are literal values.
Minimum	Minimum value of the scale on the measuring object. Possible values are literal values.
Scale Label Distance	Distance between the scale on the measuring object and the displayed range values, in pixels. Possible values are literal values.
Scale Label Frequency	Frequency of labeling of major divisions on the scale of the measuring object. For example, a value of two (2) results in labeling every second major division. Possible values are literal values.
Scale Label Style	Location of the displayed labels in reference to the circular scale. Possible values are Left, Right, AlternateStartLeft, and AlternateStartRight. Setting labels on the left places these on the outside of the scale while labels on the right places these on the inside of the scale. Setting alternate starts places the lowest range label respectively then every other label on alternating sides of the scale.
Scale Label Text Bold	Indication of whether the bold style is applied to the label text. Possible values are True or False.
Scale Label Text Color	Color of the label text. Possible colors are custom, web, and system colors.
Scale Label Text Size	Size of the label text. Possible values are literal values.
Scale Frame Color	Color of the scale on the measuring object. Possible colors are custom, web, and system colors.
Scale Frame Width	Width of the scale on the measuring object. Possible values are literal values.
Scale Start Angle	Angle at which the circular scale starts in reference to the x-axis. For example, a start angle of 0° places the beginning of the scale on the positive x-axis. Possible values are 0 to 360.
Scale Sweep Angle	Span of the circular scale. For example, a sweep angle of 180° indicates a semicircular scale. Possible values are 0 to 360.

Scale Tick Major Frequency	Frequency of major ticks in reference to minor ticks on the scale. For example, on a scale ranging from 1 to 100 having a Tick Unit value of 5, a major tick frequency setting of 5 sets a major division at every 5th minor division, i.e., at each increment of 25. Possible values are literal values.
Scale Tick Major Width	Width of the major tick marks dividing the scale. Possible values are literal values.
Scale Tick Width	Width of the minor tick marks dividing the scale. Possible values are literal values.
Tick Color	Color of the ticks dividing the scale. Possible colors are custom, web, and system colors.
Tick Unit	Value associated to individual tick divisions on the measuring scale. Possible values are literal values.

To insert a gauge

• From the Toolbox, drag the gauge object into the workspace.

See Also

Slider

The slider object reads the position of the indicator within its perimeter then sends a value associated to the position to mapped variables. You can define the accuracy of position readings by increasing or decreasing the number of horizontal and vertical divisions within the slider.

You define the properties for the slider object using the Properties Window. For the slider object, you can define properties for Action, Color, Displacement, Size, Text, and Visibility. The slider also has the following object-specific properties:

Frame Color	Color for the frame of the object. Possible colors are custom, web, and system colors.
Frame Width	Width of the frame for the object. Possible values are literal values.
Indicator Value Variable	Variable controlling the indicator of the measuring object. Possible variable data types are SINT, USINT, BYTE, INT, UINT, WORD, DINT, UDINT, DWORD, LINT, ULINT, LWORD,
	REAL, and LREAL. Clicking enables selecting a variable.
Indicator Color	Color for the interior of the indicator. Possible colors are custom, web, and system colors.
Indicator Dimensions	The length and width of the indicator, in pixels. Possible values are literal values.
Indicator Frame Color	Color for the outline of the indicator. Possible colors are custom, web, and system colors.
Indicator Style	Shape of the indicator. Possible shapes are bar and triangles.
Indicator Value	Initial value of the measuring object. Possible values are literal values.
Maximum	Maximum value of the scale on the measuring object. Possible values are literal values.
Minimum	Minimum value of the scale on the measuring object. Possible values are literal values.
Orientation	Indication of whether the orientation of the measuring object is horizontal or vertical

Distance between the scale on the measuring object and the displayed range values, in pixels. Possible values are literal values.
Frequency of labeling of major divisions on the scale of the measuring object. For example, a value of two (2) results in labeling every second major division. Possible values are literal values.
Indication of whether the bold style is applied to the label text. Possible values are True or False.
Color of the label text. Possible colors are custom, web, and system colors.
Size of the label text. Possible values are literal values.
Color of the scale on the measuring object. Possible colors are custom, web, and system colors.
Width of the scale on the measuring object. Possible values are literal values.
Frequency of major ticks in reference to minor ticks on the scale. For example, on a scale ranging from 1 to 100 having a Tick Unit value of 5, a major tick frequency setting of 5 sets a major division at every 5th minor division, i.e., at each increment of 25. Possible values are literal values.
Width of the major ticks dividing the scale. Possible values are literal values.
Width of the minor ticks dividing the scale. Possible values are literal values.
Color of the ticks dividing the scale. Possible colors are custom, web, and system colors.
Value associated to individual tick divisions on the measuring scale. Possible values are literal values.

To insert a slider

• From the Toolbox, drag the slider object into the workspace.

See Also

Line

The line object is a unbroken linear shape. You define the properties for the line object using the Properties Window. For the line object, you can define properties for Action, Displacement, Rotation, Size, and Visibility. The line also has color and width properties.

Line Color	Color for the line object. Possible colors are custom, web, and
	system colors.
Line Width	Width of the line object. Possible values are literal values.

To insert a line

• From the Toolbox, drag the line object into the workspace.

See Also

Bar Meter

The bar meter object reads the position of the indicator within its perimeter then sends a value associated to the position to mapped variables. You can define the accuracy of position readings by increasing or decreasing the number of divisions within the bar meter.

You define the properties for the bar meter object using the Properties Window. For the bar meter object, you can define properties for Action, Color, Displacement, Size, Text and Visibility. You can also define properties for the frame color and width. The bar meter object has the following specific properties:

Frame Color	Color for the frame of the object. Possible colors are custom, web, and system colors.
Frame Width	Width of the frame for the object. Possible values are literal values.
Indicator Value Variable	Variable controlling the indicator of the measuring object. Possible variable data types are SINT, USINT, BYTE, INT, UINT, WORD, DINT, UDINT, DWORD, LINT, ULINT, LWORD,
	REAL, and LREAL. Clicking 🛄 enables selecting a variable.
Indicator Color	Color for the interior of the indicator. Possible colors are custom, web, and system colors.
Indicator Frame Color	Color for the outline of the indicator. Possible colors are custom, web, and system colors.
Indicator Value	Initial value of the measuring object. Possible values are literal values.
Maximum	Maximum value of the scale on the measuring object. Possible values are literal values.
Minimum	Minimum value of the scale on the measuring object. Possible values are literal values.
Orientation	Indication of whether the orientation of the measuring object is horizontal or vertical
Scale Label Distance	Distance between the scale on the measuring object and the displayed range values. Possible values are literal values.

Scale Label Frequency	Frequency of labeling of major divisions on the scale of the measuring object, in pixels. For example, a value of two (2) results in labeling every second major division. Possible values are literal values.
Scale Label Text Bold	Indication of whether the bold style is applied to the label text. Possible values are True or False.
Scale Label Text Color	Color of the label text. Possible colors are custom, web, and system colors.
Scale Label Text Size	Size of the label text. Possible values are literal values.
Scale Frame Color	Color of the scale on the measuring object. Possible colors are custom, web, and system colors.
Scale Frame Width	Width of the scale on the measuring object. Possible values are literal values.
Scale Tick Major Frequency	Frequency of major ticks in reference to minor ticks on the scale. For example, on a scale ranging from 1 to 100 having a Tick Unit value of 5, a major tick frequency setting of 5 sets a major division at every 5th minor division, i.e., at each increment of 25. Possible values are literal values.
Scale Tick Major Width	Width of the major ticks dividing the scale. Possible values are literal values.
Scale Tick Width	Width of the minor ticks dividing the scale. Possible values are literal values.
Tick Color	Color of the ticks dividing the scale. Possible colors are custom, web, and system colors.
Tick Unit	Value associated to individual tick divisions on the measuring scale. Possible values are literal values.

To insert a bar meter

• From the Toolbox, drag the bar meter object into the workspace.

See Also

Polygon

A polygon object is made up of three or more connected straight lines forming a closed figure. Each line is called a segment. You define the properties for the polygon object using the Properties Window. For the polygon object, you can define properties for Action, Color, Displacement, Size, Text, and Visibility. The polygon also has frame color and width properties.

Frame Color	Color for the frame of the object. Possible colors are custom, web, and system colors.
Frame Width	Width of the frame for the object. Possible values are literal values.

You define fill color for objects in the Color properties.

To insert a polygon

When creating polygon objects, you need to establish the end of each segment making up the shape, then establish the end of the shape when all segments are completed. You establish the end of a segment.

You can use keyboard commands when working with polygon objects: pressing Ctrl+Z undoes up to the first segment and pressing Escape deletes a polygon object in progress.

- 1. From the Toolbox, drag the polygon object into the workspace.
- 2. Click and drag to define each segment making up the shape, then press Enter to complete the shape.
- **3.** To cancel the shape, press Escape.

See Also

Editing Objects

You can perform many editing tasks on objects:

- Selecting Objects
- Editing the Properties of Objects
- Cutting, Copying, and Pasting Objects
- Deleting Objects
- Moving Objects
- Resizing Objects
- Grouping Objects
- Aligning Objects
- Moving Objects to the Front and Back

While running online (simulation and debugging), you can edit objects by switching to design mode.

Selecting Objects

Selecting objects is required as a first step for all editing functions. You can choose to select one or more objects at the same time. When objects are selected, you can move these by dragging with the mouse.

To select a single object

• In the workspace, click the desired object

To select multiple objects

You can select multiple objects either by dragging the cursor to enclose them or by selecting individual objects. When dragging, an invisible rectangle encloses the area.

- Position the cursor to the left and above the desired objects, then drag to enclose them
- Hold down the Ctrl key while clicking the desired objects one after the other. Clicking a selected object deselects the object while all others remain selected.
- Hold down the Shift key while clicking the desired objects one after the other

Deselecting objects

- Click on an empty space in the workspace
- Press the ESCAPE key

Editing the Properties of Objects

You can change the properties of objects in the Properties window.

To edit the properties of an object

- **1.** Select the object.
- 2. In the Properties window, enter the required information for the individual properties.

Cutting, Copying, and Pasting Objects

You can cut, copy, and paste objects in screens using the commands from the contextual menu or from the Edit menu. To access the contextual menu, right-click a selected object.

To cut an object

- 1. Select the desired object.
- **2.** Do one of the following:
 - Right-click, then click **Cut**.
 - From the Edit menu, click **Cut**.

The object is removed from the workspace and a copy is placed on the clipboard.

To copy an object

- 1. Select the desired object.
- **2.** Do one of the following:
 - Right-click, then click **Copy**.
 - From the Edit menu, click Copy.
 - Press the Ctrl key and drag the object.

A copy of the object is placed on the clipboard.

To paste an object

You can insert the contents of the clipboard into the workspace.

- In the workspace, click where you want to insert the object, then do one of the following:
 - Right-click, then click **Paste**.
 - From the Edit menu, click **Paste**.

The content of the clipboard is inserted in the workspace.
Deleting Objects

Once you select an object, you can choose to delete it using the commands from the contextual menu or from the Edit menu. To access the contextual menu, right-click the selected object.

To delete objects

- **1.** Select the desired object.
- **2.** Do one of the following:
 - Right-click, then click Delete.
 - From the Edit menu, click **Delete**.

The object is removed from the workspace.

Moving Objects

You can move objects within the screen.

To move objects

• Select one or more objects then drag to their new position

Resizing Objects

You can resize objects in screens.

To resize an object

- **1.** Select the desired object.
- 2. Click a handle (a small square on the outer edge of the selected object) then move it in the appropriate direction.

Grouping Objects

You can group individual objects in a screen to form a unique object. You can also group individual groups of objects. When objects are grouped, you cannot resize, move, delete, or copy the individual objects contained in the group. You can change the properties of individual objects belonging to a group as well as those properties of grouped objects.

You can apply action, size, and visibility animation effects to grouped objects other than those effects attached to the grouped items.

Once you select objects, you can choose to group and ungroup these using commands from the contextual menu or icons from the toolbar.

To group objects

- 1. Select the required objects.
- **2.** Do one of the following:
 - Right-click, then click Group Items.
 - From the ISaVIEW toolbar, click 💁 .

To ungroup objects

- 1. Select the grouped object.
- **2.** Do one of the following:
 - Right-click, then click Ungroup Items.
 - From the ISaVIEW toolbar, click *

Aligning Objects

You can align objects relative to their left side, right side, top edge, or bottom edge. Elements are aligned relative to the first element you select.

Once you select objects, you can choose to align them using the commands from the Layout menu available from the contextual menu or using the arrow keys.

To align and position objects

- 1. Select the objects to align starting with the element to use as reference for the alignment.
- 2. Right-click the elements, point to Layout, then click the required alignment command:
 - Align Left
 - Align Center
 - Align Right
 - Align Top
 - Align Middle
 - Align Bottom

The objects are aligned in the selected direction in reference to the first selected item.

Moving Objects to the Front and Back

You can move objects to the front or to the back of each other. Once you select objects, you can choose to move these using the commands from the contextual menu.

To bring an object to the front

- 1. Select the object.
- 2. Right-click the element, then click **Bring to Front**.

To send an object to the back

- **1.** Select the object.
- 2. Right-click the element, then click Send to Back.

Defining Animation Effects for Objects

You can define animation effects for objects or groups of objects defined in ISaVIEW screens. The Workbench supports the following animation effects:

- Action
- Color
- Displacement
- Rotation
- Size
- Text
- Visibility

You define animation effects by setting their property values in the Properties window. You can also graphically modify the rotation, displacement, and size properties by switching to the animation preview mode.

When setting the properties in the Properties window, all global and local variables are available for use. The Collection Editor is available when defining the color property Fill Color Phase and the text property Text Color Phase. You use the Collection Editor to create and edit the members of a collection and to define the colors (PhaseColors) and numerical values (PhaseMaximum and PhaseMinimum) for each member. When online, the object or object text displays the color that corresponds to its current value as defined in the collection. For example, for the color black, assigning a value of 10 to PhaseMaximum and a value of 0 to PhaseMinimum enables the object or object text to display as black when its value is between 0 and 10.

See Also

ISaVIEW Previewing ISaVIEW Screens

Action

Any ISaVIEW object or group can act as a push button. The styles and variables of the action properties enable you to define a push button-like behavior for the object. You define the action properties using the Properties window. The following properties are available for defining the action of an object:

Action Property	Description
Action Event	Operation to perform upon occurrence of Action Type event. Possible values are None, GoToHTML, GoToPage, IncrementValue, AutoIncrementValue, and ReverseValue.
Action Link	Destination address or path for GoToHTML or GoToPage Action Event operations. Possible values are ftp://, http://www, and \\.
Action Type	Mouse event triggering the Action Event operation. Possible values are None, MouseClick, MouseDoubleClick, and MouseAll.
Action Variable	 Variable controlling the Action Event for IncrementValue, AutoIncrementValue, and ReverseValue operations. Depending on the Action Event Type, the expected variable types are the following: IncrementValue: any integer and any real AutoIncrementValue: any integer and any real ReverseValue: Boolean, any integer and any real
	Clicking 🛄 enables selecting a variable.
Increment Time	Interval between increments, in seconds, of the Action Variable variable where the Action Event is AutoIncrementValue
Increment Value	Rate of increase of the Action Variable variable for each Action Type mouse event where the Action Event is either IncrementValue or AutoIncrementValue

ActionEvent Operations Description

None	Disables Action Event
GoToHTML	Jumps to the HTML page defined in Action Link
GoToPage	Jumps to the ISaVIEW page defined in Action Link
IncrementValue	Increments once the value of the Action Variable variable by the value of Increment Value
AutoIncrementValue	Increments continuously the Action Variable variable by the Increment Value value using the Increment Time time lapse
ReverseValue	Reverses the value of the Action Variable variable

Mouse Event	Description
None	Disables Action Type
MouseClick	Sets a single mouse click to execute Action Event
MouseDoubleClick	Sets a double mouse click to execute Action Event
MouseAll	Sets any type of mouse click to execute Action Event

To define the action properties of an object

You define action properties for an object from the Properties window while the ISaVIEW screen is in design mode.

- 1. Set the ISaVIEW screen to design mode by clicking 🥢, in the ISaVIEW toolbar.
- 2. In the ISaVIEW screen, select the required object or group of objects.
- 3. In the Properties window, define the required action properties.

See Also

ISaVIEW Defining Animation Effects for Objects

Color

You can define color properties for the following objects: arcs, arrows, ellipses, rectangles, rounded rectangles, triangles, buttons, edit boxes, gauges, sliders, and polygons. You define the color properties using the Properties window. The following properties are available for defining the color of an object:

Color Variable	Variable defining the phase value during animation mode. Possible
	variable data types are DINT and DWORD. Clicking 🛄 enables selecting a variable.
Initial Color	(Read only) Initial color of the object, while in design mode
Fill Color	Actual color of the object. Equal to InitialColor while in design mode. Possible colors are custom, web, and system colors.
Fill Color Phase	List of colors to apply during phases while in animation mode.
	Clicking 🔜 accesses the phase collection editor.
Fill Foreground Color	Contrast color used for Fill Style. Possible colors are custom, web, and system colors. Available for all objects except edit boxes.
Fill Style	Style applied to the coloring of an object such as a gradient, texture, or hatch line. Available for all objects except edit boxes. Fill Foreground Color provides the contrast color used in the style. Possible styles are available from a drop-down combo-box.

To define the color properties of an object

You define color properties for an object from the Properties window while the ISaVIEW screen is in design mode.

- 1. Set the ISaVIEW screen to design mode by clicking 🥒, in the ISaVIEW toolbar.
- 2. Select the required object or group of objects.
- 3. In the Properties window, define the required color properties.

See Also

ISaVIEW

Defining Animation Effects for Objects

Displacement

You can define displacement properties for all ISaVIEW objects. Before displacement occurs, the starting position is defined by the coordinates of the upper left corner of the object. The displacement properties enable you to define the linear movement of the object when in animation mode. You define displacement properties in the Properties window. Also, you can define the AnimationPosition property within the workspace. The following properties are available for defining the displacement of an object:

Animation Position	Destination coordinates after displacement during animation mode in reference to the top left corner of the object bounding box, in pixels (design mode displays InitialPosition coordinates)
Displacement Variable	Variable controlling the object displacement. Possible variable data types are DINT, INT, LINT, SINT, UDINT, UINT, ULINT,
	USINT, and STACKINT. Clicking enables selecting a variable.
Initial Position	(Read only) Coordinates of the object prior to displacement
Location	Actual coordinates of the object. Equal to Initial Position while in design mode.
Maximum Displacement	Maximum amount of displacement during animation mode. The default value is 100.
Minimum Displacement	Minimum amount of displacement during animation mode. The default value is 0.

In animation mode, the final position of the object is defined as the following:

```
Initial Position + (Animation Position - Initial Position) *
[(Displacement Variable - Minimum Displacement) / (Maximum Displacement
- Minimum Displacement)]
```

To define the displacement properties of an object

You define displacement properties for an object from the Properties window while the ISaVIEW screen is in design mode.

1. Set the ISaVIEW screen to design mode by clicking 🥒, in the ISaVIEW toolbar.

- 2. Select the required object or group of objects.
- 3. In the Properties window, define the required displacement properties.

See Also ISaVIEW Defining Animation Effects for Objects

Rotation

You can define the rotation properties for the following ISaVIEW objects: arrows, ellipses, rectangles, triangles, and lines. The rotation properties enable you to define the rotation of the object when in animation mode. You define rotation properties in the Properties window. Also, you can define the CenterOfRotation property within the workspace. The following properties define the rotation of an object:

Center of Rotation	Coordinates of the center of rotation for the object in reference to the top left corner of the object bounding box
Rotation Variable	Variable controlling the object rotation. Possible variable data types are DINT, INT, LINT, SINT, UDINT, UINT, ULINT, USINT, and
	STACKINT. Clicking enables selecting a variable.
Maximum Rotation	Maximum range of rotation of the object, in degrees. Possible values are positive or negative; The default value is 360 degrees.
Minimum Rotation	Minimum range of rotation of the object, in degrees. Possible values are positive or negative; The default value is 0 degrees.
Static Angle	Initial angle in reference to the right side of the base of the object. Possible values are 0 to 360.

The final rotation of an object is defined as the following:

```
{[(Rotation Variable - Minimum Rotation) * 360]/(Maximum Rotation -
Minimum Rotation)}%360
```

To define the rotation properties of an object

You define displacement properties for an object from the Properties window while the ISaVIEW screen is in design mode.

- 1. Set the ISaVIEW screen to design mode by clicking 🥒, in the ISaVIEW toolbar.
- 2. Select the required object or group of objects.
- 3. In the Properties window, define the required rotation properties.

See Also

ISaVIEW Defining Animation Effects for Objects

Size

You can modify the size of all ISaVIEW objects. You define size properties in the Properties window. Also, you can define the AnimationSize property within the workspace. The following properties are available for defining the size of an object:

Animation Size	Maximum enlargement of the object in percentage (%). This value must be at least 100%.
Size Variable	Variable controlling the resizing of the object. Possible variable data types are DINT, INT, LINT, SINT, UDINT, UINT, ULINT,
	USINT, and STACKINT. Clicking enables selecting a variable.
Initial Size	(<i>Read only</i>) The width and height of the object before resizing occurs in animation mode
Maximum Size	Value used by Size Variable defining the maximum range of enlargement for the object. Possible values are positive or negative and must be greater than Minimum Size; The default value is 100.
Minimum Size	Value used by Size Variable defining the minimum range of enlargement for the object. Possible values are positive or negative and must be less than Maximum Size; The default value is 0.
Size	Actual size of the object whether in design or animation mode

To define the size properties of an object

You define size properties for an object from the Properties window while the ISaVIEW screen is in design mode.

- 1. Set the ISaVIEW screen to design mode by clicking 🥒, in the ISaVIEW toolbar.
- 2. Select the required object or group of objects.
- 3. From the Properties window, define the required size properties.

See Also

ISaVIEW Defining Animation Effects for Objects

Text

You can define text properties for the following objects: arcs, arrows, ellipses, rectangles, rounded rectangles, triangles, buttons, edit boxes, web containers, gauges, sliders, bar meters, and polygons. However, for web containers, only the **Text** text property is available; All other text properties are unavailable for this object. You define text properties in the Properties window. The following properties define the appearance of the text associated with objects:

Text Variable	Variable controlling the text displayed on the object. All
	variable data types are possible. Clicking enables selecting a variable. Available for all objects except web containers.
Text Color Variable	Variable controlling the text color. Possible variable data
	types are DINT and DWORD. Clicking enables selecting a variable. Available for all objects except web containers.
Initial Text	<i>(Read only)</i> The text prior to animation mode. Equal to Text while in design mode. Available for all objects except web containers.
Initial Text Color	<i>(Read only)</i> The text color prior to animation mode. Equal to Text Color while in design mode. Available for all objects except web containers.
Text	Actual text displayed on the object whether in design or animation mode
Text Color	Actual text color whether in design or animation mode. Possible colors are custom, web, and system colors. Available for all objects except web containers.
Text Color Phase	List of colors to apply to displayed text during phases while
	in animation mode. Clicking accesses the phase collection editor. Available for all objects except web containers.
Text Size	Size of the text displayed on the object. Possible values are literal values. Available for all objects except web containers.

To define the text properties of an object

You define text properties for an object from the Properties window while the ISaVIEW screen is in design mode.

- 1. Set the ISaVIEW screen to design mode by clicking 🥢, in the ISaVIEW toolbar.
- 2. Select the required object or group of objects.
- 3. From the Properties window, define the required text properties.

See Also ISaVIEW Defining Animation Effects for Objects

Visibility

You can define the visibility property for individual ISaVIEW objects. You define the visibility property in the Properties window. The following property defines the visibility of an object:

Visibility Variable Variable controlling the visibility of the object. Possible variable data type is BOOL. Clicking indenables selecting a variable.

To define the visibility property of an object

You define the visibility property for an object from the Properties window while the ISaVIEW screen is in design mode.

- 1. Set the ISaVIEW screen to design mode by clicking 🥒, in the ISaVIEW toolbar.
- 2. Select the required object or group of objects.
- 3. From the Properties window, define the visibility property.

See Also ISaVIEW Defining Animation Effects for Objects

Previewing ISaVIEW Screens

When visualizing ISaVIEW screens, you can choose to display different graphic views of objects and their properties:

- No preview, displaying the objects defined in a screen where selecting an object exposes bounding box and dimension lines for the object. You can modify, add, delete, move, group, or ungroup objects.
- Preview selections, displaying the objects defined in a screen where selecting an object exposes the bounding box and dimension lines as well as the rotation, displacement, and size animation effects for the object. You can modify, add, delete, move, group, or ungroup objects but only visualize animation effects.
- Previewing animation effects (editable), displaying the objects defined in a screen while exposing the rotation, displacement, and size animation effects for the object. You can modify animation effects but only visualize objects.

Previewing screens is available while debugging.

To switch to no preview mode

• From the ISaVIEW Toolbar, click 📮.

Previewing Selections

You can preview selections where you can modify objects and visualize the rotation, displacement, and size animation effects defined for selected individual and grouped objects. While previewing selections, you can modify objects and their properties; you cannot modify any animation effects. However, since the size animation effect is defined as a percentage, the boundaries outlining this effect change as you resize an object.

You visualize the animation effects defined for selected individual and grouped objects from the colored indicators as follows:

- The displacement for the Animation Position property where the broken red line indicates the end position and path of travel for the object.
- The rotation for the Center of Rotation property where the blue circle indicates the center of rotation for the object.
- The size for the Animation Size property where the green broken outline indicates the final size of the object.

Previewing screens is available while debugging.

To switch to preview selection mode

- 1. From the ISaVIEW Toolbar, click 🚈
- 2. In the screen workspace, select the required objects.

Previewing Animation Effects (Editable)

You can graphically modify the rotation, displacement, and size properties for individual and grouped objects while in animation preview mode. While in animation preview mode, you cannot add, delete, move, group, or ungroup objects. You graphically modify animation effects properties by repositioning the displayed indicators as follows:

- The displacement indicator for the Animation Position property where the red dot and broken line indicate the end position and path of travel for the object.
- The rotation indicator for the Center of Rotation property where the blue dot indicates the center of rotation for the object.
- The size indicator for the Animation Size property green dot and broken lines indicate the final size of the object.

Previewing screens is available while debugging.

You access the animation preview mode from the ISaVIEW toolbar.

To switch to animation preview mode

The following procedure details the steps required to modify the properties of the Animation Position displacement property, the Center of Rotation rotation property, and the Animation Size size property. In the Properties window, you can view changes to the property values as you reposition the colored indicators.

- 1. From the ISaVIEW Toolbar, click 4
- 2. In the screen workspace, reposition the indicators as follows:
 - To modify the Animation Position property, drag the displacement indicator to the desired position.

• To modify the Center of Rotation property, drag the rotation indicator to the desired position.

• To modify the Animation Size property, drag the size indicator to the desired position.

In the Properties window, new values for the Animation Position, Center of Rotation, and Animation Size properties are displayed.

See Also

ISaVIEW Defining Animation Effects for Objects

Toolbox

You can expand the multiple segments or tabs of the Toolbox. You can also scroll though the entire tree within the Toolbox. To expand Toolbox tabs, click the blank right-pointing arrow next to the tab name. To collapse expanded Toolbox tabs, click the darkened down-pointing arrow next to the tab name.

The Toolbox displays icons for elements that you can add to programs. When shifting focus to a different program, the current selection in the Toolbox shifts to the tab for the corresponding programming language. You can manipulate the Toolbox in the following ways:

•

• Display the Toolbox

• Move the Toolbox

Display using tabs

- Conceal the Toolbox
- Close the Toolbox automatically
- Dock the Toolbox

• Restore default Toolbox settings

You can customize the Toolbox by rearranging elements within a tab or adding custom tabs and elements. You can manipulate Toolbox tabs in the following ways:

- Expand tabs
- Collapse tabs
- Move tabs
- Rename tabs

- Add custom tabs
- Remove custom tabs
- Display all tabs
- Restore default tab settings

You can insert elements in language containers displayed in the integrated development environment (IDE). This action adds the fundamental code to create an instance of the Toolbox element in the active program file. You can manipulate Toolbox elements in the following ways:

- Rename elements
- Sort elements
- Conceal element names
- Rearrange elements

- Move elements between Toolbox tabs
- Remove elements
- Restore default elements settings

To display the Toolbox

• From the View menu, click **Toolbox** (or press **Ctrl+Alt+X**).

To hide the Toolbox

• From the Window menu, click **Hide**.

To close the Toolbox automatically

The Toolbox must be docked to enable auto hide.

• From the Window menu, click Auto Hide.

To dock the Toolbox

• From the Window menu, click **Dock**.

To move the Toolbox to a different location

- 1. From the Window menu, click Float.
- 2. Drag the Toolbox to the desired location.

To display the Toolbox as a tabbed document

- 1. From the Window menu, click **Dock as Tabbed Document**.
- 2. To restore the Toolbox to a docked window, from the Window menu, click Dock.

To restore all default tabs and elements to the Toolbox

• Right-click the Toolbox, and then click **Reset Toolbox**.

To expand a Toolbox tab

• Click the blank right-pointing arrow next to the name of the collapsed Toolbox tab.

To collapse a Toolbox tab

• Click the darkened down-pointing arrow next to the name of the expanded Toolbox tab.

To move a Toolbox tab

You can move Toolbox tabs within the Toolbox by performing one of the following:

- Right-click the name of the tab, and then click **Move Down** or **Move Up**.
- Drag the tab to the required position in the Toolbox, and release the mouse.

To rename a Toolbox tab

- 1. From the Toolbox, right-click the required tab, and then click **Rename Tab**.
- 2. In the space provided, type a name for the tab, then press ENTER.

To add a custom Toolbox tab

When adding tabs, these are displayed at the bottom of the Toolbox. You can reposition and add elements to tabs.

- 1. From the Toolbox, right-click any tab, and then click Add Tab.
- 2. On the blank tab, in the space provided, type a name for the tab, then press ENTER.

To remove a custom Toolbox tab

When removing custom tabs, move the elements to retain to other tabs before deleting the custom tabs.

1. From the Toolbox, right-click the tab to remove, then click **Delete Tab**.

When elements remain on the tab, a message box informs you that those elements will be deleted.

2. To proceed with the deletion of the selected tab, click **OK**.

To display all available Toolbox tabs

• Right-click the Toolbox, and then click Show All.

To insert an element in the workspace

• From the Toolbox, drag the required element into the workspace.

The element is displayed in the workspace.

To rename an element

- 1. In the Toolbox, right-click the required element, then click Rename Item.
- 2. In the space provided, type a name for the element, then press ENTER.

To sort the elements alphabetically

• In the Toolbox, right-click the required tab, then click Sort Items Alphabetically.

To hide element names

• In the Toolbox, right-click the required tab, then click List View.

To rearrange elements

You can reposition elements displayed on Toolbox tabs.

- In the Toolbox, select the required element and perform one of the following:
 - Right-click the element, and then click Move Down or Move Up.
 - Drag the element to the required position.

To move an element between tabs

• In the Toolbox, select the required element and perform one of the following:

- Drag the required element onto another tab.
- Right-click the element and click Cut or Copy, then right-click the required tab and click Paste.

To remove an element

Note that certain elements cannot be removed, such as the Pointer element.

• In the Toolbox, right-click the required element, and then click **Delete**.

Variable Selector

The Variable Selector displays the variables defined for an open program. From the Variable Selector, you can create, edit, and delete variables at the global level and local level.

When working in the Variable Selector, you can create variables or limit searches by entering data and choosing from the available options in the field.

- Name, enables defining variable names and literal values. You can filter the variables displayed by typing alpha-numeric characters in the field.
- Type, displays a list of the data types available for a project. You can view the variables having a specific data type by selecting individual data types in the list.
- Global Scope, displays a list of the resources or devices (depending on the CAM) in the project. You can view the variables defined for each by selecting individual items from the list.
- Local Scope, displays a list of the programs available for the item specified in the global scope. You can view the variables defined for each program by selecting individual programs from the list.

You can also navigate the different variables and defined words through the multiple tabs:

- Global Variables, displays the variables defined for the item selected in Global Scope
- Local Variables, displays the variables defined for the program selected in Local Scope
- System Variables, displays the system variables
- Directly Represented Variables, displays the directly represented variables defined for the solution
- Defined Words, displays the defined words specified for the solution

When working in the Variable Selector, you can navigate using keyboard and mouse controls.

Arrow keys	Enable moving up, down, left, and right among the cells of the list of variables. Also enables moving left and right among the tabs.
Tab key	Enables moving from left to right between the fields, tab, and list of variables. Within the list, enables moving left to right between cells of a row. After exiting the list of variables, enables moving between the command buttons and back to the fields.
Esc key	Enables moving from the list of variables to the command buttons.
Ctrl + PLUS SIGN on the numeric keypad (+)	Expands the fields of complex data types
Ctrl + MINUS SIGN on the numeric keypad (-)	Collapses the fields of complex data types
Enter key	Enables closing the Variable Selector and displaying the selected variable in the workspace.

You can customize the Variable Selector environment by arranging the columns to display and setting the display colors.

You can perform the following tasks from the Variable Selector:

- Creating Variables
- Editing Existing Variables
- Cutting, Copying, and Pasting Variables
- Deleting Variables
- Sorting Columns
- Filtering Variables

To access the Variable Selector

The Variable Selector is available while editing language containers for POUs and displays only the variables available to the POU and the resource or device (depending on the CAM) containing the POU.

- From the language container of a graphical program, perform one of the following:
 - From the Toolbox, drag the variable element into the language container.
 - In the language container, double-click an existing variable.

The Variable Selector is displayed.

To arrange the columns to display

- 1. To move a column, drag the column header to another location.
- 2. To hide a column, right-click a column header and then click Hide Column.
- **3.** To show a column, right-click any column header, point to **Show Column**, then click the required column name.

To set the display colors

To change the colors displayed in the Variable Selector you must apply the changes to the Dictionary Settings. You can customize the colors applied to the column headers, row headers, and rows. Note that the Variable Selector automatically alternates colored rows with white rows. Furthermore, you can adjust the number of consecutive rows used for the alternating sequence. The default row coloring scheme is one colored row followed by one white row.

- 1. From the Tools menu, click **Options**.
- 2. In the Options dialog box, expand the Grid Settings node, then click Variable Selector.

3. In the *Misc* options, customize the required options:

- To specify the number of consecutive rows for the alternating sequence, click **Alternate row value**, then type a value.

- To change the colors applied to headers and rows, select the respective option, then select a color from the drop-down combo box.
Creating Variables

Using the Variable Selector, you can create variables and insert variables into programs. You can also insert literal values into programs.

To create a variable

You access the Variable Selector from language containers for opened programs.

1. In the Variable Selector, click the required tab, locate the empty row at the bottom of the grid.

In the left-most column of the empty row, an asterisk (*) is displayed.

2. In the cells of the empty row, enter the required information, then click **OK**.

The variable is displayed in the language container.

To insert a literal value

You can insert literal values using Variable Selector. When inserting literal values that being with a letter or an underscore, enclose the variable name in single quotes as follows: 'abc'

• From the Variable Selector, in the *Name* field, type the literal value, then click **OK**.

The literal value is displayed in the language container.

See Also Variable Selector

Creating Multiple Variables Using Quick Declaration

Using the Quick Declaration dialog box, you can simultaneously create multiple local or global variables. Quick Declaration can be accessed using the Variable Selector. A preview of the variable is available on the top-right of the Quick Declaration dialog box.

Quick Declaration			X
Numbering	Preview		
From To 9	i[09]		
Digits	Attributes		
Name	Data Type	BOOL	~
Prefix i	Direction	Var	~
Suffix	String Length		
		ОК	Cancel

The following attributes can be configured for variables in Quick Declaration:

Property Description

Numbering The range of values for the variables. The digits option is set to auto by default and can be changed to alter the quantity of displayed digits.

Property	Description
Name	The variable name is separated into a prefix and suffix. The prefix appears before the number value and can contain letters, digits, and single underscores. The suffix appears after the number value and can contain letters, digits, and single underscores. Neither can contain two consecutive underscores.
Attributes	The following attributes are available:
	Data type: Drop down combo box displaying the variable types. Possible values are elementary IEC 61131-3 types (BOOL, BYTE, DATE, DINT, DWORD, INT, LINT, LREAL, LWORD, REAL, SAFEBOOL, SINT, STRING, TIME, UDINT, UINT, ULINT, USINT, or WORD) or derived types (arrays, structures, or function blocks).
	Direction: Indicates whether the variable is internal, input, or output. Possible values are Var, VarInput, or VarOutput.
	String Length: Defined length only applying to the STRING variable. Possible values are 1 to 252.

To create multiple variables using Quick Declaration

- 1. In the Variable Selector, select the tab in which you want to create variables.
- 2. Right click an empty row, and then click **Quick Declaration**.
- 3. Configure the variable attributes in the Quick Declaration dialog box.

Editing Existing Variables

You can edit variables from the Variable Selector. The cells of the grid contain drop-down list boxes or editable text fields. To retain changes made to variables, you must save these changes.

To edit a variable

- 1. In the Variable Selector grid, locate the variable.
- 2. Select the grid cell to edit and make the necessary changes, then press ENTER.

See Also Variable Selector

Cutting, Copying, and Pasting Variables

You can cut, copy, and paste variables between the tabs of the Variable Selector as well as between the Variable Selector and instances of the Dictionary.

To cut, copy, and paste variables

When selecting variables, an indicator arrow (\triangleright) is displayed in the leftmost column of the grid.

- 1. In the grid of the required Variable Selector tab or Dictionary instance, cut or copy the required variables.
 - To remove variables, select the required variable or variables, right-click the selection, then click **Cut**.
 - To copy variables, select the required variable or variables, right-click the selection, then click **Copy**.
- 2. In the grid of the required Variable Selector tab or Dictionary instance, right-click the desired location, then click **Paste**.

The variables are displayed at the desired location.

See Also

Variable Selector

Deleting Variables

You can delete variables from the Variable Selector. Deleting variables from the Variable Selector also removes these variables from the Dictionary.

To delete variables

• From the Variable Selector, in the grid, select the required variable or variables, right-click the selection, then click **Delete record(s)**.

See Also Variable Selector

Sorting Columns

You can sort the columns of the Variables selector in an ascending or descending order.

To sort a column

- 1. In the Variable Selector, select the required column header.
- 2. Toggle the column header to switch between ascending and descending order.

See Also

Variable Selector

Filtering Variables

You can filter the variables by their attributes in the Variable Selector. When filtering, you create a view displaying only the variables having specific attributes or containing specific characters.

You can filter the list of blocks by typing alphabetical and numerical characters in the *Name* field. The filter row is the top row of the grid. In the filter row, you can type alphabetical and numerical characters or select from the drop-down-combo-boxes. Variables containing matching characters are automatically displayed in the grid.

To filter variables

- 1. To filter using characters in variable names, in the *Name* field, type the characters to use in the filtering operation.
- 2. To filter using the variables attributes, in the filter row of the list of variables, click the required cell, then do one of the following:
 - **Type the characters to use in the filtering operation**
 - Select the required variable or filtering option from the drop-down combo-box

Block Selector

The Block Selector enables the selection of operators, functions, and function blocks for use in block elements defined in programs. For FBD 61131 programs, you enter blocks and declared instances.

The Block Selector lists the available operators, functions, and function blocks for the program type: IEC 61131-3 or IEC 61499. For IEC 61131-3 programs, the available items are operators (OP), standard functions (SF), standard function blocks (SB), user IEC 61131-3 Functions (IFU), user IEC 61131-3 Function Blocks (IFB) and all "C" Functions (CFU) and "C" Function Blocks (CFB) supported by the target. For IEC 61499 programs, the displayed items are basic IEC 61499 Function Blocks (QFB) and composite IEC 61499 Function Blocks (QCF) for which instances are defined in the dictionary.

E Block Se	elector	(MyFBDProg)			×
+ (MyProject	:)				*
Search				Show Param	eters
Name	Туре	Category	Comment	Scope	
-	OPE	Arithmetic	Subtraction of two or more integer or real variables.	Standard	=
*	OPE	Arithmetic	Multiplication of two or more integer or real variables.	Standard	
1	OPE	Arithmetic	Division of two or more integer or real variables.	Standard	
+	OPE	Arithmetic	Addition of two or more integer or real variables	Standard	
<	OPE	Comparators	Tests whether one value is LESS THAN another (on integer, real, time, or string data type	Standard	
<=	OPE	Comparators	Tests whether one value is LESS THAN or EQUAL TO another (on integer, real, time, or st $% \left({{{\rm{T}}_{\rm{s}}} \right) = 0} \right)$	Standard	
<>	OPE	Comparators	Test whether one value is NOT EQUAL to another (on integer, real, time, or string data ty	Standard	
=	OPE	Comparators	Tests whether one value is EQUAL to another (on integer, real, time, or string data types) $% \left({{{\rm{T}}_{\rm{s}}}} \right)$	Standard	
>	OPE	Comparators	Tests whether one value is GREATER THAN another (on integer, real, time or string data \cdot	Standard	
>=	OPE	Comparators	Tests whether one value is GREATER THAN or EQUAL TO another (on integer, real, time,	Standard	
1 gain	OPE	Arithmetic	Assignment of one variable to another	Standard	
ABS	SFU	Arithmetic	Absolute value	Standard	•
Inputs :		2			
			ОК	Cancel	

For the block list, the properties are the following:

Column	Description
Name	Name of the function, function block, or operator
Туре	Type of function, function block, or operator. Possible types are "C" function (CFU), "C" function block (CFB), IEC 61131-3 function (IFU), IEC 61131-3 function block (IFB), operator (OPE), standard function block (SFB), and standard function (SFU).
Category	Category of function, function block, or operator. Possible categories vary depending on the target definition.
Comment	Comment for the function, function block, or operator. Free-format text.
Scope	Indicates where the POU is defined

For IEC 61499 programs, after selecting a block, you need to indicate the instance of the IEC 61499 function block and the resource for which the instance is defined.

When selecting operators such as addition, multiplication, and AND, you need to specify the number of inputs. You can also force the inclusion of the EN and ENO parameters for blocks having either one Boolean input, one Boolean output, or no Boolean input and output. You activate the Enable EN/ENO option from the Ladder Diagram options.

Using the Block Selector, you can refine the list of available blocks by sorting the block list and limiting searches. You can also choose to display the parameters while viewing the blocks.

When working in the Block Selector, you can navigate using keyboard and mouse controls.

Arrow keys	Enable moving up, down, left, and right within the cells of the blocks list
Tab key	Enables moving left and right within the cells of each row in the blocks list. After exiting the blocks list, enables moving from left to right between the fields, option, command buttons and back to the blocks list.
Esc key	Enables moving from the blocks list to the fields
Space bar	When the Show Parameters option is selected, opens the Parameters Display.
Enter key	Enables closing the Block Selector and displaying the chosen block in the workspace.

From the Block Selector, you can access help for the displayed operators, functions, and function blocks.

To access the Block Selector

The Block Selector is available while editing language containers for POUs and displays only the operators, functions, and function blocks available to the POU.

- From the language container of a graphical program, perform one of the following:
 - From the Toolbox, drag the block element into the language container.
 - In the language container, double-click an existing block.

The Block Selector is displayed.

To create a declared instance of a function block

Declared instances are function blocks having assigned instances. For graphical and non-graphical programs, you declare such instances in the Block Selector. These instances are considered as variables.

- 1. From the list of available blocks, select the function block type.
- 2. In the *Instance* field, type a name for the instance, then click **OK**.

A declared instance of a block is displayed in the workspace.

To sort the block list

You can sort the columns of the block list by setting these in ascending or descending order.

• Click the required column header to toggle the sort order between ascending and descending.

To limit searches

As you type text in the Search field, the list displays only the blocks containing these characters.

• In the Search field in of the Block Selector, type the required text.

See Also

Parameters Display

Parameters Display

The parameters display graphically presents the parameters for a POU selected in the Block Selector. When selecting a POU from the block list, the parameters display automatically shows the local, input, and output parameters. You can expand all or collapse all parameters for POUs.

To access the parameter display

• In the Block Selector, click Show Parameters.

The parameters display opens on the right.

To expand or collapse all input and output parameters

You can expand or collapse all input and output parameters for user-defined functions and function blocks.

- 1. In the block list, select the required block for which to display the existing parameters.
- 2. To expand all parameters, right-click in the parameters display, then click Expand All.
- 3. To collapse all parameters, right-click in the parameters display, then click Collapse All.

See Also

Block Selector

Parameters View

The Parameters view enables managing parameter and local variables for user-defined POUs. When defining these POUs, the Parameters view provides a graphic view of the parameters and local variables. You can manage the parameters and local variables for user-defined POUs.

Parameters							- ₽ ×
			FB1	1			
	nput1 (* *) BOOL		☆ Var1 (* BOO	") 🕅 🖄	^	Output1 (* *) BOOL	<u>/</u> ^}
-	nput2 (* *) BOOL	₽^}-					
					-1		
	New Input		New Var	iable		New Output	red //
Name :	VarInput1			Alias :			
DataType :	BOOL		-				
Dimension :				Attribute :	Read		•
Comment :							

You can perform the following tasks from the Parameter view:

- Creating parameters or local variables
- Editing parameters or local variables
- Deleting parameters or local variables

- Cutting, copying, and pasting parameters and local variables
- Display data types for parameters or local variables

In the Parameters view, the properties of parameters and local variables varies for different CAMs (Concrete Automation Models):

Column	Description
Name	Name of the parameter
Alias	The short name used in the graphical language editors for display only. Limited to four characters.
Data Type	Data type of the parameter
Dimension	For function blocks, dimension of the block. The dimension is defined as a positive double integer (DINT) value.
Attribute	Property of a parameter indicating its read and write access rights. Possible values are Read, Write, or ReadWrite.
Comment	Comment for the parameter. Free-format text.

You can modify the parameters for functions and function blocks. User-defined functions are limited to one output parameter having modifiable data type.

To access the parameter view for a user-defined function or function block

You access the Parameters view when defining parameters for user-defined functions and function blocks.

- 1. From the Solution Explorer, create a user-defined function or function block in the Lib section.
- 2. Right-click the function or function block, then click **Parameters**.

To create parameters and local variables

You create parameters for a currently opened user-defined function or function block. Functions can only have one output.

1. In the Lib section of the Solution Explorer, right-click the required function or function block, then click **Parameters**.

The Parameters view is displayed.

- 2. To add an input parameter, click New Input, then define the properties for the parameter.
- **3.** To add an output parameter, click **New Output**, then define the properties for the parameter.
- 4. To add a local variable, click New Variable, then define the properties for the variable.

To edit parameters and local variables

You edit parameters and local variables for a currently opened user-defined function or function block.

1. In the Lib section of the Solution Explorer, right-click the required function or function block, then click **Parameters**.

The Parameters view is displayed.

- 2. To edit a parameter, select the parameter, then modify its properties.
- 3. To edit a local variable, select the variable, then modify its properties.

To delete parameters and local variables

You delete parameters and local variables for a currently opened user-defined function or function block.

1. In the Lib section of the Solution Explorer, right-click the required function or function block, then click **Parameters**.

The Parameters view is displayed.

2. Select the parameter or local variable to delete, right-click, then click **Delete**.

To cut, copy, and paste parameters and local variables

You can cut, copy, and paste parameters and local variables for a currently opened user-defined function or function block.

- 1. In the Parameters view for a user-defined function or function block, cut or copy the required parameter or local variable:
 - To remove the parameter or local variable, select the item, right-click and then click Cut.
 - To copy the parameter or local variable, select the item, right-click and then click **Copy**.
- 2. To paste a copied parameter or local variable, right-click in the Parameters view and then click **Paste**.

Duplicated parameters or local variables are automatically placed in their respective area, i.e., input, output, or variable.

To display data types for parameters and local variables

You can expand and collapse the display of data types for all parameters and local variables of a currently opened user-defined function or function block.

• In the Parameters view, right-click, and then click Expand All.

Generating Documentation

While in design mode, you can generate documentation for projects, devices, resources (if supported by the CAM), POUs, variables, and library elements. The output format of the documentation is Microsoft Word® 2010 (*.docx). Generating documentation enables viewing the project information for a specific time. You can also search and edit the generated documentation.

Note: You need to have Microsoft Word® 2010 (or more recent) or another .docx application installed to properly view, search, and edit the generated documentation.

The Generate Documentation dialog box is separated into three panes: Document Options, Sections, and TOC Preview. Selections made in a pane affect what is displayed in the following pane (from left to right). Therefore, changes made in the Document Options pane affects the Sections pane and changes made in the Sections pane affects what is displayed in the TOC Preview pane.

Document Options	Sections	TOC Preview
Sections Template DefaultTemplate Orientation Portrait Legal 8.50 in X 14.00 in Margins Narrow Left 0.50 in Bottom : 0.50 in Wicrosoft Word Template IsografFooterAotx Disgram Scaling 100 % Unit Type Hyperlink Comment Style /* comment */	Title Page Table of content Deployment View Arrays Target Defined Words Target I/O Wring Bioding Variable I SaVIEW Language Container POU Resource Configuration Project	Ittle Page Ittle Page

In the Document Options pane you can set the following options:

Option	Description	Possible Values	
Sections Template	The template in XML format defining the Sections to be generated in the documentation as well as their hierarchy. The selected Sections Template affects the items displayed in the Sections and TOC Preview panes.	DefaultTemplate or a user-defined *.xml template. The default value is DefaultTemplate.	
	The templates are located in the following directory: %ALLUSERSPROFILE%\ISa GRAF\6.4\ACP\Templates		
Orientation	The orientation of the page	Portrait or Landscape. The default value is Portrait.	
Page size	The size of the page	Letter, Legal, Statement, Executive, A3, A4, A5, B4 (JIS), B5 (JIS), 11x17, Envelope #10, Envelope DL, Envelope C5, Envelope B5, Envelope Monarch, Japanese Postcard, A6, Double Japan Postcard Rotated, Executive (JIS), Oficio 8.5x13, 12x18, 8k 273x394 mm, 16k 197x273 mm, or Custom. The default value is Legal.	
Margins	The left, right, top, and bottom margins for the page	Narrow, Normal, Moderate, or Custom. The custom margins range from 0 inches to the maximum size of the page. The default value is Narrow.	

Option	Description	Possible Values
Microsoft Word® Template	The Microsoft Word® template in *.dotx format used to define the layout for the title page, table of contents, and tables.	IsagrafFooter.dotx or a user-defined *.dotx template. The default template is IsagrafFooter.dotx.
	The templates are located in the following directory: %ALLUSERSPROFILE%\ISa GRAF\6.4\ACP\Templates	
Diagram Scaling	The scaling for all diagrams displayed in the generated documentation.	25%, 50%, 75%, 100%, 125%, 150%, 175%, 200%, 300%, 400%, 500%, Fit to Page, or Custom. When selecting the Custom scaling, a spin box appears enabling the user to select the scaling value. The default value is 100%.
Link Type	The type of links in the documentation.	None, Only Bookmarked, Cross Reference, or Hyperlink. The default value is Hyperlink.
Comment Style	How comments are displayed in the documentation. This option does not affect how comments are displayed in graphical POU diagrams.	<pre>// comment, /* comment */, or (* comment *). The default value is /* comment */.</pre>

Selecting a Sections Template in the Document Options pane modifies the items listed in the Sections pane. The Title Page, Table of content, and Deployment View items are always available for selection in the Sections pane. The subtron displays the Variable Settings dialog box and is used to specify how you want the variables to be sorted in the generated documentation. You can sort variables by Name, Comment, Alias, Data Type, Wiring, Attribute, Dimension, Initial Value, Direction, or String Size in ascending or descending order.

The items selected in the Sections pane modifies the items displayed in the tree view of the TOC Preview pane. You can also select or clear items in the TOC Preview pane. The final selection in the TOC Preview pane displays what will be generated in the documentation.

The items displayed in the Sections and TOC Preview panes also depend on the element selected in the Workbench when using the Generate Documentation command. For example if a POU is selected, only associated sections (local variables and the POU diagram) are displayed in the Documentation Generator dialog box. When the project is selected in the Solution Explorer, all sections (project, global variables, defined words, structures, arrays, targets, etc) are displayed in the dialog box. If the Documentation Generator is unable to find an associated element, the Generate Documentation command does not appear in the File menu.

The Documentation Generator retains the selections made in the three panes for each element across project sessions. You can reset the pane selections by clicking **Default Settings**.

Users can create their own custom templates for the Sections Templates (*.xml) and Microsoft Word® templates (*.dotx). When creating a custom XML template, you must use the following syntax:

Description
The title page
The table of contents
The title of the solution name
The title of the project name
The table displaying arrays
The table displaying structures
The table displaying defined words
The title of the controller name as well as the table displaying network links
The title of the program name
The POU diagrams
The tables for local and global variables. Also displays the extended attributes for global variables.
The I\O wiring table
The table displaying the targets
The table displaying the bindings

When creating a custom Microsoft Word® template (*.dotx), you can modify how sections are displayed, but you must retain the following styles and table styles defined by Microsoft Word or the workbench:

Style	Description
Heading 1	How Header 1 is displayed in the documentation.
Heading 2	How Header 2 is displayed in the documentation.
Heading 3	How Header 3 is displayed in the documentation.
Heading 4	How Header 4 is displayed in the documentation.
Heading 5	How Header 5 is displayed in the documentation.
Heading 6	How Header 6 is displayed in the documentation.
Heading 7	How Header 7 is displayed in the documentation.
Heading 8	How Header 8 is displayed in the documentation.
Heading 9	How Header 9 is displayed in the documentation.
Alias	How the Alias section is displayed in the documentation.
Comment	How comments are displayed in the documentation.
Table Style	Description
IOWiring	The tables displaying information for I/O wiring and targets.
NormalStyle	The tables displaying information for bindings.
VariableTableStyle	The tables displaying information for variables, arrays, structures, and defined words.

To generate documentation

You can only generate documentation while in design mode.

- 1. In the Solution Explorer, select the element (project, device, resource (if supported by the CAM), POU, library element, etc.) for which to generate documentation.
- 2. From the File menu, click Generate Documentation.
- 3. Specify the required options, then click Generate.

The Save As dialog box is displayed.

- 4. In the Save As dialog box, specify the file name and save location, then click Save.
 - A progress bar shall appear over the Documentation Generator dialog box displaying the generation progress. The user can click **Cancel** to abort the documentation generation process. Any files created during the generation process are deleted.

Once generation is complete, the docx application displays the documentation.

Find and Replace Utility

The Find and Replace utility enables performing the following operations:

- Quick Find
- Quick Replace

Quick Find

You can find strings or expressions in files using the Quick Find utility. Quick Find steps from one search result to the next in sequence, either backwards or forwards from the insertion point. Upon reaching the end or beginning of a document, Quick Find automatically jumps to unsearched sections. When the search is complete, a message is displayed.

When all search options are defined, you can choose to find the next instances of the required string or expression within the specified scope.

- Find What, enables defining the string or expression to find within the open document. You can type the required string into the field, select one of the last twenty searches from the Find What drop-down combo-box, and use wildcards or regular expressions in searches. When using wildcards or regular expressions, the Expression Builder displays a list of available wildcards or expressions.
- Look in, enables defining the scope for the search. You can select the required scope from the Look in drop-down combo-box.
- Find Options, enables selecting options that refine the search. You can search for case sensitive matches using Match Case. You can disregard partial word matches by selecting Match whole word. You can search for matches from the insertion point to the top of the file by selecting Search up. You can search collapsed or concealed text by selecting Search hidden text. You can include special characters, such as wildcards or regular expressions, in the Find What field by selecting Use.

To find a string or expression in a file

You can perform searches using the Find and Replace utility or you can type the necessary text in the search field on the toolbar. You can place the cursor in the toolbar search field using the **Ctrl+D** keyboard shortcut.

- 1. From the Edit menu, point to Find and Replace, then click Quick Find (or press Ctrl+F).
- In the Quick Find utility, enter the required information, then click Find Next (or press F3).

To use wildcards or regular expressions

- 1. From Quick Find, expand Find Options, then select Use.
- 2. From the *Use* drop-down combo-box, select the required option, either Wildcards or Regular expressions.
- 3. In the *Find What* field, type the required wildcard or regular expression, or click to select from the list of available wildcards or regular expressions.

See Also Quick Replace

Quick Replace

You can replace strings or expressions in files using the Quick Replace utility. Quick Replace steps from one search result to the next in sequence, either backwards or forwards from the insertion point. Upon reaching the end or beginning of a document, Quick Replace automatically jumps to unsearched sections. When the search is complete, a message is displayed.

When all search options are defined, you can choose to find the next instance of the required string or expression within the specified scope, then replace individual or all instances of searched items.

- Find What, enables defining the string or expression to find within the open document. You can type the required string or expression in the field, select one of the last twenty searches from the Find What drop-down combo-box, and use wildcards or regular expressions in searches. When using wildcards or regular expressions, the Expression Builder displays a list of available wildcards or expressions.
- Replace with, enables defining the string or expression that will replace each match found. You can type the required string or expression in the field provided, or select one of the last twenty items entered using the drop-down combo-box. You can delete matches found by leaving the Replace with field empty. You can use wildcards or regular expressions in the Replace with field.
- Look in, enables defining the scope for the search. You can select the required scope from the Look in drop-down combo-box.
- Find Options, enables selecting options that refine the search. You can search for case sensitive matches using Match Case. You can disregard partial word matches by selecting Match whole word. You can search for matches from the insertion point to the top of the file by selecting Search up. You can search collapsed or concealed text by selecting Search hidden text. You can include special characters, such as wildcards or regular expressions, in the Find What field by selecting Use.

To replace a string or expression in a file

1. From the Edit menu, point to Find and Replace, then click Quick Replace (or press Ctrl+H).

2. In the Quick Replace utility, enter the required information, then click one of the following command buttons: Find Next, Replace, or Replace All.

To use wildcards or regular expressions

- 1. From Quick Replace, expand Find Options, then select Use.
- 2. From the *Use* drop-down combo-box, select the required option, either Wildcards or **Regular expressions**.
- 3. In the Find What or Replace with fields, type the required wildcard or regular expression,

or click *to* select from the list of available wildcards or regular expressions.

See Also

Quick Find

Spy Lists

You can choose to spy on selected variables and instances of function blocks, i.e., view changes in the values for these variables and function blocks. You spy on variables and instances of function blocks by adding these to spy lists. Before adding these, you need to create a spy list.

You view spy lists in the Spy List window.

When managing spy lists, you can perform the following tasks:

- Accessing existing spy lists
- Adding items to a list
- Removing items from a list
- Saving spy lists
- Cutting, copying, and pasting items between spy lists
- Dragging items between Spy Lists

For the Spy List, the properties are the following:

Column	Description	Possible Values
Name	Name of the variable or function block instance	Limited to 128 characters beginning with a letter or underscore character followed by letters, digits, and single underscore characters. These names cannot have two consecutive underscore characters.
Alias	Any name (for use in LD POUs)	Limited to 128 characters beginning with a letter or underscore character followed by letters, digits, and single underscore characters. These cannot have two consecutive underscore characters.

Column	Description	Possible Values
Logical Value	Available when online. The displayed value differs depending on the direction of the variable or function block instance.	Input: Locked Output: Updated by the running TIC code Internal: Locked
Physical Value	Available when online. The displayed value differs depending on the direction of the variable or function block instance.	Input: Updated by the field value Output: Locked Internal: Updated by the running TIC code
Lock	Available when online. The indication of whether the value of the variable or function block instance is locked. Locking operates differently for simple variables, array and structure elements, and function block parameters. For simple variables, individual variables are locked directly. For structure and array elements, locking an element locks all the elements of the structure or array.	Yes or No
Comment	User-defined text	Free format
Access Path	The location of the variable or function block instance within the project.	Name of the project, device, resource (if supported by the CAM), and program is displayed, as well as the name of the variable or function block instance.

You can also customize spy lists by arranging the columns to display and setting the display colors. In the Spy List, you can refine the contents of the grid by grouping items in a list, sorting items in a list, and filtering items in a list.

For spy lists, the properties are the following:

Monitoring Refresh Rate	The rate at which the values of variables are refreshed in the spy list, in milliseconds. You can only change the refresh rate while in design mode.
Spy List Name	Name of the spy list displayed in the spy list title bar and the menu

When working in the Spy List, you can navigate using the mouse controls and arrow keys to move up and down the list.

Arrow keys	Enable moving up or down in the list
Enter key	When selecting variables using the Name field, enables saving the selected variable to the grid.

To create a spy list

• From the Debug menu, point to Spy List, then click Create Spy List.

A spy list having an empty grid is displayed.

To access an existing spy list

• From the Debug menu, point to **Spy List**, then click the required list from the available spy lists.

To add items to a list

In a spy list, you add variables and instances of function blocks to the list individually.

• In the name column of the list, double-click the available record row, then select a variable or function block instance from the drop-down menu.

To remove items from a list

You can delete one or more variables and instances of function blocks from a spy list. When selecting an item, an indicator arrow is displayed in the left-most column of the list.

• In the list, select the item or items to delete, right-click the selection, then click **Delete**.

The items are removed from the list.

To save a spy list

Changes to spy lists are saved automatically upon closing.

• From the required spy list, click the Close button at the top-left corner of the Spy List window.

To cut, copy, and paste items between spy lists

You can cut, copy, and paste variables and instances of function blocks between spy lists. When selecting these items, an indicator arrow is displayed in the leftmost column of the list.

- 1. In the grid of the required spy list, cut or copy the required items.
 - To remove variables, select the required item or items, right-click the selection, then click **Cut**.
 - To copy variables, select the required item or items, right-click the selection, then click **Copy**.
- 2. In the grid of the required spy list, right-click the required location, then click Paste.

The items are displayed at the desired location.

To drag items between spy lists

You can drag variables and instances of function blocks from one spy list to another.

- 1. Access the spy lists containing the required items and their destination.
- 2. From the spy list containing the required items, select the items.

The selection indicator is displayed in the leftmost column.

3. Drag to the destination, placing it at the required location within the list.

The items are displayed at the destination.

To arrange the columns to display

1. To move a column, drag the column header to another location.

When dragging a column header, arrows indicate the current position of the header.

2. To show or hide a column, right-click on a column header, then click the column name.

To sort items in a spy list

You can sort items in a spy list according to the ascending or descending order for the different columns.

• Click the required column header to toggle the sort order between ascending and descending.

To filter items in the grid

You can filter variables and function block instances displayed in a list. When filtering, you create a view displaying only the entries containing specified characters.

The filter row is the top row of the grid. You can filter variables and function block instances by typing alphabetical and numerical characters in the cells of the filter row. You can also select from the drop-down-combo box. Matching variables and function block instances are automatically displayed.

- In the filter row of the Spy List, click the required cell, then do one of the following:
 - Type the characters to use in the filtering operation
 - Select the required structure from the drop-down combo-box

To group items in a spy list

You can group items contained in a spy list according to columns.

• Drag the required column header to toggle the sort order between ascending and descending.
Add-in Manager

The Add-in manager enables specifying the loading method of available, i.e., registered, add-ins. The Add-in manager dialog box lists the available add-ins for which you specify whether to load at startup or using a command line. The dialog box also displays descriptions defined for add-ins.

At startup or build time, when add-ins are set to load using command line switches, those having user interfaces are automatically displayed. Add-ins displaying as toolbar icons or menu commands are also displayed within the toolbars and menus. When add-ins are set to load at startup time, you can stop the add-in from loading by pressing and holding SHIFT during startup. Add-ins having user interfaces remain accessible from toolbars and menus.

For projects containing add-ins, you can avoid errors when moving a project to another location by updating its paths in the following tag of the respective *.*Addin* XML file:

<Assembly>C:\MyAddin1.dll</Assembly>

When working in the Add-in Manager dialog box, you can toggle the selection of the loading options using keyboard shortcuts for a selected add-in: Startup option using ALT+S and Command Line option using ALT+C.

To access the Add-in Manager

• From the Tools menu, click Add-In Manager.

To set the loading behavior for an add-in

- 1. From the Add-In Manager, in the *Available Add-ins* column, click the check-box next to the add-in name, then perform the following as required:
 - To load the add-in at startup, click the check-box in the *Startup* column.
 - To load the add-in using a command line, click the check-box in the *Command Line* column.
- 2. Click OK.

External Tools

You can launch external tools and applications by adding items to the Tools menu. You can also create keyboard shortcuts for external tools added to the Tools menu. Supported file types include .exe, .bat, .com, .cmd, and .pif.

From the External Tools dialog box, you can perform the following tasks:

- Adding an external tool
- Specifying a tool for handling arguments
- Defining a working directory

When specifying a tool for handling arguments, the required argument is immediately transferred to the tool when the external tool is launched. At this time, you can also choose to edit required arguments. Upon subsequent startups of the external tool from the Tools menu, selected arguments are automatically passed to the tool. When Prompt for Arguments is selected, the Arguments dialog box is displayed.

You can define a working directory for tools or commands. You can also specify additional arguments when the command is launched.

To add an external tool

- 1. From the Tools menu, click **External Tools**.
- In the External Tools dialog box, in the *Title* field, type a name for the menu option. To include a keyboard shortcut, type an ampersand (&) before the letter in the title to use as shortcut. For example: "My External Tool", the letter "x" is the keyboard shortcut.
- 3. In the *Command* field, type the path to the file, or browse for the file by clicking
- 4. Select the Use Output window and Close on exit check boxes (optional).

The Use Output window option is only available for .bat and .com files.

5. Click Add, then click OK.

The external tool is available from the Tools menu.

To specify a tool for handling arguments

When the specified tool is launched, the required argument is immediately transferred to the tool. Selecting the Prompt for Arguments option enables editing the argument at launch time.

- 1. From the Tools menu, click **External Tools**.
- 2. In the External Tools dialog box, in the *Menu contents* list, select the required tool.
- In the *Arguments* field, type the required arguments, or select a predefined argument by clicking .
- 4. Select **Prompt for arguments** (optional), click **Apply**, then click **OK**.

To define a working directory

Selecting the Prompt for Arguments option enables adding additional arguments at launch time.

- 1. From the Tools menu, click **External Tools**.
- 2. In the External Tools dialog box, in the *Menu contents* list, select the required tool.
- In the *Initial directory* field, enter the working directory for the tool, or select a predefined directory path by clicking .
- 4. Select **Prompt for arguments** (optional), click **Apply**, then click **OK**.

Working in the Development Environment

When working in the development environment, you can use keyboard shortcut combinations to perform multiple tasks. These tasks include customizing, creating, and renaming toolbars. You can also customize commands and edit buttons. Navigating in the development environment is simplified with the use of the Integrated Development Environment (IDE) Navigator.

Displaying the Output Window

You can review messages generated by various features of the Workbench by accessing the Output window. From the Output window, you can perform the following tasks:

- Reviewing status messages
- Managing the contents of the window

The Output window toolbar contains the following commands:

Show output from:	Enables selecting individual features for which to view generated status messages
Go to Previous Message	In the Output window, jumps to the previous build error message. In the code editor, locates the build error and automatically moves the insertion point to the error.
🗟 Go to Next Message	In the Output window, jumps to the next build error message. In the code editor, locates the build error and automatically moves the insertion point to the error.
Clear all	In the Output window, deletes all displayed messages.
I Toggle Word Wrap	Wraps text to continue on the next line for messages extending beyond the viewing area

To access the Output window

1. From the View menu, click **Output** (or press **Ctrl+Alt+O**).

The Output window is displayed.

To review the generated status messages

1. In the Output window, from the *Show output from* drop-down combo-box, click the required feature.

The status messages are displayed.

To manage the contents of the Output window

You can manage the word wrapping and clear the contents of the window.

- 1. To wrap text to continue on the next line, click \blacksquare .
- 2. To delete the contents of the window, click $\overline{\mathbf{x}}$.

Using the Error List

You can view the errors, warnings, and messages produced when you edit programs and perform build operations by accessing the Error List window.

From the Error List window, you can navigate from one error to the next using the contextual menu options. You can also navigate between errors using the keyboard arrows.

Column	Description
Category	Displays an icon identifying the type of error
Default Order	Displays an integer indicating the order in which the error occurred relative to the other errors
Description	Displays the error message text
File	Displays the program name or the program location and program name
Line	Displays the line number
Column	Displays the column number
Project	Displays the name of the project

The Error List toolbar contains the following commands:

You can sort the contents of the Error List. You can customize the Error List by hiding columns, resizing columns, and arranging the columns to display.

To display the Error List window

• From the View menu, click **Error List** (or press **Ctrl+**, **Ctrl+E**).

The error list is displayed.

To sort the errors

You can sort the list of displayed errors.

• In the Error List window, click the required column heading for which to sort. To further sort the list, click another column heading while pressing SHIFT.

To customize the Error List window

- 1. To move a column, drag the column heading to the required location.
- 2. To modify the width of columns, drag the column dividers to the required location.

Navigating in the Development Environment

Navigating in the development environment is simplified with the use of the following utilities:

- Integrated Development Environment (IDE) Navigator
- Windows Dialog Box

Integrated Development Environment (IDE) Navigator

The IDE Navigator lists all Active Files and Tool Windows open in the current project. The navigator enables navigation between Active Files and navigation between Active Tool Windows. You can only access the IDE Navigator using keyboard shortcuts.

When using the IDE Navigator, the currently selected file is displayed on the top right of the navigator. The file type is displayed under the file name when applicable. The full path of the selected window or file is located at the bottom of the navigator.

Active Tool Windows consist of windows docked around the workspace or undocked windows. Active Files consist of language containers, the deployment view, and other windows docked in the workspace. You navigate between the different files using keyboard shortcuts or the arrow keys.

The order in which the Active Files and Active Tool Windows are displayed depends on activation. The first file is the most recently used/selected while the last file is the least recently used.

Note: Using a different set of keyboard shortcuts, you can navigate between Active Files and navigate between Active Tool Windows without displaying the IDE Navigator.

Windows Dialog Box

The Windows dialog box displays the active files open in the current project. Active files consist of language containers, the deployment view, and other windows docked in the workspace.

V	/indows		? 🛛
	Name Progl-POU Properties Solution Explorer Start Page	Path	Activate Save Close Window(s)
			ОК

From the Windows dialog box, you can perform the following management tasks for active files:

- Switch between active files
- Save changes to one or more active files

• Close active files

To navigate using the Windows dialog box

1. From the Window menu, click Windows.

The Windows dialog box displays the list of active files.

- 2. To switch to another active file in the list, select the required file, then click Activate.
- 3. To save changes to active files, select the required files from the list, then click Save.
- 4. To close active files, select the required files from the list, then click Close Window(s).

See Also

Development Environment Keyboard Shortcuts

Customizing Toolbars

For toolbars provided with **ISaGRAF 6**, you can modify docking locations. For custom toolbars, you can modify docking locations, rename toolbars, and delete toolbars.

To customize a toolbar

The Customize dialog box lists the provided toolbars as well as any custom user toolbars.

- 1. From the Tools menu, click **Customize**.
- 2. From the Customize dialog box, click the **Toolbars** tab, make the required changes, then click **Close**.
 - To modify the docking location for a toolbar, select the required toolbar from the *Toolbars* list, click Modify Selection, then click the preferred location for docking the toolbar. Available docking locations are top, left, right, and bottom.
 - To rename a custom toolbar, select the required toolbar from the *Toolbars* list, click **Modify Selection**, then type the required name in the text field.
 - To delete a custom toolbar, select the required toolbar from the *Toolbars* list, then click **Delete**.

The toolbar is removed from the Toolbars list.

See Also

Creating Toolbars

Creating Toolbars

You can create custom toolbars for use in the workbench.

To create a custom toolbar

- 1. From the Tools menu, click Customize.
- 2. From the Customize dialog box, click the Toolbars tab, then click New.
- 3. In the New Toolbar dialog box, type a name for the custom toolbar, then click **OK**.

The custom toolbar name is added to the Toolbars list.

See Also

Customizing Toolbars

Customizing Commands

You can customize menu bar, toolbar, and contextual menu commands by selecting a set of commands, then choosing an individual command to modify using the available options. You can add, rename, reset, delete, and rearrange the order of commands in the menus. You can also delimit groups of commands in menus and specify display options.

When customizing menus, the following image shows the different levels and options for menu items.

Commands

To add a menu category to the menu bar

- 1. From the Tools menu, click Customize.
- 2. From the Customize dialog box, click the **Commands** tab.
- 3. Select *Menu Bar* from the Menu bar drop-down combo-box.

4. To add a menu category to the menu bar, click Add New Menu.

The menu category is added to the menu bar.

5. Rename the menu item by clicking **Modify Selection**, then typing the required name in the text field.

To add a menu item to an existing menu category, toolbar, or contextual menu.

Menu items are either commands or subcategories leading to submenus. Before adding a menu item, you need to arrange the required order by selecting the menu item following the location of the new item in the list or rearranging the menu items after insertion.

- 1. From the Tools menu, click **Customize**.
- 2. From the Customize dialog box, click the Commands tab.
- **3.** Select the required menu from the Menu bar, Toolbar, or Context menu drop-down combo-boxes.
- 4. Perform one of the following operations:
 - To add a menu item to an existing menu category, toolbar, or contextual menu, select the item following the location for the new item, then click **Add New Menu**.
 - To add a command to an existing menu category, toolbar, or contextual menu, select the item following the location for the new item, click **Add Command**, then select the category and choose from the available commands in the Commands list.

The menu item is added to the existing menu category, toolbar, or contextual menu.

5. To rename the menu or command, click **Modify Selection**, then type the required name in the text field.

To reset menu bars, toolbars, or contextual menus

- 1. From the Tools menu, click **Customize**.
- 2. From the Customize dialog box, click the **Commands** tab.
- **3.** Perform the required reset operation:

- To reset a command or menu item, select the item from the respective drop-down combo-box, select the command or menu item from the Controls list, click Modify Selection, then click Reset.
- To reset a menu, toolbar, or contextual menu, select the item from the respective drop-down combo-box, then click **Reset All.**

To delete a menu item, toolbar, or contextual menu

- 1. From the Tools menu, click **Customize**.
- 2. From the Customize dialog box, click the **Commands** tab.
- **3.** Select the required menu from the Menu bar, Toolbar, or Context menu drop-down combo-boxes.
- 4. In the Controls list, select the item to delete, then click **Delete**.

To create a group of commands

You can create groups of commands by inserting separator bars.

- 1. From the Tools menu, click Customize.
- 2. From the Customize dialog box, click the Commands tab.
- **3.** Select the required menu from the Menu bar, Toolbar, or Context menu drop-down combo-boxes.
- 4. From the Controls list, select the menu item starting the group, click **Modify Selection**, then click **Begin a Group**.

A separator bar is inserted before the selected menu item.

To rearrange menu items

- 1. From the Tools menu, click **Customize**.
- 2. From the Customize dialog box, click the **Commands** tab.

- **3.** Select the required menu from the Menu bar, Toolbar, or Context menu drop-down combo-boxes.
- 4. To place the menu item at a different location in the selected menu or toolbar, select the menu item in the Controls list, then click **Move Up** or **Move Down** to move across the existing menu items.

To specify the display options for a command

Initially, the display options for commands are set to default. In menus, the default display option is Image and Text, while in toolbars it is Text Only (in Menus). The Text Only (in Menus) option displays an image in a toolbar or text in a menu. The Text Only (Always) option displays text in a menu or toolbar. The Image and Text option displays both image and text in a menu or toolbar. A command may not have an associated image.

- 1. From the Tools menu, click Customize.
- 2. From the Customize dialog box, click the Commands tab
- **3.** Select the menu to modify from the Menu bar, Toolbar, or Context menu drop-down combo-boxes.
- **4.** To specify the display options, select the required command in the Controls list, click **Modify Selection**, then click one of the following:
 - Default style
 - Text Only (Always)
 - Text Only (in Menus)
 - Image and Text

Importing and Exporting Settings

You can import or export specific categories of settings, or reset the environment to one of the default collections of settings. The environment settings include the settings for the various development views, editors, and tools.

- Export Selected Environment Settings
- Import Selected Environment Settings
- Reset all Settings

To import, export, or reset environment settings

- 1. From the Tools menu, click Import and Export Settings...
- 2. Select the required option, then follow the on-screen instructions.

Export Selected Environment Settings

When exporting selected environment settings, you need to choose the settings to export from the list of available environment settings. Environment settings identified with a warning symbol are not selected by default since these may contain intellectual property or sensitive information. Some categories may have sub-categories visible upon expanding the arrows to the left of the category item.

The settings exportation process requires the following operations:

- 1. Choosing the environment settings to export.
- 2. Naming a settings file.

During the environment settings export process, a window indicates the progress of the operation. Upon completion of the environment settings export process, a summary page indicates the results of the operation.

See Also Import Selected Environment Settings Reset all Settings

Naming a Settings File

When exporting selected environment settings, you need to specify a settings file in which to store the exported settings. The default location of this settings file is the following:

%USERPROFILE%\documents\isagraf 6.4\Settings\ISaGRAF

See Also

Export Selected Environment Settings

Settings Export in Progress

During the environment settings export process, a window indicates the progress of the operation.

Import Selected Environment Settings

When importing selected environment settings, you need to choose a file containing the settings to import, then select the required settings to import from the list of available environment settings in the file. Environment settings identified with a warning symbol are not selected by default since these may contain intellectual property or sensitive information. Some categories may have sub-categories visible upon expanding the arrows to the left of the category item.

The settings importation process requires the following operations:

- 1. Choosing whether to save the current environmental settings or overwriting the current setting with the settings to import.
- 2. Choosing a file containing the collection of environmental settings to import.
- **3.** Selecting the individual settings to import from the list of available environment settings in the settings file.

During the environment settings import process, a dialogue indicates the progress of the operation. Upon completion of the environment settings import process, a summary page indicates the results of the operation.

See Also

Export Selected Environment Settings Reset all Settings

Choosing a Collection of Settings to Import

When importing selected environment settings, you need to choose a file containing the settings to import.

See Also

Choosing Settings to Import Import Selected Environment Settings

Choosing Settings to Import

When importing selected environment settings, you can select the required settings to import from the list of available environment settings contained in the settings file. Environment settings identified with a warning symbol are not selected by default since these may contain intellectual property or sensitive information. Some categories may have sub-categories visible upon expanding the arrows to the left of the category item.

See Also

Choosing a Collection of Settings to Import Import Selected Environment Settings

Settings Import in Progress

During the environment settings import process, a window indicates the progress of the operation.

Reset all Settings

You can revert the environment settings to the initial settings. When resetting the environment settings, you can choose whether to save the current environment settings to a file.

See Also Import Selected Environment Settings

Settings Reset in Progress

During the environment settings reset process, a window indicates the progress of the operation.

Operations Summary

When performing one of the following tasks regarding the environment settings, the wizard informs you of the results (whether successful or unsuccessful) for the operation.

- Export Selected Environment Settings
- Import Selected Environment Settings
- Reset all Settings

Development Environment Keyboard Shortcuts

When working in the development environment, keyboard shortcuts are available for the following tasks:

- AccessingWindows
- Debugging
- Dictionary
- Getting Help
- Saving and Closing
- Working with the Cross Reference Browser and Find utility
- Navigating in the Development Environment

Some keyboard shortcuts do not apply or may differ while debugging.

Note: Keyboard shortcuts specific to the programming languages, deployment view, and version source control are indicated on their respective keyboard shortcut pages.

Accessing Windows

Accesses the Block Library
Accesses the Cross Reference Browser
Accesses the Error List window
Accesses the New Project dialog box (not available while debugging)
Accesses the Open Project dialog box (not available while debugging)
Accesses the Output window
Accesses the Pending Changes window
Accesses the Properties window
Accesses the Properties window
Accesses the Quick Find utility
Accesses the Quick Replace utility

Ctrl+K, R	Accesses the Repository Explorer
Ctrl+Alt+L	Accesses the Solution Explorer
Ctrl+Alt+X	Accesses the Toolbox
Ctrl+K, W	Accesses the Working Copy Explorer

Debugging

Ctrl+Shift+B	Builds the solution (not available while debugging)
F5	Starts debugging
F10	While debugging, steps over the next rung or line of code
F11	While debugging, steps into the next rung or line of code
Shift+F5	Stops debugging
Ctrl+D	Only available in debug mode for the date data type. When the Write Logical Value dialog box is open, enters the current date.

Dictionary

Up Arrow	Moves up the grid between cells
Down Arrow	Moves down the grid between cells
Left Arrow	Moves left across the grid between cells
Right Arrow	Moves right across the grid between cells
Ctrl+PLUS SIGN on numeric keypad (+)	Expands the fields of complex data types
Ctrl+MINUS SIGN on	Collapses the fields of complex data types

numeric keypad (-)

Getting Help

Ctrl+F1	Accesses the Help Viewer
Shift+F1	Accesses help for the selected window
F1	Accesses help for the selected element

Saving and Closing

Ctrl+S	Saves the selected elements (not available while debugging)
Ctrl+Shift+S	Saves all files making up a solution (not available while debugging)
Alt+F4	Exits ISaGRAF
Ctrl+F4	Closes files and windows located in the workspace
Shift+Esc	Closes selected windows except for programs and the deployment
	VIEW

Working with the Cross Reference Browser and Find utility

Ctrl+T, Ctrl+R	Refreshes the Cross Reference Browser data
F8	Jumps to the selected instance of an element
Shift+F8	Jumps to the selected instance of an element
F3	Finds next text in a selected window
Ctrl+D	Goes to the find toolbar. Current text is highlighted/selected.

Navigating in the Development Environment

Alt+-	For language containers and the deployment view, displays various menu options including saving, docking, and tiling.	
	For other windows, displays docking options.	
Ctrl+Alt+Down Arrow	Displays a drop down list on the top right corner of the workspace listing all active files tabbed in the workspace.	
Ctrl+Tab	Displays the IDE Navigator. You can navigate to the next Active File by holding the Ctrl key and pressing Tab. Releasing the keys selects the current file.	
Ctrl+Shift+Tab	Displays the IDE Navigator. You can navigate to the previous Active File by holding Ctrl+Shift and pressing Tab. Releasing the keys selects the current file.	
Alt+F7	Displays the IDE Navigator. You can navigate to the next Active Tool Window by holding Alt and pressing F7. Releasing the keys selects the current window.	

Alt+Shift+F7	Displays the IDE Navigator. You can navigate to the previous Active File by holding Alt+Shift and pressing F7. Releasing the keys selects the current window.
Ctrl+F6	Navigates to the next Active File
Ctrl+Shift+F6	Navigates to the previous Active File
Alt+F6	Navigates to the next Active Tool Window
Alt+Shift+F6	Navigates to the previous Active Tool Window

Options for the Development Environment

When setting the development options, you can customize the following aspects of the development environment:

- Setting Environment Options
- Specifying Project Options
- Specifying Source Control Settings
- Specifying Block Library Settings
- Specifying CAM3 Settings
- Specifying Deployment View Settings
- Specifying Device View Options
- Specifying Documentation Generator Options
- Setting Grid Options
- Defining CAM 3 I/O Device Settings
- Defining CAM 5 I/O Device Settings
- Setting IEC Language Options
- Setting ISaVIEW Options
- Defining Spy List Settings

Setting Environment Options

You can define the environment options for the following:

- Find and Replace
- Fonts and Colors
- Import and Export Settings
- International Settings
- Keyboard
- Startup

You can modify the general settings for the workbench by accessing the general environment options. Some changes to the general settings take effect after restarting the workbench.

- Recent files, enables defining the number of recently used files displayed in menus. The items shown in Window menu field defines the number of windows (ranging from 1 to 24) displayed in the Windows list of the Window menu. For the number of items shown in the Window menu, the default is 10. The items shown in recently used lists field defines the number of recent projects and files (ranging from 1 to 24) displayed in the File menu. For the number of items shown in recently used lists, the default is 6.
- Visual experience, specifies whether the visual experience is set automatically or explicitly. This adjustment may change the display of colors from gradients to flat colors, or it may restrict the use of animations in menus or popup windows. Enabling the full visual experience includes gradients and animations. Clear this option when using remote desktop connections or older graphics adapters because these features may have poor performance in such cases. Use hardware graphics acceleration if available rather than software acceleration.
- Show status bar, enables displaying the status bar. The status bar displays progress information for ongoing operations.
- Close button affects active tool window only, enables the Close button to shut down the active window only. This option is selected by default.
- Auto Hide button affects active tool window only, enables Auto Hide to hide the active window only.
- Restore File Associations, registers file types that are normally associated with the workbench. When uninstalling or reinstalling versions of the workbench, Restore File Associations enables Microsoft[®] Windows to display the correct icons in Windows Explorer, and to recognize the workbench as the default application for editing workbench related files.
To access the general environment options

- 1. From the Tools menu, click **Options**.
- 2. In the Options dialog box, expand **Environment**, then click **General**.

The general environment options are displayed in the Options dialog box

Find and Replace

You can define the display settings for the Find and Replace dialog box. You can choose to display informational messages and warnings as well as populate the Find What field with text from an open editor. You can also choose to hide the Find and Replace dialog box once a match is found.

To define the display settings for the Find and Replace dialog box

- 1. From the Tools menu, click **Options**.
- 2. In the Options dialog box, expand Environment, then click Find and Replace.
- 3. In the Options dialog box, select the required options, then click **OK**.

Fonts and Colors

You can define font and color schemes for the various interface items in the workbench. Scheme changes take effect after restarting the workbench.

- Show settings for, lists all interface elements having items with modifiable fonts and colors schemes. You can customize the color settings for an item selected from the Display items list. Clicking Use Defaults resets the font and color settings for the selected item.
- Font (bold type indicates fixed-width fonts), lists all installed fonts. The current font for a selected interface element is displayed in the Font field. You can change the font size using the Size drop-down combo-box.
- Display items, lists items belonging to a selected interface element having modifiable fonts and color schemes. The Item foreground and Item background drop-down combo-boxes automatically display the current color settings for the selected item. You can modify the color setting for the selected item using the drop-down combo-boxes or by clicking Custom. You can apply bold font to the selected item by clicking the Bold checkbox.

To define custom fonts and colors for interface items

- 1. From the Tools menu, click **Options**.
- 2. In the Options dialog box, expand Environment, then click Fonts and Colors.
- **3.** In the Options dialog box, define the font and color settings for the required interface items, then click **OK**.

Import and Export Settings

You can define options for saving settings files. You can choose to save your settings to a .vssetting file located on your system or to a shared settings files. When saving settings to a shared .vssettings file, you must provide a UNC path or local path to the shared file.

- Automatically save my settings to this file, displays the name and path to the .vssettings file currently in use. You can change the setting file used by typing a different path or browsing to locate the required settings file on your system.
- Use team settings file, enables navigating to a shared .vssettings file. You can browse to locate the required settings file. This vssettings file is automatically re-applied to the workbench following each modification.

To define the options for saving the settings file

- 1. From the Tools menu, click **Options**.
- 2. In the Options dialog box, expand Environment, then click Import and Export Settings.
- **3.** In the Options dialog box, define the required name and location of the settings file, then click **OK**.

International Settings

When more than one language version of the workbench is installed on a computer, you can change the default language setting for the workbench. Changes to the default language take effect after restarting the workbench.

To change the default language setting

- 1. From the Tools menu, click Options.
- 2. In the **Options** dialog box, expand **Environment**, then click **International Settings**.
- **3.** In the **Options** dialog box, select the required language from the **Language** drop-down combo-box, then click **OK**.

The required language is displayed after restarting the workbench.

Shortcut Keyboard Combinations

The keyboard options enable you to perform many tasks regarding the keyboard shortcuts for the various commands available in the ISaGRAF environment. You can perform the following tasks:

- Viewing defined keyboard shortcuts
- Defining keyboard shortcuts
- Removing defined keyboard shortcuts

Keyboard shortcuts enable quicker operation of the ISaGRAF environment. The keyboard options enable viewing the defined keyboard shortcuts mapping schemes available for commands. In ISaGRAF, only the default keyboard shortcut mapping scheme is available. You view commands in the *Show commands containing* section listing all available commands and their respective keyboard shortcuts. In the text field, you can also type text to find a specific command. By default, only some commands have pre-defined shortcuts. Users can define (add) a shortcut to a command or modify an existing shortcut by adding a new shortcut and removing an unwanted shortcut. You manage keyboard combinations from the following options:.

- *Apply the following additional keyboard mapping scheme*, only the default mapping scheme is available for ISaGRAF.
- *Show commands containing*, displays all commands available in the ISaGRAF environment. When typing characters into the textbox, the list displays all entries containing the specified characters.
- *Shortcuts for selected command*, lists mapped keyboard shortcuts for the command selected in the *Show commands containing* list.
- Use new shortcut in, specifies the scope of the keyboard shortcut. You can use the shortcut globally in the ISaGRAF environment or only within a specific context (or window). The default setting is global, meaning the shortcut key works in any active window. If a global keyboard shortcut and context specific shortcut are identical, the context specific shortcut takes precedence. For example, commands having the MLGE editor scope have precedence over commands having the global scope. A context specific keyboard shortcut remains in effect only while the context (or window) is active.

• *Press shortcut keys*, enables pressing a key combination to be used for the currently selected command. You must use one or more modifier keys such as CTRL, ALT, or SHIFT combined with various keys. SHIFT cannot be combined with letters or numbers. The F1-F12 keys can be used with or without a modifier. You can enter one or two key combinations to use as a shortcut. For example, you can enter CTRL+Y, or enter F6, CTRL+Y. Regardless of their scope, shortcut key combinations cannot contain the following keys:

PRT SCR/SYS RQ	Application key
SCRLK	NUM LOCK
CAPS LOCK	CTRL+ALT+DELETE key combination
ESCAPE	

• Shortcut currently used by, displays the command assigned to the current keyboard shortcut combination. The textbox is only activated when you assign a key combination that is already assigned to another command. To replace the current shortcut keyboard combination with a custom one you must define a new keyboard shortcut mapping scheme.

To view existing commands and keyboard shortcuts

- 1. From the Tools menu, click **Options**.
- 2. In the Options dialog box, expand Environment, then click Keyboard.

The keyboard options are displayed in the Options dialog box.

- **3.** In the *Show commands containing* field, scroll to find a command or type the required command name without spaces. For example, ShowNextStatement.
- **4.** In the *Show commands containing* list, select the required command. For example, Debug.ShowNextStatement.

The drop-down combo-box displays the shortcut key combinations for the selected shortcut.

To define keyboard shortcuts

Clicking Assign permanently saves changes for a selected command.

- 1. From the keyboard options, in the *Show commands containing* field, type the required command name without spaces. For example, ShowNextStatement.
- **2.** In the *Show commands containing* list, select the required command. For example, Debug.ShowNextStatement.
- 3. In the Use new shortcut in drop-down combo-box, select the scope. For example, MLGE.
- 4. In the *Press shortcut keys* field, type the new key combination.
- 5. Click Assign, then click OK.

The shortcut key combination is saved for the required command.

To remove keyboard shortcuts

- 1. From the keyboard options, in the *Show commands containing* field, type the required command name without spaces. For example, ShowNextStatement.
- **2.** In the *Show commands containing* list, select the required command. For example, Debug.ShowNextStatement.
- 3. In the *Shortcuts for selected command field*, select the keyboard shortcut to be removed.

4. Click Remove.

The keyboard shortcut is no longer assigned to the command.

Startup

The startup options enable you to specify the Workbench behavior when launching ISaGRAF:

- Open Home Page, where the Workbench automatically displays the ISaGRAF home page
- Load last loaded solution, where the Workbench opens the last opened project
- Show Open Project dialog box, where the Workbench automatically displays the Open Project dialog box
- Show New Project dialog box, where the Workbench automatically displays the New Project dialog box
- Show empty environment, where the Workbench opens without displaying any project or dialog box

Specifying Project Options

You can specify the default locations and behavior of project components. You can set default paths for projects and templates. For the Output window, and Solution Explorer, you can set the default behavior during project creation and building. You can also set the options for building and running projects.

- Project location, User project template location, and User item template location, enable defining the default path to project folders used in workbench dialog boxes. The Project location path is used in the Open Project dialog box to define the My Projects location. The User project template location is used in the New Project dialog box to define the My templates list. The User item template location is used in the Add New Item dialog box to define the My Templates list. When defining these default paths, you can type directly in the field or browse for the required location.
- Always show Error List if build finishes with errors, enables opening the Error list window when errors occur during a build operation. When the build operation is complete, the Error List is displayed containing the errors generated by the build operation.
- Track Active Items in Solution Explorer, enables the Solution Explorer to scroll to the node containing the active item, open the folder containing the active item, and select the name of the active item
- Show advanced build configurations, not implemented
- Always show solution, enables displaying the solution element and commands that act on the solution within the Solution Explorer. When this option is cleared, new projects are created as stand-alone projects.
- Save new projects when created, enables defining the location of projects in the New Project dialog box. When this option is cleared, new projects are created as temporary projects.
- Warn user when the project location is not trusted, displays a warning message when opening projects from an untrusted location
- Show Output window when build starts, enables displaying the Output window when starting build operations

• Prompt for symbolic renaming when renaming files, enables displaying a message prompting you to select whether to rename all references in the project or just the selected file

To specify the default locations and behavior of project components

- **1.** From the Tools menu, click **Options**.
- 2. In the Options dialog box, expand **Projects**, then click **General**.
- **3.** In the Options dialog box, type the required paths or browse for their locations, select the required options, then click **OK**.

Build Options

You can specify whether a message is displayed before cleaning operations are executed. After performing cleaning operations, online changes are unavailable.

• Proceed to cleaning without asking, enables the display of message indicating that online updates become unavailable after performing a cleaning operation.

To enable the display of messages prior to cleaning operations

- 1. From the Tools menu, click **Options**.
- 2. In the Options dialog box, expand **Projects**, then click **Build**.
- **3.** In the *Proceed to cleaning without asking* drop-down combo-box, select **False**, then click **OK**.

Interrupts Options

When adding or moving programs to the interrupts section of the Solution Explorer, you can choose to associate the program with an interrupt instance.

• Prompt for interrupt association, enables the display of a message prompting users to choose whether to associate selected programs with interrupt instances when adding or moving programs.

To set the option for program interrupts

- 1. From the Tools menu, click **Options**.
- 2. In the Options dialog box, expand **Projects**, then click **Interrupts**.
- 3. In the *Prompt for interrupt association* drop-down combo-box, select **True**, then click **OK**.

Online Settings

When monitoring applications, you can choose to display messages prompting you to confirm the locking or unlocking of variables. You can also specify the number system and number of significant digits used for displaying of numerical values of the different data types categories.

- Prompt for Lock or Unlock, enables the display of messages prompting users to confirm the locking or unlocking of selected variables.
- Bool display format, indication of whether to display boolean values in bool (TRUE/FALSE), bit (1/0), or mixed (TRUE (1)/FALSE (0)) format.
- Integer, indication of whether to display integer values in decimal, hexadecimal, octal, or binary format.
- REAL, indication of whether to display REAL values using scientific notation or a specific number of significant digits after the decimal.
- LREAL, indication of whether to display LREAL values using scientific notation or a specific number of significant digits after the decimal.

To enable the display of message prompts when locking and unlocking variables

- 1. From the Tools menu, click **Options**.
- 2. In the Options dialog box, expand **Projects**, then click **Online**.
- 3. Select the *Prompt for Lock or Unlock* option.

To specify the options for displaying numerical values

- 1. From the Tools menu, click **Options**.
- 2. In the Options dialog box, expand **Projects**, then click **Online**.
- **3.** In the *Numerical Display* section, set the required values for the different data type categories, then click **OK**.

Specifying Source Control Settings

ISaGRAF includes software developed by * CollabNet (http://www.Collab.Net/) based on the Subversion AnkhSVN source control plug-in for Visual Studio.

Note: Source control settings are only available for use with the ISaGRAF 5 CAM.

For source control usage, you can specify options for the following aspects:

- Plug-in Selection
- Subversion Environment
- Subversion User Tools

Plug-in Selection

For source control, you choose the plug-in to use with the Automation Collaborative **Platform**. The following options are available:

- None, source control is deactivated. The Subversion Environment and Subversion User Tools options for source control are unavailable.
- AnkhSVN Subversion Support for Visual Studio, source control is activated. The Subversion Environment and Subversion User Tools options for source control are available for use.

To specify the source control plug-in

- 1. From the Tools menu, click **Options**.
- 2. In the Options dialog box, expand Source Control, then click Plug-in Selection.
- 3. Specify the required options and click OK.

Subversion Environment

The Subversion environment enables specifying the use of the following options:

- Directly add new files to subversion, indicates whether files are added to subversion without displaying messages prompting users to confirm this action
- Automatically lock files on change without user confirmation, indicates whether files are automatically locked when making a change without displaying messages prompting users to confirm this action

Note: To prevent mistakenly stealing locks from other users, avoid automatically locking files on change without user confirmation.

- Flash title bar when a lengthy operation completes, indicates whether to inform users of completion by flashing the title bar of a lengthy operation
- When double clicking items in the Pending Changes, enables selecting the environment in which to view the contents of the file

You can also specify Subversion user settings:

- Proxy settings, enabling and identifying the server and port details for the proxy
- Authentication cache, enabling the storage of the repository logon details and other authentication settings
- Enable client-side hooks, enabling the use of client-side hook scripts

To specify source control environment settings

- 1. From the Tools menu, click **Options**.
- 2. In the Options dialog box, expand Source Control, then click Subversion Environment.
- 3. Specify the required options and click OK.

See also

Subversion User Tools

Subversion User Tools

For source control, you can specify the following tools for use in various operations:

- External Diff Tool, specifies the comparison utility to use when performing comparison operations for files
- External Merge Tool, specifies the merging utility to use when performing merging operations for files

To specify source control user tools

- 1. From the Tools menu, click **Options**.
- 2. In the Options dialog box, expand Source Control, then click Subversion User Tools.
- 3. Specify the tools to use for the required options and click **OK**.

See also

Specifying Source Control Settings

Specifying Block Library Settings

You can specify the display mode for the Block Library on startup. The block library can be displayed using expanders or tabs.

To adjust the display mode for the block library

- 1. From the Tools menu, click **Options**.
- 2. In the Options dialog box, expand Block Library Settings, then click General.
- **3.** In the Options dialog box, select the required display mode from the drop-down menu, then click **OK**.

Specifying CAM3 Settings

For CAM3 variables, you can specify the display format for the modbus address. The modbus address can be displayed in hexadecimal or decimal format.

To adjust the modbus address format for variables

- 1. From the Tools menu, click **Options**.
- 2. In the Options dialog box, expand CAM3 Settings, then click General.
- **3.** In the Options dialog box, select the required display type from the drop-down menu, then click **OK**.

Specifying Deployment View Settings

You can adjust colors for various aspects of the deployment view. You can also adjust layout aspects such as the number of devices displayed per row and the horizontal offset (in pixels) between rows of devices.

To adjust settings for aspects of the deployment view

- 1. From the Tools menu, click **Options**.
- 2. In the Options dialog box, expand **Deployment View Settings**, then click **General**.
- 3. In the Options dialog box, adjust the color or layout settings for the view, then click OK.

Specifying Device View Options

You can specify whether to display the navigation window when opening the device view.

To specify displaying the navigation window when opening the device view

- 1. From the Tools menu, click **Options**.
- 2. In the Options dialog box, expand **Device View**, then click **General**.
- **3.** the option.
- **4.** In the Options dialog box, select *Display the navigation window when opening the device view,* then click **OK**.

Specifying Documentation Generator Options

You can specify the default Sections Template for the generated documentation. The selected Sections Template modifies the items listed in the Sections pane of the Documentation Generator.

To specify the default Sections Template

- 1. From the Tools menu, click **Options...**
- 2. In the Options dialog box, expand **Document Generator**, then click **General**.
- 3. Select the required default Sections Template, then click **OK**.

Word Settings

You can specify the default Microsoft Word® 2010 (or more recent) settings for the generated documentation. You can specify the following default settings for the generated documentation: orientation, page size, margins, Microsoft Word® template, diagram scaling, link type, and comment style.

To specify the default Word settings

- 1. From the Tools menu, click **Options...**
- 2. In the Options dialog box, expand **Document Generator**, then click **Word**.
- 3. Specify the required settings, then click **OK**.

Setting Grid Options

You can customize the colors displayed in the various workbench grids. You can access the grid options for the following grids:

- Arrays View
- Defined Words View
- Dictionary View
- Parameters Grid
- Structures View
- Variable Groups View
- Variable Selector

To access the grid options

- 1. From the Tools menu, click **Options**.
- 2. In the Options dialog box, expand Grid Settings, then click the required grid type.

The grid options for the selected grid type are displayed in the Options dialog box.

Arrays View

You can customize the colors displayed in the Arrays grid including column headers and rows. The Arrays grid automatically alternates colored rows with white rows. You can adjust the number of consecutive rows used for the alternating sequence. The default row coloring scheme is one colored row followed by one white row. For colored rows, you can define the colors displayed. You can also define the color used to indicate disabled rows. You can choose whether to display the filter bar in the Arrays grid.

To customize the colors displayed in the Arrays grid

- 1. From the Tools menu, click **Options**.
- 2. From the Options dialog box, expand Grid Settings, then click Arrays.
- 3. Customize the required options, then click **OK**.
 - To specify the number of consecutive rows for the alternating sequence, for **Consecutive Rows**, indicate the required value.
 - To change the colors applied to headers, alternate rows, and disabled rows, for the respective option, then select a color from the drop-down combo-box.

Defined Words View

You can customize the colors displayed in the Defined Words grid including column headers and rows. The Defined Words grid automatically alternates colored rows with white rows. You can adjust the number of consecutive rows used for the alternating sequence. The default row coloring scheme is one colored row followed by one white row. For colored rows, you can define the colors displayed. You can also define the color used to indicate disabled rows. You can choose whether to display the filter bar in the Defined Words grid.

To customize the colors displayed in the Defined Words grid

- 1. From the Tools menu, click **Options**.
- 2. From the Options dialog box, expand Grid Settings, then click Defined Words.
- 3. Customize the required options, then click OK.
 - To specify the number of consecutive rows for the alternating sequence, for **Consecutive Rows**, indicate the required value.
 - To change the colors applied to headers, alternate rows, and disabled rows, for the respective option, then select a color from the drop-down combo-box.

Dictionary View

You can customize the colors displayed in Dictionary instances including column headers and rows. The Dictionary grid automatically alternates colored rows with white rows. You can adjust the number of consecutive rows used for the alternating sequence. The default row coloring scheme is one colored row followed by one white row. For colored rows, you can define the colors displayed. You can also define the color used to indicate disabled rows. You can choose whether to display the filter bar in the Dictionary.

To customize the colors displayed in the Dictionary

- 1. From the Tools menu, click **Options**.
- 2. From the Options dialog box, expand Grid Settings, then click Dictionary.
- 3. Customize the required options, then click OK.
 - To specify the number of consecutive rows for the alternating sequence, for **Consecutive Rows**, indicate the required value.
 - To change the colors applied to headers, alternate rows, and disabled rows, for the respective option, then select a color from the drop-down combo-box.

Parameters Grid

You can customize the colors displayed in Parameters grid including column headers and rows. The Parameters grid automatically alternates colored rows with white rows. You can adjust the number of consecutive rows used for the alternating sequence. The default row coloring scheme is one colored row followed by one white row. For colored rows, you can define the colors displayed. You can also define the color used to indicate disabled rows. You can choose whether to display the filter bar in the Parameters grid.

To customize the colors displayed in the Parameters grid

- 1. From the Tools menu, click **Options**.
- 2. From the Options dialog box, expand Grid Settings, then click Parameters.
- 3. Customize the required options, then click **OK**.
 - To specify the number of consecutive rows for the alternating sequence, for **Consecutive Rows**, indicate the required value.
 - To change the colors applied to headers, alternate rows, and disabled rows, for the respective option, then select a color from the drop-down combo-box.

Structures View

You can customize the colors displayed in Structures grid including column headers and rows. The Structures grid automatically alternates colored rows with white rows. You can adjust the number of consecutive rows used for the alternating sequence. The default row coloring scheme is one colored row followed by one white row. For colored rows, you can define the colors displayed. You can also define the color used to indicate disabled rows. You can choose whether to display the filter bar in the Structures grid.

To customize the colors displayed in the Structures grid

- 1. From the Tools menu, click **Options**.
- 2. From the Options dialog box, expand Grid Settings, then click Structures.
- 3. Customize the required options, then click OK.
 - To specify the number of consecutive rows for the alternating sequence, for **Consecutive Rows**, indicate the required value.
 - To change the colors applied to headers, alternate rows, and disabled rows, for the respective option, then select a color from the drop-down combo-box.

Variable Groups View

You can customize the colors displayed in the Variable Groups view including column headers and rows. The Variable Groups view automatically alternates colored rows with white rows. You can adjust the number of consecutive rows used for the alternating sequence. The default row coloring scheme is one colored row followed by one white row. For colored rows, you can define the colors displayed. You can also define the color used to indicate disabled rows. You can choose whether to display the filter bar in the Variable Groups view.

To customize the colors displayed in the Variable Groups view

- 1. From the Tools menu, click **Options**.
- 2. From the Options dialog box, expand Grid Settings, then click Variable Groups.
- 3. Customize the required options, then click **OK**.
 - To specify the number of consecutive rows for the alternating sequence, for **Consecutive Rows**, indicate the required value.
 - To change the colors applied to headers, alternate rows, and disabled rows, for the respective option, then select a color from the drop-down combo-box.

Variable Selector

You can customize the colors displayed in Variable Selector including column headers and rows. The Variable Selector automatically alternates colored rows with white rows. You can adjust the number of consecutive rows used for the alternating sequence. The default row coloring scheme is one colored row followed by one white row. For colored rows, you can define the colors displayed. You can also define the color used to indicate disabled rows. You can choose whether to display the filter bar in the Variable Selector. You can also specify whether the Variable Selector opens displaying the local or global variables tab.

To customize the colors displayed in the Variable Selector

- 1. From the Tools menu, click **Options**.
- 2. From the Options dialog box, expand Grid Settings, then click Variable Selector.
- 3. Customize the required options, then click OK.
 - To specify the number of consecutive rows for the alternating sequence, for **Consecutive Rows**, indicate the required value.
 - To change the colors applied to headers, alternate rows, and disabled rows, for the respective option, then select a color from the drop-down combo-box.

Defining CAM 3 I/O Device Settings

For CAM 3, you can specify settings for I/O devices.

- Always keep devices expanded, specifies whether devices are expanded to display information such as the slot order, number of channels, data type, and description
- Show empty device slots, specifies whether empty device slots are displayed when viewing I/O wiring
- Show full device names, specifies whether I/O devices are displayed with their full names beside the slot number
- Prompt on device removal, specifies whether to prompt users before removing devices
- Prompt when freeing wired variables, specifies whether to prompt users before freeing wired variables

To define settings for CAM 3 I/O devices

- 1. From the Tools menu, click **Options**.
- 2. In the Options dialog box, expand I/O Device Settings CAM 3, then click General.
- 3. In the Options dialog box, define the required settings, then click **OK**.

Defining CAM 5 I/O Device Settings

For CAM 5 I/O devices, you can specify whether to display alias names for I/O devices. The device alias is defined when creating or editing an I/O device.

To specify displaying alias names for CAM 5 I/O devices

- 1. From the Tools menu, click **Options**.
- 2. In the Options dialog box, expand I/O Device Settings CAM 5, then click General.
- 3. In the Options dialog box, select *Show alias names for I/O devices*, then click **OK**.

Setting IEC Language Options

You can customize the display settings for programs built in different IEC languages:

- Function Block Diagram
- IEC 61499
- Ladder Diagram
- SAMA
- Sequential Function Chart
- Structured Text
Function Block Diagram

You can customize the displayed settings for FBD diagrams. You can choose to display grids and instance names. You can choose the comment position for variables and literals. You can define the colors used when displaying FBD elements and text as well as define which variable information is displayed in FBD diagrams. You can choose the width for FBD elements in the language container. You can also choose whether to display grid lines inside FBD language containers. For links, you can choose to display as arrows, present solid, dashed, dotted, dashed-dotted, dashed-dotted-dotted, or custom line styles, and apply a normal, rounded, or rounded with jump line types.

The following options are available for customization:

Block Style

Background Color	The function and function block background color. The possible colors are custom, web, and system colors.
Background Gradient Color	The function and function block background gradient color. The possible colors are custom, web, and system colors.
Cell Width	The width for a function or function block, in number of grid cells.
Display Instance Names	The indication of whether to display instance names for function blocks.
In design mode, go to definition on double click	While in design mode, enables going to the definition on double click.
Transparency	The level of transparency. The possible values range from 0 to 255 where 0 indicates complete transparency.
Comment Style	
Background Color	The comment background color. The possible colors are custom, web, and system colors.
Constant Style	
Background Color - Events	The constant background color. The possible colors are custom, web, and system colors.
Background Gradient Color - Events	The constant background gradient color. The possible colors are custom, web, and system colors.

Cell Width	The width for a constant, in number of grid cells.
Comment Position	The position of the comment in reference to the constant shape. The possible positions are top, bottom, left, and right.
Transparency	The level of transparency. The possible values range from 0 to 255 where 0 indicates complete transparency.
Variable Information	The information to display for variables. The possible values are name, alias, name and alias, or name and wiring.
Container Settings	
Auto Resize Elements when Modifying	When modifying, automatically resize blocks and variables to accomodate length of text.
Automatically Invoke Variable/Block Selector	Controls whether the Variable or Block Selector is automatically displayed when inserting a variable or block in the language container.
Display Grid	The indication of whether to display the grid in the language container.
Jump	
Cell Width	The width for a jump, in number of grid cells.
Label	
Cell Width	The width for a label, in number of grid cells.
Left Power Rail	
Background Color	The left power rail background color. The possible colors are custom, web, and system colors.
Background Gradient Color	The left power rail background gradient color. The possible colors are custom, web, and system colors.
Link Style	
Is Arrow	The indication of whether to display an arrow at the end of the link.
Line Style	The style of the line. The possible values are solid, dash, dot, dash-dot, dash-dot, and custom.

Line Type	The type of line. The normal line type has squared corners and overlapping link intersections. The rounded line type has rounded corners and overlapping link intersections. The rounded with jump line type has rounded corners and link intersections are jumped over.
Link Color	The color of links. The possible colors are custom, web, and system colors.
Operator Style	
Background Color	The operator background color. The possible colors are custom, web, and system colors.
Background Gradient Color	The operator background gradient color. The possible colors are custom, web, and system colors.
Cell Width	The width for an operator, in number of grid cells.
Display Instance Names	The indication of whether to display instance names for operators.
Transparency	The level of transparency. The possible values range from 0 to 255 where 0 indicates complete transparency.
Region Style	
Background Color	The region background color. The possible colors are custom, web, and system colors.
Header Color	The header color of a region. The possible colors are custom, web, and system colors.
Header Transparency	The level of transparency of the header section of a region. The possible values range from 0 to 255 where 0 indicates complete transparency.
Transparency	The level of transparency. The possible values range from 0 to 255 where 0 indicates complete transparency.
Right Power Rail	
Background Color	The right power rail background color. The possible colors are custom, web, and system colors.
Background Gradient Color	The right power rail background gradient color. The possible colors are custom, web, and system colors.

Variable Style

Background Color	The variable background color. The possible colors are custom, web, and system colors.
Background Gradient Color	The variable background gradient color. The possible colors are custom, web, and system colors.
Cell Width	The width for a variable, in number of grid cells.
Comment Position	The position of the comment in reference to the variable shape. The possible positions are none, top, bottom, left, and right.
Transparency	The level of transparency. The possible values range from 0 to 255 where 0 indicates complete transparency.
Variable Information	The information displayed for variables. The possible values are name, alias, name and alias, or name and wiring.

To customize the display settings for FBD Diagrams

- 1. From the Tools menu, click **Options**.
- 2. From the Options dialog box, expand IEC Languages, then click Function Block Diagram (FBD).
- 3. Using the available options, customize the required settings, then click **OK**.

IEC 61499

You can customize the displayed settings for IEC 61499 diagrams. You can choose to display grids and block instance names. You can define background and gradient colors for IEC 61499 elements. You can choose to display names and aliases for literals, variables, and event variables. For links, you can choose to display as arrows, present solid, dashed, dotted, dashed-dotted, dashed-dotted-dotted, or custom line styles, and apply a normal, rounded, or rounded with jump line types.

The following options are available for customization:

Block Style

Background Color	The function and function block background color. The possible colors are custom, web, and system colors.
Background Gradient Color	The function and function block background gradient color. The possible colors are custom, web, and system colors.
Cell Width	The width for a function or function block, in number of grid cells.
Display Instance Names	The indication of whether to display instance names for function blocks.
In design mode, go to definition on double click	While in design mode, enables going to the definition on double click.
Transparency	The level of transparency. The possible values range from 0 to 255 where 0 indicates complete transparency.
Comment Style	
Background Color	The comment background color. The possible colors are custom, web, and system colors.
Constant Style	
Background Color - Events	The constant background color. The possible colors are custom, web, and system colors.
Background Gradient Color - Events	The constant background gradient color. The possible colors are custom, web, and system colors.
Cell Width	The width for a constant, in number of grid cells.

Comment Position	The position of the comment in reference to the constant shape. The possible positions are top, bottom, left, and right.
Transparency	The level of transparency. The possible values range from 0 to 255 where 0 indicates complete transparency.
Variable Information	The information to display for variables. The possible values are name, alias, name and alias, or name and wiring.
Container Settings	
Auto Resize Elements when Modifying	When modifying, automatically resize blocks and variables to accommodate length of text.
Automatically invoke Variable/Block Selector	Controls whether the Variable or Block Selector is automatically displayed when inserting a variable or block in the language container.
Display Grid	The indication of whether to display the grid in the language container.
Event Link Style	
Is Arrow	The indication of whether to display an arrow at the end of the link.
Line Style	The style of the line. The possible values are solid, dash, dot, dash-dot, dash-dot, and custom.
Line Type	The type of line. The normal line type has squared corners and overlapping link intersections. The rounded line type has rounded corners and overlapping link intersections. The rounded with jump line type has rounded corners and link intersections are jumped over.
Link Event Color	The color of event links. The possible colors are custom, web, and system colors.
Event Variable Style	
Background Color - Events	The event variable background color. The possible colors are custom, web, and system colors.
Background Gradient Color - Events	The event variable background gradient color. The possible colors are custom, web, and system colors.
Cell Width	The width for an event variable, in number of grid cells.

Comment Position	The position of the comment in reference to the event variable shape. The possible positions are top, bottom, left, and right.
Transparency	The level of transparency. The possible values range from 0 to 255 where 0 indicates complete transparency.
Variable Information	The information displayed for variables. The possible values are name, alias, name and alias, or name and wiring.
Link Style	
Is Arrow	The indication of whether to display an arrow at the end of the link.
Line Style	The style of the line. The possible values are solid, dash, dot, dash-dot, dash-dot, and custom.
Line Type	The type of line. The normal line type has squared corners and overlapping link intersections. The rounded line type has rounded corners and overlapping link intersections. The rounded with jump line type has rounded corners and link intersections are jumped over.
Link Color	The color of links. The possible colors are custom, web, and system colors.
Region Style	
Background Color	The region background color. The possible colors are custom, web, and system colors.
Header Color	The header color of a region. The possible colors are custom, web, and system colors.
Header Transparency	The level of transparency of the header section of a region. The possible values range from 0 to 255 where 0 indicates complete transparency.
Transparency	The level of transparency. The possible values range from 0 to 255 where 0 indicates complete transparency.
Variable Style	
Background Color	The variable background color. The possible colors are custom, web, and system colors.
Background Gradient Color	The variable background gradient color. The possible colors are custom, web, and system colors.

Cell Width	The width for a variable, in number of grid cells.
Comment Position	The position of the comment in reference to the variable shape. The possible positions are none, top, bottom, left, and right.
Transparency	The level of transparency. The possible values range from 0 to 255 where 0 indicates complete transparency.
Variable Information	The information displayed for variables. The possible values are name, alias, name and alias, or name and wiring.

To customize the display settings for IEC 61499 Diagrams

- 1. From the Tools menu, click **Options**.
- 2. From the Options dialog box, expand IEC Languages, then click IEC 61499.
- 3. Using the available options, customize the required settings, then click **OK**.

Ladder Diagram

You can customize the displayed settings for LD diagrams. You can choose to display grids and instance names. You can define the colors used when displaying LD elements and text as well as define which variable information is displayed in LD diagrams. You can choose the width and height for LD elements in the language container.

The following options are available for customization:

Block Settings

Display Image	The indication of whether to display block images.
Display Instance Names	The indication of whether to display instance names for function blocks.
Enable EN/ENO	Forces EN and ENO parameters onto all operators, functions, and function blocks.
Function Blocks Background Color	The function block background color. The possible colors are custom, web, and system colors.
Function Blocks Background Gradient Color	The function block background gradient color. The possible colors are custom, web, and system colors.
Functions Background Color	The function background color. The possible colors are custom, web, and system colors.
Functions Background Gradient Color	The function background gradient color. The possible colors are custom, web, and system colors.
Go to Definition on Double-click	While in design mode, enables going to the definition on double click.
Operators Background Color	The operator background color. The possible colors are custom, web, and system colors.
Operators Background Gradient Color	The operator background gradient color. The possible colors are custom, web, and system colors.
Container Settings	
Cell Height	The height of individual cells making up the grid, in pixels.
Cell Width	The width of individual cells making up the grid, in pixels.
Display Grid	The indication of whether to display the grid.

Element Height	The height of elements, in grid cells. Basic elements are blocks without inputs or outputs, coils, and contacts. For blocks, each input and output adds a basic element dimension.
Element Width	The width of elements, in grid cells. Basic elements are blocks without inputs or outputs, coils, and contacts. For blocks, each input and output adds a basic element dimension.
Font	The type of font. The definition includes the font name, size, unit of measure, as well as the indication of whether to apply bold, italic, strikeout, and underline styles. The GDICharSet and GDIVerticalFont properties are not editable.
Rung Line Thickness	The thickness of the rung line. The possible values range from 1.0 to 3.0.
Editor Settings	
Automatically Invoke Variable/Block Selector	Controls whether the Variable or Block Selector is automatically displayed when inserting a variable or block in the language container.
Rung Settings	
Coil Alignment	Indicates whether to align all coils on the rightmost section of the rung.
Comment Background Color	The comment background color. The possible colors are custom, web, and system colors.
Comment text color	The text color for comments. The possible colors are custom, web, and system colors.
Display Comment	The indication of whether to display comments for rungs.
Display Label	The indication of whether to display labels for rungs. When not displaying labels, an arrow appears in the leftmost section of the rung indicating the existence of a label.
Label Color	The color for rung labels. The possible colors are custom, web, and system colors.
Power Flow False Color	The color displayed when power flow monitoring is false. The possible colors are custom, web, and system colors.
Power Flow True Color	The color displayed when power flow monitoring is true. The possible colors are custom, web, and system colors.

Power Rail Color	The color for power rails. The possible colors are custom, web, and system colors.
Rung Header Color	The color for rung headers. The possible colors are custom, web, and system colors.
Variables Settings	
Text Color - Design	The color of text displayed while in design mode. The possible colors are custom, web, and system colors.
Text Color - Online	The color of text displayed while running online. The possible colors are custom, web, and system colors.
Transparency	The level of transparency. The possible values range from 0 to 255 where 0 indicates complete transparency.
Variable Background Color	The variable background color. The possible colors are custom, web, and system colors.
Variable Background Gradient Color	The variable background gradient color. The possible colors are custom, web, and system colors.
Variable Information	The indication of whether to display the variable name only, alias only, name and alias, or name and wiring.

To customize the display settings for LD Diagrams

- 1. From the Tools menu, click **Options**.
- 2. From the Options dialog box, expand IEC Languages, then click Ladder Diagram (LD).
- 3. Using the available options, customize the required settings, then click **OK**.

SAMA

You can customize the displayed settings for SAMA diagrams. You can choose to display grids and instance names. You can choose the width of variable elements as well as the variable comment position. You can define the colors used when displaying SAMA elements and text. You can also choose which variable information is displayed in SAMA diagrams.

The following options are available for customization:

Block Settings

Display Instance Names	The indication of whether to display instance names for function blocks.
Go to Definition on Double-click	While in design mode, enables going to the definition on double click.
Container Settings	
Display Grid	The indication of whether to display the grid.
Force Normal Line Type	The indication of whether all links use the normal line type.
Editor Settings	
Automatically invoke Variable/Block Selector	Controls whether the Variable or Block Selector is automatically displayed when inserting a variable or block in the language container.
Variables Settings	
Comment Position	The position of the comment in reference to the variable shape. The possible positions are none, top, bottom, left, and right.
Text Color - Design	The color of text displayed while in design mode. The possible colors are custom, web, and system colors.
Text Color - Online	The color of text displayed while running online. The possible colors are custom, web, and system colors.
Transparency	The level of transparency. The possible values range from 0 to 255 where 0 indicates complete transparency.
Variable Background Color	The variable background color. The possible colors are custom, web, and system colors.

Variable Background Gradient Color	The variable background gradient color. The possible colors are custom, web, and system colors.
Variable Information	The indication of whether to display the variable name only, alias only, name and alias, or name and wiring.
Width	The variable width, in number of grid cells.

To customize the display setting for SAMA Diagrams

- 1. From the Tools menu, click **Options**.
- 2. From the Options dialog box, expand IEC Languages, then click SAMA.
- 3. Using the available options, customize the required settings, then click **OK**.

Sequential Function Chart

You can customize the displayed settings for SFC diagrams. You can choose the orientation of the pane splitting when displaying SFC diagram and actions/conditions programming simultaneously in the language container. You can choose to display grids and sequence control types as well as diagram background and grid colors for design and online modes. For action blocks, jumps, and transitions, you can define the background, gradient, and font colors as well as the font style. For steps, you can define the active and inactive step and step gradient colors, the font color and style as well as the action list and list gradient colors.

The following options are available for customization:

Action Block Settings

Action Block Color	The background color of action blocks. The possible colors are custom, web, and system colors.
Action Block Font	The font definition used for the text displayed in an action block. The definition includes the font name, size, unit of measure, as well as the indication of whether to apply bold, italic, strikeout, and underline styles. The GDI Character Set and GDI Vertical Font properties are not editable.
Action Block Font Color	The color of the font for action blocks. The possible colors are custom, web, and system colors.
Action Block Gradient Color	The background gradient color of action blocks. The possible colors are custom, web, and system colors.
Container Settings	
Background Color - Design	The background color for SFC diagrams while is design mode. The possible colors are custom, web, and system colors.
Background Color - Online	The background color for SFC diagrams while online. The possible colors are custom, web, and system colors.
Container Split Orientation	Controls the orientation for the splitting of the container between the SFC diagram and Actions/Conditions views. The possible values are vertical or horizontal.
Display Grid	The indication of whether to display the grid.
Display Sequence Control Type	The indication of whether to display the sequence controls type.

Display Transition Priority	The indication of whether to display the transition priority.
Grid Color - Design	The color of the grid while in design mode. The possible colors are custom, web, and system colors.
Grid Color - Online	The color of the grid while running online. The possible colors are custom, web, and system colors.
Jump Settings	
Jump Color	The background color of jumps. The possible colors are custom, web, and system colors.
Jump Font	The font definition used for the text displayed in a jump. The definition includes the font name, size, unit of measure, as well as the indication of whether to apply bold, italic, strikeout, and underline styles. The GDI Character Set and GDI Vertical Font properties are not editable.
Jump Font Color	The color of the font for jumps. The possible colors are custom, web, and system colors.
Jump Gradient Color	The background gradient color of jumps. The possible colors are custom, web, and system colors.
Macro Call Settings	
Macro Call Color	The background color of macro calls. The possible colors are custom, web, and system colors.
Macro Call Font	The font definition used for the text displayed in a macro call. The definition includes the font name, size, unit of measure, as well as the indication of whether to apply bold, italic, strikeout, and underline styles. The GDI Character Set and GDI Vertical Font properties are not editable.
Macro Call Font Color	The color of the font for macro calls. The possible colors are custom, web, and system colors.
Macro Call Gradient Color	The background gradient color of macro calls. The possible colors are custom, web, and system colors.
Step Settings	
Action List Color	The background color of action lists. The possible colors are custom, web, and system colors.

Action List Gradient Color	The background gradient color of action lists. The possible colors are custom, web, and system colors.
Step Color	The background color of steps. The possible colors are custom, web, and system colors.
Step Color - Active	The background color of active steps while online. The possible colors are custom, web, and system colors.
Step Font	The font definition used for the text displayed in a step. The definition includes the font name, size, unit of measure, as well as the indication of whether to apply bold, italic, strikeout, and underline styles. The GDI Character Set and GDI Vertical Font properties are not editable.
Step Font Color	The color of the font for steps. The possible colors are custom, web, and system colors.
Step Gradient Color	The background gradient color of steps. The possible colors are custom, web, and system colors.
Step Gradient Color - Active	The background gradient color of active steps while online. The possible colors are custom, web, and system colors.
Transition Settings	
Transition Color	The background color of transitions. The possible colors are custom, web, and system colors.
Transition Font	The font definition used for the text displayed in a transition. The definition includes the font name, size, unit of measure, as well as the indication of whether to apply bold, italic, strikeout, and underline styles. The GDI Character Set and GDI Vertical Font properties are not editable.
Transition Font Color	The color of the font for transitions. The possible colors are custom, web, and system colors.
Transition Gradient Color	The background gradient color of transitions. The possible colors are custom, web, and system colors.

To customize the display setting for SFC diagrams

1. From the Tools menu, click **Options**.

- 2. From the Options dialog box, expand IEC Languages, then click Sequential Function Chart.
- 3. Using the available options, customize the required settings, then click **OK**.

Structured Text

You can define the default display setting for ST elements and text displayed in ST language containers. You can choose the font used when displaying comments, editor text, identifiers, numbers, operators, POUs, punctuation, reserved words, and strings. You can choose to display these in bold, italic, strike-through, or underlined text as well as define their text color and size.

The following options are available for customization:

Comment	
Comment Font	The font definition used for comment text. The definition includes the font name, size, unit of measure, as well as the indication of whether to apply bold, italic, strikeout, and underline styles. The GDI Character Set and GDI Vertical Font properties are not editable.
Comment Text Color	The color of the font for comments. The possible colors are custom, web, and system colors.
Editor	
Editor Font	The font definition used for the ST editor. The definition includes the font name, size, unit of measure, as well as the indication of whether to apply bold, italic, strikeout, and underline styles. The GDI Character Set and GDI Vertical Font properties are not editable.
Editor Text Area Background Color	The color of the ST editor background. The possible colors are custom, web, and system colors.
Identifier	
Identifier Font	The font definition used for identifiers. The definition includes the font name, size, unit of measure, as well as the indication of whether to apply bold, italic, strikeout, and underline styles. The GDI Character Set and GDI Vertical Font properties are not editable.
Identifier Text Color	The color of the font for identifiers. The possible colors are custom, web, and system colors.
Number	

Number Font	The font definition used for numbers. The definition includes the font name, size, unit of measure, as well as the indication of whether to apply bold, italic, strikeout, and underline styles. The GDI Character Set and GDI Vertical Font properties are not editable.
Number Text Color	The color of the font for numbers. The possible colors are custom, web, and system colors.
Operator	
Operator Font	The font definition used for operators. The definition includes the font name, size, unit of measure, as well as the indication of whether to apply bold, italic, strikeout, and underline styles. The GDI Character Set and GDI Vertical Font properties are not editable.
Operator Text Color	The color of the font for operators. The possible colors are custom, web, and system colors.
POU	
POU Font	The font definition used for POUs. The definition includes the font name, size, unit of measure, as well as the indication of whether to apply bold, italic, strikeout, and underline styles. The GDI Character Set and GDI Vertical Font properties are not editable.
POU Text Color	The color of the font for POUs. The possible colors are custom, web, and system colors.
Punctuation	
Punctuation Font	The font definition used for punctuation. The definition includes the font name, size, unit of measure, as well as the indication of whether to apply bold, italic, strikeout, and underline styles. The GDI Character Set and GDI Vertical Font properties are not editable.
Punctuation Text Color	The color of the font for punctuation. The possible colors are custom, web, and system colors.
Reserved Word	

Reserved Word Font	The font definition used for reserved words. The definition includes the font name, size, unit of measure, as well as the indication of whether to apply bold, italic, strikeout, and underline styles. The GDI Character Set and GDI Vertical Font properties are not editable.
Reserved Word Text Color	The color of the font for reserved words. The possible colors are custom, web, and system colors.
String	
String Font	The font definition used for strings. The definition includes the font name, size, unit of measure, as well as the indication of whether to apply bold, italic, strikeout, and underline styles. The GDI Character Set and GDI Vertical Font properties are not editable.
String Text Color	The color of the font for strings. The possible colors are custom, web, and system colors.

To customize the display setting for ST programs

- 1. From the Tools menu, click **Options**.
- 2. From the Options dialog box, expand IEC Languages, then click Structured Text (ST).
- 3. Expand the respective category, customize the required settings, then click **OK**.

Setting ISaVIEW Options

You can customize the default settings and behavior of various facets of ISaVIEW screens and objects:

- ISaVIEW Animation Settings
- ISaVIEW Objects Settings
- ISaVIEW Edition Settings

ISaVIEW Animation Settings

The animation settings enable customizing the animation settings for ISaVIEW screens including action, displacement, rotation, and size. You can also define the refresh rate of ISaVIEW screens as well as their default background color.

To customize the animation settings for ISaVIEW screens

- 1. From the Tools menu, click **Options**.
- 2. From the Options dialog box, expand ISaVIEW Settings, then click ISaVIEW Animation Settings.
- 3. Customize the required settings, then click OK.

ISaVIEW Edition Settings

The edition settings enable defining the default settings for ISaVIEW screens and generic object properties.

To define the default edition settings for ISaVIEW screens and objects

- 1. From the Tools menu, click **Options**.
- 2. From the Options dialog box, expand ISaVIEW Settings, then click ISaVIEW Edition Settings.
- 3. Define default display settings, then click **OK**.

ISaVIEW Objects Settings

The object settings enable specifying default values for the individual object properties and grouping properties.

- Arc Settings
- Arrow Settings
- Bar Meter Settings
- Button Settings
- Edit Box Settings
- Ellipse Settings
- Gauge Settings
- Group Settings
- Image Settings
- Line Settings
- Polygon Settings
- Rectangle Settings
- Rounded Rectangle Settings
- Slider Settings
- Triangle Settings
- Web Container Settings

Arc Settings

The arc settings enable specifying default values for the individual object properties.

To specify the default settings for arc objects

- 1. From the Tools menu, click **Options**.
- 2. From the Options dialog box, expand ISaVIEW Settings, then expand ISaVIEW Object Settings, and then click Arc Settings.
- 3. Specify the default values for the required properties, then click **OK**.

See also

Arrow Settings

The arrow settings enable specifying default values for the individual object properties.

To specify the default settings for arrow objects

- 1. From the Tools menu, click **Options**.
- 2. From the Options dialog box, expand ISaVIEW Settings, then expand ISaVIEW Object Settings, and then click Arrow Settings.
- 3. Specify the default values for the required properties, then click **OK**.

See also

Bar Meter Settings

The bar meter settings enable specifying default values for the individual object properties.

To specify the default settings for bar meter objects

- 1. From the Tools menu, click **Options**.
- 2. From the Options dialog box, expand ISaVIEW Settings, then expand ISaVIEW Object Settings, and then click Bar Meter Settings.
- 3. Specify the default values for the required properties, then click **OK**.

See also

Button Settings

The button settings enable specifying default values for the individual object properties.

To specify the default settings for button objects

- 1. From the Tools menu, click **Options**.
- 2. From the Options dialog box, expand ISaVIEW Settings, then expand ISaVIEW Object Settings, and then click Button Settings.
- 3. Specify the default values for the required properties, then click **OK**.

See also

Edit Box Settings

The edit box settings enable specifying default values for the individual object properties.

To specify the default settings for edit box objects

- 1. From the Tools menu, click **Options**.
- 2. From the Options dialog box, expand ISaVIEW Settings, then expand ISaVIEW Object Settings, and then click Edit Box Settings.
- 3. Specify the default values for the required properties, then click **OK**.

See also

Ellipse Settings

The ellipse settings enable specifying default values for the individual object properties.

To specify the default settings for ellipse objects

- 1. From the Tools menu, click **Options**.
- 2. From the Options dialog box, expand ISaVIEW Settings, then expand ISaVIEW Object Settings, and then click Ellipse Settings.
- 3. Specify the default values for the required properties, then click **OK**.

See also

Gauge Settings

The gauge settings enable specifying default values for the individual object properties.

To specify the default settings for gauge objects

- 1. From the Tools menu, click **Options**.
- 2. From the Options dialog box, expand ISaVIEW Settings, then expand ISaVIEW Object Settings, and then click Gauge Settings.
- 3. Specify the default values for the required properties, then click **OK**.

See also

Group Settings

The group settings enable specifying default values for the individual object properties.

To specify the default settings for grouped objects

- 1. From the Tools menu, click **Options**.
- 2. From the Options dialog box, expand ISaVIEW Settings, then expand ISaVIEW Object Settings, and then click Group Settings.
- 3. Specify the default values for the required properties, then click **OK**.

See also

Image Settings

The image settings enable specifying default values for the individual object properties.

To specify the default settings for image objects

- 1. From the Tools menu, click **Options**.
- 2. From the Options dialog box, expand ISaVIEW Settings, then expand ISaVIEW Object Settings, and then click Image Settings.
- 3. Specify the default values for the required properties, then click **OK**.

See also

Line Settings

The line settings enable specifying default values for the individual object properties.

To specify the default settings for line objects

- 1. From the Tools menu, click **Options**.
- 2. From the Options dialog box, expand ISaVIEW Settings, then expand ISaVIEW Object Settings, and then click Line Settings.
- 3. Specify the default values for the required properties, then click **OK**.

See also

Polygon Settings

The polygon settings enable specifying default values for the individual object properties.

To specify the default settings for polygon objects

- 1. From the Tools menu, click **Options**.
- 2. From the Options dialog box, expand ISaVIEW Settings, then expand ISaVIEW Object Settings, and then click Polygon Settings.
- 3. Specify the default values for the required properties, then click **OK**.

See also

Rectangle Settings

The rectangle settings enable specifying default values for the individual object properties.

To specify the default settings for rectangle objects

- 1. From the Tools menu, click **Options**.
- 2. From the Options dialog box, expand ISaVIEW Settings, then expand ISaVIEW Object Settings, and then click Rectangle Settings.
- 3. Specify the default values for the required properties, then click **OK**.

See also
Rounded Rectangle Settings

The rounded rectangle settings enable specifying default values for the individual object properties.

To specify the default settings for rounded rectangle objects

- 1. From the Tools menu, click **Options**.
- 2. From the Options dialog box, expand ISaVIEW Settings, then expand ISaVIEW Object Settings, and then click Rounded Rectangle Settings.
- 3. Specify the default values for the required properties, then click **OK**.

See also

Slider Settings

The slider settings enable specifying default values for the individual object properties.

To specify the default settings for slider objects

- 1. From the Tools menu, click **Options**.
- 2. From the Options dialog box, expand ISaVIEW Settings, then expand ISaVIEW Object Settings, and then click Slider Settings.
- 3. Specify the default values for the required properties, then click **OK**.

See also

Triangle Settings

The triangle settings enable specifying default values for the individual object properties.

To specify the default settings for triangle objects

- 1. From the Tools menu, click **Options**.
- 2. From the Options dialog box, expand ISaVIEW Settings, then expand ISaVIEW Object Settings, and then click Triangle Settings.
- 3. Specify the default values for the required properties, then click **OK**.

See also

Web Container Settings

The web container settings enable specifying default values for the individual object properties.

To specify the default settings for web container objects

- 1. From the Tools menu, click **Options**.
- 2. From the Options dialog box, expand ISaVIEW Settings, then expand ISaVIEW Object Settings, and then click Web Container Settings.
- 3. Specify the default values for the required properties, then click **OK**.

See also

Defining Spy List Settings

You can customize the offline and online behavior options and look and feel of spy lists. The available behavior options are the following:

- Offline Grid Settings
- Online Grid Settings

Offline Grid Settings

You can customize the offline behavior options and look and feel of spy lists. The available behavior options are the following:

- Filter row, displaying a row below the column heading enabling the filtering of items in the list
- Grouping drop area, displaying an area at the top of spy lists enabling the grouping of items in a list according to column types
- Indent sub-items, indenting sub-items of arrays, structures, and function blocks
- Item count rows, displaying rows indicating the item count for complete spy lists as well as individual arrays, structures, and function block instances

The available look and feel options enable customizing the colors used for the headers, various rows, and borders as well the text colors.

To customize spy lists for offline usage

You can define different settings for the offline and online options.

- 1. From the Tools menu, click **Options**.
- 2. From the Options dialog box, expand **Spy List Settings**, then click **Offline Grid Settings** and make the required changes.

Online Grid Settings

You can customize the online behavior options and look and feel of spy lists. The available behavior options are the following:

- Filter row, displaying a row below the column heading enabling the filtering of items in the list
- Grouping drop area, displaying an area at the top of spy lists enabling the grouping of items in a list according to column types
- Indent sub-items, indenting sub-items of arrays, structures, and function blocks
- Item count rows, displaying rows indicating the item count for complete spy lists as well as individual arrays, structures, and function block instances

The available look and feel options enable customizing the colors used for the headers, various rows, and borders as well the text colors.

To customize spy lists

You can define different settings for the offline and online options.

- 1. From the Tools menu, click **Options**.
- 2. From the Options dialog box, expand **Spy List Settings**, then click **Online Grid Settings** and make the required changes.

Description Window

The Description window enables adding descriptions to projects, devices, resources (if supported by the CAM), and POUs. These descriptions are free-formatted text using rich text format (RTF). When adding a description, all content is automatically saved. When editing descriptions, a text editor toolbar provides the means for performing basic formatting operations such as selecting a font, size, style, and color.

The Description window is dockable and scalable. When clicking the different items in the Solution Explorer, the contents of the Description window automatically displays the description for the selected item.

While in debug mode, the content displayed in the Description window is read-only.

To access the description window

You can access the description window from the menus or from the properties for items.

• To access the Description Window, from the View menu, click Description Window.

ISaGRAF 3 Concrete Automation Model

The **ISaGRAF 3** Concrete Automation Model enables the creation of **ISaGRAF 3** applications supporting multi-process control. Applications consist of virtual machines running on hardware components, called target platforms. The development process consists of creating projects made up of a device that is downloaded to a target platform. At runtime, the device becomes a virtual machine running on the target platform.

Projects can be developed using different programming languages including some from the IEC 61131-3 standard. When building, a device is compiled to produce very fast "target independent code" (TIC) or "C" code.

Within devices, you can declare variables using standard IEC 61131-3 data types (i.e., BOOL, DINT, REAL, MESSAGE, and TIME) or user-defined types such as one-dimensional arrays.

You develop projects on a Windows development platform. The Automation Collaborative **Platform** graphically represents and organizes the device, POUs, and networks within a project from many views.

- Deployment
- Dictionary
- I/O wiring
- Bindings

You can choose to simulate the running of a project, after building a project, using high-level debugging tools, before actually downloading the device to the target platform.

Creating a Project

You can create projects as part of new or existing solutions in the Automation Collaborative Platform. A solution can hold multiple projects. You can import existing projects created using previous versions of **ISaGRAF 3**.

The **ISaGRAF 3** Project template is available for **ISaGRAF 3** projects. This template enables creating a project without attaching it to a new or existing solution. Empty projects contain no device files.

Since the **ISaGRAF 3** run-time is a 16-bit application, the quantity of POUs, variables, and I/O devices are directly dependent upon that environment.

For projects, the following properties are defined:

CAM Project	The device name for the project
Documentation	Free-form text describing the project
Info	
Name	Name of the project. Project names are recommended to have up to 32 characters
Path	Complete path where the Automation Collaborative Platform (ACP) project file is stored on the computer. The path is automatically assigned: %USERPROFILE%\My Documents\ISaGRAF 6.x\Projects\SolutionName\ProjectName

Projects are stored in the Projects directory, as MS-Access database (.MDB) files:

%USERPROFILE%\My Documents\ISaGRAF 6.x\Projects

To create a project

- 1. From the File menu, point to New, then click Project (or press Ctrl+Shift+N).
- 2. In the Installed Templates list, expand the *CAM Projects* option, then expand **ISaGRAF 3**, and click **Empty**.

- 3. From the list of available project templates, click the ISaGRAF 3 Project template.
- **4.** Specify a name and location for the project, indicate whether to add the project to an existing solution or create a new solution by defining a solution name, then click **OK**. For new solutions, you can choose to create a directory.

See Also

Importing an ISaGRAF 3 Project Creating a Library Importing an ISaGRAF 3 Library

Devices

A device corresponds to a programmable logic controller. For devices, you can specify the following properties:

Application Run-time Options

Cycle Timing (ms)	The amount of time given to each cycle. If a cycle is completed within the cycle timing period, the system waits until this period has elapsed before starting a new cycle. The cycle consists of scanning the physical inputs of the process to drive, executing the POUs of the device, then updating physical outputs. The virtual machine executes the device code according to the execution rules.
Memory	The size of the memory space reserved for storing the values of retained variables. The values of these variables are stored in this memory at the end of each cycle for use if the target is restarted.
Nb Stored Errors	Number of entries, i.e., the size of the queue (FIFO) in which detected errors are stored
Starting Mode	Indication of whether a device executes in real time or cycle-to-cycle. RealTime mode is the run time normal execution mode where target cycles are triggered by the cycle timing. In cycle-to-cycle mode, the virtual machine loads the resource code but does not execute it until you execute one cycle or activate real-time mode.
Compiler Options	
Build Binary Decision Diagrams (BDDs)	Indication of whether the optimizer replaces Boolean equations (mixing AND, OR, XOR and NOT operators) with a reduced list of conditional jump operations. The translation is performed only when the expected execution time for the jump sequence is less than the one expected for the original expression.
Evaluate Constant Expressions	Indication of whether the compiler evaluates constant expressions. For example, the numerical expression " $2 + 3$ " is replaced by "5" in the target code. When this option is not set, constant expressions are calculated at run-time.
Generate Debug Information	Indication of whether to generate information required for debugging using step-by-step execution

Optimize Arithmetic Operations	Indication of whether the optimizer simplifies arithmetic operations according to special operands. For example, the expression " $A + 0$ " is replaced with "A".
Optimize Booleans	Indication of whether the optimizer simplifies Boolean operations according to special operands. For example, the Boolean expression "A & A" is replaced with "A".
Optimize Expressions	Indication of whether the optimizer re-uses the results of expressions and sub-expressions which are used more than once in the program
Optimize Variable Copying	Indication of whether to optimize the use of temporary variables (used to store intermediate results). This option is commonly used with the Optimize expressions option.
Run Two Optimizer Passes	Indication of whether the code optimizer runs twice. Optimizations performed during the second pass are generally less significant than those performed during the first pass.
Suppress Unused Code	Indication of whether the optimizer suppresses insignificant code. For example, if the following statements are programmed: "var := 1; var := X;", the corresponding generated code is: "var := X;".
Suppress Unused Labels	Indication of whether the optimizer simplifies the system of jumps and labels defined in programs in order to suppress unused target labels or null jumps.
Use Embedded SFC Engine	Indication of whether to use the ISaGRAF SFC engine. This mode leads to higher run-time performance. However, the target engine may be missing some particular ISaGRAF target implementations such as those more commonly found on customized targets based on ISaGRAF code post-processing. In such a case, you may need to remove this option and let the ISaGRAF compiler translate SFC charts into low-level instructions. For more information regarding using the embedded SFC engine, refer to your hardware documentation.
Serial Port Connection Information	

Baud Rate The data transmission speed, defined in bits per second. Possible values are 0, 600, 1200, 2400, 4800, 9600, and 19200; the default value is 19200. A value of 0 indicates no change.

Data Bits	The number of data bits in a byte. Possible values are 0, 7, or 8; the default value is 8. A value of 0 indicates no change.	
Hardware Flow Control	Indication of whether the workbench controls the CTS and DSR lines to enable hardware handshaking during exchanges	
Parity	The parity type. The value of this property is either None or Odd; the default value is None.	
Stop Bits	Length of the stop bit. Possible values are 1 or 2.	
Shared Connection Information		
Network	The network used for communication. Possible values are Serial and TCP/IP. The default value is TCP/IP.	
Retry	The number of tries for communication using a serial connection	
Serial Port or Port Category	The serial port used for the workbench. Possible values are: COM1 COM2 COM3 COM4 User (ISDK) IP	
Slave	Number identifying the target ISaGRAF task (Isaker or Wisaker). The value of this property ranges from 1 to 255. Refer to the target supplier manual for the slave number of the target system used.	
Targets	Name of the target	
Timeout	Communication timeout, expressed in seconds	
TCP/IP Connection Information		
Host Address	For TCP/IP connections, specifies the IP address of the host.	
Host Socket Port	The Internet port number for a TCP-IP connection. The Workbench uses the WINSOCK.DLL Version 1.1 library for TCP-IP communications. This file must be correctly installed on the hard disk. If not specified, the default port number is 1100 when running the ISaGRAF target.	

See Also

Creating a Project

Importing an ISaGRAF 3 Project Creating a Library Importing an ISaGRAF 3 Library

Programs

You define programs in the Programs section of a device in the Solution Explorer. Within the program hierarchy, sequential programs must be adjacent where their execution is not interrupted by non-sequential programs; non-sequential programs can be placed before or after but not between sequential programs. Programs belonging to a same section must have different names.

Miscellaneous

Comment	Text displayed next to the program name in the Solution Explorer
Description	Free-form text describing a program
Language	Programming language of the POU
Name	Name of the program. Program names can have up to eight (8) characters and must begin with a letter followed by letters, digits, and single underscores.
Туре	Type of POU. Possible values are program, user-defined function, or user-defined function block

To add a program

You define programs for a device.

• In the Solution Explorer, right-click the program element for a device, point to Add, then click the required programming language.

To rename a program

• In the Solution Explorer, right-click the program, click **Rename**, and then type a name for the program.

To delete a program

• In the Solution Explorer, right-click the program, and then click **Delete**.

Functions

You define functions in the Functions section of a device in the Solution Explorer.

For functions, you can specify the following properties:

Comment	Text displayed next to the function name in the Solution Explorer
Description	Free-form text describing a function
Language	Programming language of the POU
Name	Name of the function. Function names can have up to eight (8) characters. Function names must begin with a letter followed by letters, digits, and single underscores.
Туре	Type of POU. Possible values are program, user-defined function, or user-defined function block

When adding functions, you also need to define parameters. Functions can have a maximum of 32 parameters (31 inputs and one output). When defining parameters, consider the following limitations:

- Parameter names are limited to 32 characters and must begin with a letter followed by letters, digits, and single underscores
- Possible data types for parameters are BOOL, DINT, REAL, TIME, MESSAGE
- For Message type variables, string capacity is limited to 255 characters
- For user defined addresses, the format is hexadecimal and the value ranges from 1 to FFFF

To add a function

- 1. In the Solution Explorer, right-click the Functions element, point to Add, then click the required programming language for the function.
- 2. To define the parameters for the function, right-click the function, and then click **Parameters**.

The Block Selector displays the Parameters section where you define the parameters for the function.

To rename a function

• In the Solution Explorer, right-click the function, click **Rename**, and then type a name for the function.

To delete a function

1. In the Solution Explorer, right-click the function, and then click **Delete**.

Function Blocks

You define function blocks in the Function Blocks section of a device in the Solution Explorer.

For function blocks, you can specify the following properties:

Comment	Text displayed next to the function block name in the Solution Explorer
Description	Free-form text describing a function block
Language	Programming language of the POU
Name	Name of the function block. Function block names can have up to eight (8) characters. Function block names must begin with a letter followed by letters, digits, and single underscores.
Туре	Type of POU. Possible values are program, user-defined function, or user-defined function block

When adding function blocks, you also need to define parameters. Function blocks can have a maximum of 32 parameters (inputs and outputs). When defining parameters, consider the following limitations:

- Parameter names are limited to 32 characters and must begin with a letter followed by letters, digits, and single underscores
- Possible data types for parameters are BOOL, DINT, REAL, TIME, MESSAGE
- For Message type variables, string capacity is limited to 255 characters
- For user defined addresses, the format is hexadecimal and the value ranges from 1 to FFFF

To add a function block

1. In the Solution Explorer, right-click the Function Blocks element, point to Add, and then click the required programming language for the function block.

2. To define the parameters for the function block, right-click the function block, and then click **Parameters**.

The Block Selector displays the Parameters section where you define the parameters for the function block.

To rename a function block

• In the Solution Explorer, right-click the function block, click **Rename**, and then type a name for the function block.

To delete a function block

• In the Solution Explorer, right-click the function block, and then click **Delete**.

Variables

You define variables for their scope. For instance, global variables are available for use throughout the programs, functions, and functions blocks of a device. Whereas, variables defined for a program, a function, or a function block are local to that element. You define variables in the Variables grid. For individual variable scopes, you can import and export variables data having the Microsoft Excel (*.xls) format.

When defining variables data using a spreadsheet you enter each piece of information in a separate cell, leave cells empty if items are to be omitted, and save the file in XLS format. These requirements are automatically followed by the export utility; you must respect these when building a file to be imported.

When defining complex variables such as arrays and structures, the syntax for the variable name is as follows:

• For arrays: arrayname[index]

Name,Alias,Data Type,StringSize,InitValue,Direction,Wiring,Attribute ... array1,,BOOL,0,,, ... "array1[1,1]",,BOOL,0,,, ... "array1[1,2]",,BOOL,0,,, ... "array1[1,3]",,BOOL,0,,, ... "array1[1,4]",,BOOL,0,,, ... "array1[1,5]",,BOOL,0,,, ...

When managing variables data, you can import and export variables data.

Targets

ISaGRAF 3 projects support compiling up to three different target codes during the same build operation. The following are the standard ISaGRAF 3 targets:

- SIMULATE, used when simulating the application. The compiler generates different code for simulation than online.
- ISA68M, when selected the compiler produces TIC code for use with Motorola-based processors. The processor type concerns byte ordering in the generated code.
- ISA86M, when selected the compiler produces TIC code for use with Intel-based processors. The processor type concerns byte ordering in the generated code.
- CC86M, when selected the compiler produces non-structured "C" source code to be compiled and linked with ISaGRAF target libraries producing an embedded executable code. The CC86M target is compatible with ISaGRAF 3.23 and earlier projects not supporting structured "C" source code.
- SCC, when selected the compiler produces structured "C" source code to be compiled and linked with ISaGRAF target libraries producing an embedded executable code.

Networks and Connections

ISaGRAF 3 targets support the following networks:

- TCP/IP
- Serial

TCP/IP

The TCP/IP protocol is the network driver used for communication with ISaGRAF on Ethernet. The following connection properties are available for the TCP/IP network driver:

Shared Connection Information

Retry	The quantity of retries attempted when a timeout occurs during reading. The default value is 1.
Serial Port or Port Category	The ISaGRAF 3 communication port. For the TCP/IP network, select Ip .
Slave	The slave number. The default value is 1.
Time out (s)	The time delay before a timeout occurs, in milliseconds. The default value is 2.

TCP/IP Connection Information

Host Address	The socket host name or IP address. The default value is
	127.0.0.1
Host Socket port	The socket port number. The default value is 1100.

To specify TCP/IP network connection properties

1. From the View menu, click Deployment View.

The Deployment View is displayed in the workspace.

2. Select the network connection, then from the Properties window specify the required connection properties.

Serial

The network driver used when developing an IXL client using serial communication with **ISaGRAF**. The following connection properties are available for the Serial network driver:

Shared Connection Information

Retry	The quantity of retries attempted when a timeout occurs during reading. The default value is 1.
Serial Port or Port Category	The ISaGRAF 3 communication port. For the Serial network, select Com1, Com2, Com3, Com4, Com5, Com6, Com7, Com8, Com9, Com10, or Com11.
Slave	The slave number. The default value is 1.
Time out (s)	The time delay before a timeout occurs, in milliseconds. The default value is 2.

Serial Port Connection Information

Baud Rate	The baud data transfer rate. The default value is 0.
Data Bits	The quantity of bits used for the smallest unit of data. The default value is 0.
Hardware Flow Control	The control of the flow of data transmission between the network hardware. Possible values are True or False. The default value is False.
Parity	The type of parity used. Possible values are None, Odd, Even, Mark, or Space. The default value is None.
Stop Bits	The number of stop bits used to indicate the end of a transmission. Possible values are None, One, Two, or OnePointFive. The default value is One.

To specify Serial network connection properties

1. From the View menu, click Deployment View.

The Deployment View is displayed in the workspace.

2. Select the network connection, then from the Properties window specify the required connection properties.

Importing an ISaGRAF 3 Project

You can import projects from previous versions of **ISaGRAF 3** as part of new or existing solutions in the Automation Collaborative Platform. A solution can hold multiple projects.

The Import **ISaGRAF 3** Project template is available for **ISaGRAF 3** projects. This template enables importing an **ISaGRAF 3** project into the **ISaGRAF 6.x** workbench.

For projects, the following properties are defined:

CAM

CAM Project	The device name for the project
Documentation	Free-formatted text
Info	
Name	Name of the project. Project names are recommended to have up to 32 characters
Path	Complete path where the Automation Collaborative Platform (ACP) project file is stored on the computer. The path is automatically assigned: %USERPROFILE%\My Documents\ ISaGRAF 6.x\Projects\SolutionName\ProjectName

Projects are stored in the Projects directory, as MS-Access database (.MDB) files:

%USERPROFILE%\My Documents\ISaGRAF 6.x\Projects

To import an ISaGRAF 3 project

You can import projects created using ISaGRAF 3.

- 1. From the File menu, point to New, then click Project (or press Ctrl+Shift+N).
- 2. In the Installed Templates list, expand the *CAM Projects* option, then expand **ISaGRAF 3**, and click **Import**.
- **3.** From the list of available project templates, select the **Import ISaGRAF 3 Project** template.

- 4. Specify a name and location for the project, indicate whether to add the project to an existing solution or create a new solution by defining a solution name, then click **OK**. For new solutions, you can choose to create a directory.
- 5. In the Selecting an *.hie File dialog box, locate and select the **ISaGRAF 3** project database (*.hie) file from the previous **ISaGRAF** version, then click **Open**.

See Also

Creating a Project Creating a Library Importing an ISaGRAF 3 Library

Creating a Library

Libraries are special projects containing elements, i.e., functions, function blocks, conversion functions, I/O boards, I/O configurations, and I/O equipment. However, when creating **ISaGRAF** CAM 3 libraries, you can only create functions and function blocks for reuse throughout **ISaGRAF** CAM 3 projects. Libraries are available for use in a project after creating a dependency.

The **ISaGRAF 3** Library template is available for **ISaGRAF 3** projects. This template enables creating a library without attaching it to a new or existing solution. Empty libraries contain no device files.

A project can depend on one library and different projects can call the same library. When creating a library, it can only contain functions and function blocks. These library elements can be called from a project once the library is added as a dependency. Functions and function blocks can be written using the IEC 61131-3 languages (FBD, LD, or ST).

When a library is included in a solution with a project, the library elements are available for modification.

You create libraries as part of a solution in the **Automation Collaborative Platform**. A solution can hold multiple projects and libraries.

You base a library on a library template then develop its functions and function blocks. Libraries are stored in the same location as projects.

Library functions and function blocks must have unique names; these must have different names from those in the project in which they are used. You do not need to compile functions and function blocks in the library before using them in projects. These are compiled in the calling project space, in order to take care of the compiling options defined for the project.

When building solutions or projects, libraries included as dependencies are automatically compiled upon detecting a modification whether the library is part of the solution or external.

To create an empty ISaGRAF 3 library

You can create a library without attaching it to a new or existing solution. Empty libraries contain no device files.

- 1. From the File menu, point to New, then click Project (or press Ctrl+Shift+N).
- 2. In the Installed Templates list, expand the *CAM Projects* option, then expand **ISaGRAF 3**, and click **Empty**.
- 3. From the list of available project templates, select the ISaGRAF 3 Library template.
- 4. Specify a name and location for the project, indicate whether to add the project to an existing solution or create a new solution by defining a solution name, then click **OK**. For new solutions, you can choose to create a directory.
- 5. To define the compiler properties for the library, right-click the Functions or Function Blocks elements in the Solution Explorer, and then click Properties.

See Also

Using a Library in a Project Importing an ISaGRAF 3 Library Creating a Project

Importing an ISaGRAF 3 Library

You can import libraries from **ISaGRAF 3.x** for use in CAM3 projects or imported **ISaGRAF 3.x** projects. When importing libraries, all elements from the initial **ISaGRAF 3.x** library are available for reuse in projects. These elements include functions, function blocks, conversion functions, I/O boards, I/O configurations, and I/O equipment.

The Import **ISaGRAF 3** Library template is available for **ISaGRAF 3** projects. This template enables importing an **ISaGRAF 3** library into the **ISaGRAF 6.x** workbench.

A project can depend on one library and different projects can call the same library. When importing a library, it contains all elements defined in the original version. Library elements can be called from a project once the library is added as a dependency.

You can only add functions and function blocks to imported libraries; you cannot add conversion functions, I/O boards, I/O configurations, and I/O equipment. Functions and function blocks can be written using the IEC 61131-3 languages (FBD, LD, or ST).

You import libraries as part of a solution in the Automation Collaborative Platform. A solution can hold multiple projects and libraries.

Libraries are stored in the same location as projects.

Library functions and function blocks must have unique names; these must have different names from those in the project in which they are used. You do not need to compile functions and function blocks in the library before using them in projects. These are compiled in the calling project space, in order to take care of the compiling options defined for the project.

When building solutions or projects, libraries included as dependencies are automatically compiled upon detecting a modification whether the library is part of the solution or external.

To import an ISaGRAF 3 library

You can import libraries created using ISaGRAF 3.

- 1. From the File menu, point to New, then click Project (or press Ctrl+Shift+N).
- 2. In the Installed Templates list, expand the *CAM Projects* option, then expand **ISaGRAF 3**, and click **Import**.

- 3. From the list of available templates, select the Import ISaGRAF 3 Library template.
- 4. Specify a name and location for the library, indicate whether to add the library to an existing solution or create a new solution by defining a solution name, then click **OK**. For new solutions, you can choose to create a directory.
- 5. In the Selecting a *NUMS File dialog box, locate and select the **ISaGRAF 3** library database (*NUMS) file, then click **Open**.

See Also

Using a Library in a Project Creating a Library Creating a Project

Using a Library in a Project

Projects can use elements, i.e., functions, function blocks, conversion functions, I/O boards, I/O configurations, and I/O equipment, from a library. However, when using libraries created in **ISaGRAF** CAM 3, only functions and function blocks are available. You need to create libraries or import libraries before using them. Furthermore, you need to define a project's dependencies, i.e., the library the project will use, before using a library's defined elements. Multiple projects can depend on a library.

A library cannot use elements from another library. In other words, you cannot define external dependencies for a library. However, a function or function block from a library can call other functions or function blocks from the same library. Furthermore, functions or function blocks from libraries can call 'C' written functions and function blocks defined for the corresponding target.

All functions and function blocks within a project, including those coming from libraries, must have unique names.

You add a dependency onto a library from the Dependencies dialog box. In this dialog box, the Libraries list displays the library on which a project has a dependency.

Note: When redefining the location of a library dependency you can modify the path in the library properties; removing the library will result in a loss of all project references.

When building solutions or projects, libraries included as dependencies are automatically compiled upon detecting a modification whether the library is part of the solution or external.

To use a library in a project

- 1. In the Solution Explorer, expand the project for which to add a dependency.
- 2. Right-click the Dependency element, point to Add, and then click Add Dependency....
- **3.** In the Dependencies dialog box, click Browse to locate the library on which to create the dependency.

The library is displayed in the Libraries list.

See Also

Creating a Library Importing an ISaGRAF 3 Library Creating a Project

Importing and Exporting Variables Data

You can import variables that were previously exported and saved as Microsoft Excel spreadsheets (.xls). Exporting variables enables management of variables data in Excel, including adding, removing, and modifying variables. You can import previously exported Excel files into other programs in the same project or in other projects.

When importing variables, you import the complete contents of the *.xls file. For previously exported Excel files containing modified content, any additional columns of data using proper syntax will be imported. The Output window details the progress of import operations, including the names and location of the variables added.

When exporting variables, you can select the fields of the variables to export. You also specify the location in which to save the exported files.

You can also import files containing manually defined variables for use in devices and programs. When importing files created manually, you must include a header row containing the same syntax used in files exported from **ISaGRAF**. The Excel file syntax uses the internal names for the columns of data instead of those displayed in the Variable Export/Import dialog box. Any rows of data using improper syntax will not be imported.

To import variables

You can only import variables having been previously exported and stored as Excel (.xls) files.

- 1. In the Solution Explorer, right-click the device or POU, point to Import, then click Variables from Excel....
- 2. In the Variable Export/Import dialog box, on the *Import Variables* tab, click browse to select the Excel file to import.
 - In the Import/Export File dialog box, select the Excel file to import, then click **Open**.
- 3. In the Variable Export/Import dialog box, click Import.
| Variable Exp | oort/Import - Control | ▼ 🗆 × |
|--------------|---------------------------------|--------------|
| Import Vari | ables Export Variables | |
| File name | C:\Users\user\Documents\ISaGRAF | Browse |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | Help Import | Cancel |

4. When the import process is complete, in the Variable Export/Import dialog box, click

The imported variables are available for use.

To export variables

You can export selected fields of variables data in Excel (.xls) format.

- 1. In the Solution Explorer, right-click the device or POU containing the variables to export, point to Export, then click **Variables to Excel...**.
- **2.** In the Variable Export/Import dialog box, on the *Export Variables* tab, click browse to select the destination for the exported variables.
- 3. In the Import/Export File dialog box, specify the name of the Excel file, then click Save.

4. From the *Fields to Export* check box list, select the variables data to export, then click **Export**.

Variable Export/Impo	Variable Export/Import - Nuclear 🛛 👻 🗖 🗙		
Import Variables Ex	xport Variables		
File name C:\Users	\user\Documents\	ISaGRAF	Browse
Fields to Export Anne Data Type Dimension String Size Initial Value Direction Attribute Retained Comment Address Retained Flags Comps Comment Fields	Clear A		Select All
		Expo	rt Cancel

Using the *Select All* option, you can select all the fields displayed. The *Clear All* option enable you to clear all fields, then reselect only those required.

5. When the export process is complete, click \mathbf{x} .

The variables are exported to the specified file.

Generating Code

Before downloading code onto your target systems, you need to build the code for the whole solution. This operation builds the code for all projects within the solution, and builds information used to recognize your systems on networks. When a solution contains more than one project, you can build the code for individual projects within the solution. Once a solution or project has been built, subsequent build operations only regenerate the parts of the solution or project needing regeneration. You can also choose to build project elements, including devices and POUs. When building POUs, **ISaGRAF** only verifies the programming syntax without producing code.

When managing code, you can perform the following tasks:

- Building Solutions and Project Elements
- Rebuilding Solutions
- Cleaning Solutions and Project Elements

Building Solutions and Project Elements

You can choose to compile project files that were modified since the last build. You can build modified project files belonging to entire solutions. Once a project has been built, subsequent builds only recompile the parts of the project needing recompiling.

When a solution contains more than one project, you can build the modified project files for individual projects. You can also choose to build individual project elements including devices and POUs.

You can rebuild solutions to ensure that the compiled version is up-to-date. When rebuilding solutions, intermediate and output files are deleted, then a build operation is performed. Deleting the intermediate and output files ensures that the entire solution is compiled during a rebuild operation. After rebuilding solutions, online changes become unavailable.

The compiler generates different code for simulation than for targets. Therefore, you need to specify the applicable target in the properties of devices before building.

When building solutions and project elements, you can view the progress of the build in the Output window. When the build is complete, you can view generated errors in the Error List.

To build a solution or project element

This operation builds the code for all devices of the projects and builds information used to recognize your systems on networks. You cannot build projects open in read-only mode. Before building a project, make sure the applicable target type is specified for the devices.

• In the Solution Explorer, right-click the required solution or project element, then click **Build**.

The build process is initiated for the required project element or solution.

To view the build progress and generated errors

- 1. From the Tools menu, click **Options**.
- 2. In the Options dialog box, expand **Projects**, click **General**, then select the following options, and then click **OK**.

- Always show Error List if build finishes with errors
- Show Output window when build starts
- **3.** Build the required solution or project element.

The Output and Error List windows are displayed.

See Also

Downloading Code to Targets Rebuilding Solutions

Rebuilding Solutions

You can choose to clean solutions, deleting the intermediate and output files, then rebuild all project files and components. After rebuilding solutions, online changes become unavailable.

You can view the progress of rebuild operations in the Output window. When the rebuild is complete, you can view generated errors in the Error List.

To rebuild a solution

- 1. In the Solution Explorer, click the solution element.
- 2. From the Build menu, click **Rebuild Solution**.

The rebuild process is initiated for the solution.

To view the rebuild progress and generated errors

- 1. From the Tools menu, click **Options**.
- 2. In the Options dialog box, expand **Projects**, click **General**, then select the following options, and then click **OK**.
 - Always show Error List if build finishes with errors
 - Show Output window when build starts
- **3.** Build the required solution.

The Output and Error List windows are displayed.

See Also

Downloading Code to Targets

Cleaning Solutions and Project Elements

You can clean solutions, projects, and devices. Cleaning these deletes the intermediate and output files generated during the last build operation. Performing cleaning operations removes the capacity to perform online changes for the selected element. For example, after cleaning a device, online changes become unavailable.

To clean a solution

• In the Solution Explorer, right-click the solution, then click Clean Solution.

The intermediate and output files are deleted for the solution.

To clean a project or device

• In the Solution Explorer, right-click the required project or device then click Clean Selection.

The intermediate and output files are deleted for the project element.

See Also Building Solutions and Project Elements Rebuilding Solutions

Running an Application Online

Running online signifies that an application is connected to a target allowing for the normal execution where target cycles are triggered by the cycle timing. While running online, you can perform target management, debugging, and monitoring operations. However, you cannot perform target management and debugging operations at the same time. You can also simulate the running of an application for debugging purposes.

Before running an application on a target, you need to build the project code and download the application code onto the target.

To run an application online

1. Specify the applicable target type and IP addresses for the devices in the project.

Note: The compiler generates different code for simulation than for targets.

- 2. Build the project code.
- 3. To run an application online, download the application code onto the target.
- 4. In the Debug toolbar, from the drop-down combo-box, select **Online**.
- 5. In Debug menu, click Start Debugging.

See Also

Simulating Debugging Monitoring

Downloading Code to Targets

You perform download operations for projects having devices with code to send to targets. When simulating a project, you do not need to perform a download operation.

The code (corresponding to the run-time engine capabilities) must first be generated by building the project. The code type is determined by the target definition.

The Configuration manager must be running on the target platform.

The computer where the **Automation Collaborative Platform** is installed must be connected to the hardware equipment through a network supported by the Debugger. The standard networks used by the **Automation Collaborative Platform** are TCP/IP and Serial COM port (ISaRSI).

To download project code to a target

- **1.** Build the project code.
- 2. In the Solution Explorer, right-click the project element, and then click **Download**.

Debugging

When developing an application, you can choose to debug, i.e., detect and remove errors, from a project while running the application online, i.e., on a target, or simulating. Before running an application online, you need to download the application code onto the target.

While in real-time mode, the device is executed by a virtual machine on the real platform. A download operation is required to download the device code onto the corresponding platform.

A device where real-time mode is activated is in the RUN state.

When debugging, the state of a device is displayed in its icon in the Solution Explorer. The possible states of a device are the following:

The device is running on the target. The device is in the RUN, STOP, or ERROR state.

The device is not running on the target or no code is available on the target. The device is in the DISCONNECTED or NO APPLICATION state.

To enable debugging a project, you must first build the project, then download the project code to the target.

When switching an application to debugging, the **Automation Collaborative Platform** verifies the coherency between the current device definitions and the devices' compiled code. The **Automation Collaborative Platform** also verifies the coherency between all versions of the device code.

You can execute a device in one of two execution modes:

- Real-time, the run time normal execution mode where target cycles are triggered by the programmed cycle timing. While in real-time mode, you can switch the device to cycle-to-cycle mode.
- Cycle-to-cycle, a cyclical execution mode where the virtual machine loads the device code but does not execute it until you execute one cycle or activate real-time mode.

The state of the device appears next to the device icon in the Solution Explorer.

Device State	Description
RUN	The device is running in real-time mode
STOP	The device is in cycle-to-cycle mode. Possible operations are: - switch the device to real-time mode - execute one cycle
ERROR	The device is in error. Possible operations are: - switch the device to real-time mode - switch the device to cycle-to-cycle mode - execute one cycle
DISCONNECTED	Unable to establish communication with the target run-time.
NO APPLICATION	The device is not running on the target or no code is available on the target.

When running online, a device is activated in the RUN state. When viewing the values of variables in dictionary instances, the logical and physical values display the following temporary messages before loading the actual values:

- OFFLINE, indication that the variable is not present in the running application code
- WAIT, indication that the variable is either:
 - In online mode and attempting to connect to the target
 - In simulation mode and attempting to connect to the simulator

To debug an application

Before debugging an application, you need to build the application code and download the code to the target.

- 1. Build the project code.
- **2.** Download the code to the target.
- 3. In the Debug toolbar, from the drop-down combo-box, select **Online**.

4. From the Debug menu, click Start Debugging (or press F5).

See Also

Devices Forcing the Values of Variables

Forcing the Values of Variables

While debugging, you can force, i.e., override, the values of variables. These variables can be user-defined or directly represented. The behavior of a variable is defined by its logical value, physical value, lock state, and direction. When forcing the values of variables, the value to overwrite depends on the direction of the variable. You lock, unlock, and force the values of variables from the Dictionary.

For locked variables, the values displayed in the Logical Value and Physical Value columns differ depending on their direction. Variable direction is determined from the direct representation definition for the I/O wiring.

Input Variable (Read) Behavior

Example: To force the temperature reading from a sensor.

Output Variable (Write) Behavior

Example: To force the closing of an actuator valve.

When forcing the values of unlocked variables, these values may be overwritten by the next cycle execution.

To force the value of a variable

While debugging, you can force the values of locked directly-represented variables.

1. From the Dictionary instance, double-click the required variable.

The Write dialog box is displayed.

- 2. To modify the lock on the variable, in the *Lock* field, click the slider, then click Write.
- **3.** To write the required value for the variable, modify the *DataType value* field, then click **Write**.

When modifying a date in the *DataType value* field, a calender box is displayed. To select a date, click within the calender box. You can move between months using the arrow buttons.

See Also

Debugging

Simulating

Simulating the running of an application signifies that virtual machines execute the code of the device and the Windows platform performs aspects such as POU execution. Virtual machines ignore inputs and outputs.

The compiler generates different code for simulation than for online.

Before simulating an application on a target, you need to build the project code.

To simulate the running of an application

- 1. In the Device properties, specify the applicable target type and host address for the device.
- **2.** Build the project code.
- 3. In the Debug toolbar, from the drop-down combo-box select Simulation.
- 4. From the Debug menu, click **Start Debugging**.

Monitoring

While running an application online, debugging, or simulating, you can monitor variables, updated by the running online (TIC) code or simulation code, in Dictionary instances as well as graphical programs and function block instances. Generating monitoring information increases the size of the TIC code created.

For dictionary instances, the logical values, physical values, and lock status of variables are displayed in their respective columns. For graphical programs and function block instances, values are displayed differently depending on their type:

- Boolean type variables are displayed using color. The variable color continues to the next input. The default colors are red when True and blue when False.
- DINT, REAL, MESSAGE, and TIME type variables are displayed as a numeric or textual value. When the variable is a structure type, the displayed value is the selected member.

When variables are unavailable, in Dictionary instances, the logical and physical values for variables display the following messages:

- OFFLINE, indication that the variable is not present in the running application code
- WAIT, indication that the variable is either:
 - In online mode and attempting to connect to the target
 - In simulation mode and attempting to connect to the simulator

See Also Running an Application Online Debugging Simulating

Error Messages

The following describes the error types:

Error Type	Source	Solution
System Errors	Error due to target software or hardware Report this type of error to ISaGRAF Support	Perform a hard reset of your target, then attempt to run other applications.
Application Errors	Error due to application parameters, size, or content	Load a previously validated application
Program errors	Error due to a particular program sequence	Start the application in cycle-to-cycle mode or stop the critical program

Possible error messages encountered in ISaGRAF 3 Concrete Automation Model include:

Message	Туре	Description
Unable to allocate memory for run-time data base	System	Indication that no memory available Verify your hardware memory
Incorrect application database or bad CRC	Application	Indication that the application file is incorrect
		Occurs when the application is generated for INTEL and downloaded on MOTOROLA (and reverse), or if the file has been altered.
Unable to allocate communication mailbox	System	The communication task is unable to allocate space 3 for inter-task communication.
Unable to link kernel database	System	The communication task cannot find a kernel running with the slave number specified in its command line.
Time-out while sending request to kernel	System	The communication task cannot send a request to the kernel. The kernel is not running or busy.

Time-out while awaiting response from kernel	System	The communication task cannot receive an answer from the kernel. The kernel is not running or busy
Unable to initiate communication	System	The communication layer cannot initialize a physical link or no communication path is specified.
		This error does not interfere with target function.
Unable to allocate memory for retain variables	Application	ISaGRAF cannot manage retained variables:
		- the string passed as a parameter to the host target is not syntactically correct
		- the size of memory specified for each block is not sufficient
		To resolve, verify the syntax of your 'retain variable' parameter or reduce the number of retained variables.
Application stopped	Application	The application was stopped from the debugger.
Unknown TIC instruction	Application	The kernel has detected a problem in the Target Independent Code for a program for one of the following reasons:
		- an external program is writing to the application code. Locate this problem in cycle-to-cycle mode and verify all I/O interface parameters.
		- the target has a reduced set of instructions and the application uses a non-authorized instruction or variable type.

Unable to answer read data request	System	A communication error was detected when answering the specific ISaGRAF Modbus request function code 18 (file read).
		Verify the connection and system configuration on the target and master sides.
Unable to answer write data request	System	A communication error was detected when answering specific ISaGRAF Modbus request function code 17 (file write).
		Verify the connection and system configuration on the target and master sides.
Unable to answer debugger session request	System	A communication error was detected when answering a debugger request.
		Verify the connection and system configuration on the target and master sides.
Unable to answer modbus request	System	A communication error was detected when answering a Modbus request.
		Verify the connection and system configuration on the target and master sides.
Unable to answer debugger application request	System	A communication error was detected when answering a debugger request.
		Verify the connection and system configuration on the target and master sides.
Unable to answer debugger	System	A communication error was detected when answering a debugger request.
		Verify the connection and system configuration on the target and master sides.

Unknown request code	System	Unable to interpret the debugger request
Ethernet communication error	System	The connection is closed and the debugger is closed. Otherwise, an Ethernet communication error was detected.
		Verify the connection and system configuration on the target and master sides.
		When a second field is provided, verify for the following possible errors:
		1: error while sending or receiving
		2: error while creating the socket
		3: error while binding or listening the socket
		4: error while accepting a new client
Communication synchronization error	System	The tasks providing communication between the target and the master are not synchronized.
		Verify the connection and system configuration on the target and master.
Unable to allocate memory for	System	There is insufficient memory available.
application		Ensure that enough hardware memory is provided to accommodate the size of the application.
Unable to allocate memory for	System	There is insufficient memory available.
application update		Ensure that enough hardware memory is provided to accommodate the size of the application.

Unknown OEM key code	Application	A board used in your applications has a manufacturer code that is not recognized.
		In the workbench, verify the following: - I/O connections - locate the board use the 'VIRTUAL' attribute
Unable to initiate boolean input board	Application	A Boolean input board initialization has failed.
		In the workbench, verify the following: - I/O connections - parameters of the Boolean input boards
Unable to initiate analog input board	Application	An analog input board initialization has failed.
		In the workbench, verify the following: - I/O connections - parameters of the analog input boards
Unable to initiate message input board	Application	A message input board initialization has failed.
		In the workbench, verify the following: - I/O connections - parameters of the message input boards
Unable to initiate boolean output board	Application	A Boolean output board initialization has failed.
		In the workbench, verify the following: - I/O connections - parameters of the Boolean output boards
Unable to initiate analog output board	Application	An analog output board initialization has failed.
		In the workbench, verify the following: - I/O connections - parameters of the analog output boards

Unable to initiate message output board	Application	A message output board initialization has failed.
		In the workbench, verify the following: - I/O connections - parameters of the message output boards
Unable to input boolean board	Application	An error has been detected while refreshing a Boolean input board.
		In the workbench, verify the I/O connection and the board parameters.
Unable to input analog board	Application	An error has been detected while refreshing an analog input board.
		In the workbench, verify the I/O connection and the board parameters.
Unable to input message board	Application	An error has been detected while refreshing a message input board.
		In the workbench, verify the I/O connection and the board parameters.
Unable to update boolean output variable	Application	An error has been detected while updating an Boolean output variable.
		In the workbench, verify the I/O connection and the board parameters.
Unable to update analog output variable	Application	An error has been detected while updating an output analog variable.
		In the workbench, verify the I/O connection and the board parameters.
Unable to update message output variable	Application	An error has been detected while updating an output message variable.
		In the workbench, verify the I/O connection and the board parameters.

Unable to perform Operate call on boolean variable	Application	An error has been detected while executing an OPERATE call to a Boolean variable. Verify the OPERATE parameters and consult the help files for your I/O board.
Unable to perform Operate call on analog variable	Application	An error has been detected while executing an OPERATE call to a analog variable.
		Verify the OPERATE parameters and consult the help files for your I/O board.
Unable to perform Operate call on message variable	Application	An error has been detected while executing an OPERATE call to a message variable.
		Verify the OPERATE parameters and consult the help files for your I/O board.
Unable to open board	Application	The application uses a board reference, which is unknown to the target.
		In the workbench, verify the following: - I/O connections - ensure that the workbench library version corresponds to the target version
Unable to close board	Application	The application uses a board reference, which is unknown to the target.
		In the workbench, verify the following: - I/O connections
Unknown system request code	Program	A program is using a SYSTEM call with an invalid code.

Sampling period overflow	Program	The target cycle period is longer than specified in the workbench. For a multitasking system, there is not enough CPU time to execute a cycle, even when the 'current cycle duration' is less than the specified period. For a single task system, there are too many operations in one target cycle.
		To resolve, do the following: - reduce the number of operations performed at the instant where the warning is detected. - reduce the number of tokens and valid transitions, and optimize complex processing, etc. - reduce the CPU load dedicated to other tasks - reduce the communication traffic - adapt the cycle duration to different process stages by use dynamic cycle duration modification - set cycle duration to zero
User function not implemented	Application	A program is using a C function that is unknown to the target.
		Ensure that the workbench library version corresponds to the target version.
Integer divided by zero	Program	A program has attempted to divide an integer analog by zero. This type of event can have unpredictable effects. When a divide by zero operation occurs, ISaGRAF places the maximum analog value as the result. When the operand is negative, the result is inverted.

Conversion function not implemented	Application	A program is using a C conversion function that is unfamiliar to the target. ISaGRAF has not converted the value.	
		Ensure that the workbench library version corresponds to the target version.	
Function block not implemented	Application	A program is using a C function block that is unfamiliar to the target.	
		Ensure that the workbench library version corresponds to the target version.	
Standard function not implemented	Application	A program is using a function block that is unfamiliar to the target. This function block is available for most targets.	
		Please contact your supplier.	
Real divided by zero	Program	A program has attempted to divide a real analog by zero. This type of event can have unpredictable effects. When a divide by zero occurs, ISaGRAF places the maximum real analog value as the result. When the operand is negative, the result is inverted.	
Invalid operate parameters	Application	Your application has used an OPERATE call with incorrect parameters.	
		To resolve, do the following: - verify that the timer parameters are correct - verify that all variables are inputs or outputs	
Application symbols cannot be modified	Application	After attempting to perform an update, ISaGRAF was unable to start the application. The application symbols have changed. One or more variables or instances of function blocks were added, removed or modified.	

Unable to update: different set of boolean variables	Application	ISaGRAF is unable to start the modified application. One or more Boolean variables have been added or removed.	
Unable to update: different set of analog variables	Application	ISaGRAF is unable to start the modified application. One or more analog variables have been added or removed.	
Unable to update: different set of timer variables	Application	ISaGRAF is unable to start the modified application. One or more timer variables have been added or removed.	
Unable to update: different set of message variables	Application	ISaGRAF is unable to start the modified application. One or more message variables have been added or removed.	
Unable to update: cannot find new application	Application	Unable to find the modified application in memory. An error may have occurred when downloading.	

Getting Started

The **ISaGRAF 3** Concrete Automation Model enables the creation of applications supporting multi-process control. Applications consist of virtual machines running on hardware components, called target platforms. The development process consists of creating a project composed of one device that is downloaded to a target platform. At runtime, the device becomes a virtual machine running on the target platform.

Projects containing a device and one or more programs are developed in the following languages of the IEC 61131-3 standard: FBD: Function Block Diagram, LD: Ladder Diagram, and ST: Structured Text. When building, a device is compiled to produce very fast "target independent code" (TIC) or "C" code.

Within devices, you can declare variables using standard IEC 61131-3 data types (i.e., BOOL, DINT, REAL, MESSAGE, and TIME) or user-defined types such as one-dimensional arrays.

You develop projects on a Windows® development platform. The Automation Collaborative Platform graphically represents and organizes the device, POUs, variables, and networks within a project from many views:

- Add-in Manager
- Block Selector
- Data Types
- Description Window
- Dictionary
- Error List
- Find and Replace
- ISaVIEW
- Locked Variables Viewer
- Options...
- Parameters View
- Solution Explorer
- Toolbox
- Variable Selector

- Block Library
- Customize...
- Deployment View
- Device View
- Document Overview
- External Tools
- I/O Wiring
- Language Editors
- Navigation Window
- Output Window
- Properties Window
- Spy Lists
- Variable Dependencies

Libraries are special projects made up of devices enabling the definition of functions and function blocks for reuse throughout projects.

Projects are downloaded, using the TCP-IP or Serial network driver, onto target platforms running real-time operating systems. Communication between devices can be implemented using the default TCP-IP network or proprietary network protocol.

Before downloading project code onto the target platform, you need to build the code for the entire solution. You can then choose to debug the application while running online or simulating. You can also monitor variables while running the application online, debugging, or simulating.

The following information guides you in getting started with the **ISaGRAF 3** Concrete Automation Model:

- System Requirements for Development Platforms
- Naming Conventions and Limitations
- Introducing the Automation Collaborative Platform (ACP)
- Walking Through an Existing Application
- Starting with a Basic Application
- Importing an Existing Application

System Requirements for Development Platforms

Suggested Requirements

To use ISaGRAF, you need the following hardware and software.

Hardware

- A computer with a 2.2 GHz or faster processor.
- RAM
 - 1 GB of RAM for x86 operating systems
 - 2 GB of RAM for x64 operating systems
 - When running ISaGRAF on a Virtual Machine, an additional 512 MB of RAM is necessary
- 4 GB of available hard disk space
- A hard disk running at 5400 RPM
- A CD-ROM drive on the Windows network (for installation from disk)
- A TCP/IP network
- An SVGA monitor having at least 1024 X 768 pixels screen resolution
- A DirectX 9-capable video card that runs at a display resolution of 1024 x 768 or higher

Software

ISaGRAF supports the following operating systems:

- Windows® 7 (x86 and x64)
- Windows® 8 (x86 and x64)

Note: If Visual Studio 2010 was previously installed, when running the ISaGRAF installation the Visual Studio 2010 Service Pack 1 will be installed. This may affect Visual Studio functionality.

Naming Conventions and Limitations

Projects		
Project names	Project names are recommended to have up to 32 characters	
Device quantity	Projects contain one device	
Devices		
Device names	Device names can have up to eight (8) characters and must begin with a letter followed by letters, digits, and single underscores.	
Networks		
Network instance names	Network instance names can have up to eight (8) characters and must begin with a letter followed by letters, digits, and single underscores.	
POUs (Programs, Fu	inctions, and Function Blocks)	
POU names	POU names can have up to eight (8) characters and must begin with a letter followed by letters, digits, and single underscores.	
POUs per project	The maximum number of POUs is directly dependent on the ISaGRAF 3 run-time 16-bit application.	
Hierarchical levels	The maximum hierarchical levels for POUs is 20	
Function parameters	Functions can have a maximum of 32 parameters (31 inputs and one output)	
Function parameter names	Function parameter names can have up to 32 characters and must begin with a letter followed by letters, digits, and single underscores.	
Function block parameters	Function blocks can have a maximum of 32 parameters (inputs and outputs)	
Function block parameter names	Function block parameter names can have up to 32 characters and must begin with a letter followed by letters, digits, and single underscores.	
Variables		
Variable quantity	The maximum number of variables is directly dependent on the ISaGRAF 3 run-time 16-bit application.	

Variable names	Variable names can have up to 32 characters and must begin with a letter followed by letters, digits, and single underscores.	
	The names of variables having a defined Modbus address, initial value, or retained property are calculated by combining the variable and POU names for a maximum of 32 characters beginning with a letter followed by letters, digits, and single underscores.	
Boolean variables	Boolean variables can have the boolean value TRUE (1) or FALSE (0) and can have an internal, constant, input, or output attribute.	
DINT variables	DINT variable integer values range from -2147483647 to +2147483647 and can have an internal, constant, input, or output attribute. Integer literals must begin with a prefix identifying the base. There is no prefix for DECIMAL values. For HEXADECIMAL values the prefix is "16#", for OCTAL values the prefix is "8#", and for BINARY values the prefix is "2#".	
Real variables	Real variables have six significant digits. For larger values, the maximum possible value is $\pm 3.402823466E+38$ while for smaller values, the minimum possible value is $\pm 1.175494351E-38$. Real literal values can be written with either decimal or scientific representation. The exponent part of a real scientific expression must be a signed integer value ranging from -37 to +37. The scientific representation uses the 'E' or 'F' letter to separate the mantissa part and the exponent. Real variables can have an internal, constant, input, or output attribute.	
Time variables	Time variables can have positive values ranging from 0 to 23h59m59s999ms. The time literal value must begin with the "T#" or "TIME#" prefix. Time variables can have an internal or constant attribute.	
MESSAGE variables	MESSAGE variable string capacity is limited to 252 characters excluding the terminating null character (0), a byte for the current length of the string, and a byte for the maximum length of the string. Characters must be preceded and followed by single quote (') characters. When placing single quote (') characters within a message literal, these characters must be preceded by the dollar (\$) character.	
Modbus Address	The Modbus address of a variable consists of four hexadecimal digits ranging from 0001 to FFFF.	
Arrays	One-dimensional arrays can have a maximum of 255 elements.	

Defined Words

Defined Word names	Defined word names can have up to 32 characters and must begin with a letter follow by letters, digits, and single underscores.	
Defined word equivalents	Defined word equivalents can have up to 255 characters.	
I/O Wiring		
I/O devices per project	The maximum number of I/O device instances is directly dependent on the ISaGRAF 3 run-time 16-bit application.	
Hardware racks	A hardware rack can contain up to 255 I/O boards	
I/O boards per project	The maximum number of single I/O boards in a project is 255.	
I/O channels	Each I/O board can have up to 128 I/O channels. These channels can be inputs or outputs.	
I/O device order	The I/O device order ranges from 0 to 254	
Conversion table names	Conversion table names can have up to 16 characters and must begin with a letter follow by letters, digits, and single underscores.	
FBD Programs		
Label elements	Label elements can have up to 32 characters and must begin with a letter follow by letters, digits, and single underscores.	
LD Programs		
Label elements	Label elements can have up to 455 characters and must begin with a letter follow by letters, digits, and single underscores.	
Rung comments	Rung comments can have up to 251 characters.	
ST Programs		
ST statements	ST statements (i.e., one line of code) are recommended to have less than 4096 characters.	

Introducing the Automation Collaborative Platform (ACP)

The Automation Collaborative Platform (ACP) provides a robust integrated development environment (IDE) enabling the development of process control applications. The ACP workbench offers a complete suite of tools for building applications.

To get to know the aspects of the ACP

1. From the Start menu, click All Programs, then ISaGRAF 6.4, and then click Automation Collaborative Platform.

The **ACP** is launched displaying the Start Page, Solution Explorer, Navigation Window, Toolbox, Output window, and Error List.

Navigation Window - Automation	Collaborative Platform	
File Edit View Debug Tools	Vindow Help	
i 🔂 • 🖽 • 🔙 🥔 🐰 🛍 🛍	의 - (빅 💷 - 🖳 🔜 Find	- 🖂 🗮 🕾 🔍 🎌 🕒 - 🚽 🖾 🚟 👗 🍹
	B / U ★ A ≡ ≡ ≡ ⊟ , / Q % % % M % ,	
Toolbox	Navigation Window 🗙 Start Page	✓ Solution Explorer ✓ ₽ ×
⊿ General		
There are no usable controls in this group. Drag an item onto this text to add it to the toolbox.		
	Outout	- 1 -
	Show output from: Subversion - AnkhSVN	
	<	•
	🛃 Error List 🔲 Output	
Ready		

The **Start Page** enables opening new or recent projects, viewing tutorials, as well as accessing the Getting Started help pages. The **Solution Explorer** displays open solutions consisting of projects and their elements. The **Navigation Window** provides a global view of the solution and enables accessing the device view and deployment view. The **Toolbox** displays the available elements for insertion in programs. The **Output window** displays the compilation progress and errors. The **Error List** displays the errors, warnings, and messages produced when editing and compiling programs.

- 2. When adding elements in the language container, you can use the following ACP features:
 - To display program-specific elements for insertion in the language container, from the View menu, click **Toolbox**.

To display variables defined for a program, from the Toolbox, drag the Variable icon into the language container. The **Variable Selector** is displayed.

vame						BOC	DL				Global Scope ▼ Device1	•	N/A	ре	•
ilobal	Variables -	Device1	Loci	al Variables -	N/A	System	Variables ·	Device1 D)irectly	Represented	Variables - Device1	Defined Words	- Device1		
	Name	DataTy	/pe	StringSize	Dime	ension	Wiring	Attribute	e	Direction	Modbus Address	IsRetained	InitialValue	Unit	Commen
	* A*	*	A*	× #*		▼ d [*]	- A*	*	o¶*	× 🖋	× A	× A*	× A*	·	- <i>a</i>
	Var1	BOOL	•					Read/Write	× \	/arGlobal 💌					
	Var2	BOOL	•					Read/Write	، ۱	/arGlobal 🔻					
	Var3	BOOL	•					Read/Write	* \	/arGlobal 💌		2			
	Var4	BOOL	•					Read/Write	÷ \	/arGlobal 🔻					
	Var5	BOOL	•					Read/Write	× \	/arGlobal 🔻					
	Var6	DINT	•					Read/Write	، ۱	/arGlobal 🔻					
	Var7	DINT	•					Read/Write	* \	/arGlobal 💌		1			
	Var8	DINT	•					Read/Write	÷ \	/arGlobal 🔹					
	Var9	DINT	•					Read/Write	× \	/arGlobal 💌					
	Var1Out	BOOL	•					Read/Write	• \	/arGlobal 🔹					
	Var2Out	BOOL	*					Read/Write	× \	/arGlobal 💌					
	Var3Out	BOOL	•					Read/Write	• \	/arGlobal 🔹					
	Var4Out	DINT	*					Read/Write	* \	/arGlobal 🔹					
¥ 🛛			•						•	•		2			

To display the list of blocks available for a program, from the Toolbox, drag the Block icon into the language container. The **Block Selector** is displayed. You can also access the **Parameters** display from the Block Selector.

•	Block Sel	ector (F	Prog1)												— ×
ł	olink														*
	Search													Show P	arameters
	Name	Туре	Category	Comment	Scope	•						blink			
	1	OPE	Arithmetic	1 gain	Standard			-[>	RUN	6	<u>₹</u>		-	Q	X >
	abs	SFU	Arithmetic	absolute value	Standard		ľ	-{>	CYCLE	Ģ	<u>∕</u> *}				
	acos	SFU	Arithmetic	arc-cosine	Standard	=									
	ANA	OPE	Converters	Ana;convert to integer	Standard										
	and_mask	SFU	Binary operations	bit to bit mask	Standard										
	arcreate	SFU	Array manipulation	create array	Standard										
	arread	SFU	Array manipulation	read array element	Standard										
	arwrite	SFU	Array manipulation	write array element	Standard										
	ascii	SFU	String manipulation	get ascii code	Standard										
	asin	SFU	Arithmetic	arc-sine	Standard										
	atan	SFU	Arithmetic	arc-tangent	Standard										
	average	SFB	Data manipulation	running average	Standard										
	blink	SFB	Signal generation	blinking signal	Standard										
	BOO	OPE	Converters	Boo;convert to boolean	Standard										
	CAT	OPE	String manipulation	concat messages	Standard	•							J		
													OK	c	ancel

To display a graphical view of standard operators, as well as standard and user-defined functions and function blocks available for the POUs of a project, from the View menu, click **Block Library**.

BlockLibrary					•	
Q						2
Standard					:	* *
1		*	1	•••	-	
4	**	1 -	=1	-	>=	=
OPE >=1	I DPE	abs	acos		100010 111110 100010 and_mask	
SFU arcreate	SFU arread	SFU arwrite	[×]→A ascii	asin	atan	
النهم العلم average	_лллл blink	OPE BOO	CAT	65→A char	? CMP	
	СТР	л и сти	CTUD	SFU ⁻	S ond Lec delete	•

To view, add, or edit the rich text descriptions for ISaGRAF projects, devices, and POUs, select the required element in the Solution Explorer, then from the View menu, click **Description Window**.

Description Window	→ 🗆 ×
Ι	

3. To work in full screen mode, from the View menu, click **Full Screen**. Full screen mode enlarges the workspace to fill the screen, hiding other tabbed windows.

4. To display the Properties window, from the View menu, click **Properties Window**. The properties window enables viewing and editing the properties of items selected within language containers, ISaVIEW instances, the Solution Explorer, and the Deployment View. You can view properties alphabetically or categorically.

Pro	perties	-	×
De	evice1 Properties		-
	2↓ 🖻		
⊳	Application Run-time Options		*
	Baud Rate	0	
4	Compiler Options		
	Build binary decision diagrams (BDDs)	False	
	Evaluate constant expressions	False	
	Generate debug information	False	
	Optimize arithmetic operations	False	=
	Optimize booleans	False 💌	
	Optimize expressions	False	
	Optimize variable copying	False	
	Run two optimizer passes	1	
	Suppress unused code	False	
	Suppress unused labels	False	
	Use embedded SFC engine	True	
	Data Bits	0	
	Guid	8e80d28a-6b63-4248-87eb-3a989b24bd77	
	Hardware Flow Control	False	
	Host Address	127.0.0.1	
	Host Socket Port	1100	-
Ор Ор	timize booleans timize booleans		

5. You can navigate through program content, including application code, using the following ACP features:

To find and replace strings and expressions in files, from the Edit menu, point to Find and Replace, then click the required option. For example, click Quick Find to display Quick Find options.

Find and Replace 🔹 🗖 🗙
🔜 Quick Find 🝷 👫 Quick Replace 🝷
Find what:
- ►
Look in:
Current Project
 Find options
Match case
Match whole word
🕅 Search up
🕅 Use:
Regular expressions 👻
Find Next Bookmark All

To focus on an area displayed within a program opened for editing, from the View menu, click **Document Overview**.

Document Overview 🔻 🗖 🗙

6. You can navigate through the different elements and aspects of projects using the following ACP features:

To navigate through project aspects and elements, from the View menu, click Navigation Window. The environment provides a global view of the solution and enables accessing the Device view and Deployment view.

Navigation Window	- □ ×
Global	► *
Deployment View	
Device1	*
Global Variables Global Variables Gefined Words	
Prog1	*
<u> Defined Words</u> <u> Defined Words </u>	

The initial aspects and elements displayed vary depending on the item selected in the Solution Explorer.

To navigate through project elements, from the Solution Explorer, right-click the required device and then click **Open**. The **Device View** is displayed and enables accessing device information such as available POUs, function and function block parameters, and defined words.

To navigate through Active Files open in the current project, from the Window menu, click Windows. Active files consist of language containers, the Deployment view, and other windows docked in the workspace.

lindows		?
Name	Path	Activate
Device1 - I/O Wiring		
Device1-VAR		Save
Prog1-POU		
Start Page		Close Window(s)
۰ II		•
		OK

- 7. When managing elements, you can use the following **ACP** features:
 - To manage local variables, global variables, and defined words, in the Solution Explorer, double click the required Local Variables, Global Variables, or Defined Words instance. The **Dictionary** is displayed.

PRJ1.C	RI.Device1 - DataTypes T X Device1-VAR T													
Defin	ed Words				Name	DataTyp	e StringSi	Dimension	Wiring	Attribute	Direction	Modbus Add	I sRetain	InitialValu
	Name	Equivalent	Comment		- A*	- 0	t* - A*	- A*	- A	- A	- A	- A	· A*	- 0
	- A+	- A*	- A+		Var1In	BOOL				Read/Write 🝷	VarGlobal 🔹 👻			TRUE
1	/ES	TRUE			Var2In	BOOL				Read/Write 🔹	VarGlobal 🔹			FALSE
	ч	3.14159			Var3In	MESSAG -	255			Read/Write 👻	VarGlobal -			HELLO
-	CANCEL	-2			Var4In	DINT				Read/Write 🝷	VarGlobal 🔹			25
*					Var5In	DINT				Read/Write 🝷	VarGlobal 🔹 👻			2
					Var6In	REAL				Read/Write 🔹	VarDirectlyRep 🔹			30.7
					Var7In	REAL				Read/Write 👻	VarDirectlyRep 👻			6.0
					Var1Out	BOOL				Read/Write 🔻	VarGlobal 🔹			
					Var2Out	BOOL				Read/Write 🝷	VarGlobal 🔹 👻			
					Var3Out	DINT .				Read/Write 🔹	VarGlobal 🔹			
				*						*	*			
				4										

To manage parameters and local variables for user-defined POUs, right-click the POU, and then click **Parameters**.

Parameters	5				▼ 🗆 ×
		FB1			
-{*	VarInput1 🕅 🕿	♦ Var1	{	Q DINT	*
_{	VarInput2 🕅 🕿	of a local variable			
			himait		
			-11-		Ú.
	es Rela				i i i
					1 Ke
			-1-1		- U
			J		
	New Input	New Variable		New Output	- 10
Name :	Var1				
DataType :	BOOL	-			
Attribute :	Read/Write	*			
Comment :	Var1 is an example o	f a local variable			

- 8. When debugging applications, you can oversee application performance using the following ACP features:
 - To view the build information, from the View menu, click **Output**.

Output		▼ □ ×
Show output from:	Build	- 🛛 🎝 🖓 🛼 🗐
No error detect Build Complete ===== Buil	ted 0 error(s), 0 warning(s) ld: 1 succeeded, 0 failed, 0 up-to-date,	0 skipped =======
•	III	•

To view the errors, warnings, and messages produced when editing and building programs, from the View menu, click **Error List**.

Error	Error List 👻 🗖 🗙								
3 4	Errors 0 Warnings 0 Message	es							
	Description	File	Line	Column	Project				
31	Real analog input expected	Prog1.lsf	10	24	PRJ1				
2 🔕	Integer analog input expected	.lsf	120	384	PRJ1				
3	Var3Out: Integer analog input expected	.lsf	132	480	PRJ1				
34	Unknown error detected.	.lsf	0	0	PRJ1				

To view or unlock locked variables while debugging, running online, and simulating, from the Debug menu, click **Locked Variables.**

9. To add an ISaVIEW screen, right-click the device or program in the Solution Explorer, point to Add, and then click New ISaVIEW.

You can monitor or run control processes, locally or remotely, by creating ISaVIEW screens. You can define animation effects for the objects inserted in the ISaVIEW screens. Design mode enables editing the screen objects and animation mode executes the animation effects.

10. To graphically display the device, networks, and connections of a project, from the View menu, click **Deployment View**.

11. To view changes in the values of variables and function block instances, from the Debug menu, point to **Spy Lists**, then click the required spy list instance.

My:	SpyList							- □ ×
Nar	me : MySpyList			Refresh Rate : 10	00	÷ X		
	Name	Alias	Logical Value	Physical Value	Lock	Comment	Access Path	Data Type
	▼ A*	▼ A [*]	▼ A*	▼ A*	▼ A*	▼ A*	▼ A*	▼ A**
	VarBool1				✓		MyProject.Device1	
	result		7				MyProject.Device1	
	command						MyProject.Device1	
	auto_mode						MyProject.Device1	
	VarBool2		v				MyProject.Device1	
	VarBool3						MyProject.Device1	
	VarDint1		5				MyProject.Device1	
	VarDint2		2				MyProject.Device1	
*								
•								*

12. To generate documentation for projects, devices, programs, and variables, from the File menu, click **Generate Documentation**.

Generate Documentation		
Document Options	Sections	TOC Preview
Sections Template DefaultTemplate Format Word Orientation Landscape Legal 8.50 in X14.00 in Wargins : Narow Left : 050 in Bottom : 050 in Microsoft Word Template Isagraffooter.dotx Diagram Scaling 100 % Unit Type Hyperlink Comment Style /* comment Style /* comment */	Sections I Tiele of content Deployment View Arrays Structures Defined Words Target VO Wrining Binding Variable I SayUEW Language Container POU Resource Configuration Project	Image: Traile Page Image: Traile of content Image: Traile of content Image: Traile of content Image: Traile of content Image: Traile of the trailer Image: Trailer
Default Settings		Generate Close

13. You can customize the Workbench using the following **ACP** features:

To customize the environment, project, Source Control, Block Library, Deployment view, Device view, various grids, I/O device, IEC languages, ISaVIEW, and Spy List options, from the Tools menu, click **Options...**

Options	? 💌
Options Projects Source Control Block Library Settings DeploymentView Settings Device View Grid Settings I/O Device Settings CAM3 I/O Device Settings CAM5 IEC Languages ISaVIEW Settings Spylist Settings 	Recent files 10 items shown in Window menu 6 items shown in recently used lists Visual experience Ø Automatically adjust visual experience based on client performance Enable rich client visual experience Use hardware graphics acceleration if available Visual Studio is currently using software rendering. The visual experience settings automatically change based on system capabilities. Ø
	Image: Solution of the second seco

To create or customize toolbars, menu bars, and context menus, from the Tools menu, click Customize...

Customize			? <mark>×</mark>
Toolbars Comma	nds		
Choose a menu or	toolbar to rearrange:		
Menu bar:	Menu Bar		•
Toolbar:	Build		*
Context menu:	Editor Context Menus		*
Controls:			
Eile		•	Add Command
<u>E</u> dit		•	Add New Menu
View		•	
<u>P</u> roject		•	Delete
Build			Move Up
<u>D</u> ebug Format			Move Down
Resources			
<u>T</u> ools		•	Modify Selection 🔻
Window		• [Reset All
<u>H</u> elp		•	
Full Screen			
		Ke	yboard Close

14. You can manage add-ins and external tools using the following ACP features:

To manage registered add-ins, from the Tools menu, click Add-in Manager...

d-in Manager		8
Available Add-ins	Start	Command L
✓ ISaGRAF.Workbench.DebuggerSettings		
Locked Variables Viewer		
Variable Export/Import		
)escription:		
	ОК	Cancel

To add external tools, from the Tools menu, click External Tools...

External Tools	? <mark>×</mark>
Menu contents:	
[New Tool 1]	Add
	Delete
	Move Up
	Move Down
Title:	[New Tool 1]
Command:	
Arguments:	
Initial directory:	
Use Output window	Prompt for arguments
Treat output as Unicod	le 🔽 Close on exit
	OK Cancel Apply

Walking Through an Existing Application

This section describes a demo project included with the default installation.

To walk through an existing application

- 1. Launch the ACP and open an existing application.
 - a) From the Start menu, click All Programs, then ISaGRAF 6.4, and then click Automation Collaborative Platform.

b) From the File menu, point to Open, then click Project/Solution....

E A	📱 Automation Collaborative Platform									
File	Edit View Debug Tools V	lindow Help								
	New	🔸 🖕 🔜 Find 💦 🚽 🔍 😓 😤 🔍 🏏 🕲)							
	Open	Project/Solution Ctrl+Shift+O								
	Close	Subversion Project Solution Explorer	→ ↓ ×							
۵,	Close Solution									
	Save Selected Items	Ctrl+S								
	Save Solution As									
9	Save All	Ctrl+Shift+S								
	Subversion	•								
	Recent Projects and Solutions	•								
	Exit	Alt+F4								
Out	put		- ₽ ×							
Sh	ow output from: Subversion - And	hSVN 🔹 🖓 🧔 🖄 🔿 😨								
			*							
Read	у									

c) In the Open Project dialog box, select and open the **DEMO.isasIn** solution, located in the following directory:

%USERPROFILE%\My Documents\ISaGRAF 6.x\Projects\SMP\DEMO\DEMO.isasln

Dpen Project			—
CO V K Projects	► SMP ► DEMO ►	✓ ✓ Search DEMO	م
Organize 🔻 New fold	ler	8==	• 🔳 🔞
Automation Collat	Name	Туре	Size
Projects	DEMO	File folder	
	DEMO.isasIn	ISASLN File	3 KB
Pavonices Desktop Downloads Downloads Downloads Downloads Documents Documents Music Pictures Videos			
File r	name: DEMO.isasIn	 ✓ All Project Files (*.is Open ✓ 	sasln;*.acfpri ▼ Cancel

The DEMO project is displayed.

- 2. Review the application components.
 - a) From the View menu, click Solution Explorer.
 - **b)** To view available programs, expand the project, device, and program elements, then view the programs by double-clicking the required program instance.

Opened programs are displayed in the language container.

c) To view the dictionary variables, in the Solution Explorer double-click Global Variables.

DEN	10-VAR × C	ontrol-POU	Solution Explorer 🛛 🝷 🕂 🗙					
	Name 🔻	DataType	Wiring	Attribute	Direction	InitialValue	Comment 📤	
		- A	- at	÷ d₹*	- A*	- A*	- 0	Solution 'DEMO' (1 project)
	SwRight	BOOL -	%IX0.4	Read 🔹 👻	VarGlobal 👻		Switch right: tui 🗏	Dependencies
	SwLeft	BOOL -	%IX0.3	Read 🔹	VarGlobal 🔻		Switch left: turn	
	ShutPos	DINT -	%QD2.6	Write *	VarGlobal 👻		Sutter level: cur	Programs
	ShutMin	DINT -		Read/Write 🔹	VarGlobal 🔻		Minimum: shutt	Control
	ShutMax	DINT -		Read/Write *	VarGlobal 👻	10	Maximum: shut	Defined Words Incal Variables
	RtCmd	BOOL -	%IX0.7	Read 🔹	VarGlobal 🝷		Move Right: use	晋 Functions
	MainPW	BOOL -	%IX0.1	Read 🔹 🔹	VarGlobal 👻		Main Power	Function Blocks
	LfCmd	BOOL -	%IX0.6	Read 🔹	VarGlobal 🝷		Move Left: user	E Defined Words
	IncrUp	BOOL -		Read/Write *	VarGlobal 👻		Move up: shutte	Global Variables
	IncrDn	BOOL -		Read/Write 🔹	VarGlobal 🝷		Move Down: sh	
	CmLight	BOOL *	%QX1.3	Write 🔹 🔹	VarGlobal 🔹		Light command	
	BusyOn	BOOL -		Read/Write -	VarGlobal 👻		Busy relay	

The dictionary is displayed in the workspace. You can add, edit, and remove variables. You can sort and filter the variables displayed, as well as arrange the columns to display.

d) To view the I/O variables connected to the channels of I/O devices, in the Solution Explorer, right-click the device, and then click **I/O Wiring**.

The I/O Wiring view is displayed. You can add I/O devices and set the real or virtual attribute. You can also wire or free the channels of an I/O device.

3. For the device, set the properties for debugging.

	EMO -	Auton	nation Collaborative Platfor	m	
File	Edit	View	Project Build Debug	Tools Window He	p
8	- 遡	-7	Solution Explorer	Ctrl+Alt+L	d 🔄 🚽 🖓 🗮 🕾 🎌 🕲 🗸 📰 🤤
1		1	Controller Status		≡ Ξ 및 / 🤬 🖫 🖏 🛍 🛳 💂
C 22	atual D(8994	Parameters		Solution Evolution T
	IC I	Θ	Pending Changes	Ctrl+K, C	
	Contro	2	Navigation Window		
			Deployment View		DEMO
	- I	€ L	Repository Explorer	Ctrl+K, R	▶ 📾 Dependencies
1		p	Working Copy Explorer	Ctrl+K, W	DEMO
		lin I	Block Library	Ctrl+Alt+T	Programs
		Q	Cross Reference Browser	Ctrl+W, Ctrl+C	Dentrol a Functions
⊩	Move		Description Window		Function Blocks
		2	Document Overview		🖷 Defined Words
		8	Error List	Ctrl+ E	🗊 Global Variables
			Output	Ctrl+Alt+O	fCmd >
2			Start Page		en la
		*	Toolbox	Ctrl+Alt+X	ShutPos
			Find Results	•	+in1 ⊐≥ -
			Other Windows	•	ShutMin
			Toolbars	•	in2
⊩	Move		Full Screen	Shift+Alt+Enter	
		P	Navigate Backward	Ctrl+-	
		П,	Navigate Forward	Ctrl+Shift+-	Contact 1/Cont
٦.		1	Properties Window	F4	icina Licina i
Read	iy		Property Pages	Shift+F4	

a) From the View menu, click Properties Window.

b) In the Solution Explorer, select the device, then from the Properties window, set *Generate debug information* to **True**.

c) From the View menu, click **Deployment View**, then make the following modifications to the properties:

- In the Deployment view, select the target, then in the Properties window, for the *Targets* property, select up to three target types from the drop-down combo box.

- In the Deployment view, select the connection between the target and the network, then in the Properties window, in the *Host Address* property, type the required IP address or socket host name.

- 4. Build the solution, then view any generated errors, warnings, and messages.
 - a) In the Solution Explorer, right-click the solution element, then click Build Solution.

b) To view the build information, from the View menu, click Output.

c) To view the errors, warnings, and messages generated during the build, from the View menu, click Error List.

I	Error List 🔹 🗖 🛪									
	🔕 0 Errors 🔥 0 Warnings	i) 0 Messages								
	Description	File	Line	Column	Project					

You can choose to display errors, warnings, or messages in the Error List. You can also sort the list of errors, warnings, and messages displayed.

5. Debug the project.

You can simulate the running of an application without downloading code onto your target platform. However, when running an application online, you must download the project code onto the target before debugging.

a) In the Target Execution toolbar, from the Solution Configurations drop-down combo-box, select Simulation.

b) To begin the debugging process, from the Debug menu, click Start Debugging.

File Edit View Project Build	Debug Tools Window Hel	þ
: 🛅 • 🗃 • 🛃 🥔 🕺 🛍 🛍	Windows	•
:// 🤬 🕒 🎖 🍇 🖪 🛀 🖕	Start Debugging	F5
	Step Into	F11
	⊊≣ Step Over	F10
	Toggle Breakpoint	F9
	🔎 Delete All Breakpoints	Ctrl+Shift+F9
	Spy Lists	•
	Options and Settings	

You can monitor the progress of the simulation using the Output window.

- 6. While in debug mode, view the programs and dictionary variables.
 - a) From the Solution Explorer, view the individual programs by double-clicking the required program instance.

The program is displayed in the language container. Boolean variables are displayed using color: red when True and blue when False. Numerical and textual values are displayed in red.

b) From the Solution Explorer, view the dictionary variables by double-clicking **Global Variables**.

The dictionary is displayed in the workspace. Note that the logical and physical values are displayed in red.

DEM	O-VAR 🗙 Co	ntrol-POU							-	Solution Explorer 🛛 🔻 🕂 🗙
	Name	Logical∀alue	PhysicalValue	Lock	DataTy	pe	Wiring	Attribute		
	- A*					æ	- A*	- A		Solution 'DEMO' (1 project)
	SwLeft				BOOL		%DX0.3	Read 🔹 🔻		Dependencies
	SwRight				BOOL	•	%DX0.4	Read 🔹 🔻	=	a 📕 RUN - DEMO
	CmLight				BOOL	•	%QX1.3	Write 🔹		Programs
	MainPW				BOOL	*	%D(0.1	Read 🔹 💌		Control
	LfCmd				BOOL	•	%DX0.6	Read 🔹 🔹		Functions Function Blocks
	RtCmd				BOOL	•	%D(0.7	Read 🔹 💌		E Defined Words
	IncrUp				BOOL			Read/Write 💌		🗊 Global Variables
	IncrDn				BOOL			Read/Write 💌		
	Busy				BOOL	•		Read/Write 💌		
	BusyOn				BOOL	*		Read/Write 💌		
	ShutPos	1			DINT	*	%QD2.6	Write 🔹		
	ShutMax	10			DINT	•		Read/Write 🔹		
	ShutMin	0			DINT	•		Read/Write 💌		
	%D(0.1				BOOL			Read/Write 💌	-	
								•		< +

7. To stop the debugging process, from the Debug menu, click **Stop Debugging**.

Starting with a Basic Application

This section is a guideline to creating a basic solution and project by following the required steps. The project detailed in this section uses the ISaGRAF 3 Project template consisting of one device.

To start a new project having one device

- 1. To launch the ACP and create a new solution, perform the following:
 - a) From the Start menu, click All Programs, then ISaGRAF 6.4, and then click Automation Collaborative Platform.

The Workbench is displayed.

b) From the File menu, point to New, then click Project...

A	utomation Collaborative Platform						-	,
File	Edit View Debug Tools Window Help							
	New		Project	Ctrl+Shift+N			- 🖂 🛃 🚰 🔍 🎌	© : ∵
	Open	•		13				
	Close	- 11					Solution Explorer	• # X
a l	Close Solution							
	Save Selected Items Ctrl+S							
	Save Solution As							
0	Save All Ctrl+Shift+	S						
	Subversion	•						
	Recent Projects and Solutions	•						
	Exit Alt+F4							
Out	put							▼ ╄ ×
Sho	w output from: Subversion - AnkhSVN			- 🖗 📣 🕒 =	<u>,</u> 2			
Г								*
								*
4			_		_	_		,
Read	у			I	ln1	Col 1	Ch 1	INS 📑

c) In the New Project dialog box, expand the ISaGRAF 3 projects node, click the Empty template section, and then click the ISaGRAF 3 Project template. You then select *Create directory for solution* and specify a solution name. You must also specify a name and save location for the project, then click OK.

2. In the Solution Explorer, expand the project elements and note the device created from the ISaGRAF 3 Project template.

- 3. Specify the properties for the device.
 - a) In the Solution Explorer, select the device, then from the View menu, click **Properties Window**.

b) In the Properties window, note the definitions for the device properties as well as the application run-time options and compiler options.

Pro	Properties 🔹 🗖 🗙					
Device1 Properties						
⊿	Application Run-time Options					
	Cycle Timing (ms)	25				
	Memory	1000				
	Nb stored errors	16				
	Starting Mode	Real Time				
4	Compiler Options					
	Build binary decision diagrams	False				
	Evaluate constant expressions	False				
	Generate debug information	False				
	Optimize arithmetic operations	False				
	Optimize booleans	False				
	Optimize expressions	False				
	Optimize variable copying	False				
	Run two optimizer passes	1				
	Suppress unused code	False				
	Suppress unused labels	False				
	Use embedded SFC engine	True				
	Host Address	127.0.0.1				
	Host Socket Port	1100				
	Network	TCP/IP				
	Retry	1				
	Serial Port or Port Category	Ip				
	Slave	1				
	Targets					
	Time out (s)	2				
Ар Ар	Application Run-time Options Application Run-time Options					

c) In the Properties window, expand the **Compiler Options** and set *Generate debug information* to **True**.

Pro	perties	▼ □ ×				
D	Device1 Properties -					
⊳	Application Run-time Options					
⊿	Compiler Options					
	Build binary decision diagrams (BDDs)	False				
	Evaluate constant expressions	False				
	Generate debug information	True 🔻				
	Optimize arithmetic operations	True				
	Optimize booleans	False 😡				
	Optimize expressions	raise				
	Optimize variable copying	False				
	Run two optimizer passes	1				
	Suppress unused code	False				
	Suppress unused labels	False				
	Use embedded SFC engine	True				
	Host Address	127.0.0.1				
	Host Socket Port	1100				
	Network	TCP/IP				
	Retry	1				
	Serial Port or Port Category	Ip				
	Slave	1				
	Targets					
	Time out (s)	2				
Generate debug information						
An indicator that determines whether the compiler must generate debug and monitoring information.						

- 4. In the Solution Explorer, add a program and define the program name.
 - a) Right-click the program element, point to Add, then click the desired programming language.

Solution Explorer	▼ □ ×				
E 🔁					
Solution 'MySolution' MyPRJ3 Dependencies 	(1 project)				
1 Function	Add	•		New FBD: Function Block Diagram	
響 Function 一 Define	Paste	Ctrl+V	11-0-	New LD: Ladder Diagram	45
🗊 Global 🖺	Properties	Alt+Enter	2	New ST: Structured Text	

b) Right-click the added program, click **Rename**, then type the desired name in the space provided.

Program names can contain a maximum of eight characters.

5. In the Properties window, define the *Comment* property for the program.

Pro	roperties 🔹 🗖 🗙					
FE	FBDprog Properties 🗸					
	8≣ 2↓ ⊑					
⊿	Misc					
	Comment	Simple FBD program				
	Description					
	Language	FBD				
	Name	FBDprog				
	Туре	Program				
Co	Comment					

- 6. In the language container, add elements to the program.
 - a) From the Solution Explorer, double-click the program instance. The program is displayed in the language container. By default, the Toolbox is auto-hidden as a tab on the left edge of the Integrated Development Environment (IDE).
 - **b)** To display the Toolbox, click the tab so the Toolbox slides into view. From the Window menu, click **Dock**.

The Toolbox window is docked in the IDE.

c) Add a block in the language container.

i) From the Toolbox, drag the **Block** element into the language container.

The Block Selector is displayed.

ii) In the block list, select the required POU, specify the number of inputs (when applicable), then click **OK**.

Block Sel	ector (FBDp	rog)				×
>=1						*
Search					Show Paran	neters
Name	Туре	Category	Comn	nent	Scope	
=1	OPE	Boolean operations	exclusive OR		Standard	
>	OPE	Comparators	greater than		Standard	
>=	OPE	Comparators	greater or equ	ual	Standard	
>=1	OPE	Boolean operations	boolean OR		Standard	
1	OPE	Arithmetic	1 gain		Standard	
abs	SFU	Arithmetic	absolute valu	e	Standard	
acos	SFU	Arithmetic	arc-cosine		Standard	
ANA	OPE	Converters	Ana;convert t	o integer	Standard	
and_mask	SFU	Binary operations	bit to bit mas	k	Standard	•
Inputs :		2 💭				
				ок 🔓	Cance	:

The block is displayed in the language container.

d) Add a variable in the language container.

i) From the Toolbox, drag the Variable element into the language container.

The Variable Selector is displayed, with tabs containing lists for *Global variables*, *Local variables*, *System variables*, *Directly Represented Variables*, and *Defined Words*.

ii) In the *Local Variable* list, enter the variable name, data type, and other required information into the cells provided, then click **OK**.

Var Name Valu	iable Selecto e e1	r		Type BOO	1		- GI	lobal S)evice`	cope 1	- I	ocal Scope FBDprog	
Globa	al Variables - D	Device1	Local	Variables - FBI	Dprog System	n Variables	- Device1 Di	irectly i	Represe	nted Variables - Devi	ice1 Defined V	Vords - Device1
	Name	Data	Туре	StringSize	Dimension	Wiring	Attribute	Di	rection	Modbus Address	IsRetained	InitialValue
	× A'	t	 <i>A</i>[*] 	- A*	✓ A*	<i>→ A</i> *	- 1	e *	- A*	- <i>∂</i> ‡*	▼ 0 ⁴ *	⊤ A
	Value1	BOOL					Read/Write ×	 Var 				
	Value2	BOOL	*				Read/Write 🔹	 Var 	*			
	Result	BOOL	•				Read/Write 🔹	Var	•			
*			*					r -	*			
•												•
											ок	Cancel

The variable is displayed in the language container.

e) Draw links from output to input points (in the direction of the data flow).

- 7. From the Solution Explorer, build the solution, then view any generated errors, warnings, and messages.
 - a) Right-click the solution element, then click **Build Solution**.

		Solution Explorer	₹₽×
		1	
		Solution 'MySolution' (1	project)
**	Build Solution	Ctrl+Shift+B	
	Rebuild Solution	ſ	
	Clean Solution		
	Add	•	
	Set StartUp Projects		15
8	Paste	Ctrl+V	~
	Rename		
	Properties	Alt+Enter	

b) To view the build information, from the View menu, click Output.

Output	•		K
Show output from:	Build - 😽 🖓 🖓 🐺 🗷]	
Post-compiling No error detec	code ted		£.
No error detec Build Complete ====== Bui	ted 0 error(s), 0 warning(s) ld: 1 succeeded, 0 failed, 0 up-to-date, 0 skipped =========]
٠		F.	

c) To view the errors, warnings, and messages generated during the build, from the View menu, click Error List.

Error List				▼ 🗆 ×
🔕 0 Errors 👔 0 Warnings	(i) 0 Messages			
Description	File	Line	Column	Project

- 8. Begin the debugging process, then view the programs and dictionary variables.
 - a) From the Target Execution toolbar, in the Solution Configuration drop-down combo-box, select Simulation.

File Edit V	ew Project Build Debug Tools Window H	Help
i 🛅 🕶 🖮 👻	🛛 🖉 🕹 🖻 🖄 १ - ९ - 📮 - 🖳 🖓	- 🖏 🗮 🕾 🎨 🔗 🕢 📲 📒 🖉 🛍 🖕
1 🖾 🛗 🚠	Simulation 🔹 🕨 😐 🔗 🖅 💭 🐪 🤚	関 🔋 🏶 🎧 🥸 🖉 🖉 Password Cycle Timing (ms):
	Online	
	Simulation	
	Configuration Manager	

b) From the Debug menu, click Start Debugging.

c) From the Solution Explorer, view the program by double-clicking the program element.

Note the debugging information regarding boolean variables is displayed using color: red when True and blue when False. Numerical and textual values are displayed in red.

d) From the Solution Explorer, view the dictionary variables by double-clicking Local Variables for the required program.

FBD	Dprog-VAR ×	FBDprog-POU						-	Solution Explorer $ extsf{4} = extsf{4} imes$
	Name	LogicalValue	PhysicalValue	Lock	DataTyp	e Wiring	Attribute	Direct	
	- A				- 0	a* - d	* ~ <i>R</i> *	•	Solution 'MySolution' (1 project)
	Value1				BOOL	-	Read/Write 🔻	Var	Dependencies
	Value2				BOOL	•	Read/Write 🔻	Var	🔺 🗾 RUN - Device1
	Result	Image: A start and a start			BOOL	-	Read/Write 🝷	Var	Programs
	Value3	1.5			REAL	-	Read/Write 🔻	Var	⊿ 💽 FBDprog
	Value4	2			DINT	-	Read/Write 🔻	Var	E Defined Words
	RealResult	2.25			REAL	-	Read/Write 🔻	Var	E Functions
									Function Blocks
									🖷 Defined Words
									🗊 Global Variables
								•	۰ III ا

Note the logical values are displayed in red. Physical values are only displayed when running online.

9. To stop the debugging process, from the Debug menu, click **Stop Debugging**.

Importing an Existing Application

When importing applications created with **ISaGRAF 3**, some features of your projects are converted for use in the current environment.

Warning: The **ISaGRAF 3 CAM** belonging to **ISaGRAF 6** does not support all the programming languages defined for **ISaGRAF 3**. The Sequential Function Chart (SFC), Flow Chart (FC), and Instruction List (IL) programming languages are not supported and therefore cannot be modified. However, projects containing these programming languages can still be imported and compiled.

To import an ISaGRAF 3 project into ISaGRAF 6

When importing **ISaGRAF 3** projects into **ISaGRAF 6**, the targets associated with the **ISaGRAF 3** projects must be supported by **ISaGRAF 6**.

1. Import the ISaGRAF 3 project into ISaGRAF 6.

A r	utomation Collaborativ	e Platform (Adminis	trator)					- • ×
File	Edit View Debug	Tools Window	Help					
	New		•	🛛 Project 📐 Ctrl+	Shift+N	- 🗟	🛃 😤 🔍 🏷 🕒 🕇	
	Open		•		🖉 💋 Pa	ssword 🚆		
	Close						Solution Explorer	- ₽ ×
Ē	Close Solution							
	Save Selected Items	Ctrl+	s					
	Save Solution As							
9	Save All	Ctrl+	Shift+S					
	Subversion		•					
	Recent Projects and So	olutions	•					
	Exit	Alt+F	-4					
	Output							- ₽ ×
	Show output from: Su	ubversion - AnkhSVN	J.	-	44	🔹 🗵		
					11 1			A
								Ψ.
	4							•
Read	у			Ln 1	l	Col 1	Ch 1	INS

a) From the File menu, point to New, then click **Project**.

b) From the New Project dialog box, expand the **ISaGRAF 3** projects node, click the Import template section, and then click **Import ISaGRAF 3 Project**. You then enter the required information in the fields provided and click **OK**.

New Project				? 💌
Recent Templates		Sort by: Default	• • • •	Search Installed Templates
Installed Templates		Import ISaGRAE 3 Library	CAM Projects	Type: CAM Projects
 CAM Projects ISaGRAF 3 			e anno gees	Import a ISaGRAF 3 project into an ACF Project
Empty		Import ISaGRAF 3 Project	CAM Projects	
Import ISaGRAF 5				
ISaGRAF installed to	emplates			
Name:	MyISa3			
Location:	C:\Users\user\D	ocuments\ISaGRAF 6.3\Projects\	•	Browse
Solution name:	MyISa3_Solution			Create directory for solution
				Add to Subversion
				OK Cancel

c) From the Select an .hie File dialog box, select the ISaGRAF 3 project file, then click **Open**.

You may encounter a message asking if you want to update the database to the current version. To continue the importation process, click **OK**.

Select an *.hie File	ikseq 🕨 blinkseq	✓ 4 Search BLINKSEQ	×
Organize 🔻 New	folder		
Desktop	Name	Type Si	ize
Downloads	appli.hie	HIE File	1 KB
 ➢ Libraries ➢ Documents ➢ Music ➢ Pictures ☑ Videos Idensity Computer ▲ Local Disk (C:) 	E .		
F	File name: appli.hie	✓ ISaGRAF 3 File (appli.h Open v	ie) (appli ▼ Cancel

The **ISaGRAF 3** project is imported.

- 2. View the project in **ISaGRAF 6**.
 - a) In the Solution Explorer, expand the project, device, and program elements, then view the programs by double-clicking the required program instance.

Opened programs are displayed in the language container.

Warning: Since the IL programming language is not supported in **ISaGRAF 6**, the language editor cannot open the *ProgIL* program displayed in the previous example.

- 3. Build the solution, then view any generated errors, warnings, and messages.
 - a) In the Solution Explorer, right-click the solution element, then click Build Solution.

b) To view the build information, from the View menu, click Output.

c) To view the errors, warnings, and messages generated during the build, from the View menu, click Error List.

Error List				▼ 🗆 ×
🔕 0 Errors 🔥 0 Warnings	(i) 0 Messages			
Description	File	Line	Column	Project

- 4. Debug the project.
 - a) To download the application code to the target, in the Solution Explorer, right-click the project element, then click **Download**.

You can monitor the progress of the download operation using the Output window.

b) In the Target Execution toolbar, from the drop-down combo-box, select Online.

c) To begin the debugging process, from the Debug menu, click Start Debugging.

5. To stop the debugging process, from the Debug menu, click **Stop Debugging**.

Dictionary

The Dictionary, i.e., tag editor, is the environment where you manage variables and defined words. The Dictionary is made up of multiple grids having different purposes.

- Defined Words Grid, enables managing the defined words for a project
- Variables Grid, enables managing the variables for devices and programs. Each device and program has its instance of the grid. For devices, the grid displays global variables. For programs, the grid displays local variables.

The grids each display the properties for the type of element. You can open multiple grid instances simultaneously. When working in a grid, you can navigate the cells using the mouse controls. For complex data types, you can expand fields using Ctrl+PLUS SIGN on numeric keypad (+) and collapse fields using Ctrl+MINUS SIGN on numeric keypad (-).

You access Dictionary grids from the Solution Explorer.

You can customize the Dictionary environment by arranging the columns to display and setting the display colors.

To access a Dictionary grid instance

- 1. From the Solution Explorer, expand the project and device nodes.
- 2. For the variables of a device, expand the required device node, then double-click the **Dictionary** element.

The Dictionary instance is displayed containing the variables belonging to the device.

3. For the variables of a program, expand the required program node, then double-click the **Dictionary** element.

The Dictionary instance is displayed containing the variables belonging to the program.

4. For the defined words of a project, double-click the **Defined Words** node.

The Defined Words grid is displayed.

To arrange the columns to display

To retain customized display settings, you must save the Dictionary instance before closing.

1. To move a column, drag the column header to another location.

When dragging a column header, arrows indicate the current position of the header.

- 2. To hide a column, right-click a column header, and then click Hide Column.
- **3.** To show a column, right-click any column header, point to **Show Column**, and then click the required column name.

Defined Words Grid

The Defined Words grid of the Dictionary enables managing the defined words for a project. You can perform the following tasks from the defined words grid:

- Creating defined words
- Editing existing defined words
- Deleting defined words
- Sorting defined words in the grid
- Filtering defined words in the grid

For defined words, the properties are the following:

Column	Description	Possible Values
Name	Name of the defined word	Limited to 32 characters beginning with a letter followed by letters, digits, and underscores. Defined words cannot contain defined words.
Equivalent	String replacing the defined word during compilation. For example, the defined word "PI" is replaced by its equivalent "3.14159"	Limited to 255 characters
Comment	Comment for the defined word	Free-format text

You can customize the Dictionary environment by arranging the columns to display.

To create a defined word

- 1. From the Solution Explorer, double-click the Defined Words node for the project.
- 2. In the Defined Words grid, define the required properties, then press ENTER.

To edit an existing defined word

- 1. From the Solution Explorer, double-click the Defined Words node for the project.
- 2. In the Defined Words grid, make the required changes.

To delete a defined word

You can delete defined words from the Defined Words grid.

- 1. From the Solution Explorer, double-click the Defined Words node for the project.
- 2. In the Defined Words grid, right-click the defined word to delete, and then click Delete.

To sort defined words in the grid

You can sort the defined words in the grid using an ascending or descending order for the individual columns.

- 1. From the Solution Explorer, double-click the Defined Words node for the project.
- 2. In the Defined Words grid, select the required column header.

An arrow showing the current order is displayed on the column header.

3. Toggle the column header to switch between ascending and descending order.

To filter defined words in the grid

You can filter defined words in Defined Words grid. When filtering, you create a view displaying only the defined words containing specified characters.

The filter row is the top row of the grid. You can filter defined words by typing alphabetical and numerical characters in the cells of the filter row. You can also select from the drop-down-combo box. Matching defined words are automatically displayed.

- 1. From the Solution Explorer, double-click the Defined Words node for the project.
- **2.** In the filter row of the Defined Words grid, click the required cell, then do one of the following:

- Type the characters to use in the filtering operation
- Select the required defined word from the drop-down combo-box

See Also

Dictionary

Variables Grid

The variables grid of the Dictionary enables managing the variables for a device or program. Each device and program has its instance of the grid. For devices, the grid displays global variables. For programs, the grid displays the local variables. You can perform the following tasks from the variables grid:

- Creating variables
- Editing existing variables
- Dragging variables
- Deleting variables
- Sorting variables in the grid
- Filtering variables in the grid

For variables of devices or programs, the properties are the following:

Column	Description	Possible Values
Name	Name of the variable	Limited to 32 characters beginning with a letter followed by letters, digits, and single underscore characters. These names cannot have two consecutive underscore characters.
Logical Value	Available while running online, monitoring, and simulating applications. Displays the value used by code being executed on the virtual machine. You can force the value of variables.	Values are displayed according to the variable data type
Physical Value	Available while running online and monitoring applications. Displays the value sent to and received from the drivers. You can force the value of variables.	Values are displayed according to the variable data type

Column	Description	Possible Values
Lock	Available while running online, monitoring, and simulating applications. The indication of whether the value of the variable is locked. Locking operates differently for simple variables, array elements, and function block parameters. For simple variables, individual variables are locked directly. For array elements, locking an element locks all elements of the array.	Yes or No
Data Type	Data type of the variable	BOOL, DINT, REAL, TIME, MESSAGE. To create a one-dimensional array, specify a dimension.
String Size	For String type variables, indicates the maximum length	String capacity is limited to 252 characters excluding the terminating null character (0), a byte for the current length of the string, and a byte for the maximum length of the string
Dimension	The size (number of elements) of an array.	Arrays are only available for the BOOL, DINT, REAL, and TIME data types; these are not available for the MESSAGE type. Arrays can have a maximum of 255 elements. For example, [6] represents a one-dimensional array containing elements from 0 to 5.
Wiring	Read-only cell, generated by the I/O wiring tool indicating the I/O channel to which the variable is wired	Uses the syntax of Directly Represented Variables

Column	Description	Possible Values
Attribute	The property of a variable indicating its read and write access rights.	Read, Write, or Read/Write
Direction	For I/O wiring, indicates whether a variable is an input, output, or internal.	VarInput, VarOutput, or Var
Modbus Address	Modbus address of the variable	Possible variables are Var direction local to programs and functions, or global variables; unavailable variables are input, output, directly represented, and local to function blocks as well as arrays. The format is four hexadecimal digits ranging from 0001 to FFFF.
Retained	The indication of whether the value of the variable is saved by the virtual machine at each cycle. For details on retaining, i.e., backing up, variables, refer to the SYSTEM operator.	Yes or No
Initial Value	Value held by a variable when the virtual machine starts the execution of the device code	The initial value of a variable can be the default value, a value given by the user when the variable is defined or the value of the retain variable after the virtual machine has stopped.
Unit	User-defined text indicating the unit of measure of the logical and physical values	Free format
Comment	User-defined text	Free format

You can customize the Dictionary environment b y arranging the columns to display.

To create a variable

1. From the Solution Explorer, access the Dictionary instance for the required device or program.

2. In an empty row of the variables grid, define the required properties for the variable, then press ENTER.

To edit an existing variable

- 1. From the Solution Explorer, access the Dictionary instance for the required device or program.
- 2. In the variables grid, make the required changes.

To drag a variable

You can drag variables from a Dictionary instance to multiple locations within a project. These locations include other Dictionary instances as well as elements within a language container.

You drag variables to other locations individually. When dragging a variable to another Dictionary instance, you can place the variable anywhere in the grid. When dragging a variable into a language container, you can place the variable anywhere in the language container. To retain changes made to Dictionary instances and language containers, save the respective instance or POU before closing.

- **1.** From the Solution Explorer, access the Dictionary instance containing the required variable and the destination for the variable.
- 2. From the Dictionary instance containing the required variable, in the variables grid, select the variable by clicking the cell in the left-most column.

The selection indicator (\mathbf{b}) is displayed in the leftmost column.

3. Drag **>**, placing the variable in the grid or open language container.

The variable is displayed at the destination.

To delete a variable

You can delete variables from Dictionary instances. Deleting variables from an instance opened for a program element removes the variables from the instance only

- 1. From the Solution Explorer, access the Dictionary instance for the required device or program.
- 2. In the variables grid, right-click the variable to delete, then click **Delete**.

To sort variables in the grid

You can sort the variables in the grid using an ascending or descending order for the individual columns.

- 1. From the Solution Explorer, access the Dictionary instance for the required device or program.
- 2. In the variables grid, select the required column header.

An arrow showing the current order is displayed on the column header.

3. Toggle the column header to switch between ascending and descending order.

To filter variables in the grid

You can filter variables in variables grid instances. When filtering, you create a view displaying only the variables containing specified characters.

The filter row is the top row of the grid. You can filter variables by typing alphabetical and numerical characters in the cells of the filter row.You can also select from the drop-down-combo box. Matching variables are automatically displayed.

- 1. From the Solution Explorer, access the Dictionary instance for the required device or program.
- 2. In the filter row of the variables grid, click the required cell, then do one of the following:
 - Type the characters to use in the filtering operation
 - Select the required defined word from the drop-down combo-box

See Also Dictionary

Device View

The device view is a graphical environment enabling navigation through project elements such as POUs. The navigation consists of vertical links on the left pane and a breadcrumbs trail in the address field. For a device, you can access the following information:

- The programs defined in a device. You can open individual programs by double-clicking the required instance. You can also view the local defined words.
- The user-defined functions and function blocks defined in a device. You can view the parameters by single-clicking the instance or open the POU by double-clicking the instance. You can also view the local defined words.
- Other elements attached to the device including ISaVIEW screens and global defined words.

To access the Device View

• In the Solution Explorer, right-click the required device, and then click **Open**.

The device view is displayed in the workspace.

To display device elements

- 1. For programs, click in on the **Programs** item, then perform the following:
 - To open a program in the language container, double-click the required program instance.
 - To display the local defined words for a program, expand the arrow beside the required program instance, then double-click **Defined Words**.
- 2. For functions, click \ge on the **Functions** item, then perform the following:

- To display the Parameters view for a function, click the required function instance.
- To open a function in the language container, double-click the function instance.
- To display the local defined words for a function, expand the arrow beside the required function instance, then double-click **Defined Words**.
- **3.** For function blocks, click in the **Function Blocks** item, then perform the following:
 - To display the Parameters view for a function block, click the function block instance.
 - To open a function block in the language container, double-click the function block instance.
 - To display the local defined words for a function block, expand the arrow beside the required function block instance, then double-click **Defined Words**.
- 4. To display global defined words, click in on the Others item, then double-click **Defined Words**.
- 5. To display ISaVIEW screens, click ^ĭ on the Others item, then double-click the required ISaVIEW instance.

I/O Wiring

I/O wiring enables the definition of connections between variables defined for a project and channels of complex equipment or I/O boards existing on a target system. Complex equipment and I/O boards are available for use in a project when these are defined in a library to which a dependency exists.

The I/O wiring instance for a device represents a hardware rack having multiple slots for complex equipment and I/O boards. A rack can contain up to 255 boards where each board can have up to 128 I/O channels. The total number of single I/O boards (including single equipment and boards of complex equipment) cannot exceed 255.

The I/O wiring view consists of two sections:

- A rack list, displaying defined complex equipment and I/O boards in the slots. An order number identifies each slot. Expanding the equipment accesses information and single devices.
- A channel variables list, enabling the association of channels with variables. This list displays the name of all variables. When online, the channel variables list also displays the logical value, physical value, and lock status of all variables.

You define connections from the I/O Wiring view where you add complex equipment and I/O boards, then wire the channels to variables. When defining I/O wiring for the first time, a device instance is empty.

The I/O Wiring toolbar enables performing many tasks in device instances:

Adding complex equipment and I/O boards to the rack list

Deleting complex equipment and I/O boards from the rack list

Freeing all channels of a complex equipment or I/O board

Toggles a complex equipment or I/O board between real and virtual

Displays the complete names of equipment

Displays the empty slots in the rack list

Expands all complex equipment and I/O boards to display their information

Reduces all complex equipment and I/O boards to hide their information

To define connections between complex equipment or I/O board channels and variables

- 1. From the Solution Explorer, right-click a device, then click I/O Wiring.
- 2. Add complex equipment and I/O boards to the rack list.
- **3.** Select the individual I/O boards and connect the individual channels to the required variables, in the channel variables list. To display the channels for complex equipment, access the individual simple devices by clicking the Devices tab.

See Also I/O Devices I/O Channels

I/O Devices

An I/O device represents a complex equipment or an I/O board. Individual single equipment and I/O boards can have up to 128 I/O channels. An I/O device contains channels having the same data type and direction.

When adding I/O devices, the Device Selector enables selecting from complex equipment and I/O boards available from a library to which a dependency exists. Each device is automatically assigned a device order number ranging from 0 to 254 and has a defined number of channels. You can include a comment.

While running online, when devices are set to real, I/O variables are directly linked to the corresponding I/O devices. Input or output operations in the programs correspond directly to the input or output conditions of the actual I/O device fields. When devices are set to virtual, I/O variables are processed and updated in memory. The debugger can read or update these to enable simulating I/O processing, but no actual connection is made.

When adding complex devices, the number of channels, i.e., device size, of individual simple devices making up a complex device varies depending on the definition of the complex device in the library.

You manage I/O devices from the rack list containing the following types:

	Real complex equipment	
Pas	Virtual complex equipment (indica by the flag)	ited
1: xbo8	Real I/O board	
ان 1: xbo8	Virtual I/O board (indicated by the	
	flag)	

When selecting I/O devices, you can access their properties by expanding individual devices.

From the I/O Wiring view, you can perform the following tasks when managing I/O devices:

- Adding I/O devices
- Freeing the channels of I/O devices
- Toggling I/O devices between real and virtual
- Accessing simple devices of complex equipment
- Displaying I/O device information
- Deleting I/O devices

To add an I/O device

I/O devices are available for use in a project when these are defined in a library to which a dependency exists.

1. On the I/O Wiring toolbar, click

The device order number and number of channels is defined for the I/O device in the library. You can add a comment for the I/O device.

To free the channels of an I/O device

- 1. From the rack list, select the I/O device for which to free all channels.
- 2. From the I/O Wiring toolbar, click

To toggle the real/virtual attribute

You can toggle between the real and virtual attribute for a selected I/O device. Virtual I/O devices are displayed with a red star.

1. From the rack list, select the I/O device for which to change the attribute.

2. From the I/O Wiring toolbar, click

To access simple devices of complex equipment

- 1. From the rack list, expand the required I/O device by clicking \square .
- 2. To view simple devices of a complex equipment, click **Devices**.

To display I/O device information

You can toggle between displaying and hiding I/O device information.

- 1. From the rack list, expand the required I/O device by clicking \square .
- 2. To view information about the device, click Info.

To delete an I/O device

You can delete devices. When deleting devices, all variables are unwired from the device.

- 1. From the rack list, select the I/O device to delete.
- 2. From the I/O Wiring toolbar, click

The device is removed from the rack list.

See Also I/O Wiring

I/O Channels

I/O channels represent hardware I/O points. These can be inputs or outputs. A variable is generally connected to a channel to be used in POUs. Directly represented variables can also be used in POUs. When adding I/O devices, the number of channels is defined for the device. All I/O channels of a device have the same type and direction.

You wire variables to channels of an I/O device in the channel variables list. In this list, the displayed variable names are their direct representations.

You can use direct variable representation (%IX1.1) to access I/O values when I/O channels have no wiring.

An unwired channel is represented in the Dictionary as a directly represented variable under the same name. Wiring the channel removes its Dictionary instance.

After wiring channels of a device to variables, you can choose to free all wired channels of a device.

When debugging, you can choose to lock, unlock, and force the values of I/O variables.

To wire the channels of an I/O device

- 1. Access the I/O Wiring for the required device.
- 2. From the rack list, click the I/O device having the I/O channels to wire. For complex devices, expand the device to access the simple devices, then click **Devices**.
- 3. In the channels variable list, double-click the channel to wire.
- 4. From the Variable Selector, select the variable for the channel, then click OK.

The channel's Name field indicates the wired variable's direct representation.

5. To set conversion operations for channels, select the channel in the list, then from the Conversion Function field, choose the required operation from the drop-down list:

- For Boolean channels, set the direct or reversion operations
- For numerical channels, set a Gain and Offset factor

To free individual channels of an I/O device

You can free individual wired channels.

- 1. Access the I/O Wiring for the device and select the channel to unwire. To unwire multiple channels, hold the Ctrl button while clicking each required channel.
- 2. To unwire individual channels, right-click, and then click Free selected channels.

To lock and unlock an I/O variable

While debugging, you can lock and unlock I/O variables.

- 1. Access the I/O Wiring for the device and select the channel to lock or unlock. To lock or unlock multiple channels, hold the Ctrl button while selecting each required channel.
- 2. To lock or unlock the variable, right-click the variable, and then click Toggle lock on selected channels.

To force the value of an I/O variable

While debugging, you can force the values of locked I/O variables. Variable direction is determined from the direct representation definition for the I/O wiring.

- 1. Access the I/O Wiring for the device and locate the required variable.
- 2. Write the required value in the respective value column:
 - For an input variable, write the value in the *Logical Value* column.
 - For an output variable, write the value in the *Physical Value* column.
- 3. To unlock a variable, click the checkbox in the *Lock* column.

See Also

I/O Devices

I/O Wiring

I/O Conversions

You can apply conversion operations to I/O variables. These conversions are possible using two methods:

- Conversion Tables
- Conversion Functions

Conversion Tables

A conversion table is a set of points defining an analog conversion. You can attach a conversion table to an analog input or output variable to create a proportional relationship between electrical values (read on input sensor or sent to the output device) and physical values (used in application programming).

A conversion table enables filtering the values of any input or output analog variable of a project. You attach a conversion table to a variable from a dictionary instance.

You create conversion tables from the device level before attaching these to variables.

To create a conversion table

1. From the Solution Explorer, right-click the device, and then click Conversion Tables.

The Conversion Tables editor is displayed.

2. In the Conversion Tables section, click Add.

A conversion table is added to the list.

3. In the Details section, specify a name for the conversion table, then define the required points for the conversion by clicking Add and specifying the electrical and physical values.

To edit the points of an existing conversion table

- 1. From the Solution Explorer, right-click the device, and then click Conversion Tables.
- 2. In the Conversion Tables section, select the conversion table to modify.
- 3. In the Details section, perform the required modifications:
- To edit the values of existing points, replace the required value then press Enter.
- To add a set of points, click Add, then specify the values for the point.
- To remove a set of points, select the points and click **Remove**.

To delete a conversion table

- 1. From the Solution Explorer, right-click the device, and then click **Conversion Tables**.
- 2. In the Conversion Tables section, select the conversion table to remove, then click **Remove**.

Conversion Functions

Conversion functions are "C" functions creating a relationship between an electrical value of a variable (read on the input sensor or sent to the output device) and its physical value (used in the application expressions). Such functions are called by the I/O manager each time an analog variable using the conversion is input to or output from the project. Conversion functions are divided into two parts: input conversion and output conversion.

You can apply conversion functions to integer or real analog variables since these are always defined using floating values. You attach a conversion function to a variable from a dictionary instance.

The interface is the same for all conversion functions. You provide the "C" definition for this interface in the "TACN0DEF.H" definition file. The library manager enables controlling the "C" source code of a conversion function.

I/O Wiring Keyboard Shortcuts

The following keyboard shortcuts are available for use with I/O wiring. Some shortcuts do not apply or may differ while debugging.

Ctrl+N	Adds a device (not available while debugging)
Ctrl+F	Frees all channels of selected devices (not available while debugging)
Ctrl+R	Frees selected channels of a device (not available while debugging)
Ctrl+H	Toggles between a real or virtual I/O device (not available while debugging)
Ctrl+L	While debugging, toggles between locking and unlocking selected channels

FBD Language

The Functional Block Diagram (FBD) is a graphic language enabling programmers to build complex procedures by taking existing functions from the standard library, function section, or function block section.

In FBD containers, you can also include LD elements such as coils, contacts, jumps, labels, and returns. However, in contrast to LD elements usage in LD containers where these elements follow strict graphical positioning regulations, LD elements within FBD container are independent of these regulations.

See Also FBD Diagram Main Format Debugging FBD Programs

FBD Diagram Main Format

FBD diagrams describe a process between input variables and output variables. A process is described as a set of elementary blocks. Input and output variables are connected to blocks by connection lines. Outputs of blocks can also be connected to inputs of other blocks.

An entire process represented by an FBD program is built using the available variables, operators, functions, and function blocks. Each block has either a fixed or defined number of input and output connection points. A block is represented by a single rectangle. The inputs are connected on its left border. The outputs are connected on its right border. An elementary block performs a single function between its inputs and its outputs. The name of the function to be performed by the block is written inside its rectangular shape. Each input or output of a block is labeled and has a well defined type.

Input variables of an FBD program must be connected to input connection points of blocks. The type of each variable must be the same as the type expected for the associated input. An input for FBD diagram can be a literal, any internal or input variable, an output variable, or a block output.

Output variables of an FBD program must be connected to output connection points of blocks. The type of each variable must be the same as the type expected for the associated block output. An output for FBD diagram can be any internal or output variable, or the name of the function (for functions only). When an output is the name of the currently edited function, it represents the assignment of the return value for the function (returned to the calling program).

Input and output variables, inputs and outputs of the blocks are wired together with connection lines, or links. Single lines can be used to connect two logical points of a diagram:

- An input variable and an input of a block
- An output of a block and an input of another block
- An output of a block and an output variable

The connection is oriented, meaning that the line carries associated data from left to right. The left and right ends of the connection line must be of the same data type.

Vertical bars accept several connections on the left and several connections on the right. Each connection on the right is equal to the OR combination of the connections on the left. All ends of the connections must be of the same data type.

See Also

Execution Order of FBD Programs

Execution Order of FBD Programs

You can show the order of execution in the form of numerical tags for the following elements in an FBD program: coils, contacts, LD vertical connections, corners, returns, jumps, functions, operators, function blocks, and variables where a value is assigned in the program. When the order cannot be determined, the tags display question marks (?). You can perform this task from the menu bar, the toolbar, or keyboard shortcut (Ctrl+W).

For the execution order of a program, a block is any object in the diagram, a network is a sequence of connected blocks, and the position of a block is based on its top-left corner. The following rules apply to the execution order of the program:

- Networks are executed from left to right, top to bottom.
- All inputs must be resolved before executing the block. When the inputs of two or more blocks are resolved at the same time, the decision for the execution is based on the position of the block (left to right and top to bottom).
- The outputs of a block are executed recursively from left to right and top to bottom.

Debugging FBD Programs

When power flow debugging FBD programs, you can monitor the output values of elements. These values are displayed using color, numeric, or textual values according to their data type:

• Output values of boolean type are displayed using color. The output value color continues to the next input. When the output value is unavailable, boolean elements remain black. The colors are red when True and blue when False.

• Output values of DINT, REAL, TIME, and MESSAGE type are displayed as a numeric or textual value in the element.

When the output value for a numeric or textual value is unavailable, the *WAIT* text is displayed in the output label. Values are also displayed in the corresponding dictionary instance.

FBD Elements

When programming in FBD, you place elements in the workspace by dragging them from the Toolbox into the language container. For FBD POUs, the following elements are available:

- Blocks
- Variables
- Vertical Bars
- Labels
- Jumps
- Returns
- Rungs
- Left Power Rails
- Right Power Rails
- Coils
- Contacts
- Regions
- Comments

See Also

FBD Diagram Main Format Execution Order of FBD Programs

Blocks

Block elements can be operators, functions, or function blocks. You connect block inputs and outputs to variables, contacts or coils, or other block inputs and outputs. You insert block elements in language containers.

Functions and function blocks are represented by a box displaying the name of the function, function block, or operator, and the parameter names.

For functions, the return parameter is the only output. For function blocks, multiple return parameters can provide multiple outputs. The return parameter of a function has the same name as the function. The return parameters of a function block can have any name.

You define the parameters of POUs in the Parameters view.

For loops in blocks, you need to use local variables since these are initialized with a value. When using loops, the first execution may produce incorrect outputs due to the execution order of elements in the diagram or the initial values of temporary variables. For example, the following diagram produces a warning when compiling since the TON block is executed before the XOR operator. Whereas, moving the XOR operator to the upper left corner of the diagram eliminates the warning since the XOR operator becomes first in the execution order.

You can resize blocks elements.

To access the Parameters view

The Parameters view is available from functions or function blocks located in the Solution Explorer.

1. In the Solution Explorer, right-click the required function or function block, then click **Parameters** in the contextual menu.

The Parameters view is displayed.

2. To define the parameters of a function or function block, select the block, then enter the required information in the fields provided.

To insert a block element

1. From the Toolbox, drag the block element into the language container.

The block selector is displayed.

2. In the Block Selector, choose the required function block, then click **OK**. You can sort the block list according to the columns by setting these in ascending or descending order.

The selected block is displayed in the language container.

See Also

FBD Diagram Main Format

Variables

To connect a new symbol to an existing one (another variable, a block input, or a block output) in the workspace, keep the mouse button depressed (the cursor becomes a "ghost" symbol) and drag the element until its connecting line on the left (or right) overlaps an existing connecting point. When the mouse is released, the new symbol is automatically created and linked.

Drag to place the existing element:

Release the mouse button. The variable is automatically connected:

You replace existing variables in POUs by double-clicking them to access the Variable Selector or single-clicking them to select from a drop-down combo-box containing the global and local variables. Also, you can single-click a variable, then type a literal value in the text box provided. When inserting literal values beginning with a letter or an underscore, enclose these in single quotes as follows: 'abc'.

Select a variable from the drop-down combo-box:

Type a literal value in the text box:

'value2'	
ABCD	~
abcdefg	
acknowledge	
add_elt	
ai10	
ai101	
ai102	
ai51	*

When selecting items such as local variables, global variables, and defined words from the drop-down combo-box, typing characters in the text box focuses on the possible items.

For input and output variables, you can choose to display comments entered in the dictionary. From the View menu, you can access the Properties window where you can define the *Comment Position* property.

Properties	▼ □ ×	Val1 Comment
Variable Style	(Val1)	
<mark>₿≣</mark> ≵↓ 📼		Тип
🖻 Variable Style		
Background Color	SteelBlue	
Background Gradient Color	LightSteelBlue	
Comment Position	Тор 🔽	
Display Mode	None	
Transparency	Тор	
Comment Position Position of the comment in refer shape. Possible values are top,	Bottom ^{NS} Left Right	

You can resize variables displayed in the workspace.

To insert a variable

1. From the Toolbox, drag the variable element into the language container.

The Variable Selector is displayed.

2. In the Variable Selector, select the required variable, then click **OK**.

The variable is displayed in the language container.

See Also

FBD Diagram Main Format

Vertical Bars

Vertical bars are graphic components of FBD programs enables closing multiple parallel links. More than one horizontal links on the left side of a vertical bar are connected to one link on the right side. The Boolean state of the right end is the logical OR between all the left extremities.

To insert a vertical bar

• From the Toolbox, drag the vertical bar element into the language container.

The vertical bar is displayed in the language container.

Labels

Labels can be placed anywhere in an FBD diagram. These are used as a target for jump instructions, to change the execution order of the diagram. Labels are not connected to other elements.

Place labels on the left of the diagram in order to increase diagram readability.

Labels are used to control the execution of the diagram. No other object may be connected on the right of a label symbol.

If the connection line on the left of the jump symbol has the Boolean state TRUE, the execution of the program directly jumps to after the corresponding label symbol.

Example

To insert a label

- 1. From the Toolbox, drag the label element into the language container.
- 2. In the language container, click the label, then type a label name in the space provided.

The label is displayed in the language container.

See Also

Jumps

Jumps

A Jump symbol must be linked to a Boolean point. When this Boolean (left) connection is TRUE, the execution of the diagram Jumps directly to the target Label.

Jumps are used to control the execution of the diagram. No other object may be connected on the right of a jump symbol.

If the connection line on the left of the jump symbol has the Boolean state TRUE, the execution of the program directly jumps to after the corresponding label symbol.

Example

To insert a jump to a label

Before inserting jumps, define one or more labels within the program.

- 1. From the Toolbox, drag the jump element into the language container.
- **2.** In the language container, click the jump element, then select the required label name from the drop-down combo-box.

The jump is displayed in the language container with the required label name.

See Also

Labels

Returns

If the connection line (to the left of the Return symbol) has the Boolean state TRUE, the Program ends - no further part of the diagram is executed.

No connection can be put on the right of a RETURN symbol.

The "<RETURN>" keyword may occur as a diagram output. It must be connected to a Boolean output connection point of a block. The RETURN statement represents a Conditional End of the program: if the output of the box connected to the statement has the Boolean value TRUE, the end (remaining part) of the diagram is not executed.

Example

(* ST equivalence: *)

```
If auto_mode OR alarm Then
Return;
End_if;
bo67 := (bi10 AND bi23) OR x cmd;
```

To insert a return

• From the **Toolbox**, drag the return element into the language container.

The return is displayed in the language container.

Rungs

Rungs are graphic components of FBD programs and represent a group of circuit elements leading to the activation of a coil. Dragging the rung element into the workspace inserts a left power rail linked to a right power rail. Also, the rung contains a direct contact and a direct coil. Error symbols () indicate that the direct contact and direct coil are undefined.

To insert a rung

• From the Toolbox, drag the rung element into the language container.

The rung is displayed in the language container.

Left Power Rails

Left Power Rails are graphic components of FBD programs that represent the left boundary of a rung. Any horizontal link connected to a left power rail has the boolean state TRUE.

You can link left power rails to right power rails as well as many FBD and LD elements, including variables, blocks, jumps, returns, vertical bars, coils, and contacts.

To insert a left power rail

• From the Toolbox, drag the left power rail element into the language container.

The left power rail is displayed in the language container.

Right Power Rails

Right Power Rails are graphic components of FBD programs that represent the right boundary of a rung.

You can link right power rails to left power rails as well as many FBD and LD elements, including variables, blocks, vertical bars, coils, and contacts.

To insert a right power rail

• From the Toolbox, drag the right power rail element into the language container.

The right power rail is displayed in the language container.

Coils

Coils are graphic components of LD programs that you can use in FBD programs representing the assignment of Boolean outputs. A coil represents an action. It must be connected on the left to a Boolean symbol, such as a contact or the Boolean output of a block.

The following types of coils are available from the FBD toolbox:

- Direct Coil
- Reverse Coil
- Set Coil
- Reset Coil

You can change the type of a coil at any time following its insertion.

When inserting coils in POUs, you assign variables using the Variable Selector. Names of assigned variables are displayed above the coil elements within POUs. You replace existing variables by double-clicking the variable names to access the Variable Selector or by single-clicking variable names to select from drop-down combo-boxes containing the global and local variables. Also, you can single-click existing variables, then type literal values in the text boxes provided. When inserting literal values beginning with a letter or an underscore, enclose the variable name in single quotes as follows: 'abc'.

Select a variable from the drop-down combo-box:

Type a literal value in the text box:

'value2'	
ABCD	~
abcdefg	
acknowledge	
add_ett	
ai10	
ai101	
ai102	
ai51	\sim

To insert a coil

You can insert coils from the Toolbox.

1. From the Toolbox, drag the desired coil type into the language container and place it on the rung.

The Variable Selector is displayed.

2. In the Variable Selector, select the required variable, then click **OK**.

The coil element and its associated variable name are displayed in the language container.

To insert a parallel coil

- 1. From the Toolbox, drag a coil element into the language container while placing it parallel to the existing coil.
- 2. Drag the left and right connections to the respective connection points on the rung.

The required coil is displayed on the parallel branch.

To change the type of a coil

• In the language container, select the coil, then select the required type in the Modifier property of the Properties window.

Direct Coil

Direct Coils enable a Boolean output of a connection line Boolean state.

Left Right Connection

The associated variable is assigned with the Boolean state of the left connection. The state of the left connection is propagated into the right connection. The right connection can be connected to the right vertical power rail.

The associated name can be the name of the program (for functions only). This corresponds to the assignment of the return value of the function.

Example

(* ST Equivalence: *)

output1 := input1; output2 := input1;

See Also

Coils

Reverse Coil

Reverse coils enable a Boolean output according to the Boolean negation of a connection line state.

Left Right Connection Connection

The associated variable is assigned with the Boolean negation of the state of the left connection. The state of the left connection is propagated into the right connection. The right connection can be connected to the right vertical power rail.

The associated name can be the name of the program (for functions only). This corresponds to the assignment of the return value of the function.

Example

(* ST Equivalence: *)

```
output1 := NOT (input1);
output2 := input1;
```

See Also

Coils

Set Coil

Set coils enable a Boolean output of a connection line Boolean state.

Left Right Connection

The associated variable is set to TRUE when the boolean state of the left connection becomes TRUE. The output variable keeps this value until an inverse order is made by a RESET coil. The state of the left connection is propagated into the right connection. The right connection can be connected to the right vertical power rail.

Example

See Also

Coils

Reset Coil

Reset coils enable Boolean output of a connection line Boolean state.

Left Right Connection

The associated variable is reset to FALSE when the Boolean state of the left connection becomes TRUE. The output variable keeps this value until an inverse order is made by a SET coil. The state of the left connection is propagated into the right connection. The right connection can be connected to the right vertical power rail.

Example

See Also

Coils

Contacts

Contacts are graphic components of LD diagrams that you can use in FBD programs. Depending on the type of contact, it represents the value or function of an input or internal variable.

The following contact types are available from the FBD toolbox:

- Direct Contact
- Reverse Contact
- Pulse Rising Edge Contact
- Pulse Falling Edge Contact

You can change the type of a contact at any time following its insertion.

When inserting contacts in POUs, you assign variables using the Variable Selector. Names of assigned variables are displayed above the contact elements within POUs. You replace existing variables by double-clicking the variable names to access the Variable Selector or by single-clicking variable names to select from drop-down combo-boxes containing the global and local variables. Also, you can single-click existing variables, then type literal values in the text boxes provided. When inserting literal values that being with a letter or an underscore, enclose the variable name in single quotes as follows: 'abc'.

Select a variable from the drop-down combo-box:

Type a literal value in the text box:

'value2'	
ABCD abodefo	^
acknowledge	
add_elt ai10	
ai101	
ar102 ai51	~

To insert a contact

You can insert contacts from the Toolbox.

1. From the Toolbox, drag the desired contact type into the language container and place it on the rung.

The Variable Selector is displayed.

2. In the Variable Selector, select the required variable, then click **OK**.

The contact and its associated variable name are displayed in the language container.

To insert a parallel contact

- 1. From the Toolbox, drag the contact element into the language container while placing it parallel to the existing contact.
- 2. Drag the left and right connections to the respective connection points on the rung.

The required contact is displayed on the parallel branch.

To change the type of a contact

• In the language container, select the contact, then select the required type in the Modifier property of the Properties window.

Direct Contact

Direct contacts enable a Boolean operation between a connection line state and a Boolean variable.

Left Right Connection

The state of the connection line on the right of the contact is the logical AND between the state of the left connection line and the value of the variable associated with the contact.

Example

(* ST Equivalence: *)

output1 := input1 AND input2;

See Also

Contacts

Reverse Contact

Reverse contacts enable a Boolean operation between a connection line state and the Boolean negation of a Boolean variable.

Left Right Connection Connection

The state of the connection line on the right of the contact is the logical AND between the state of the left connection line and the Boolean negation of the value of the variable associated with the contact.

Example

(* ST Equivalence: *) output1 := NOT (input1) AND NOT (input2);

See Also

Contacts
Pulse Rising Edge Contact

Pulse rising edge (positive) contacts enable a Boolean operation between a connection line state and the rising edge of a Boolean variable.

Left Right Connection

The state of the connection line on the right of the contact is set to TRUE when the state of the connection line on the left is TRUE, and the state of the associated variable rises from FALSE to TRUE. The state is reset to FALSE in all other cases.

Example

(* ST Equivalence: *)

output1 := input1 AND (input2 AND NOT (input2prev));

(* input2prev is the value of input2 at the previous cycle *)

See Also

Pulse Falling Edge Contact

Pulse falling edge (negative) contacts enable a Boolean operation between a connection line state and the falling edge of a Boolean variable.

Left Right Connection Connection

The state of the connection line on the right of the contact is set to TRUE when the state of the connection line on the left is TRUE, and the state of the associated variable falls from TRUE to FALSE. The state is reset to FALSE in all other cases.

Example

(* ST Equivalence: *)

output1 := input1 AND (NOT (input2) AND input2prev);

(* input2prev is the value of input2 at the previous cycle *)

See Also

Regions

Regions delineate and group together areas of an FBD POU. A region consists of a header and a delineated zone grouping together elements. The header section enables entering free-format text. After entering text in the header, click elsewhere in the region to exit editing mode. When moving the location of a region in the language container, you can also move all the content grouped within. You can resize regions.

Region text	***		

Addition Block		
DINT Var1	in1 q DINT DINT DINT DINT	UarOut

To insert a region

• From the Toolbox, drag the region element into the language container.

The region element is displayed in the language container.

To move a region

- 1. In the language container, left-click the top right corner of the region element and hold the mouse button.
- 2. Drag the region element to the required location and release the mouse button.

The region and the elements contained inside have moved location in the language container.

See Also

Comments

Comments

Comments are free format text inserted anywhere in the FBD POU, for documentation purposes only. After entering text, click elsewhere in the workspace to exit editing mode.

You can expand and collapse comment elements displayed in the workspace by clicking the maximize and minimize buttons. You can also resize comments.

To insert a comment

You can apply text formatting options including bold, italic, underline, strikethrough, and justify from the Description Editor toolbar. You can also define the foreground color.

- 1. From the Toolbox, drag the comment element into the language container.
- **2.** In the language container, double-click the comment, then type the required text within the space provided.

The comment is displayed in the language container.

FBD Keyboard Shortcuts

The following keyboard shortcuts are available for use with the FBD language. Some shortcuts do not apply or may differ while debugging.

Ctrl+A	Selects all elements (not available while debugging)
Ctrl+C	Copies the selected elements to the clipboard (not available while debugging)
Ctrl+V	Pastes elements saved on the clipboard to the insertion point (not available while debugging)
Ctrl+X	Cuts the selected elements to the clipboard (not available while debugging)
Ctrl+Y	Redoes the previous command (not available while debugging)
Ctrl+Z	Undoes the previous command (not available while debugging)
Shift+Ctrl+Alt+G	Enables/disables the grid in the language container
Shift+Alt+Enter	Toggles between full-screen and windowed modes
Ctrl+R	Toggles between Auto-Input and Manual-Input. Auto-Input automatically opens the Block Selector and Variable Selector (not available while debugging).
Ctrl+B	Bolds selected comment text (not available while debugging)
Ctrl+I	Italicizes selected comment text (not available while debugging)
Ctrl+U	Underlines selected comment text (not available while debugging)
Enter	When a function block is selected, opens the Block Selector (not available while debugging).
	When a variable is selected, opens the Variable Selector (not available while debugging).
	When a comment is selected, starts editing it (not available while debugging).
Ctrl+Enter	When a variable is selected, opens the drop-down list of available variables (not available while debugging).
	When editing a comment, confirms the text (not available while debugging).
Ctrl+-	Decreases the magnification

Ctrl+=	Increases the magnification
Ctrl+0	100% magnification
Ctrl+1	Inserts a variable (not available while debugging)
Ctrl+2	Inserts a function block (not available while debugging)
Ctrl+3	Inserts a comment (not available while debugging)
Shift+Up Arrow	Reduces the height of the selected element (not available while debugging)
Shift+Down Arrow	Increases the height of the selected element (not available while debugging)
Shift+Left Arrow	Reduces the width of the selected element (not available while debugging)
Shift+Right Arrow	Increases the width of the selected element (not available while debugging)
Ctrl+Up Arrow	Moves the selection to the next element located higher in the diagram without keeping the previous element selected. While debugging, scrolls up.
Ctrl+Down Arrow	Moves the selection to the next element located lower in the diagram without keeping the previous element selected. While debugging, scrolls down.
Ctrl+Left Arrow	Moves the selection to the next element located to the left in the diagram without keeping the previous element selected. While debugging, scrolls left.
Ctrl+Right Arrow	Moves the selection to the next element located to the right in the diagram without keeping the previous element selected. While debugging, scrolls right.
Alt+Shift+Up Arrow	When a function block is selected, navigates up the different inputs and outputs (not available while debugging)
Alt+Shift+Down Arrow	When a function block is selected, navigates down the different inputs and outputs (not available while debugging)
Alt+Shift+Left Arrow	When a function block is selected, navigates left across the different inputs and outputs (not available while debugging)
Alt+Shift+Right Arrow	When a function block is selected, navigates right across the different inputs and outputs (not available while debugging)

Ctrl+Page Up	Jumps to the top of the language container	
Ctrl+Page Down	Jumps to the bottom of the language container	
Alt+Up Arrow	Scrolls up	
Alt+Down Arrow	Scrolls down	
Alt+Left Arrow	Scrolls left	
Alt+Right Arrow	Scrolls right	
Up Arrow	Moves selected elements up the language container. While debugging, scrolls up.	
Down Arrow	Moves selected elements down the language container. While debugging, scrolls down.	
Left Arrow	Moves selected elements left across the language container. While debugging, scrolls left.	
Right Arrow	Moves selected elements right across the language container. While debugging, scrolls right.	
Delete	Removes the selected elements (not available while debugging)	

LD Language

Ladder Diagram (LD) is a graphic representation of Boolean equations, combining contacts (input arguments) with coils (output results). The LD language enables the description of tests and modifications of Boolean data by placing graphic symbols into the program chart. LD graphic symbols are organized within the chart as an electric contact diagram. Thus, the term "ladder" coming from the concept of rungs connected to vertical power rails at both ends where each rung represents an individual circuit.

You can adjust editor and view settings for individual or all Ladder Diagrams. When working in a Ladder Diagram, you set the properties for the diagram from the Container properties in the Properties window. You set the properties for all Ladder Diagrams using the options available from the Tools menu. Some of the available properties include the following:

- background and gradient colors for operators, functions, and function blocks
- displaying the grid as well as the height and width of grid cells, in pixels
- the height and width of elements, in grid cells. Basic elements are blocks without inputs or outputs, coils, and contacts. For blocks, each input and output adds a basic element dimension. For example, note the contact using the default settings of one grid cell high by four grid cells wide. The following block uses a basic element width for the inputs, another for the block, and another for the outputs. The block uses a basic element height for the EN/ENO level, another for the first input and the output, and another for the second input.

- the font type, size, style, and color applied to the text displayed in elements
- various options such as displaying comments and labels, aligning coils, and setting the colors for variables, labels, comments, power rails, and rung headers

See Also

Debugging LD Programs

Debugging LD Programs

When power flow debugging LD programs, you can monitor the output values of elements. These values are displayed using color, numeric, or textual values according to their data type:

- Output values of boolean type are displayed using color. The output value color continues to the next input. When the output value is unavailable, boolean elements remain black. The default colors are red when True and blue when False. You can customize the colors used for boolean items.
- Output values of DINT, REAL, TIME, and MESSAGE type are displayed as a numeric or textual value in the element. When the output is a structure type, the displayed value is the selected member.

When the output value for a numeric or textual value is unavailable, the *WAIT* text is displayed in the output label. Transitional elements such as Pulse rising edge (positive) contacts, having an unstable state, remain black. Values are also displayed in the corresponding dictionary instance.

When the device is in the DEBUGGING state, you can choose to perform one of the following operations:

- Switch execution to real-time mode
- Switch execution to cycle-to-cycle mode
- Execute one cycle

To switch execution to real-time mode

• From the Target Execution toolbar, click 🙆.

The POU executes in real-time mode.

To switch execution to cycle-to-cycle mode

• From the Target Execution toolbar, click 🚳.

The POU executes in cycle-to-cycle mode.

To execute one cycle

From the Target Execution toolbar, click ¹/₁

The POU executes one device cycle.

LD Elements

When editing an LD POU, you can place elements in a language container by dragging them from the LD Toolbox. An element is inserted at the current position in the diagram. When inserting subsequent elements, these are placed to the right of the selected element on the rung, then onto the next rung. For LD POUs, the following elements are available:

- Rungs
- Blocks
- Coils
- Contacts
- Jumps
- Returns
- Branches

Rungs

Rungs are graphic components of LD programs and represent a group of circuit elements leading to the activation of a coil. Rungs have labels to identify them within the diagram. Labels along with jumps enable controlling the execution of a diagram. The label and jump must have the same name. When the connection on the left of the jump element has the TRUE Boolean state, the diagram execution proceeds at the label element. Comments are free format text inserted above the rung, for documentation purposes only.

To insert a rung

You can insert rungs from the Toolbox or using keyboard shortcuts.

• From the Toolbox, drag the rung element into the language container.

The rung is displayed in the language container.

To define the label for a rung

- 1. In the language container, click anywhere, then from the contextual menu, choose Add Label.
- 2. In the upper left-hand corner, click in the text area beside the grey square and type the required label text.

To define the comment for a rung

You place comments in the space above the rung. After entering text, click elsewhere in the workspace to 'validate' the comment. Text formatting options including bold, italic, underline, strikethrough, and justify, are available from the Format menu. Using the Format menu, you can also define the foreground color.

• In the language container, click the rectangular space above the rung, then type the required text.

Blocks

In a language container, you connect blocks to Boolean lines. Blocks can be operators, functions, or function blocks. Boolean inputs and outputs are not always contained within blocks. Boolean inputs connecting blocks to rungs are always executed each cycle. Boolean outputs connecting blocks to rungs control the remaining rung power flow. When inserting blocks in a diagram, the EN and ENO parameters are added to some block interfaces. You can also force the inclusion of the EN and ENO parameters for blocks having either one Boolean input, one Boolean output, or no Boolean input and output. You activate the Enable EN/ENO option from the Ladder Diagram options.

For functions and function blocks, you set the value of return parameters using coils. The return parameter of a function has the same name as the function. The return parameters of a function block can have any name.

You insert blocks from the LD Toolbox. You can set the type of a block using the Block Selector at any time following insertion. When you set the type of block, variables are automatically displayed and are connected to the inputs and outputs of the block.

You replace input and output variables by double-clicking them to access the Variable Selector or single-clicking them to select from a drop-down combo-box containing the global and local variables. Also, you can single-click a variable, then type a literal value in the text box provided. When inserting literal values that being with a letter or an underscore, enclose the variable name in single quotes as follows: 'abc'.

Select a variable from the drop-down combo-box:

Type a literal value in the text box:

When selecting items such as local variables, global variables, and defined words from the drop-down combo-box, typing characters in the text box focuses on the possible items.

EN Input

For operators, functions, and function blocks where the first input is not a Boolean data type, another input called EN is automatically inserted at the first position since the first input is always connected to the rung. The block is executed only when the EN input is TRUE. The following example shows a comparison operator and its equivalent code expressed in ST.

ENO Output

For operators, functions, and function blocks where the first output is not a Boolean data type, another output called ENO is automatically inserted at the first position since the first output is always connected to the rung. The ENO output always has the same state as the first input of the block. The following example shows the AVERAGE function block and its equivalent code expressed in ST.

EN and ENO Parameters

In some cases, both **EN** and **ENO** parameters are required. The following example shows an arithmetic operator and its equivalent code expressed in ST.

To access the Parameters view

The Parameters view is available from functions or function blocks located in the Solution Explorer.

1. In the Solution Explorer, right-click the required function or function block, then click **Parameters** in the contextual menu.

The Parameters view is displayed.

2. To define the parameters of a function or function block, enter the required information in the Parameters view.

To insert a block

You can insert blocks from the Toolbox or using keyboard shortcuts.

1. From the Toolbox, drag the function block element into the language container and place it on the rung.

The Block Selector is displayed.

- 2. In the Block Selector, locate the required block. You can sort the block list according to the columns by setting these in ascending or descending order.
 - To force the inclusion of the EN/ENO parameters, select *Enable EN/ENO*.
- 3. Click OK.

The selected block is displayed on the rung.

To insert a parallel block

- 1. From the Toolbox, drag the branch element onto the existing block in the language container.
- 2. To place a block element on the branch, do the following:
 - a) From the Toolbox, drag the block element into the language container, placing it on the branch.

The Block Selector is displayed.

- **b)** In the Block Selector, locate the required block. You can sort the block list according to the columns by setting these in ascending or descending order.
- To force the inclusion of the EN/ENO parameters, select *Enable EN/ENO*.
- c) Click OK.

The selected block is displayed on the branch.

Coils

Coils are graphic components of LD programs and represent the assignment of Boolean outputs. In an LD program, a coil represents an action. It must be connected on the left to a Boolean symbol, such as a contact or the Boolean output of a block.

The following types of coils are available from the LD toolbox:

- Direct Coil
- Reverse Coil
- Pulse Rising Edge Coil
- Pulse Falling Edge Coil
- Set Coil
- Reset Coil

You can change the type of a coil at anytime following its insertion.

When inserting coils in POUs, you assign variables using the Variable Selector. Names of assigned variables are displayed above the coil elements within POUs. You replace existing variables by double-clicking the coil to access the Variable Selector or by single-clicking variable names to select from drop-down combo-boxes containing the global and local variables. Also, you can single-click existing variables, then type literal values in the text boxes provided. When inserting literal values beginning with a letter or an underscore, enclose the variable name in single quotes as follows: 'abc'.

Select a variable from the drop-down combo-box:

co10	
co10 N	
OutSignal	
result	
Signal	
V1 (Var1)	
value1	
value2	
Var1	
VarOut	~

Type a literal value in the text box:

When selecting items such as local variables, global variables, and defined words from the drop-down combo-box, typing characters in the text box focuses on the possible items.

To insert a coil

You can insert coils from the Toolbox or using keyboard shortcuts.

1. From the Toolbox, drag the desired coil type into the language container and place it on the rung.

The Variable Selector is displayed.

2. In the Variable Selector, select the required variable, then click **OK**.

The coil element and its associated variable name are displayed on the rung.

To insert a parallel coil

- 1. From the Toolbox, drag the branch element into the language container, placing it on the required element.
- **2.** From the Toolbox, drag a coil element into the language container, placing it on the branch element.

The Variable Selector is displayed.

3. In the Variable Selector, select the required variable, then click OK.

The coil element and its associated variable name are displayed on the branch.

The coil is displayed on the branch.

To change the type of a coil

• In the language container, select the coil, then press the space bar.

To align all coils in a diagram

- 1. Right-click in the language container, then choose **Properties** from the contextual menu.
- 2. In the Properties window, set the *Coil Alignment* property to True.

Direct Coil

Direct Coils enable a Boolean output of a connection line Boolean state.

Left Right Connection

The associated variable is assigned with the Boolean state of the left connection. The state of the left connection is propagated into the right connection. The right connection can be connected to the right vertical power rail.

The associated name can be the name of the program (for functions only). This corresponds to the assignment of the return value of the function.

Example

(* ST Equivalence: *)

output1 := input1; output2 := input1;

See Also

Reverse Coil

Reverse coils enable a Boolean output according to the Boolean negation of a connection line state.

Left Right Connection Connection

The associated variable is assigned with the Boolean negation of the state of the left connection. The state of the left connection is propagated into the right connection. The right connection can be connected to the right vertical power rail.

The associated name can be the name of the program (for functions only). This corresponds to the assignment of the return value of the function.

Example

(* ST Equivalence: *)

```
output1 := NOT (input1);
output2 := input1;
```

See Also

Pulse Rising Edge Coil

Pulse rising edge coils or "Positive" coils enable Boolean output of a connection line Boolean state.

Left Right Connection Connection

The associated variable is set to TRUE when the Boolean state of the left connection rises from FALSE to TRUE. The output variable resets to FALSE in all other cases. The state of the left connection is propagated into the right connection. The right connection can be connected to the right vertical power rail.

Example

(* ST Equivalence: *)

IF (input1 and NOT(input1prev)) THEN
 output1 := TRUE;
ELSE
 output1 := FALSE;
END IF;

(* input1prev is the value of input1 at the previous cycle *)

See Also

Pulse Falling Edge Coil

Pulse falling edge coils or "Negative" coils enable Boolean output of a connection line Boolean state.

Left Right Connection Connection

The associated variable is set to TRUE when the Boolean state of the left connection falls from TRUE to FALSE. The output variable resets to FALSE in all other cases. The state of the left connection is propagated into the right connection. The right connection can be connected to the right vertical power rail.

Example

(* ST Equivalence: *)

```
IF (NOT(input1) and input1prev) THEN
   output1 := TRUE;
ELSE
   output1 := FALSE;
END_IF;
```

(* input1prev is the value of input1 at the previous cycle *)

See Also

Set Coil

Set coils enable a Boolean output of a connection line Boolean state.

Left Right Connection

The associated variable is set to TRUE when the boolean state of the left connection becomes TRUE. The output variable keeps this value until an inverse order is made by a RESET coil. The state of the left connection is propagated into the right connection. The right connection can be connected to the right vertical power rail.

Example

output1 := FALSE; END_IF;

See Also

Reset Coil

Reset coils enable Boolean output of a connection line Boolean state.

Left Right Connection

The associated variable is reset to FALSE when the Boolean state of the left connection becomes TRUE. The output variable keeps this value until an inverse order is made by a SET coil. The state of the left connection is propagated into the right connection. The right connection can be connected to the right vertical power rail.

Example

END IF;

See Also

Contacts

Contacts are graphic components of LD diagrams. Depending on the type of contact, it represents the value or function of an input or internal variable.

The following contact types are available from the LD toolbox:

- Direct Contact
- Reverse Contact
- Pulse Rising Edge Contact
- Pulse Falling Edge Contact

You can change the type of a contact at any time following its insertion.

When inserting contacts in POUs, you assign variables using the Variable Selector. Names of assigned variables are displayed above the contact elements within POUs. You replace existing variables by double-clicking the contact to access the Variable Selector or by single-clicking variable names to select from drop-down combo-boxes containing the global and local variables. Also, you can single-click existing variables, then type literal values in the text boxes provided. When inserting literal values that being with a letter or an underscore, enclose the variable name in single quotes as follows: 'abc'.

Select a variable from the drop-down combo-box:

Type a literal value in the text box:

When selecting items such as local variables, global variables, and defined words from the drop-down combo-box, typing characters in the text box focuses on the possible items.

To insert a contact

You can insert contacts from the Toolbox or using keyboard shortcuts.

1. From the Toolbox, drag the desired contact type into the language container and place it on the rung.

The Variable Selector is displayed.

2. In the Variable Selector, select the required variable, then click OK.

The contact and its associated variable name are displayed on the rung.

To insert a parallel contact

- 1. From the Toolbox, drag the branch element into the language container, placing it on the existing contact.
- 2. From the Toolbox, drag a contact element into the language container, placing it on the branch.

The Variable Selector is displayed.

3. In the Variable Selector, select the required variable, then click **OK**.

The contact and its associated variable name are displayed on the branch.

To change the type of a contact

• In the language container, select the contact, then press the space bar.

Direct Contact

Direct contacts enable a Boolean operation between a connection line state and a Boolean variable.

Left Right Connection Connection

The state of the connection line on the right of the contact is the logical AND between the state of the left connection line and the value of the variable associated with the contact.

Example

(* ST Equivalence: *)

output1 := input1 AND input2;

See Also

Reverse Contact

Reverse contacts enable a Boolean operation between a connection line state and the Boolean negation of a Boolean variable.

Left Right Connection Connection

The state of the connection line on the right of the contact is the logical AND between the state of the left connection line and the Boolean negation of the value of the variable associated with the contact.

Example

(* ST Equivalence: *)

output1 := NOT (input1) AND NOT (input2);

See Also

Pulse Rising Edge Contact

Pulse rising edge (positive) contacts enable a Boolean operation between a connection line state and the rising edge of a Boolean variable.

Left Right Connection Connection

The state of the connection line on the right of the contact is set to TRUE when the state of the connection line on the left is TRUE, and the state of the associated variable rises from FALSE to TRUE. The state is reset to FALSE in all other cases.

Example

(* ST Equivalence: *)

output1 := input1 AND (input2 AND NOT (input2prev));
(* input2prev is the value of input2 at the previous cycle *)

See Also

Pulse Falling Edge Contact

Pulse falling edge (negative) contacts enable a Boolean operation between a connection line state and the falling edge of a Boolean variable.

Left Right Connection Connection

The state of the connection line on the right of the contact is set to TRUE when the state of the connection line on the left is TRUE, and the state of the associated variable falls from TRUE to FALSE. The state is reset to FALSE in all other cases.

Example

See Also
Jumps

Conditional and unconditional jump elements enable controlling the execution of diagrams. You cannot place connections to the right of a jump element. When the connection on the left of the jump element has the TRUE Boolean state, the diagram execution proceeds at the label. The label and jump must have the same name.

Example

To insert a jump

Before inserting jumps, define one or more labels within the program. You can insert jumps from the Toolbox or using keyboard shortcuts.

1. From the Toolbox, drag the jump element into the language container and place it on the rung.

2. In the language container, click the jump element, then select the required label name from the drop-down combo-box.

The jump is displayed on the rung with the required label name.

Returns

You can use RETURN elements as outputs representing a conditional end of a diagram. You cannot place connections to the right of a RETURN element.

When the left connection line has the TRUE Boolean state, the diagram ends without executing the equations located on the next lines of the diagram.

When the LD diagram is a function, its name is associated with an output coil to set the return value (returned to the calling diagram).

Example

(* ST Equivalence: *)

If Not (manual_mode) Then RETURN; End_if; result := (input1 OR input3) AND input2;

To insert a return

You can insert returns from the Toolbox or using keyboard shortcuts.

• From the Toolbox, drag the return element into the language container, placing it on the rung.

The return element is displayed on the rung.

See Also

Jumps

Branches

Branches create alternative routing for connections. You can add parallel branches to elements on a rung.

To insert a branch

You can insert branches from the Toolbox or using keyboard shortcuts.

• From the Toolbox, drag the branch element into the language container and place in on the rung.

A parallel branch is displayed.

LD Keyboard Shortcuts

The following keyboard shortcuts are available for use with the LD language. Some shortcuts do not apply or may differ while debugging.

Ctrl+A	Selects all rungs (not available while debugging)
Ctrl+C	Copies the selected elements to the clipboard (not available while debugging)
Ctrl+V	Pastes elements saved on the clipboard to the insertion point (not available while debugging)
Ctrl+X	Cuts the selected elements to the clipboard (not available while debugging)
Ctrl+Y	Redoes the previous command (not available while debugging)
Ctrl+Z	Undoes the previous command (not available while debugging)
Shift+Ctrl+Alt+G	Enables/disables the grid in the language container
Shift+Alt+Enter	Toggles between full-screen and windowed modes
Ctrl+R	Toggles between Auto-Input and Manual-Input. Auto-Input automatically opens the Block Selector and Variable Selector (not available while debugging).
Ctrl+B	Bolds selected comment text (not available while debugging)
Ctrl+I	Italicizes selected comment text (not available while debugging)
Ctrl+U	Underlines selected comment text (not available while debugging)
Enter	Calls the Variable/Block selector depending on the selected element (not available while debugging)
Space Bar	For coils or contacts, toggles between the available types (not available while debugging)
Ctrl+0	Inserts a rung after a selected rung. When no rung is selected, a rung is added at the end of the rung list (not available while debugging).
Ctrl+Alt+0	Inserts a rung before a selected rung. When no rung is selected, a rung is added at the end of the rung list (not available while debugging).
Ctrl+ 1	Inserts a branch after a selected element (not available while debugging)
Ctrl+Alt+ 1	Inserts a branch before a selected element (not available while debugging)

Ctrl+2	Inserts a block after a selected element. When a branch is selected, a block is inserted on the branch (not available while debugging).
Ctrl+Alt+2	Inserts a block before a selected element. When a branch is selected, a block is inserted on the branch (not available while debugging).
Ctrl+3	Inserts a contact after a selected element. When a branch is selected, a contact is inserted on the branch (not available while debugging).
Ctrl+Alt+3	Inserts a contact before a selected element. When a branch is selected, a contact is inserted on the branch (not available while debugging).
Ctrl+4	When a rung or the last element on a rung is selected, inserts a coil at the end of the rung. When the last element selected on a rung is a branch, a coil is inserted on the branch (not available while debugging).
Ctrl+Alt+4	When a rung or the last element on a rung is selected, inserts a coil at the end of the rung. When the last element selected on a rung is a branch, a coil is inserted on the branch (not available while debugging).
Ctrl+5	When a rung or the last element on a rung is selected, inserts a jump at the end of the rung. When the last element selected on a rung is a branch, a jump is inserted on the branch (not available while debugging).
Ctrl+Alt+5	When a rung or the last element on a rung is selected, inserts a jump at the end of the rung. When the last element selected on a rung is a branch, a jump is inserted on the branch (not available while debugging).
Ctrl+6	When a rung or the last element on a rung is selected, inserts a return at the end of the rung. When the last element selected on a rung is a branch, a return is inserted on the branch (not available while debugging).
Ctrl+Alt+6	When a rung or the last element on a rung is selected, inserts a return at the end of the rung. When the last element selected on a rung is a branch, a return is inserted on the branch (not available while debugging).
Ctrl+Page Up	Jumps to the top of the language container
Ctrl+Page Down	Jumps to the bottom of the language container
Ctrl+Up Arrow	Slowly scrolls up.
Ctrl+Down Arrow	Slowly scrolls down.

Ctrl+Left Arrow	Slowly scrolls left.
Ctrl+Right Arrow	Slowly scrolls right.
Up Arrow	Moves up the elements.
Down Arrow	Moves down the elements.
Left Arrow	Moves to the left across the elements.
Right Arrow	Moves to the right across the elements.
Alt+Up Arrow	Selects the previous rung. When no element or rung is selected, selects the last rung.
Alt+Down Arrow	Selects the next rung. When no element or rung is selected, selects the first rung.
Alt+Left Arrow	Selects the rung of the selected element. When no element is selected, selects the first rung.
Alt+Right Arrow	Selects the rung of the selected element. When no element is selected, selects the first rung.
Shift+Up Arrow	Scrolls up
Shift+Down Arrow	Scrolls down
Shift+Left Arrow	Scrolls left
Shift+Right Arrow	Scrolls right
Delete	Removes a selected rung or element (not available while debugging)

ST Language

ST (Structured Text) is a high level structured language designed for automation processes. This language is mainly used to implement complex procedures that cannot be easily expressed with graphic languages. ST language is also used for the description of the actions within the Steps and conditions attached to the Transitions of the SFC Language.

See Also

ST Main Syntax Debugging ST Programs

ST Main Syntax

An ST program is a list of ST statements. Each statement ends with a semi-colon (";") separator. Names used in the source code (variable identifiers, constants, language keywords...) are separated with inactive separators (space character, end of line or tab stops) or by active separators, which have a well defined significance (for example, the ">" separator indicates a "greater than" comparison.

Comments enable the inclusion of non-executed information throughout code. You can insert comments anywhere in an ST program. Comments can run multiple lines and must begin with "(*" and end with "*)". You cannot use interleave comments, i.e., comments within comments.

When typing statements, a drop-down combo-box automatically lists the available items such as identifiers, operators, functions, and function blocks. The listed items are focused by typing letters, digits, and underscore characters.

The following are basic types of ST statements:

- assignment statement (variable := expression;)
- function call
- function block call
- selection statements (IF, THEN, ELSE, CASE...)
- iteration statements (FOR, WHILE, REPEAT...)
- control statements (RETURN, EXIT...)
- special statements for links with other languages

When entering ST syntax, basic coding is black while other items are displayed using customizable colors. The default colors for ST elements are the following:

- Comments are green
- The Editor background is white
- Identifiers are black

- Numbers are firebrick
- Operators are black
- POUs are blueviolet
- Punctuation marks are black
- Reserved words are fuchsia
- Strings of text are gray

Inactive separators between active separators, literals, and identifiers increase ST program legibility. ST inactive separators are the following: space (blank), tabs and end of line. You can place end of lines anywhere in a program. The following rules apply to using inactive separators:

- Write one statement on one line
- Use tabs to indent complex statements
- Insert comments to increase legibility of lines or paragraphs

Example

Low Readability

```
imax := max_ite; cond := X12;
if not(cond (* alarm *)
then return; end_if;
for i (* index *) := 1 to max_ite
do if i <> 2 then Spcall();
end_if; end_for;
(* no effect if alarm *)
```

High Readability

```
(* imax : number of iterations *)
(* i: FOR statement index *)
(* cond: process validity *)
imax := max_ite;
cond := X12;
if not (cond) then
    return;
end_if;
(* process loop *)
for i := 1 to max_ite do
    if i <> 2 then
        Spcall ();
        end_if;
end_for;
```

To customize the default display settings for ST programs

- 1. From the Tools menu, click **Options**.
- 2. From the Options dialog, expand IEC Languages, then click Structured Text (ST).
- 3. Expand the respective category, customize the required setting, then click OK.

The customized settings are now the default values for ST programs.

To customize the display settings for the current ST program

1. From the View menu, click **Properties Window**.

The Properties Window is displayed.

- 2. Select the ST Container.
- 3. From the Properties Window you can:

- Customize the font for the required item by clicking . The Font dialog box is displayed enabling customization of the font, text size, bold, italic, strikeout, and underline styles.
- Customize the text color for the required items. The possible colors are custom, web, and system colors.

The customized settings only affect the current ST program.

Expressions and Parentheses

ST expressions combine ST operators and variable or constant operands. For each single expression (combining operands with one ST operator), the type of the operands must be the same. This single expression has the same data type as its operands, and can be used in a more complex expression. For example:

(boo_var1 AND boo_var2)	has BOOL type
not (boo_var1)	has BOOL type
$(\sin (3.14) + 0.72)$	has DINT type
(t#1s23 + 78)	is an invalid expression

Parentheses are used to isolate sub parts of an expression and to explicitly order the priority of operations. When no parentheses are given for a complex expression, the operation sequence is implicitly given by the default priority between ST operators.

Precedence	Operators	Symbols
1 (Highest)	Function evaluation	<i>identifier(arguement list)</i> For example: мах (х, у)
2	Negation	-
	Complement	NOT
3	Multiplication	*
	Division	/
4	Addition	+
	Subtraction	-
5	Comparison	<, >, <=, >=
6	Equality	=
	Inequality	<>
7	Boolean AND	&, AND
8	Boolean Exclusive OR	XOR
9 (Lowest)	Boolean OR	OR

Examples:

2 + 3 * 6	equals 2+18=20	because multiplication operator has a higher priority
(2+3)*6	equals 5*6=30	priority is given by parenthesis

Calling Functions

The ST programming language enables calling functions. Function calls can be used in any expression.

Name:	name of the called function written in IEC 61131-3 language or in "C"
Meaning:	calls a ST, LD or FBD functions or a "C" function and gets its return value
Syntax:	<variable> := <funct> (<par1>, <parn>);</parn></par1></funct></variable>
Operands:	The type of return value and calling parameters must follow the interface defined for the function.

Return value: value returned by the function

When setting the value of the return parameter in the body of a function, assign the return parameter using the same name as the function: FunctionName := <expression>;

Example

Example1: IEC 61131-3 function call

```
(* Main ST program *)
(* gets an integer value and converts it into a limited time value *)
dint_timeprog := SPlimit ( tprog_cmd );
appl_timer := TMR (dint_timeprog * 100);
(* Called FBD function named 'SPlimit' *)
```

Example2: "C" function call - same syntax as for IEC 61131-3 function calls

```
(* Functions used in complex expressions: min, max, right, mlen and
left are standard "C" functions *)
limited_value := min (16, max (0, input_value) );
rol_msg := right (message, mlen (message) - 1) + left (message, 1);
```

Calling Function Blocks

The ST programming language enables calling function blocks. Function block calls can be used in any expression.

Name:	name of the function block instance	
Meaning:	calls a ST, LD, or FBD function block or a "C" function block and gets its return parameters	
Syntax:	(* call of the function block *) <blockname> (<p1>, <p2>); (* gets its return parameters *) <result> := <blockname>. <ret_param1>;</ret_param1></blockname></result></p2></p1></blockname>	
	 <result> := <blockname>. <ret_paramn>;</ret_paramn></blockname></result>	
Operands:	parameters are expressions which match the type of the parameters specified for that function block	
Return value:	See Syntax to get the return parameters.	

When setting the value of the return parameter in the body of a function block, assign the return parameter using its name concatenated with the function block name: FunctionBlockName.OutputParaName := <expression>;

Example

```
(* ST program calling a function block *)
(* declare the instance of the block in the dictionary: *)
(* trigb1 : block R_TRIG - rising edge detection *)
(* Function block activation from ST language *)
trigb1 (b1);
(* return parameters access *)
If (trigb1.Q) Then nb_edge := nb_edge + 1; End_if;
```

Debugging ST Programs

When debugging ST programs, you can monitor the output values of elements by viewing the dictionary instances. When the program is debugging you can choose to perform one of the following operations:

- Switch execution to real-time mode
- Switch execution to cycle-to-cycle mode
- Execute one cycle

To switch execution to real-time mode

• From the Target Execution toolbar, click 🚳.

The POU executes in real-time mode.

To switch execution to cycle-to-cycle mode

• From the Target Execution toolbar, click 🚳.

The POU executes in cycle-to-cycle mode.

To execute one cycle

• From the Target Execution toolbar, click 🙆.

The POU executes one device cycle.

ST Basic Elements and Statements

The basic elements and statements of the ST language are the following:

- Assignments
- CASE Statement
- EXIT Statement
- FOR Statement
- IF-THEN-ELSIF-ELSE-END_IF Statement
- REPEAT Statement
- RETURN Statement
- WHILE Statement

See Also

ST Main Syntax

Assignments

Name:	:=
Meaning:	Assigns a variable to an expression
Syntax:	<variable> := <any_expression> ;</any_expression></variable>
Operands:	Variable must be an internal or output variable and the expression must have the same type

The expression can be a call to a function.

Example

```
(* ST program with assignments *)
(* variable <<= variable *)
bo23 := bo10;
(* Variable <<= expression *)
bo56 := bx34 OR alrm100 & (level >= over_value);
result := (100 * input_value) / scale;
(* assignment with function call *)
limited_value := min (16, max (0, input_value) );
```

To insert an Assignment

• In the language container, type :=.

CASE Statement

 Name:
 CASE ... OF ... ELSE ... END_CASE

 Meaning:
 executes one of several lists of ST statements selection is made according to an integer expression

 Syntax:
 CASE <integer_expression> OF

 <value> : <statements> ;
 <value> : <statements> ;

 ELSE
 <statements> ;

 <statements> ;

 ELSE
 <statements> ;

 END_CASE;

CASE values must be integer constant expressions. Several values, separated by commas, can lead to the same list of statements. The ELSE statement is optional.

Example

```
(* ST program using CASE statement *)
CASE error_code OF
  255: err_msg := 'Division by zero';
fatal_error := TRUE;
  1: err_msg := 'Overflow';
  2, 3: err_msg := 'Bad sign';
ELSE
  err_msg := 'Unknown error';
END CASE;
```

To insert a CASE

• From the Toolbox, drag the CASE element into the language container.

EXIT Statement

Name:EXITMeaning:exit from a FOR, WHILE or REPEAT iteration statementSyntax:EXIT;

The EXIT is commonly used within an IF statement, inside a FOR, WHILE or REPEAT block.

Example

```
(* ST program using EXIT statement *)
(* this program searches for a character in a string *)
length := mlen (message);
found := NO;
FOR index := 1 TO length BY 1 DO
   code := ascii (message, index);
   IF (code = searched_char) THEN
      found := YES;
      EXIT;
   END_IF;
END_FOR;
```

To insert an EXIT

• In the language container, type **EXIT**.

FOR Statement

Name: FOR ... TO ... BY ... DO ... END_FOR
 Meaning: executes a limited number of iterations, using an integer index variable
 Syntax: FOR <index> := <mini> TO <maxi> BY <step> DO
 <statement> ;
 <statement> ;
 <statement> ;
 END_FOR;
 Operands: index: internal integer variable increased at each loop
 mini: initial value for index (before first loop)
 maxi: maximum allowed value for index
 step: index increment at each loop

The [BY step] statement is optional. If not specified, the increment step is 1

Warning: Because the virtual machine is a synchronous system, input variables are not refreshed during FOR iterations.

This is the "WHILE" equivalent of a FOR statement:

Example

```
(* ST program using FOR statement *)
(* this program extracts the digit characters of a string *)
length := mlen (message);
target := ''; (* empty string *)
FOR index := 1 TO length BY 1 DO
   code := ascii (message, index);
   IF (code >= 48) & (code <= 57) THEN
      target := target + char (code);
   END_IF;
END FOR;</pre>
```

To insert a FOR

• From the Toolbox, drag the **FOR** element into the language container.

IF-THEN-ELSIF-ELSE-END_IF Statement

Name: IF ... THEN ... ELSIF ... THEN ... ELSE ... END IF Meaning: executes one of several lists of ST statements selection is made according to the value of a Boolean expression Syntax: IF <Boolean expression> THEN <statement>; <statement>; ... ELSIF <Boolean expression> THEN <statement>; <statement>; ... ELSE <statement>; <statement>; ... END IF;

The ELSE and ELSIF statements are optional. If the ELSE statement is not written, no instruction is executed when the condition is FALSE. You can use the ELSIF statement more than once. The ELSE statement, if used, must appear only once at the end of the 'IF, ELSIF...' sequence.

Example

```
(* ST program using IF statement *)
IF manual AND not (alarm) THEN
  level := manual_level;
  bx126 := bi12 OR bi45;
ELSIF over_mode THEN
   level := max_level;
ELSE
level := (lv16 * 100) / scale;
END_IF;
```

```
(* IF structure without ELSE *)
If overflow THEN
    alarm_level := true;
END_IF;
```

To insert an IF-THEN-ELSIF-ELSE-END_IF

• From the Toolbox, drag the IF THEN ELSE element into the language container.

REPEAT Statement

Name: REPEAT ... UNTIL ... END_REPEAT Meaning: iteration structure for a group of ST statements the "continue" condition is evaluated AFTER any iteration Syntax: REPEAT <statement>; <statement>; ... UNTIL <Boolean_condition> END REPEAT;

Warning: Because the virtual machine is a synchronous system, input variables are not refreshed during REPEAT iterations. The change of state of an input variable cannot be used to describe the ending condition of a REPEAT statement.

Example

```
(* ST program using REPEAT statement *)
(* this program uses specific "C" functions to read characters *)
(* on a serial port *)
str := ''; (* empty string *)
nbchar := 0;
IF ComIsReady ( ) THEN
REPEAT
str := str + ComGetChar ( );
nbchar := nbchar + 1;
UNTIL ( nbchar >= 16) OR NOT (ComIsReady ( )) )
END_REPEAT;
END_IF;
```

To insert a REPEAT

• From the Toolbox, drag the **REPEAT** element into the language container.

RETURN Statement

Name:	RETURN
Meaning:	terminates the execution of the current program
Syntax:	RETURN ;
Operands:	(none)

In an SFC action block, the RETURN statement indicates the end of the execution of that block only.

Example

(* FBD specification of the program: programmable counter *)


```
(* ST implementation of the program, using RETURN statement *)
If NOT (CU) then
  Q := false;
  CV := 0;
  RETURN; (* terminates the program *)
end_if;
if RESET then
  CV := 0;
else
  if (CV < PV) then
        CV := CV + 1;
  end_if;
end_if;
Q := (CV >= PV);
```

To insert a RETURN

• In the language container, type **RETURN**.

WHILE Statement

 Name:
 WHILE ... DO ... END_WHILE

 Meaning:
 iteration structure for a group of ST statements the "continue" condition is evaluated BEFORE any iteration

 Syntax:
 WHILE <Boolean_expression> DO <statement> ; <statement> ;

 ...
 ...

END_WHILE;

Warning: Since the virtual machine is a synchronous system, input variables are not refreshed during WHILE iterations. The change of state of an input variable cannot be used to describe the condition of a WHILE statement.

Example

```
(* ST program using WHILE statement *)
(* this program uses specific "C" functions to read characters *)
(* on a serial port *)
str := ''; (* empty string *)
nbchar := 0;
WHILE ((nbchar < 16) & ComIsReady ( )) DO
str := str + ComGetChar ( );
nbchar := nbchar + 1;
END WHILE;</pre>
```

To insert a WHILE

• From the Toolbox, drag the WHILE element into the language container.

ST Extensions

The following statements and functions are extensions of the ST language:

TSTART	starts a timer
TSTOP	stops a timer

The following statements and functions are available to control the execution of SFC child programs. You can use these within action blocks written in ST for SFC steps.

GSTART	starts an SFC program or function block
GFREEZE	freezes an SFC program
GKILL	terminates an SFC program
GSTATUS	gets current status of an SFC program
GRST	restarts a frozen SFC program or function block

Warning: These functions are not part of the IEC 61131-3 standard.

Simple equivalents for the GSTART and GKILL statements are available using the following syntax in an SFC step:

- child_name with the S qualifier (* equivalent to GSTART(child_name); *)
- child_name with the R qualifier (* equivalent to GKILL(child_name); *)

The following fields enable accessing the status of an SFC step or child (from its parent):

StepName.x	Boolean value that represents the activity of the Step
StepName.t	time elapsed since the last activation of the step: activity duration (" StepName " represents the name of the SFC step)
ChildNameS1.x	Boolean value that represents the activity of the child
ChildNameS1.t	time elapsed since the last activation of the step: activity duration (" ChildName " represents the name of the SFC child)

TSTART Statement

Name:	TSTART
Meaning:	Starts the counting of a timer variable. The timer value is not modified by the TSTART command, i.e., the counting starts from the current value of the timer.
Syntax:	TSTART (< <i>timer_variable</i> >);
Operands:	Any inactive timer variable
Return value:	(none)

Example

(* SFC program using TSTART and TSTOP statements)

To insert a TSTART Statement

• In the language container, type **TSTART**.

TSTOP Statement

Name:	TSTOP
Meaning:	Stops updating a timer variable. The timer value is not modified by the TSTOP command.
Syntax:	TSTOP (< <i>timer_variable</i> >);
Operands:	Any active timer variable
Return value:	(none)

Example

(* SFC program using TSTART and TSTOP statements)

Prog1-POU* × Deployment.isadpl				-	•
	h (≤- 🗖 🔤	¥ ≪		
		*	(ST) [GS0 (P0)]		^
GSO - PO ST	∠ -	1 2 3	<pre>bo100 := TRUE; (* boolean output * tm_ctrl := t#0s; TSTART(tm_ctrl);</pre>)	
GS1 - PO SI		*	(ST) [GS1 (P0)]		11
		1	TSTOP(tm_ctrl); alarm := not(bi100);	<	
				>	
		*	GT0 (ST)		
	- »	1	<pre>bi100 OR (tm_ctrl > time_out);</pre>		~

To insert a TSTOP Statement

• In the language container, type **TSTOP**.

GSTART Statement in SFC Action

Name:	GSTART			
Meaning:	Starts an SFC child program or function block by placing a token into each of its initial steps. The abbreviated syntax is equivalent to an SFC Child action block having the S qualifier. The extended syntax only applies to SFC child function blocks.			
Syntax:	<pre>GSTART (<child_name>); or GSTART (<child_name,step_name,input1,input2,inputn>) where child_name represents the name of the SFC child POU step_name represents the name of the active step. step_name must be preceded by two underscore characters (e.g.,S1) input1,input2,inputn indicate the values of the input parameters of the SFC child POU</child_name,step_name,input1,input2,inputn></child_name></pre>			
Operands:	the specified SFC program must be a child of the one in which the statement is written			
Return value:	(none)			

Children of the child program are not automatically started by the GSTART statement. Since GSTART is not part of the IEC 61131-3 standard, it is preferable to use the S qualifier attached to the child name.

To insert a GSTART

• In the language container, type **GSTART**.

GFREEZE Statement in SFC Action

Name:	GFREEZE
Meaning:	freezes a child SFC (program or function block); suspends its execution. The suspended SFC POU can then be restarted using the GRST statement.
Syntax:	GFREEZE (<i><child_name></child_name></i>); where <i>child_name</i> represents the name of the SFC child POU
Operands:	the specified SFC program must be a child of the one in which the statement is written
Return value:	(none)

Children of the child program are automatically frozen along with the specified program.

GFREEZE is not part of the IEC 61131-3 standard.

Example

To insert a GFREEZE

• In the language container, type **GFREEZE**.
GKILL Statement in SFC Action

Name:	GKILL	
Meaning:	Terminates a child SFC program by removing the Tokens currently existing in its Steps. The syntax is equivalent to an SFC Child action block having the R qualifier.	
Syntax:	GKILL (<i><child_name></child_name></i>); where <i>child_name</i> represents the name of the SFC child POU	
Operands:	the specified SFC program must be a child of the one in which the statement is written	
Return value:	(none)	

Children of the child program are automatically terminated with the specified program.

Since GKILL is not part of the IEC 61131-3 standard, it is preferable to use the R qualifier attached to the child name.

To insert a GKILL

• In the language container, type **GKILL**.

GSTATUS Statement in SFC Action

Name:	GSTATUS	
Meaning:	returns the current status of an SFC program	
Syntax:	<var> := GSTATUS (<<i>child_name</i>>); where <i>child_name</i> represents the name of the SFC child POU</var>	
Operands:	the specified SFC program must be a child of the one in which the statemen is written	
Return value:	0 = Program is inactive (killed) 1 = Program is active (started) 2 = Program is frozen	

GSTATUS is not part of the IEC 61131-3 standard.

To insert a GSTATUS

• In the language container, type **GSTATUS**.

GRST Statement in SFC Action

Name:	GRST		
Meaning:	restarts a child SFC program frozen by the GFREEZE statement: all the tokens removed by GFREEZE are restored. The extended syntax only applies to SFC child function blocks.		
Syntax:	<pre>GRST (<child_name>); or GRST (<child_name,input1,input2,inputn>); where child_name represents the name of the SFC child POU input1,input2,inputn indicate the value of the input parameter of the SFC child POU</child_name,input1,input2,inputn></child_name></pre>		
Operands:	the specified SFC program must be a child of the one in which the statement is written		
D (1			

Return value: (none)

The GRST statement automatically restarts children of the child program.

GRST is not part of the IEC 61131-3 standard.

To insert a GRST

• In the language container, type **GRST**.

ST Keyboard Shortcuts

The following keyboard shortcuts are available for use with the ST language. Some shortcuts do not apply or may differ while debugging.

Ctrl+A	Selects the entire document (not available while debugging)	
Ctrl+C	Copies the selected text to the clipboard (not available while debugging)	
Ctrl+Insert	Copies the selected text to the clipboard (not available while debugging)	
Ctrl+V	Pastes text saved on the clipboard to the insertion point (not available while debugging)	
Shift+Insert	Pastes text saved on the clipboard to the insertion point (not available while debugging)	
Ctrl+X	Cuts the selected text to the clipboard (not available while debugging)	
Shift+Delete	Cuts the selected text to the clipboard (not available while debugging)	
Ctrl+L	Cuts the current line to the clipboard (not available while debugging)	
Ctrl+Z	Undoes the previous command (not available while debugging)	
Ctrl+Y	Redoes the previous command (not available while debugging)	
Ctrl+Shift+Z	Redoes the previous command (not available while debugging)	
Shift+Alt+Enter	Toggles between full-screen and windowed modes	
Insert	Toggles between the overwrite/insert typing mode	
Shift+Enter	Inserts a line break. While debugging, when the insertion point is on a variable it opens the Write Logical Value dialog box.	
Ctrl+Enter	Inserts a line above the current line. While debugging, when the insertion point is on a variable it opens the Write Logical Value dialog box.	

Ctrl+Shift+Enter	Inserts a line below the current line. While debugging, when the insertion point is on a variable it opens the Write Logical Value dialog box.
Ctrl+Shift+T	Transposes the current and previous word (not available while debugging)
Ctrl+Shift+Alt+T	Transposes the current and next line (not available while debugging)
Ctrl+Space	Displays a drop-down combo-box listing available items such as variables, operators, functions, and function blocks. You can filter displayed items by typing letters, digits, and underscore characters. (not available while debugging)
Ctrl+Shift+Space	Displays a drop-down combo-box listing available items such as variables, operators, functions, and function blocks. You can filter displayed items by typing letters, digits, and underscore characters. (not available while debugging)
Ctrl+Shift+U	Changes the selected text into uppercase (not available while debugging)
Ctrl+U	Changes the selected text into lowercase (not available while debugging)
Up Arrow	Moves up lines and characters
Down Arrow	Moves down lines and characters
Left Arrow	Moves left across lines and characters
Right Arrow	Moves right across lines and characters
Ctrl+Left Arrow	Moves to the previous statement or word
Ctrl+Right Arrow	Moves to the next statement or word
Home	Jumps to the start of the line
End	Jumps to the end of the line
Ctrl+Home	Jumps to the start of the document
Ctrl+End	Jumps to the end of the document
Page Up	Jumps to the top of the visible code
Page Down	Jumps to the bottom of the visible code
Ctrl+Page Up	Jumps to the top of the visible code

Ctrl+Page Down	Jumps to the bottom of the visible code
Ctrl+Up Arrow	Scrolls up
Ctrl+Down Arrow	Scrolls down
Shift+Up Arrow	Selects up
Shift+Down Arrow	Selects down
Shift+Left Arrow	Selects left
Shift+Right Arrow	Selects right
Ctrl+Shift+Left Arrow	Selects to the previous statement or word
Ctrl+Shift+Right Arrow	Selects to the next statement or word
Shift+Home	Selects from the insertion point until the start of the line
Shift+End	Selects from the insertion point until the end of the line
Ctrl+Shift+Home	Selects from the insertion point until the start of the document
Ctrl+Shift+End	Selects from the insertion point until the end of the document
Ctrl+Shift+Page Up	Selects from the insertion point until the top of the visible code
Ctrl+Shift+Page Down	Selects from the insertion point until the end of the visible code
Ctrl+Shift+W	Selects the next word
Shift+Alt+Up Arrow	Selects the current and previous lines
Shift+Alt+Down Arrow	Selects the current and next lines
Shift+Alt+Left Arrow	Selects left on the current line
Shift+Alt+Right Arrow	Selects right on the current line
Ctrl+Shift+Alt+Left Arrow	Selects available columns in lines of code from the left to right
Ctrl+Shift+Alt+Right Arrow	Selects available columns in lines of code from the right to left
Escape	Deselects the selected text
Ctrl+I	Opens the Variable Selector. While debugging, opens the Variable Monitoring dialog box.
Ctrl+Shift+I	Opens the Variable Selector. While debugging, opens the Variable Monitoring dialog box.
Ctrl+R	Opens the Block Selector. When the insertion point is on a variable during debugging, it is selected.

Ctrl+Alt+R	Opens the Block Selector. When the insertion point is on a variable during debugging, it is selected.	
Ctrl+Shift+Alt+R	Opens the Block Selector. When the insertion point is on a variable during debugging, it is selected.	
Delete	Removes the character on the right (not available while debugging)	
Ctrl+Shift+L	Removes the current line (not available while debugging)	
Ctrl+Delete	Removes the next word in the current line (not available while debugging)	
Ctrl+Backspace	Removes the previous word in the current line (not available while debugging)	
Backspace	Removes the character on the left (not available while debugging)	
Shift+Backspace	Removes the character on the left (not available while debugging)	

Language Reference

The language reference includes information about the usage and limitations of various project elements and other aspects:

- Programs
- Functions
- Function Blocks
- Execution Rules
- Reserved Keywords
- Variables
- Directly Represented Variables
- Defined Words
- Data Types

Programs

Programs, also known as POUs, are logical programming units describing operations between variables of a process. Programs describe either sequential or cyclic operations. Cyclic programs are executed at each target system cycle. Sequential programs, representing sequential operations, are grouped together. The execution of sequential programs has a dynamic behavior.

Programs before and after sequential programs describe cyclic operations. Cyclic programs are not time-dependent. Cyclic programs are systematically executed at the beginning of each run-time cycle. Main sequential programs (at the top of the hierarchy) are executed according to their respective dynamic behavior.

Begin	Cyclic operations (FDB, LD, ST)
Sequential	Sequential operations (SFC, SFC child)
End	Cyclic operations (FDB, LD, ST)

Programs located at the beginning of a cycle (before sequential programs) typically describe preliminary operations on input devices to build high level filtered variables. Sequential programs frequently use these variables. Programs located at the end of the cycle (after sequential programs) typically describe security operations on the variables operated on by sequential programs, before sending values to output devices.

Programs are described using the available graphic or literal languages. You specify the programming language when creating a program; you cannot change the programming language for an existing program.

POUs defined as programs are executed on the target system respecting the order shown in the Programs section.

Programs are linked together in a hierarchical tree. Those placed at the top of the hierarchy are activated by the system. Child-programs (lower level of the hierarchy) are activated by their parent.

POUs (programs, functions, and function blocks) within a project and dependency libraries must have unique names. These names can have up to eight (8) characters and must begin with a letter followed by letters, digits, and single underscores.

Projects can contain up to 255 programs.

See Also

Execution Rules

Functions

Functions are POUs having one or more input parameters and one output parameter. A function can be called by a program, a function or a function block. A function has no instance meaning that local data is not stored and is usually lost from one call to the other.

The execution of a function is driven by its parent program. Therefore, the execution of the parent program is suspended until the function ends:

Any POU of any section can call one or more functions. A function can have local variables.

ISaGRAF does not support recursivity during function calls. When a function of the *Functions* section is called by itself or one of its called functions, a build error occurs. Furthermore, functions do not store the local values of their local variables. Since functions are not instantiated, these cannot call function blocks.

The interface of a function must be explicitly defined with a type and a unique name for each of its calling (input) parameters or return (output) parameter. Functions can have up to 31 calling parameters and one return parameter. Return parameters can only have Boolean, Real, or Time data types.

POUs (programs, functions, and function blocks) within a project and dependency libraries must have unique names. Function names can have up to eight (8) characters and must begin with a letter followed by letters, digits, and single underscores. Functions can have a maximum of 32 parameters (31 inputs and one output). Parameter names have a maximum of 32 characters and must begin with a letter followed by letters, digits, and single underscores.

Function Blocks

Function blocks are POUs having multiple input and output parameters. These are instantiated meaning local variables of a function block are copied for each instance. When calling a function block in a program, you actually call the instance of the block where the same code is called but the data used is that which has been allocated to the instance. The values of the variables of an instance are stored from one cycle to the other.

Function blocks can be called by any POU in the project. Function blocks can call functions or other function blocks.

The interface of a function block must be explicitly defined with a type and a unique name for each of its calling (input) parameters or return (output) parameters. Function blocks can have more than one output parameter. The value of a return parameter for a function block differs for the various programming languages.

POUs (programs, functions, and function blocks) within a project and dependency libraries must have unique names. Function block names can have up to eight (8) characters and must begin with a letter followed by letters, digits, and single underscores. Function blocks can have a maximum of 32 parameters. Parameter names have a maximum of 32 characters and must begin with a letter followed by letters, digits, and single underscores.

Execution Rules

The execution of a control application is a synchronous system where a clock triggers all operations for a device. The basic duration of the clock is called the cycle timing for a device.

- 1. Scan input variables.
- 2. Process "Begin" section programs.
- 3. Process "Sequential" section programs according to execution rules.
- 4. Process "End" section rules.
- 5. Process Modbus messages.
- 6. Update output devices.
- 7. Save retained values.
- 8. Sleep until next cycle.

When a cycle time is specified, a device waits until this time has elapsed before starting the execution of a new cycle. The POUs execution time varies depending on the size of the application. When a cycle exceeds the specified time, the loop continues to execute the cycle but sets an overrun flag. In such a case, the application no longer runs in real time.

When a cycle time is not specified, a device performs all programs then restarts a new cycle without waiting.

Reserved Keywords

Reserved keywords are unavailable for use as names of POUs or variables.

- A ABS, ACOS, ADD, ANA, AND, AND_MASK, ANDN, ARRAY, ASIN, AT, ATAN,
- **B** BCD_TO_BOOL, BCD_TO_INT, BCD_TO_REAL, BCD_TO_STRING, BCD_TO_TIME, BOO, BOOL, BOOL_TO_BCD, BOOL_TO_INT, BOOL TO REAL, BOOL TO STRING, BOOL TO TIME, BY, BYTE,
- C CAL, CALC, CALCN, CALN, CALNC, CASE, CONCAT, CONSTANT, COS,
- D DATE, DATE_AND_TIME, DATE_AND_TIME_TO_DATE, DATE_AND_TIME_TO_TIME_OF_DATE, DELETE, DINT, DIV, DO, DT, DWORD,
- E ELSE, ELSIF, EN, END_CASE, END_FOR, END_FUNCTION, END_IF, END_PROGRAM, END_REPEAT, END_RESOURCE, END_STRUCT, END_TYPE, END_VAR, END_WHILE, ENO, EQ, EXIT, EXP, EXPT,
- **F** FALSE, FEDGE, FIND, FOR, FUNCTION,
- G GE, GFREEZE, GKILL, GRST, GSTART, GSTATUS, GT,
- I IF, INSERT, INT, INT_TO_BCD, INT_TO_BOOL, INT_TO_REAL, INT_TO_STRING, INT_TO_TIME,
- J JMP, JMPC, JMPCN, JMPN, JMPNC,
- L LD, LDN, LE, LEFT, LEN, LIMIT, LINT, LN, LOG, LREAL, LT, LWORD,
- M MAX, MID, MIN, MOD, MOVE, MSG, MUL, MUX,
- N NE, NOT,
- **O** OF, ON, OPERATE, OR, OR_MASK, ORN,
- P PROGRAM
- **R** R, READ_ONLY, READ_WRITE, REAL, REAL_TO_BCD, REAL_TO_BOOL, REAL_TO_INT, REAL_TO_STRING, REAL_TO_TIME, REDGE, REPEAT, REPLACE, RESOURCE, RET, RETAIN, RETC, RETCN, RETN, RETNC, RETURN, RIGHT, ROL, ROR,

- S, SEL, SHL, SHR, SIN, SINT, SQRT, ST, STN, STRING, STRING_TO_BCD, STRING_TO_BOOL, STRING_TO_INT, STRING_TO_REAL, STRING_TO_TIME, STRUCT, SUB, SYS_ERR_READ, SYS_ERR_TEST, SYS_INITALL, SYS_INITANA, SYS_INITBOO, SYS_INITTMR, SYS_RESTALL, SYS_RESTANA, SYS_RESTBOO, SYS_RESTTMR, SYS_SAVALL, SYS_SAVANA, SYS_SAVBOO, SYS_SAVTMR, SYS_TALLOWED, SYS_TCURRENT, SYS_TMAXIMUM, SYS_TOVERFLOW, SYS_TRESET, SYS_TWRITE, SYSTEM,
- T TAN, TASK, THEN, TIME, TIME_OF_DAY, TIME_TO_BCD, TIME_TO_BOOL, TIME_TO_INT, TIME_TO_REAL, TIME_TO_STRING, TMR, TO, TOD, TRUE, TSTART, TSTOP, TYPE,
- U UDINT, UINT, ULINT, UNTIL, USINT,
- V VAR, VAR_ACCESS, VAR_EXTERNAL, VAR_GLOBAL, VAR_IN_OUT, VAR_INPUT, VAR_OUTPUT
- W WHILE, WITH, WORD
- X XOR, XOR_MASK, XORN

Variables

The scope of variables can be local to a POU or global to a device. Local variables are available for use within one POU only. Global variables are available for use within any POU of the device.

- Name, limited to 32 characters beginning with a letter followed by letters, digits, and single underscore characters. These names cannot have two consecutive underscore characters.
- Data Type, possible values are Boolean, Double Integer, Real, Time, Message, function blocks, and one-dimensional arrays. Arrays are only available for the BOOL, DINT, REAL, and TIME data types; these are not available for the MESSAGE type.
- Logical Value, available when online. The displayed value differs depending on the direction of the variable: inputs are locked values and outputs are updated by the running TIC code.
- Physical Value, available when online. The displayed value differs depending on the direction of the variable: inputs are updated by the field value and outputs are locked.
- String Size, for message type variables, indicates the maximum length. String capacity is limited to 252 characters excluding the terminating null character (0), a byte for the current length of the string, and a byte for the maximum length of the string.
- Dimension, the size (number of elements) of an array. Arrays can ony have one dimension. Arrays can have a maximum of 255 elements. For example, [6] represents a one-dimensional array containing elements from 0 to 5.
- Wiring, (read-only cell) generated by the I/O wiring tool indicating the I/O channel to which the variable is wired. You can only wire global variables. Uses the syntax of Directly Represented Variables.
- Attribute, property of a variable indicating its read and write access rights. Possible values are read, write, and read-write.
- Direction, for I/O wiring, wired variables can only be global. The direction of a variable affects the logical value and physical value.

- Modbus Address, modbus address of the variable. The format is hexadecimal and the value ranges from 0001 to FFFF.
- Retained, the indication of whether the value of the variable is saved by the virtual machine at each cycle. For details on retaining, i.e., backing up, variables, refer to the SYSTEM operator. Possible values are Yes or No.
- Initial Value, value held by a variable when the virtual machine starts the execution of the device. The initial value of a variable can be the default value, a value given by the user when the variable is defined or the value of the retain variable after the virtual machine has stopped. You can set initial values for POU variables and global variables.
- Unit, string identifying the physical unit at debug time. Free-format text.
- Comment, user-defined free format text

Although function block instances are declared using variables, these variables do not follow rules applying to elementary or derived type variables. These variables can only have the var direction and the read-write attribute.

Directly Represented Variables

The system enables the use of directly represented variables in the source of programs to represent a free channel. Free channels are those not linked to a declared I/O variable. The identifier of a directly represented variable always begins with the "%" character.

The naming conventions of a directly represented variable for a channel of a single board. "*s*" is the slot number of the board. "*c*" is the number of the Channel:

%IXs.c	free channel of a Boolean input board
%IDs.c	free channel of an integer input board
%ISs.c	free channel of a message input board
%QXs.c	free channel of a Boolean output board
%QDs.c	free channel of an integer output board
%QSs.c	free channel of a message output board

The naming conventions of a directly represented variable for a channel of a complex equipment. "s" is the slot number of the equipment. "b" is the index of the single board within the complex equipment. "c" is the number of the channel:

%IXs.b.c	free channel of a Boolean input board		
%IDs.b.c	free channel of an integer input board		
%ISs.b.c	free channel of a message input board		
%QXs.b.c	free channel of a Boolean output board		
%QDs.b.c	free channel of an integer output board		
%QSs.b.c	free channel of a message output board		

Example

%QX1.6 6th channel of the board #1 (Boolean output) %ID2.1.7 7th channel of the board #1 in the equipment #2 (integer input)

Defined Words

ISaGRAF supports the use of identifier names, called defined words. When building, defined words are replaced by the variables and expressions these represent. Defined words can have the following:

- common scope, i.e., available for use in any project on the computer
- global scope, i.e., available for use in any POU of a project
- local scope, i.e., available for use in only one POU of a project

For POUs, a defined word can replace literal expressions, boolean expressions, reserved keywords, or complex ST expressions.

The following are examples of defined words:

Defined Words		S	
	Name 🔺	Equivalent	Comment
	- A*	<i>− σ</i> ₹*	- A*
	ОК	(auto_mode AND NOT (alarm))	
	PI	3.14159	
	YES	TRUE	

When such an equivalence is defined, its identifier is available anywhere in an ST program to replace the attached expression. The following ST programming example uses defined words:

```
If OK Then
angle := PI / 2.0;
isdone := YES;
End if;
```

When the same identifier is defined twice with different ST equivalencies, the last defined expression is used:

Define: OPEN is FALSE OPEN is TRUE means: OPEN is TRUE

Programs can contain up to 255 defined words. Names of defined words can have up to 32 characters and must begin with a letter followed by letters, digits, and single underscore characters. The last character can be either a letter or a digit.

The definition of a defined word cannot contain a defined word. Note the invalid definition (with strikethrough mark) in the following defined word examples:

PI is 3.14159 PI2 is 6.28318 PI2 is PI*2

Data Types

Any literal, expression, or variable used in a POU (written in any language) must be characterized by a data type. Data type coherence must be followed in graphic operations and literal statements. You can program objects using the following elementary IEC 61131-3 types:

- BOOL: logic (true or false) value
- DINT Integer: integer value-32 bit
- REAL Real: real (floating) value 32-bit
- TIME: time values less than one day; these value types cannot store dates (32 bit)
- MESSAGE: character string having a defined *size*, representing the maximum number of characters the string can contain. For example, to define MyString as a string containing 10 characters, enter MyString(10).

For global and local variables other than MESSAGE type, you can create arrays having one dimension. Upon creation of such arrays, you can choose to retain the values and specify initial values. The following example shows the MyVar variable of type BOOLEAN having a dimension defined as follows:

[10]

```
FOR i = 0 TO 9 DO
MyVar[i] := FALSE;
END_FOR;
```

Boolean Data Type

Boolean variables (BOOL) can take one of the Boolean values: **TRUE** or **FALSE**. Boolean variables are typically used in Boolean expressions. Boolean variables can have one of the following attributes:

- Internal: memory variable updated by the program
- Constant: read-only memory variable with an initial value
- Input: variable connected to an input device (refreshed by the system)
- Output: variable connected to an output device

For Boolean literal expressions, **ISaGRAF** targets evaluate all parts of such expressions. Whereas, the IEC 61131-3 standard states that Boolean expressions may be evaluated only to the extent necessary to determine the resultant value. In the following example according to the IEC 61131-3 standard, if B is zero then the first expression (B <> 0) is false and the second expression (A/B > 0) is not performed.

```
if ((B <> 0) and (A/B > 0)) then
GREATER := true;
else
GREATER := false;
end_if;
```

Boolean literal expressions are the following:

- TRUE is equivalent to the integer value 1
- FALSE is equivalent to the integer value 0

Double Integer Data Type

Double integer variables are 32-bit signed integer values ranging from -2147483647 to +2147483647. Double Integer variables can have one of the following attributes:

- Internal: memory variable updated by the program
- Constant: read-only memory variable with an initial value
- Input: variable connected to an input device (refreshed by the system)
- Output: variable connected to an output device

Warning: A double integer expression cannot contain integer and real variables or literal expressions.

A bit of an integer variable can be accessed using the following syntax:

```
MyVar.i
If MyVar is an Integer.
MyVar.i is a Boolean. "i" must be a literal value from 0 to 31.
```

Integer literal values represent signed long integer (32-bit) values ranging from -2147483647 to +2147483647. Integer literals may be expressed with one of the following bases. Integer literals must begin with a prefix identifying the base used:

Base	Prefix	Example
DECIMAL	(none)	-908
HEXADECIMAL	"16#"	16#1A2B3C4D
OCTAL	"8#"	8#1756402
BINARY	"2#"	2#1101_0001_0101_1101_0001_0010_1011_1001

The underscore character ('_') may be used to separate groups of digits. The underscore character has no particular significance other than to improve literal value readability.

Real Data Type

Real variables are standard IEEE 32-bit floating values (single precision) composed of 1 sign bit + 23 mantissa bits + 8 exponent bits. A real variable has six significant digits. For larger values, the maximum possible value is $\pm 3.402823466E+38$ while for smaller values, the minimum possible value is $\pm 1.175494351E-38$. Therefore, values greater than $\pm 3.402823466E+38$ and greater than 0.0 but less than $\pm 1.175494351E-38$ are not supported. The following example shows the value ranges including 0.0 that are supported for real variables:

Real variables can have one of the following attributes:

- Internal: memory variable updated by the program
- Constant: read-only memory variable with an initial value
- Input: variable connected to an input device (refreshed by the system)
- Output: variable connected to an output device

When a real variable is connected to an I/O device, the corresponding I/O driver operates the equivalent integer value.

Real literal values can be written with either decimal or scientific representation. The decimal point ('.') separates the integer and decimal parts. The decimal point differentiates a real literal value from an integer value. The scientific representation uses the 'E' or 'F' letter to separate the mantissa part and the exponent. The exponent part of a real scientific expression must be a signed integer value ranging from -37 to +37.

Example

- 3.14159 -1.0E+12
- +1.0 1.0E-15
- -789.56 +1.0E-37

The expression "123" does not represent a Real literal value. Its correct real representation is "123.0".

Time Data Type

Time variables are typically used in Time expressions. A Time value represents positive values from 0 to 23h59m59s999ms. Time variables are stored in 32 bit words. The internal representation is a positive number of milliseconds. Time variables can be used with timer function blocks such as TOF and TON. Timer variables can have one of the following attributes:

- Internal: memory variable managed by the program, refreshed by the system
- Constant: read-only memory variable with an initial value

Warning: Time variables cannot have the INPUT or OUTPUT attributes.

When a timer is active, its value is automatically increased according to the target system real-time clock. The following ST- language statements can be used to control a timer:

- TSTART, starts automatic refresh of a timer
- TSTOP, stops automatic refresh of a timer

Time literal values represent time values from 0 to 23h59m59s999ms. The lowest allowed unit is a millisecond. Standard time units used in literal values are:

Hours	The "h" letter must follow the number of hours
Minutes	The "m" letter must follow the number of minutes
Seconds	The "s" letter must follow the number of seconds
Milliseconds	The "ms" letters must follow the number of milliseconds

The time literal value must begin with "T#" or "TIME#" prefix. Prefixes and unit letters are not case sensitive. Some units may not appear.

Example

T#1H450MS 1 hour, 450 milliseconds time#1H3M 1 hour, 3 minutes

Message Data Type

Message variables contain character strings. The length of the string can change during process operations. The length of a string variable cannot exceed the capacity (maximum length) specified when the variable is declared. String capacity is limited to 252 characters excluding the terminating null character (0), a byte for the current length of the string, and a byte for the maximum length of the string.

Message variables can contain any character of the standard ASCII table (ASCII code from 0 to 255). The null character (0) can exist in a character string, however, it indicates the end of the string.

Message literal values represent character strings. Characters must be preceded and followed by single quote (') characters. For example:

'THIS IS A MESSAGE'

Warning: When placing single quote (°) characters within a message literal, these characters must be preceded by the dollar (\$) character. In the following message literal, note the dollar character preceding the single quote character.

'THIS IS \$' A MESSAGE'

A message literal value must be expressed on one line of the program source code. Its length cannot exceed 252 characters, including spaces.

Empty message literal values are represented two single quote (') characters, with no space or tab character between them:

" (* this is an empty string *)

The dollar ('\$') special character, followed by other special characters, can be used in a message literal value to represent a non-printable character:

Sequence	Meaning	ASCII (hex)	Example
\$\$	'\$' character	16#24	'I paid \$\$5 for this'
\$'	apostrophe	16#27	'Enter \$'Y\$' for YES'
\$L	line feed	16#0a	'next \$L line'

\$R	carriage return	16#0d	' llo \$R He'
\$N	new line	16#0d0a	'This is a line\$N'
\$P	new page	16#0c	'lastline \$P first line'
\$T	tabulation	16#09	'name\$Tsize\$Tdate'
\$hh (*)	any character	16#hh	'ABCD = \$41\$42\$43\$44'

(*) "hh" is the hexadecimal value of the ASCII code for the expressed character.

Operators

The following are Operators of the IEC 61131-3 languages:

Arithmetic operations	Addition	Adds two or more variables
	Division	Divides two variables
	Multiplication	Multiplies two or more variables
	Subtraction	Subtracts a variable from another
	1 GAIN	Assigns one variable into another
	NEG	Integer negation
Boolean operations	AND	Boolean AND
	OR	Boolean OR
	XOR	Boolean exclusive OR
Comparator	Less Than	Tests if one value is less than another
	Less Than or Equal	Tests if one value is less than or equal to another
	Greater Than	Tests if one value is greater than another
	Greater Than or Equal	Tests if one value is greater than or equal to another
	Equal	Tests if one value is equal to another
	Not Equal	Tests if one value is not equal to another
Concatenation	CAT	Concatenates multiple messages into one
Data conversion	BOO	Converts to Boolean
	ANA	Converts to real
	REAL	Converts to real
	MSG	Converts to message
	OPERATE	Varies depending on the implementation of the treated I/O
	TMR	Converts to time
	SYSTEM	Accesses the system parameters

Multiplication

Note: For this operator, the number of inputs can be extended to more than two.

Arguments:

(inputs)	DINT - REAL	can be INTEGER or REAL (all inputs must have the same format)
output	DINT - REAL	multiplication of the input terms
Description:		

Multiplication of two or more integer or real variables.

Example

(* FBD example with Multiplication Operators *)

(* ST equivalence *)

ao10 := ai101 * ai102;

Addition

Note: For this Operator, the number of inputs can be extended to more than two.

Arguments:

(inputs)	DINT - REAL	can be INTEGER or REAL (all inputs must have the same format)
output	DINT - REAL	addition of the input terms

Description:

Addition of two or more integer or real variables.

Example

(* FBD example with Addition Operators *)

(* ST equivalence: *)

ao10 := ai101 + ai102;

Subtraction

Arguments:

IN1	DINT - REAL	can be integer or real format
IN2	DINT - REAL	(IN1 and IN2 must have the same format)
Q	DINT - REAL	subtraction (first - second)

Description:

Subtraction of two integer or real variables (first - second).

Example

(* FBD example with Subtraction Operators *)

(* ST equivalence: *)

ao10 := ai101 - ai102;

```
ao5 := (ai51 - 1) - ai53;
```

Division

Arguments:

IN1	DINT - REAL	can be integer or real format (operand)
IN2	DINT - REAL	non-zero integer or real value (divisor) (IN1 and IN2 must have the same format)
Q	DINT - REAL	integer or real division of IN1 by IN2

Description:

Division of two integer or real variables (the first divided by the second).

Example

(* FBD example with Division Operators *)


```
(* ST Equivalence: *)
ao10 := ail01 / ail02;
ao5 := (ai5 / 2) / ai53;
```

1 GAIN

Arguments:

- IN DINT BOOL MESSAGE REAL -TIME
- Q DINT BOOL MESSAGE REAL -TIME

IN and Q must have the same format

Description:

The assignment of one variable into another

This Block is very useful to directly link a diagram input and a diagram output. It can also be used (with a Boolean negation line) to invert the state of a line connected to a diagram output.

Example

(* FBD example with assignment Operators *)

(* ST equivalence: *)

ao23 := ai10; bo100 := NOT (bi1 AND bi2);

AND

Note: For this Operator, the number of inputs can be extended to more than two.

Arguments:

(inputs)	BOOL	
output	BOOL	Boolean AND of the input terms

Description:

Boolean AND between two or more terms.

In the text editor, the '&' character can be used as well as typing AND.

Example

(* ST equivalence 1: *)

bol0 := bil01 AND NOT (bil02);

(* ST equivalence 2: *) bol0 := bil01 & NOT (bil02);

BOO

Arguments:

IN	DINT- MESSAGE - REAL - TIME	A non-boolean value
Q	BOOL	TRUE for non-zero numerical value FALSE for zero numerical value TRUE for 'TRUE' message FALSE for 'FALSE' message

Description:

Converts a non-boolean variable to a boolean variable.

Example

(* FBD example with "BOO" operators *)

(* ST equivalence: *)

```
ares := BOO (10);(* ares is TRUE *)
tres := BOO (t#0s);(* tres is FALSE *)
mres := BOO ('false');(* mres is FALSE *)
```

CAT

Arguments:

(inputs)	MESSAGE	The number of inputs can be extended to more than two. However, the addition of all message lengths must not exceed output message capacity.
output	MESSAGE	Concatenation of the input messages

Description:

Concatenates multiple messages into one message.

Example

(* FBD example with "CAT" Operator *)

(* ST equivalence: *)

myname := ('Mr' + ' ') + 'Jones';

(* means: MyName := 'Mr Jones' *)

Equal

Arguments:

IN1	DINT - BOOL - MESSAGE - REAL	Both inputs must have the same format.
IN2	DINT - BOOL - MESSAGE - REAL	
Q	BOOL	TRUE if $IN1 = IN2$
ъ		

Description

Test if one value is EQUAL TO another one (on integer, real, bool, and message variables)

Example

(* FBD example with "Is Equal to" Operators *)

(* ST Equivalence: *)

aresult := (10 = 25); (* aresult is FALSE *)
mresult := ('ab' = 'ab'); (* mresult is TRUE *)

Greater Than or Equal

Arguments:

IN1 DINT - BOOL - MESSAGE - REAL

- IN2 DINT BOOL MESSAGE REAL
- Q BOOL

TRUE if IN1 >= IN2

Both inputs must have the same type.

Description:

Test if one value is GREATER THAN or EQUAL TO another one (on integer, real, bool, and message variables)

Example

(* FBD example with "Greater or Equal to" Operators *)

(* ST Equivalence: *)

aresult := (10 >= 25); (* aresult is FALSE *)
mresult := ('ab' >= 'ab'); (* mresult is TRUE *)

Greater Than

Arguments:

IN1	DINT - BOOL - MESSAGE - REAL - TIME	Both inputs must have the same type
IN2	DINT - BOOL - MESSAGE - REAL - TIME	
Q	BOOL	TRUE if IN1 > IN2

Description:

Test if one value is GREATER THAN another one (on integer, real, bool, time, and message variables)

Example

(* FBD example with "Greater than" Operators *)

(* ST Equivalence: *)

```
aresult := (10 > 25); (* aresult is FALSE *)
mresult := ('ab' > 'a'); (* mresult is TRUE *)
```

ANA

Arguments:

IN	BOOL - MES - REAL - TIM	SAGE A non-integer value
Q	DINT	0 if IN is FALSE / 1 if IN is TRUE
		Number of milliseconds for a timer
		Integer part for real
		Decimal number represented by a string

Description:

Converts a non-integer variable to an integer variable.

Example

(* FBD example with "ANA" operators *)

(* ST equivalence: *)

bres := ANA (true);(* bres is 1 *)
tres := ANA (t#1s46ms);(* tres is 1046 *)
mres := ANA ('0198');(* mres is 198 *)

REAL

Arguments:

IN	DINT - BOOL - MESSAGE - TIME	A non-real value (no message)
Q	REAL	0.0 if IN is FALSE / 1.0 if IN is TRUE Number of milliseconds for a timer Equivalent number for integer

Description:

Converts a non-real variable to a real variable.

Example

(* FBD example with "REAL" operators *)

(* ST Equivalence: *)

bres	:= REAL	(true);	(*	bres	is	1.0 *)
tres	:= REAL	(t#1s46ms);	(*	tres	is	1046.0 *)
ares	:= REAL	(198);	(*	ares	is	198.0 *)

SYSTEM

SYSTEM				
Mode	Param			
DINT	DINT			
Arg				
DINT				

Arguments:

MODE	DINT	Identifies the system parameter and the access mode
ARG	DINT	New value for a "write" access
PARAM	DINT	Value of the accessed parameter

Description:

Accesses the system parameters to enable performing the following tasks:

- Reading various cycle timing information and changing cycle timing
- Resetting timing counters
- Checking for and reading run-time errors
- Backing up, saving, and restoring variables

The following are the available commands (pre-defined keywords) and expected arguments for the SYSTEM operator:

Command	Meaning	Argument	Value	Return Value
SYS_TALLOWED	reads allowed cycle timing	0	1	allowed cycle timing
SYS_TCURRENT	reads current cycle timing	0	2	current cycle timing
SYS_TMAXIMUM	reads maximum cycle timing	0	3	maximum detected timing
SYS_TOVERFLOW	reads cycle timing overflows	0	4	number of timing overflows

Command	Meaning	Argument	Value	Return Value
SYS_TWRITE	changes cycle timing	new allowed cycle timing	5	written time
SYS_TRESET	resets timing counters	0	6	0
SYS_ERR_TEST	checks for run time errors	0	16	0 if no error detected
SYS_ERR_READ	reads oldest run time error	0	17	oldest error code
SYS_INITBOO	backs up init Boolean	memory address	32	next free address
SYS_SAVBOO	saves Booleans	0	33	zero if OK
SYS_RESTBOO	restores Booleans	0	34	zero if OK
SYS_INITANA	backs up init analog	memory address	36	next free address
SYS_SAVANA	saves analogs	0	37	zero if OK
SYS_RESTANA	restores analogs	0	38	zero if OK
SYS_INITTMR	backs up init timer	memory address	40	next free address
SYS_SAVTMR	saves timers	0	41	zero if OK
SYS_RESTTMR	restores timers	0	42	zero if OK
SYS_INITALL	backs up init all types	memory address	44	next free address
SYS_SAVALL	saves all types	0	45	zero if OK
SYS_RESTALL	restores all types	0	46	zero if OK

When backing up variables for a specific type or for all types, you need to define the memory backup location using the following syntax:

<new address> := SYSTEM(SYS INITxxx,<address>);

where:

<address> is the memory backup address location (16# value for Hexadecimal format). The location must be an even address or the operation fails.

SYS_INITxxx can be one of the following:
SYS_INITBOO to define memory backup location for all Boolean variables.
SYS_INITANA to define memory backup location for all analog variables.
SYS_INITTMR to define memory backup location for all timer variables.
SYS_INITALL to define memory backup location for all Boolean, analog, and timer variables.

<<u>new_address</u>> gets the next free address, i.e., <<u>address</u>> + size of backed up variables (in bytes) according to SYS_INITxxx. This enables verifying the size of the required memory backup. If the operation fails, <<u>new_address</u>> gets a zero value.

After having defined the backup memory location, you can perform backups of the variables at any time during the application. The backup is performed once only at the end of the current cycle. If the hardware delivers a Boolean input or a C function to inform of a power failure and allows at least one cycle delay before closing down, the backup may only be performed after detecting the power failure.

<error> :=SYSTEM(SYS_SAVxxx,0);

where:

SYS_SAVxxx can be one of the following: SYS_SAVBOO to ask for all Boolean variables backup. SYS_SAVANA to ask for all analog variables backup. SYS_SAVTMR to ask for all timer variables backup. SYS_SAVALL to ask for all Boolean, analog and timer variables backup.

<*error*> gets an error status other than zero when the operation fails (SYS_INITxxx is not called).

You can restore variables at any time during the application. The restoration is performed once only at the end of the current cycle. To ensure that the backed up data is valid, an analog

variable should be set to a constant value used as a signature.

<error> := SYSTEM(SYS_RESTxxx,0);

where:

SYS_RESTxxx can be one of the following: SYS_RESTBOO to restore all Boolean variables. SYS_RESTANA to restore all analog variables. SYS_RESTTMR to restore all timer variables. SYS_RESTALL to restore all Boolean, analog and timer variables.

<*error*> gets an error status other than zero when the operation fails (*SYS_INITxxx* is not performed).

Example

(* FBD example with "SYSTEM" operators *)


```
(* ST Equivalence: *)
alarm := (SYSTEM (SYS_TOVERFLOW, 0) <> 0);
If (alarm) Then
   nb_err := nb_err + 1;
   rc := SYSTEM (SYS_TRESET, 0);
End_If;
```

Less Than or Equal

Arguments:

IN1	DINT - BOOL - MESSAGE - REAL	Both inputs must have the same type.
IN2	DINT - BOOL - MESSAGE - REAL	
Q	BOOL	TRUE if IN1 <= IN2

Description:

Tests if one value is LESS THAN or EQUAL TO another one (on integer, real, bool, and message variables)

Example

(* FBD example with "Less or equal to" Operators *)

(* ST Equivalence: *)

aresult := (10 <= 25); (* aresult is TRUE *)
mresult := ('ab' <= 'ab'); (* mresult is TRUE *)</pre>

Less Than

Arguments:

 IN1 DINT - BOOL - MESSAGE - REAL -TIME
 IN2 DINT - BOOL - MESSAGE - REAL -TIME
 Q BOOL
 TRUE if IN1 < IN2

Description:

Test if one value is LESS THAN another one (on integer, real, bool, time, and message variables)

Example

(* FBD example with "Less than" Operators *)

(* ST Equivalence: *)

aresult := (10 < 25); (* aresult is TRUE *)
mresult := ('z' < 'B'); (* mresult is FALSE *)</pre>

MSG

Arguments:

IN	DINT - BOOL - REAL - TIME	A non-string value
Q	MESSAGE	"false' or 'true' if IN is a boolean value
		decimal representation if IN is an integer or real

Description:

Converts an integer, real, boolean, or time variable to a string variable.

Example

(* FBD example with "Convert to Message" blocks *)

(* ST Equivalence: *)

bres := MSG (TRUE);	(* bres is 'TRUE' *)
ares := MSG (125);	(* ares is '125' *)

NEG

Arguments:

IN DINT - REAL

Input and output must have the same format

Q DINT - REAL

Description:

Assignment of the negation of a variable.

Example

(* FBD example with Negation Operators *)

(* ST equivalence: *) ao23 := - (ai10);

ro100 := - (ri1 + ri2);

Not Equal

Arguments:

IN1	DINT - BOOL - MESSAGE - REAL	both inputs must have the same type
IN2	DINT - BOOL - MESSAGE - REAL	
Q	BOOL	TRUE if first <> second

Description:

Test if one value is NOT EQUAL TO another one (on integer, real, boolean, and message variables)

Example

(* FBD example with "Is Not Equal to" Operators *)

(* ST Equivalence: *)

aresult := (10 <> 25); (* aresult is TRUE *)
mresult := ('ab' <> 'ab'); (* mresult is FALSE *)

OPERATE

ATE
Q-
DINT

Arguments:

DINT - BOOL - MESSAGE - REAL - TIME	Input or output variable
DINT	Action to be performed
DINT	Argument for I/O action
DINT	Return check
	DINT - BOOL - MESSAGE - REAL - TIME DINT DINT DINT

Description:

Accesses an IO channel

Note: The meaning of OPERATE arguments differs from one I/O interface implementation to another.

OR

Note: For this Operator, the number of inputs can be extended to more than two.

Arguments:

(inputs)	BOOL
(1)	

output BOOL Boolean **OR** of the input terms

Description:

Boolean OR of two or more terms.

Example

(* FBD example with "OR" Operators *)

(* ST equivalence: *)

bol0 := bil01 OR NOT (bil02); bo5 := (bi51 OR bi52) OR bi53;

TMR

Arguments:

IN	DINT - REAL	A non-TIME value
		IN (or integer part of IN if it is real)
		is the number of milliseconds
Q	TIME	Time value represented by IN

Description:

Converts an integer or real variable to a time one.

Example

(* FBD example with "Convert to Timer" Operators *)

(* ST Equivalence: *)

ares	:= TMR	(1256);	(* ares := t#1s256ms *)
rres	:= TMR	(1256.3);	(*rres := t#1s256ms *)

XOR

Arguments:

IN1	BOOL	
IN2	BOOL	
Q	BOOL	Boolean exclusive OR of the two input terms

Description:

Boolean exclusive OR between two terms.

Example

(* FBD example with "XOR" operators *)

(* ST equivalence: *)

bol0 := bil01 XOR NOT (bil02);

Functions

The following are the functions supported by the system:

Arithmetic Operations	ABS	Absolute value of a real value
	EXPT, POW	Exponent, power calculation of real values
	LOG	Logarithm of a real value
	MOD	Modulo
	SQRT	Square root of a real value
	RAND	Random value
	TRUNC	Truncate decimal part of a real value
	ACOS, ASIN, ATAN	Arc cosine, Arc sine, Arc tangent of a real value
	COS, SIN, TAN	Cosine, Sine, Tangent of a real value
Array manipulation	ARCREATE	Creates an array of integers
	ARREAD	Reads an element in an array of integers
	ARWRITE	Stores (writes) a value in an array of integers
Binary operations	AND_MASK	Integer bit-to-bit AND mask
	OR_MASK	Integer bit-to-bit OR mask
	XOR_MASK	Integer bit-to-bit Exclusive OR mask
	NOT_MASK	Integer bit-to-bit negation
	ROL, ROR	Rotate Left, Rotate Right an integer value
	SHL, SHR	Shift Left, Shift Right an integer value
Boolean operations	ODD	Odd parity

Data manipulation	MIN, MAX, LIMIT	Minimum, Maximum, Limit
	MUX4, MUX8	Multiplexer (4 or 8 entries)
	SEL	Binary selector
File management (for ISaGRAF 3 configurations only)	F_CLOSE	Closes a binary file
6 ,	F_EOF	Tests if end of a file has been reached
	F_ROPEN	Opens a binary file in read mode
	F_WOPEN	Opens a binary file in write mode
	FA_READ	Reads integer and real variables from a binary file
	FA_WRITE	Writes integer and real variables to a binary file
	FM_READ	Reads MESSAGE variables from a binary file
	FM_WRITE	Writes MESSAGE variables to a binary file
String manipulation	ASCII	Character -> ASCII code
	CHAR	ASCII code -> Character
	MLEN	Get string length
	DELETE, INSERT	Delete sub-string, Insert string
	FIND, REPLACE	Find sub-string, Replace sub-string
	LEFT, MID, RIGHT	Extract left, middle or right of a string
Time operations	DAY_TIME	Gives date or time of the day

ABS

Arguments:

IN	IN	REAL	Any signed real value
ABS	Q	REAL	Absolute value (always positive)

Description:

Gives the absolute (positive) value of a real value.

Example

(* FBD Program using "ABS" Function *)

(* ST Equivalence: *)

over := (ABS (delta) > range);

ACOS

Arguments:

IN	IN	REAL	Must be in set [-1.0 +1.0]
ACOS	Q	REAL	Arc-cosine of the input value (in set [0.0 PI]) = 0.0 for invalid input

Description:

Calculates the Arc cosine of a real value.

Example

(* FBD Program using "COS" and "ACOS" Functions *)

(* ST Equivalence: *)

cosine := COS (angle);

result := ACOS (cosine); (* result is equal to angle *)

AND_MASK

Arguments:

IN	IN	DINT	Must have integer format
MSK	MSK	DINT	Must have integer format
AND_MASK	Q	DINT	Bit-to-bit logical \boldsymbol{AND} between IN and MSK

Description:

Integer AND bit-to-bit mask.

Example

(* FBD example with AND_MASK Operators *)

(* ST Equivalence: *)

parity := AND_MASK (xvalue, 1); (* 1 if xvalue is odd *)
result := AND MASK (16#abc, 16#f0f); (* equals 16#a0c *)

ARCREATE

arcr	eate
ID	ok-
DINT	DINT
Size	
DINT	

Arguments:

ID	DINT	Identifier of the array (must be in set [015])
SIZE	DINT	Number of elements in the array
OK	DINT	execution status : 1 = if array has been successfully created 2 = invalid array identifier or array already created 3 = invalid size 4 = not enough memory

Description:

Creates an array of integers.

Warning: There are at most 16 arrays in an application. Arrays contain integer analog values. As dynamic memory allocation is performed, this function may cause a system error if the array size is too close to the size of the available memory.

Example

(* FBD Program creating an array of integers*)

(* ST Equivalence: *)

array_error := (ARCREATE (ident, 16) <> 1));

ARREAD

	arread	
ID		0-
DINT		DINT
Pos		
DINT		

Arguments:

ID	DINT	Identifier of the array (must be in set [015])
POS	DINT	Position of the element in the array must be in set [0 size-1]
Q	DINT	value of the element read 0 if the arguments are not valid

Description:

Reads an element in an array of integers.

Example

(* FBD program using an array management function*)

(* ST Equivalence: *)

```
If (array_error) Then Return; End_if;
read_value := ARREAD (ident, index);
(* array_error comes from the ARCREATE call *)
```

ARWRITE

Arguments:

ID	DINT	Identifier of the array (must be in set [015])
POS	DINT	Position of the element in the array; must be in set [0 size-1]
IN	DINT	New value for the element
OK	DINT	Execution status: 1 = writing has succeeded 2 = invalid array identifier 3 = invalid index

Description:

Stores (writes) a value in an array of integers.

Example

(* FBD program using an array management function*)

(* ST Equivalence: *)

If (array_error) Then Return; End_if;

write_status := ARWRITE (Ident, Index, value);

(* array_error comes from the ARCREATE call *)
ASCII

ascii	
IN	Code
MESSAGE $[x] \rightarrow A$	DINT
Pos	
DINT	

Arguments:

IN	IN	MESSAGE	Any non-empty string
Pos	Pos	DINT	Position of the selected character in set [1 len] (len is the length of the IN message)
ASCII	Code	DINT	Code of the selected character (in set [0 255]) returns 0 is Pos is out of the string

Description:

Gives the ASCII code of one character in a message string.

Example

(* FBD Program using "ASCII" Function *)

(* ST Equivalence: *)

FirstChr := ASCII (message_input, 1);

(* FirstChr is the ASCII code of the first character of the string *)

ASIN

Arguments:

IN	IN	REAL	Must be in set [-1.0 +1.0]
ASIN	Q	REAL	Arc-sine of the input value (in set [-PI/2 +PI/2]) = 0.0 for invalid input

Description:

Calculates the Arc sine of a real value.

Example

(* FBD Program using "SIN" and "ASIN" Functions *)

(* ST Equivalence: *)

```
sine := SIN (angle);
result := ASIN (sine); (* result is equal to angle *)
```

ATAN

Arguments:

IN	IN	REAL	Any real value
ATAN	Q	REAL	Arc-tangent of the input value (in set $[-PI/2 +PI/2]$) = 0.0 for invalid input

Description:

Calculates the arc tangent of a real value.

Example

(* FBD Program using "TAN" and "ATAN" Function *)


```
(* ST Equivalence: *)
tangent := TAN (angle);
result := ATAN (tangent); (* result is equal to angle*)
```

CHAR

Arguments:

Code	Code	DINT	Code in set [0 255]
CHAR	Q	MESSAGE	One character string
			the character has the ASCII code given in input Code
			(ASCII code is used modulo 256)

Description:

Gives a one character message string from a given ASCII code.

Example

(* FBD Program using "CHAR" Function *)

(* ST Equivalence: *)

Display := CHAR (value + 48);
(* value is in set [0..9] *)

(* 48 is the ascii code of '0' *)

(* result is one character string from '0' to '9' *)

COS

Arguments:

ININREALAny REAL valueCOSQREALCosine of the input value (in set [-1.0 .. +1.0])

Description:

Calculates the cosine of a real value.

Example

(* FBD Program using "COS" and "ACOS" Functions *)

(* ST Equivalence: *)
cosine := COS (angle);
result := ACOS (cosine); (* result is equal to angle *)

DAY_TIME

Arguments:

SEL DINT output selection 0= get current date 1= get current time 2= get day of week Q MESSAGE time/date expressed on a character string "YYYY/MM/DD' if SEL = 0 "HH:MM:SS' if SEL = 1 day name if SEL = 2 (ex: 'Monday')

Description:

Gives date or time of the day as a message string.

Example

(* FBD Program using "DAY_TIME" function *)

DELETE

Arguments:

IN	IN	MESSAGE	Any non-empty string
NbC	NbC	DINT	Number of characters to be deleted
Pos	Pos	DINT	Position of the first deleted character (first character of the string has position 1)
DELETE	Q	MESSAGE	modified string empty string if Pos < 1 initial string if Pos > IN string length initial string if NbC <= 0

Description:

Deletes a part of a message string.

Example

(* FBD Program using "DELETE" Function *)

(* ST Equivalence: *)

complete_string := 'ABCD' + 'EFGH'; (* complete_string is 'ABCDEFGH' *)
sub string := DELETE (complete_string, 4, 3); (* sub string is 'ABGH'*)

EXPT

Arguments:

IN	IN	REAL	Any signed real value
EXP	EXP	DINT	Integer exponent
EXPT	Q	REAL	(IN EXP)

Description:

Gives the real result of the operation: (base ^{exponent}) 'base' being the first argument and 'exponent' the second one.

Example

(* FBD Program using "EXPT" Function *)

(* ST Equivalence: *)

tb_size := ANY_TO_DINT (EXPT (2.0, range));

F_CLOSE

Arguments:

ID	DINT	File number returned by F_ROPEN or F_WOPEN
OK	BOOL	return status
		TRUE if file close is OK
		FALSE if an error occurred

Description:

Closes a binary file open with functions F_ROPEN or F_WOPEN.

This function is not included in the ISaGRAF simulator.

Example

(* FBD program using file management blocks *)

(* ST Equivalence: *)

file_id := F_ROPEN('data.bin');

ok := F_CLOSE(file_id);

F_EOF

Arguments:

ID	DINT	File number returned by F_ROPEN or F_WOPEN
OK	BOOL	End of file indicator. TRUE if end of file has been reached at the last read or write procedure call. With FM_READ, the last message read from a file may not be correct, if the last character is not a string terminator.

Description:

Tests if end of file has been reached.

This function is not included in the **ISaGRAF** simulator.

Example

(* FBD program using file management blocks *)

(* ST Equivalence: *)

```
file_id := F_ROPEN('data.bin');
```

```
WHILE not(F_EOF(file_id))
```

```
VAL := FA_READ(file_id);
```

END_WHILE;

```
message_input:= 'last val = ' + msg(VAL);
```

ok := F_CLOSE(file_id);

F_ROPEN

Arguments:

PATH	MESSAGE	May include the access path to the file using the $\$
		or / symbol to specify a directory. To ease
		application portability, / or $\$ is equivalent.
ID	DINT	File number
		0 if an error occurs: file does not exist

Description:

Opens a binary file in read mode. To be used with FA_READ, FM_READ, and F_CLOSE.

This function is not included in the **ISaGRAF** simulator.

Example

(* FBD program using file management blocks *)

(* ST Equivalence: *)

file_id := F_ROPEN('c:\data \data.bin');
error := (file_id=0);

F_WOPEN

Arguments:

PATH	MESSAGE	May include the access path to the file using the $\$
		or / symbol to specify a directory. To ease
		application portability, / or \ is equivalent.
ID	DINT	File number
		0 if an error occurs. If the file already exists, it is
		overwritten

Description:

Opens a binary file in write mode. To be used with FA_WRITE, FM_WRITE, and F_CLOSE.

This function is not included in the **ISaGRAF** simulator.

Example

(* FBD program using file management blocks *)

(* ST Equivalence: *)

file_id := F_WOPEN('c:\data.bin');

error := (file_id=0);

FA_READ

Arguments:

ID	DINT	File number: returned by F_ROPEN
Q	DINT	Integer value read from file

Description:

Reads integer variables from a binary file. To be used with F_ROPEN and F_CLOSE . This procedure makes a sequential access to the file, from the previous position. The first call after F_ROPEN reads the first four bytes of the file, each call pushes the reading pointer. To check if the end of file is reached, use F_EOF .

This function is not included in the **ISaGRAF** simulator.

Example

(* FBD program using file management blocks *)

- (* ST Equivalence: *)
- file_id := F_ROPEN('voltramp.bin');
- vstart := FA_READ(file_id);
- vend := FA_READ(file_id);
- vinc := FA_READ(file_id);
- delta_tim := tmr(FA_READ(file_id));
- ok := F_CLOSE(file_id);

FA_WRITE

Arguments:

ID	DINT	File number: returned by F_WOPEN
IN	DINT	Integer value to be written in the file
OK	BOOL	Execution status: TRUE if ok

Description:

Writes integer variables to a binary file. This procedure makes a sequential access to the file, from the previous position. The first call after F_WOPEN writes the first four bytes of the file, each call pushes the writing pointer.

This function is not included in the ISaGRAF simulator.

Example

(* FBD program using file management blocks*)


```
(* ST Equivalence: *)
```

```
file_id := F_WOPEN('voltramp.bin');
nb_written := 0;
nb_written := nb_written + dint(FA_WRITE(file_id,vstart));
nb_written := nb_written + dint(FA_WRITE(file_id,vend));
nb_written := nb_written + dint(FA_WRITE(file_id,vinc));
nb_written := nb_written + dint(FA_WRITE(file_id,dint(delta_tim)));
ok := F_CLOSE(file_id);
IF ( nb_written <> 4) THEN
ERROR := ERR FILE;
```

END_IF;

FM_READ

Arguments:

ID DINT file number: returned by F_ROPEN

Q MESSAGE message value read from file

Description:

Reads message variables from a binary file. To be used with F_ROPEN and F_CLOSE. This procedure makes a sequential access to the file, from the previous position. The first call after F_ROPEN reads the first string of the file, each call pushes the reading pointer. A string is a terminated by null (0), end of line ('\n') or return ('\r'); To check if the end of file is reached, use F_EOF .

This function is not included in the **ISaGRAF** simulator.

Example

(* FBD program using file management blocks *)


```
(* ST Equivalence: *)
```

```
file_id := F_ROPEN('voltramp.bin');
```

```
status1 := FM_READ(file_id);
```

```
status2 := FM_READ(file_id);
```

```
IF (F_EOF(file_id)) THEN
```

error := err_file;

```
unused_eof_mes := FM_READ(file_id);
```

END_IF;

ok := F_CLOSE(file_id);

FM_WRITE

Arguments:

ID	DINT	File number: returned by F_WOPEN
IN	MESSAGE	Message value to be written in the file
OK	BOOL	Execution status: TRUE if successful

Description:

Writes message variables to a binary file. To be used with F_WOPEN and F_CLOSE. A message is written in the file as a null terminated string. This procedure makes a sequential access to the file, from the previous position. The first call after F_WOPEN writes the first string to the file, each call pushes the writing pointer.

This function is not included in the **ISaGRAF** simulator.

Example

(* FBD program using file management blocks*)

- (* ST Equivalence: *)
- file_id := F_WOPEN('trace.txt');
- ok := FM_WRITE(file_id,'First message');
- ok := FM_WRITE(file_id,'Last message');
- ok := F_CLOSE(file_id);

FIND

	find	
In MESSAGE Pat MESSAGE	٩	Pos- DINT

Arguments:

In	In	MESSAGE	Any message string
Pat	Pat	MESSAGE	Any non-empty string (Pattern)
FIND	Pos	DINT	 = 0 if sub string Pat not found = position of the first character of the first occurrence of the sub-string Pat (first position is 1) this function is case sensitive

Description:

Finds a sub-string in a message string. Gives the position in the string of the sub-string.

Example

(* FBD Program using "FIND" Function *)

(* ST Equivalence: *)

```
complete_string := 'ABCD' + 'EFGH'; (* complete_string is 'ABCDEFGH' *)
found := FIND (complete string, 'CDEF'); (* found is 3 *)
```

INSERT

Arguments:

IN	IN	MESSAGE	Initial string
Str	Str	MESSAGE	String to be inserted
Pos	Pos	DINT	Position of the insertion the insertion is done before the position (first valid position is 1)
INSERT	Q	MESSAGE	Modified string empty string if Pos <= 0 concatenation of both strings if Pos is greater than the length of the IN string

Description:

Inserts a sub-string in a message string at a given position.

Example

(* FBD Program using "INSERT" Function *)

(* ST Equivalence: *)

MyName := INSERT ('Mr JONES', 'Frank ', 4); (* MyName is 'Mr Frank JONES' *)

LEFT

Arguments:

IN	IN	MESSAGE	Any non-empty string
NbC	NbC	DINT	Number of characters to be extracted. This number cannot be greater than the length of the IN string.
LEFT	Q	MESSAGE	Left part of the IN string (its length = NbC) empty string if NbC <= 0 complete IN string if NbC >= IN string length

Description:

Extracts the left part of a message string. The number of characters to be extracted is given.

Example

(* FBD Program using "LEFT" and "RIGHT" Functions *)

(* ST Equivalence: *)

complete_string := RIGHT ('12345678', 4) + LEFT ('12345678', 4);

(* complete_string is '56781234'

the value issued from RIGHT call is '5678' the value issued from LEFT call is '1234' *)

LIMIT

Arguments:

MIN	MIN	DINT	Minimum allowed value
IN	IN	DINT	Any signed integer value
MAX	MAX	DINT	Maximum allowed value
LIMIT	Q	DINT	Input value bounded to allowed range

Description:

Limits an integer value into a given interval. Whether it keeps its value if it is between minimum and maximum, or it is changed to maximum if it is above, or it is changed to minimum if it is below.

Example

(* FBD Program using "LIMIT" Function *)

(* ST Equivalence: *)

new_value := LIMIT (min_value, value, max_value);

(* bounds the value to the [min_value..max_value] set *)

LOG

Arguments:

IN	IN	REAL	Must be greater than zero
LOG	Q	REAL	Logarithm (base 10) of the input value

Description:

Calculates the logarithm (base 10) of a real value.

Example

(* FBD Program using "LOG" Function *)

(* ST Equivalence: *)

xpos := ABS (xval); xlog := LOG (xpos);

MAX

Arguments:

IN1	IN1	DINT	Any signed integer value
IN2	IN2	DINT	(cannot be REAL)
MAX	Q	DINT	Maximum of both input values

Description:

Gives the maximum of two integer values.

Example

(* FBD Program using "MIN" and "MAX" Function *)

(* ST Equivalence: *)

new_value := MAX (MIN (max_value, value), min_value);

(* bounds the value to the [min_value..max_value] set *)

MID

	mid	
IN		Q.
NEC	BLOCK	MESSAGE
DINT	Lac	
Pos		

Arguments:

IN	IN	MESSAGE	Any non-empty string
NbC	NbC	DINT	Number of characters to be extracted cannot be greater than the length of the IN string
Pos	Pos	DINT	Position of the sub-string the sub-string first character will be the one pointed to by Pos (first valid position is 1)
MID	Q	MESSAGE	Middle part of the string (its length = NbC) empty string if parameters are not valid

Description:

Extracts a part of a message string. The number of characters to be extracted and the position of the first character are given.

Example

(* FBD Program using "MID" Function *)

(* ST Equivalence: *)

sub_string := MID ('abcdefgh', 2, 4);

(* sub_string is 'de' *)

MIN

Arguments:

IN1	IN1	DINT	Any signed integer value
IN2	IN2	DINT	(cannot be REAL)
MIN	Q	DINT	Minimum of both input values

Description:

Gives the minimum of two integer values.

Example

(* FBD Program using "MIN" and "MAX" Function *)

(* ST Equivalence: *)

new_value := MAX (MIN (max_value, value), min_value);

(* bounds the value to the [min_value..max_value] set *)

MLEN

mlen	
IN BLOCK	NbC
MESSAGE 5	DINT

Arguments:

IN	IN	MESSAGE	Any message string
MLEN	NbC	DINT	Number of characters in the IN string

Description:

Calculates the length of a message string.

Example

(* FBD Program using "MLEN" Function *)

(* ST Equivalence: *)

nbchar := MLEN (complete_string); If (nbchar < 3) Then Return; End_if;</pre>

prefix := LEFT (complete_string, 3);

(* This program extracts the three characters on the left of the string and places the result in the prefix string variable.

Nothing is done if the string length is less than three characters. *)
MOD

Arguments:

IN	IN	DINT	Any signed integer value
Base	Base	DINT	Must be greater than zero
	Q	DINT	Modulo calculation (input MOD base) returns -1 if Base $\leq = 0$
			Tetuliis - I II Dase <= 0

Description:

Calculates the modulo of an integer value.

Example

(* FBD Program using "MOD" Function *)

(* ST Equivalence: *)

```
division_result := (value / divider); (* integer division *)
rest_of_division := MOD (value, divider); (* rest of the division *)
```

MUX4

	mux4	
SEL		Q.
DINT		DINT
IN1		
DINT	-	
IN2	-MUX-	
DINT	-	
IN3		
DINT		
IN4		
DINT		

Arguments:

SEL	SEL	DINT	Selector integer value (must be in set [03])
IN1IN4	IN1IN4	DINT	Any integer values
MUX4	Q	DINT	= value1 if SEL $=$ 0
			= value2 if SEL $=$ 1
			= value3 if SEL $=$ 2
			= value4 if SEL $=$ 3
			= 0 for all other values of the selector

Description:

Multiplexer with four entries: selects a value between four integer values.

Example

(* FBD Program using "MUX4" Function *)

(* ST Equivalence: *)

range := MUX4 (choice, 1, 10, 100, 1000);

(* select from 4 predefined ranges, for example, if choice is 1, range will be 10 *)

MUX8

	mux8	
SEL		Q.
DINT		DINT
IN1		
DINT		
IN2		
DINT		
IN3		
DINT	=	
IN4	MUX	
DINT		
INS		
DINT		
DINT		
UNIT		
DINT		
INIO		
DINT		
Carles I		

Arguments:

SEL	SEL	DINT	Selector integer value (must be in set [07])
IN1IN8	IN1IN8	DINT	Any integer values
MUX8	Q	DINT	= value1 if selector = 0 = value2 if selector = 1
			 = value8 if selector = 7 = 0 for all other values of the selector

Description:

Multiplexer with eight entries: selects a value between eight integer values.

Example

(* FBD Program using "MUX8" Function *)

(* ST Equivalence: *)

range := MUX8 (choice, 1, 5, 10, 50, 100, 500, 1000, 5000);

(* select from 8 predefined ranges, for example, if choice is 3, range will be 50 *)

NOT_MASK

Arguments:

IN	IN	DINT	Must have integer format
NOT_MASK	Q	DINT	Bit-to-bit negation on 32 bits of IN

Description:

Integer bit-to-bit negation mask.

Example

(* FBD example with NOT_MASK Operators *)

(*ST equivalence: *)

result := NOT_MASK (16#1234);

(* result is 16#FFFF_EDCB *)

ODD

Arguments:

IN	IN	DINT	Any signed integer value
Odd	Q	BOOL	TRUE if input value is odd
			FALSE if input value is even

Description:

Tests the parity of an integer: result is odd or even.

Example

(* FBD Program using "ODD" Function *)

(* ST Equivalence: *)

If Not (ODD (value)) Then Return; End_if;

```
value := value + 1;
```

(* makes value always even *)

OR_MASK

	or_mask	
IN DINT MSK DINT	10010	Q. DINT

Arguments:

IN	IN	DINT	Must have integer format
MSK	MSK	DINT	Must have integer format
OR_MASK	Q	DINT	Bit-to-bit logical OR between IN and MSK

Description:

Integer OR bit-to-bit mask.

Example

(* FBD example with OR_MASK Operators *)

(* ST Equivalence: *)

parity := OR_MASK (xvalue, 1); (* makes value always odd *)
result := OR_MASK (16#abc, 16#f0f); (* equals 16#fbf *)

POW

Arguments:

IN	IN	REAL	Real number to be raised
EXP	EXP	REAL	Power (exponent)
POW	Q	REAL	 (IN ^{EXP}) 1.0 if IN is not 0.0 and EXP is 0.0 0.0 if IN is 0.0 and EXP is negative 0.0 if both IN and EXP are 0.0 0.0 if IN is negative and EXP does not correspond to an integer

Description:

Gives the real result of the operation: (base ^{exponent}) 'base' being the first argument and 'exponent' the second one. The exponent is a real value.

Example

(* FBD Program using "POW" Function *)

RAND

Arguments:

base	base	DINT	Defines the allowed set of number
RAND	Q	DINT	Random value in set [0base-1]

Description:

Gives a random integer value in a given range.

Example

(* FBD Program using "RAND" function *)

(* ST Equivalence: *)

selected := MUX4 (RAND (4), 1, 4, 8, 16);
(*
random selection of 1 of 4 pre-defined values
the value issued of RAND call is in set [0..3],
so 'selected' issued from MUX4, will get 'randomly' the value

1 if 0 is issued from RAND, or 4 if 1 is issued from RAND, or 8 if 2 is issued from RAND, or 16 if 3 is issued from RAND, *)

REPLACE

Arguments:

IN	IN	MESSAGE	Any string
Str	Str	MESSAGE	String to be inserted (to replace NbC chars)
NbC	NbC	DINT	Number of characters to be deleted
Pos	Pos	DINT	Position of the first modified character (first valid position is 1)
REPLACE	Q	MESSAGE	Modified string: - NbC characters are deleted at position Pos - then substring Str is inserted at this position returns empty string if Pos <= 0 returns strings concatenation (IN+Str) if Pos is greater than the length of the IN string returns initial string IN if NbC <= 0

Description:

Replaces a part of a message string by a new set of characters.

Example

(* FBD program using "REPLACE" function *)

MESSAGE Mr_X_Jones	replace IN Q. MESSAGE MESSAGE Str Str	MESSAGE
4		

- (* ST Equivalence: *)
- MyName := REPLACE ('Mr X JONES, 'Frank', 1, 4);
- (* MyName is 'Mr Frank JONES' *)

RIGHT

Arguments:

IN	IN	MESSAGE	Any non-empty string
NbC	NbC	DINT	Number of characters to be extracted. This number cannot be greater than the length of the IN string.
RIGHT	Q	MESSAGE	Right part of the string (length = NbC) empty string if NbC <= 0 complete string if NbC >= string length

Description:

Extracts the right part of a message string. The number of characters to be extracted is given.

Example

(* FBD Program using "LEFT" and "RIGHT" Functions *)(* ST Equivalence: *)


```
complete_string := RIGHT ('12345678', 4) + LEFT ('12345678', 4);
```

(* complete_string is '56781234'

the value issued from RIGHT call is '5678'

the value issued from LEFT call is '1234'

*)

ROL

Arguments:

IN	IN	DINT	Any integer value
NbR	NbR	DINT	Number of 1 bit rotations (in set [131])
ROL	Q	DINT	Left rotated value no effect if NbR <= 0

Description:

Make the bits of an integer rotate to the left. Rotation is made on 32 bits:

Example

(* FBD Program using "ROL" Function *)

(* ST Equivalence: *)

result := ROL (register, 1);
(* register = 2#0100_1101_0011_0101*)
(* result = 2#1001_1010_0110_1010*)

ROR

Arguments:

IN	IN	DINT	Any integer value
NbR	NbR	DINT	Number of 1 bit rotations (in set [131])
ROR	Q	DINT	Right rotated value no effect if NbR <= 0

Description:

Make the bits of an integer rotate to the right. Rotation is made on 32 bits:

Example

(* FBD Program using "ROR" Function *)

SEL

Arguments:

SEL	SEL	BOOL	Indicates the chosen value
IN1,IN2	IN1, IN2	DINT	Any integer values
SEL	Q	DINT	= IN1 if SEL is FALSE
			= IN2 if SEL is TRUE

Description:

Binary selector: selects a value between two integer values.

Example

(* FBD Program using "SEL" Function *)

(* ST Equivalence: *)

ProCmd := SEL (AutoMode, ManuCmd, InpCmd);

(* process command selection *)

SHL

Arguments:

IN	IN	DINT	Any integer value
NbS	NbS	DINT	Number of 1 bit shifts (in set [131])
SHL	Q	DINT	Left shifted value no effect if NbS <= 0 0 replaces the least significant bit

Description:

Shifts the 32 bits of an integer to the left and places a 0 in the least significant bit.

Example

(* FBD Program using "SHL" Function *)

SHR

Arguments:

IN	IN	DINT	Any integer value
NbS	NbS	DINT	Number of 1 bit shifts (in set [131])
SHR	Q	DINT	Right shifted value no effect if NbS <= 0 the leftmost bit is replicated if NbS >=1

Description:

Shifts the 32 bits of an integer to the right and replicates the leftmost bit (significant bit) to fill the vacant bits.

Example

(* FBD Program using "SHR" Function *)

(* ST Equivalence: *)

result := SHR (register,1);

```
(* register = 2#1100_1101_0011_0101 *)
```

(* result = 2#1110_0110_1001_1010 *)

SIN

Arguments:

IN	IN	REAL	Any REAL value
SIN	Q	REAL	Sine of the input value (in set [-1.0 +1.0])

Description:

Calculates the Sine of a real value.

Example

(* FBD Program using "SIN" and "ASIN" Functions *)

SQRT

Arguments:

IN	IN	REAL	Must be greater than or equal to zero
SQRT	Q	REAL	Square root of the input value

Description:

Calculates the square root of a real value.

Example

(* FBD Program using "SQRT" Function *)

(* ST Equivalence: *)

xpos := ABS (xval); xroot := SQRT (xpos);

TAN

Arguments:

IN	IN	REAL	Cannot be equal to PI/2 modulo PI
TAN	Q	REAL	Tangent of the input value
			= 1E+38 for invalid input

Description:

Calculates the Tangent of a real value.

Example

(* FBD Program using "TAN" and "ATAN" Functions *)

(* ST Equivalence: *)
tangent := TAN (angle);
result := ATAN (tangent); (* result is equal to angle*)

TRUNC

Arguments:

IN	IN	REAL	Any REAL value
TRUNC	Q	REAL	If IN>0, biggest integer less or equal to the input If IN<0, least integer greater or equal to the input

Description:

Truncates a real value to have just the integer part.

Example

(* FBD Program using "TRUNC" Function *)

(* ST Equivalence: *)
result := TRUNC (+2.67) + TRUNC (-2.0891);
(* means: result := 2.0 + (-2.0) := 0.0; *)

XOR_MASK

Arguments:

IN	IN	DINT	Must have integer format
MSK	MSK	DINT	Must have integer format
XOR_MASK	Q	DINT	Bit-to-bit logical Exclusive OR between IN and MSK

Description:

Integer exclusive OR bit-to-bit mask

Example

(* FBD example with XOR_MASK functions *)

(* ST Equivalence: *)

crc32 := XOR_MASK (prevcrc, nextc);
result := XOR_MASK (16#012, 16#011); (* equals 16#003 *)

Function Blocks

The following function blocks are supported:

Alarms management	LIM_ALRM	High/low limit alarm with hysteresis
Boolean operations	SR	Set dominant bistable
	RS	Reset dominant bistable
	R_TRIG	Rising edge detection
	F_TRIG	Falling edge detection
Comparator	СМР	Full comparison function block
Counters	CTU	Up counter
	CTD	Down counter
	CTUD	Up-down counter
Data manipulation	AVERAGE	Running average over N samples
Process control	DERIVATE	Differentiation according to time
	HYSTER	Boolean hysteresis on difference of reals
	INTEGRAL	Integration over time
	STACKINT	Stack of integer
Semaphore manipulation	SEMA	Manipulates a software semaphore
Signal generation	BLINK	Blinking Boolean signal
	SIG_GEN	Signal generator
Time operations	TON	On-delay timing
	TOF	Off-delay timing
	ТР	Pulse timing

Note: When new function blocks are created, they can be called from any language.

AVERAGE

Arguments:

RUN	BOOL	TRUE=run / FALSE=reset
XIN	REAL	Any real Variable
N	DINT	Application defined number of samples
XOUT	REAL	Running average of XIN value

Note: When setting or changing the value for N, you need to set RUN to FALSE, then set it back to TRUE.

Description:

Stores a value at each cycle and calculates the average value of all stored values. Only the latest N values are stored.

The maximum number of samples N is 128. When N exceeds 128, the number of samples is truncated to 128.

If the "RUN" command is FALSE (reset mode), the output value is equal to the input value.

Upon reaching the maximum N of stored values, the first stored value is overwritten with the latest value.

Example

(* FBD program using the AVERAGE block: *)

(* ST Equivalence: AVERAGE1 instance of AVERAGE block *)
AVERAGE1((auto_mode & store_cmd), sensor_value, 100);
ave_value := AVERAGE1.XOUT;

BLINK

	blink	
RUN		0
BOOL	JULL	BOOL
CYCLE		
TIME		

Arguments:

RUN	BOOL	Mode: TRUE=blinking / FALSE=reset the output to false
CYCLE	TIME	Blinking period. Possible values range from 0ms to 23h59m59s999ms.
Q	BOOL	Output blinking signal

Description:

Generates a blinking signal.

Timing diagram:

СМР

Arguments:

VAL1	DINT	Any signed integer value
VAL2	DINT	Any signed integer value
LT	BOOL	TRUE if val1 is less than val2
EQ	BOOL	TRUE if vall is equal to val2
GT	BOOL	TRUE if val1 is greater than val2

Description:

Compare two values: tell if they are equal, or if the first is less or greater than the second one.

Example

(* FBD program using the CMP block *)

(* ST Equivalence: We suppose CMP1 is an instance of CMP block *)

```
CMP1(level, max_level);
```

pump_cmd := CMP1.LT OR CMP1.EQ;

alarm := CMP1.GT AND NOT(manual_mode);

CTD

Arguments:

CD	BOOL	Counting input (down-counting when CD is TRUE)
LOAD	BOOL	Load command (dominant) (CV = PV when LOAD is TRUE)
PV	DINT	Programmed initial value
Q	BOOL	Underflow: TRUE when CV <= 0
CV	DINT	Counter result

Warning: The CTD block does not detect the rising edges or falling edges of the counting input (CD). The block must be associated with an "R_TRIG" or "F_TRIG" block to create a pulse counter.

Description:

Count (integer) from a given value down to 0 1 by 1

Example

(* FBD program using the CTD block *)

(* ST Equivalence: We suppose F_TRIG1 is an instance of F_TRIG block and CTD1 is an instance of CTD block*)

F_TRIG1(command);

CTD1(F_TRIG1.Q,load_cmd,100);

underflow := CTD1.Q;

result := CTD1.CV;

СТИ

Arguments:

CU	BOOL	Counting input (counting when CU is TRUE)
RESET	BOOL	Reset command (dominant)
PV	DINT	Programmed maximum value
Q	BOOL	Overflow: TRUE when CV >= PV
CV	DINT	Counter result

Warning: The CTU block does not detect the rising edges or falling edges of the counting input (CU). The block must be associated with an "R_TRIG" or "F_TRIG" block to create a pulse counter.

Description:

Count (integer) from 0 up to a given value 1 by 1

Example

(* FBD program using the CTU block *)

(* ST Equivalence: We suppose R_TRIG1 is an instance of R_TRIG block and CTU1 is an instance of CTU block*)

R_TRIG1(command); CTU1(R_TRIG1.Q,NOT(auto_mode),100);

overflow := CTU1.Q;

result := CTU1.CV;
CTUD

Arguments:

CU	BOOL	Up-counting (when CU is TRUE)
CD	BOOL	Down-counting (when CD is TRUE)
RESET	BOOL	Reset command (dominant) (CV = 0 when RESET is TRUE)
LOAD	BOOL	Load command (CV = PV when LOAD is TRUE)
PV	DINT	Programmed maximum value
QU	BOOL	Overflow: TRUE when CV >= PV
QD	BOOL	Underflow: TRUE when CV <= 0
CV	DINT	Counter result

Warning: The CTUD block does not detect the rising edges and falling edges of the counting inputs (CU and CD). The block must be associated with an R_TRIG or F_TRIG block to create a pulse counter.

Description:

Count (integer) from 0 up to a given value 1 by 1 or from a given value down to 0 1 by 1

Example

(* FBD program using the CTUD block *)

(* ST Equivalence: We suppose R_TRIG1 and R_TRIG2 are two instances of R_TRIG block and CTUD1 is an instance of CTUD block*)

R_TRIG1(add_elt); R_TRIG2(sub_elt); CTUD1(R_TRIG1.Q, R_TRIG2.Q, reset_cmd, load_cmd,100); full := CTUD1.QU; empty := CTUD1.QD; nb elt := CTUD1.CV;

DERIVATE

Arguments:

RUN	BOOL	Mode: TRUE=normal / FALSE=reset
XIN	REAL	Input: any real value
CYCLE	TIME	Sampling period. Possible values range from 0ms to 23h59m59s999ms.
XOUT	REAL	Differentiated output

Description:

Differentiation of a real value.

If the "CYCLE" parameter value is less than the real duration of the cycle time in the virtual machine, the sampling period will use the real duration of the cycle time.

Example

(* FBD program using the DERIVATE block: *)

(* ST Equivalence: DERIVATE1 instance of DERIVATE block *)

DERIVATE1(manual_mode, sensor_value, t#100ms);

derivated_value := DERIVATE1.XOUT;

F_TRIG

Arguments:

CLK	BOOL	Any Boolean Variable
Q	BOOL	TRUE when CLK changes from TRUE to FALSE
		FALSE if all other cases

Description:

Detects a falling edge of a Boolean variable

Example

(* FBD program using the F_TRIG block *)

(* ST Equivalence: We suppose F_TRIG1 is an instance of F_TRIG block *)

F_TRIG1(cmd);

nb_edge := ANY_TO_DINT(F_TRIG1.Q) + nb_edge;

HYSTER

Arguments:

XIN1	REAL	Any real value
XIN2	REAL	To test if XIN1 has overpassed XIN2+EPS
EPS	REAL	Hysteresis value (must be greater than zero)
Q	BOOL	TRUE if XIN1 has overpassed XIN2+EPS and is not yet below XIN2-EPS

Description:

Hysteresis on a real value for a high limit.

Example

Example of a timing diagram:

INTEGRAL

	integral	
RUN		0
BOOL		BOOL
R1		XOUT
BOOL	100	REAL
XIN	1	
REAL	J-00	
XO		
REAL		
CYCLE		
TIME		

Arguments:

BOOL	Mode: TRUE=integrate / FALSE=hold
BOOL	Overriding reset
REAL	Input: any real value
REAL	Initial value
TIME	Sampling period. Possible values range from 0ms to 23h59m59s999ms.
BOOL	Not R1
REAL	Integrated output
	BOOL BOOL REAL TIME BOOL REAL

Description:

Integration of a real value.

If the "CYCLE" parameter value is less than the real duration of the cycle time in the virtual machine, the sampling period will use the real duration of the cycle time.

When using the Enable EN/ENO option for INTEGRAL blocks in LD POUs, you must reinitialize the internal variables for the R1 input. To reinitialize the R1 input, toggle the value from False to True then back to False.

Example

(* FBD program using the INTEGRAL block: *)

(* ST Equivalence: INTEGRAL1 instance of INTEGRAL block *)

INTEGRAL1(manual_mode, NOT(manual_mode), sensor_value, init_value, t#100ms);

controlled_value := INTEGRAL1.XOUT;

LIM_ALRM

Arguments:

Н	REAL	High limit value
Х	REAL	Input: any real value
L	REAL	Low limit value
EPS	REAL	Hysteresis value (must be greater than zero)
QH	BOOL	"high" alarm: TRUE if X above high limit H
Q	BOOL	Alarm output: TRUE if X out of limits
QL	BOOL	"low" alarm: TRUE if X below low limit L

Description:

Hysteresis on a real value for high and low limits.

A hysteresis is applied on high and low limits. The hysteresis delta used for either the high or low limit is equal to the EPS parameter.

Example

Example of timing diagram:

R_TRIG

Arguments:

CLK	BOOL	Any Boolean Variable
Q	BOOL	TRUE when CLK rises from FALSE to TRUE
		FALSE in all other cases

Description:

Detects a rising edge of a Boolean variable

Example

(* FBD program using the R_TRIG block *)

(* ST Equivalence: We suppose R_TRIG1 is an instance of the R_TRIG block *)

R_TRIG1(cmd);

nb_edge := ANY_TO_DINT(R_TRIG1.Q) + nb_edge;

RS

Arguments:

SET	BOOL	If TRUE, sets Q1 to TRUE
RESET1	BOOL	If TRUE, resets Q1 to FALSE (dominant)
Q1	BOOL	Boolean memory state

Description:

Reset dominant bistable:

Set	Reset1	Q1	Result Q1
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	0

Example

(* FBD Program using the RS block *)

(* ST Equivalence: We suppose RS1 is an instance of RS block *)

RS1(start_cmd, (stop_cmd OR alarm));

command := RS1.Q1;

SEMA

sem	ia
CLAIM	BUSY
BOOL	BOOL
RELEASE	
BOOL	

Note: This operator is only available for ISaGRAF 3 configurations.

Arguments:

CLAIM	BOOL	"test and set" command
RELEASE	BOOL	Releases the semaphore
BUSY	BOOL	State of the semaphore

Description:

Manipulates a software semaphore.

```
(* "x" is a Boolean variable initialized to FALSE *)
busy := x;
If claim Then
    x := True;
Else
    If release Then
        busy := False;
        x := False;
    End_if;
End_if;
```

SR

Arguments:

SET1	BOOL	If TRUE, sets Q1 to TRUE (dominant)
RESET	BOOL	If TRUE, resets Q1 to FALSE
Q1	BOOL	Boolean memory state

Description:

Set dominant bistable:

Set1	Reset	Q1	Result Q1
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

Example

(* FBD Program using the SR block *)

(* ST Equivalence: We suppose SR1 is an instance of SR block *)

SR1((auto_mode & start_cmd), stop_cmd);

command := SR1.Q1;

SIG_GEN

sig_gen	
RUN	PULSE
BOOL	BOOL
PERIOD	UP
TIME JULL	DINT
	END
DINT	BOOL
	SINE
	REAL

Arguments:

RUN	BOOL	Mode: TRUE=running / FALSE=reset to false
PERIOD	TIME	Duration of one sample. Possible values range from 0ms to 23h59m59s999ms.
MAXIMUM	DINT	Maximum counting value
PULSE	BOOL	Inverted after each sample
UP	DINT	Up-counter, increased on each sample
END	BOOL	TRUE when up-counting ends
SINE	REAL	Sine signal (period = counting duration)

Description:

Generates various signal: blink on a boolean, a integer counter-up, and real sine wave.

When counting reaches maximum value, it restarts from 0 (zero). So END keeps the TRUE value only during 1 PERIOD.

STACKINT

	stackint
PUSH	EMPTY
BOOL	BOOL
POP	OFLO
BOOL	BOOL
R1	OUT
BOOL	DINT
IN	
DINT	
N	
DINT	

Arguments:

PUSH	BOOL	Push command (on rising edge only) add the IN value on the top of the stack
РОР	BOOL	Pop command (on rising edge only) delete in the stack the last value pushed (top of the stack)
R1	BOOL	Resets the stack to its empty state
IN	DINT	Pushed value
N	DINT	Application defined stack size
EMPTY	BOOL	TRUE if the stack is empty
OFLO	BOOL	Overflow: TRUE if the stack is full
OUT	DINT	Value at the top of the stack

Description:

Manage a stack of integer values.

The STACKINT function block includes a rising edge detection for both PUSH and POP commands. The maximum size of the stack is 128. The application defined stack size N cannot be less than 1 or greater than 128.

Note: The OFLO value is valid only after a reset (R1 has been set to TRUE at least once and back to FALSE).

Example

auto_mode & appli_alarm BOOL BOOL BOOL stackint n2 err_detect PUSH EMPTY BOOL acknowledge err_alarm POP OFLO manual_mode last_err R1 OUT DINT err_code N DINT DINT max_err N. DINT DINT

(* FBD program using the STACKINT block: error management *)

(* ST Equivalence: We suppose STACKINT1 is an instance of STACKINT block *)

STACKINT1(err_detect, acknowledge, manual_mode, err_code, max_err);
appli_alarm := auto_mode AND NOT(STACKINT1.EMPTY);
err_alarm := STACKINT1.OFLO;
last_error := STACKINT1.OUT;

TOF

	TOF	
IN	1	۵.
PT		ET
TIME		TIME

Arguments:

IN	BOOL	If falling edge, starts increasing internal timer If rising edge, stops and resets internal timer
РТ	TIME	Maximum programmed time
Q	BOOL	If TRUE: total time is not elapsed
ΕT	TIME	Current elapsed time

Description:

Increase an internal timer up to a given value.

While using the Enable EN/ENO option for LD POUs, execution disregards the TOF function block when EN is FALSE. When EN toggles from FALSE to TRUE, the function block is not reinitialized if IN is TRUE. To reinitialize the TOF function block, make sure IN is FALSE before setting EN to TRUE.

TON

	TON	
IN 500L PT TIME	<u>101</u>	Q BOOL ET TIME

Arguments:

IN	BOOL	If rising edge, starts increasing internal timer If falling edge, stops and resets internal timer
РТ	TIME	Maximum programmed time
Q	BOOL	If TRUE, programmed time is elapsed
ΕT	TIME	Current elapsed time. Possible values range from 0ms to 23h59m59s999ms.

Description:

Increase an internal timer up to a given value.

While using the Enable EN/ENO option for LD POUs, execution disregards the TON function block when EN is FALSE. When EN toggles from FALSE to TRUE, the function block is not reinitialized if IN is TRUE. To reinitialize the TON function block, make sure IN is FALSE before setting EN to TRUE.

TP

	TP	
IN		۵.
PT		BOOL ET
TIME		TIME

Arguments:

- IN BOOL If rising edge, starts increasing internal timer (if not already increasing) If FALSE and only if timer is elapsed, resets the internal timer Any change on IN during counting has no effect.
 PT TIME Maximum programmed time
- Q BOOL If TRUE: timer is counting
- ET TIME Current elapsed time. Possible values range from 0ms to 23h59m59s999ms.

Description:

Increase an internal timer up to a given value.

While using the Enable EN/ENO option for LD POUs, execution disregards the TP function block when EN is FALSE. When EN toggles from FALSE to TRUE, the function block is not reinitialized if IN is TRUE. To reinitialize the TP function block, make sure IN is FALSE before setting EN to TRUE.

Glossary

The Glossary contains terms used in ISaGRAF and their definitions.

To optimize a search for a definition, click one of the following letter groups in which you want to search.

A - C	D - H	I - N	0 - R	S - Z
A - C				
AAM	Abstrac access (61131 e	t Automation Mo Concrete Automat lements and conc	del. Common interf ion Model data rep epts, as well as dev	faces used to resented by IEC ice management.
Access Control	The use devices, control	The use of password-protection to control access to projects, devices, and POUs. For projects, devices, and POUs, access control can also limit access to read mode.		
ACP	Automa compon commu	tion Collaborative ents and services nicate.	e Platform. A set of through which plug	f software g-ins
Action	A collect for each	ction of operation programming la	s to perform whose nguage.	execution differs
Add-in	Also kn added to Develop Automa the IDE	own as a plug-in, o a primary applic oment Environme ttion-based applic	it is a utility, driver, ation. In the Visual nt (IDE), an add-in ation that extends th	or other software Studio Integrated is an he capabilities of
Address	Optiona This add the valu the virtu	I hexadecimal add dress can be used te of the variable al machine.	dress freely defined by an external appl when the applicatio	for each variable. ication to access n is executed by
Alias	The provariable	perty of a variable	e indicating a short	name for a
Application	Built pr	oject using the Ap	oplication Builder.	

Application Builder	An integrated development environment used to build control applications, i.e. the workbench.
Array	Set of elements of the same type referenced by one or more indexes enclosed in square brackets and separated by commas. The index is an integer. Examples: tabi[2] or tabij[2,4].
Attribute	The property of a variable indicating whether a variable is read, write, or read-write.
Boolean (BOOL)	Basic type that can be used to define a variable, a Parameter (POU) or an I/O board. A Boolean can be TRUE (1) or FALSE (0).
C Function	Function written with the "C" language, called from POUs, in a synchronous manner.
C Language	High level literal language used to access particularities of the target device. C language can be used to program functions, function blocks and conversion functions.
САМ	(Concrete Automation Model) Concrete project model enabling the creation of applications supporting multi-process control.
Cell	Elementary area of the graphic matrix for graphic languages or for the Dictionary. A cell is defined as one box in the grid.
CFB	Indicates a C function block
CFU	Indicates a C function
Channel	A channel of an I/O board represents a hardware I/O point. A channel is either an input or output. A variable is wired to a channel to be used in POUs. Directly represented variables can also be used in POUs.
Child	A POU which is activated by its parent. The child POU has only one parent. Only the parent can start or stop the child program. A parent can have more than one child. See also Parent Program.

Clearing a Transition	The forcing of the clearing of a transition where one of the previous steps is active. Tokens are moved and actions are executed as for a usual transition clearing. All tokens existing in the preceding steps are removed. A token is created in each of the following steps.
Coil	A graphic component representing the assignment of an output or an internal variable.
Common Scope	Scope of a declaration applying to all POUs and common to all projects within a specific installation of the workbench. Only defined words can have common scope. The following file contains all defined words having the common scope: %ALLUSERSPROFILE%\ISaGRAF\6.x\CAM ISaGRAF 3\Standard 3.55\COMMON.EQV
Complex Equipment	Element grouping multiple I/O boards. This provides the means for manufacturers to mix data types and directions. The implementation of the I/O driver for complex equipment corresponds to the implementation of the drivers of all contained I/O boards. OEM parameters enable providing parameters to complex equipment.
Connection	The link between networks and devices.
Constant Expression	Literal expression used to describe a constant value.
Contact	Depending on the type of contact, a graphic component representing the value of an input or an internal variable.
Contextual Menu	Menu that is displayed under the mouse cursor by right-clicking the mouse.
Conversion Function	"C" written Function which implements a conversion. Such a conversion can be attached to any input or output channel. The conversion is applied each time the input variable is read or the output variable is written.
CRC	The virtual machine compares the Cyclic redundancy checking (CRC) values for compiled, running, and stored versions of code to detect possible mismatches.

CSV File Format	(Comma Separated Values) A delimited data format having each piece of information separated by commas, where text strings, including comments, are surrounded by quotation marks ("), and each line ending with a carriage return. The CSV file format can be used for importing or exporting variable properties.
Cycle	The virtual machine executes the programs of a device as a cycle. All programs of the device are executed following the order defined by the user, from the first program to the last and again and again. Before the execution of the first program, inputs are read. After the execution of the last program, the outputs are refreshed.
Cycle Timing	The amount of time given to each virtual machine cycle. The cycle consists of scanning the physical inputs, executing the POUs of the device, then updating physical outputs. If a cycle is completed within the specified cycle timing period, the system waits until this period has elapsed before starting a new cycle. The cycle time can differ for each cycle when no cycle timing is specified. When the cycle timing is shorter, the virtual machine waits until this time has elapsed. When the cycle time is longer, the virtual machine immediately scans the inputs but signals with the "overflow" that the programmed time has been exceeded. When the trigger cycles property is false or the cycle time is 0, the virtual machine does not wait to start a new cycle.
Cycle-to-cycle Mode	Execution mode of a device where cycles are executed one by one, according to commands given by the user during debugging. Another execution mode for the virtual machine is real-time.
Cyclic Program	A time independent program that is executed during each cycle. A cyclic program can be executed before and after sequential programs.
D - H	

Data Type	Data types are defined for many items in ISaGRAF projects: - variables - function or function block parameters - I/O boards See also Standard IEC 61131 Types, User Types.
Database	The collection of definitions making up an ISaGRAF project.
Debugging	The process of detecting defects in a project that includes cycle-to-cycle debugging, setting and clearing breakpoints.
Declared Instance (of a function block)	A function block having assigned instances, i.e., declared in the dictionary. A declared instance is only available in ST.
Defined Word	Equivalent expression for use in POUs. At compiling time the word is replaced by the expression. A defined word cannot use a defined word.
Dependency (on a library)	The state where a project uses, i.e., depends, on functions or function blocks defined in a library.
Design (mode)	An editing mode during which the Application Builder is not connected to the device.
Device	An instance of a target platform in the application builder. See also Target Platform.
Device Management	Provides the communication infrastructure with the target platform.
Dictionary	The grid view displaying the variables, function and function block parameters, types, and defined words used in the programs of a project.
Dimension	The size (number of elements) of an array. For example: [13,110] - represents a two-dimensional array containing a total of 30 elements.
DINT	Signed double integer 32-bit format. Basic type that can be used to define a variable, a Parameter (POU) or an I/O Device.
Direction	Variables and I/O devices have a direction. For the property of a variable, direction indicates whether a variable is an input, output, or internal. The direction of an I/O device can be input or output.

Directly Represented Variable	A variable is generally declared before its use in one POU. A directly represented variable is used in a program to represent a channel for an I/O device. Example: %QX1.6, %ID8.2
Dynamic Behavior	Continuous and sequential execution of the steps and operations of an SFC program during an execution cycle.
Edge	See Falling Edge, Rising Edge.
Execution Mode	The mode in which a device is executed: real-time and cycle-to-cycle.
Expression	Set of operators and identifiers.
Falling Edge	A falling edge of a boolean variable corresponds to a change from TRUE (1) to FALSE (0).
FBD	Function Block Diagram. Programming language.
Function	POU which has input parameters and one output parameter. A function can be called by a program, a function or a function block. A function has no instance. This signifies that local data is not stored and is generally lost from one call to the other.
Function Block	POU which has input and output parameters and works on internal data (parameters). A program can call an instance of a function block. A function block instance cannot be called by a function (no internal data for a function). A function block can call another function block (instantiation mechanism is extended to the function blocks called).
Global Scope	Scope of a declaration applying to all POUs of the current project.
Global Variable	A variable whose scope is global.
Hidden Parameter	Input parameters of a function block that are not displayed in programs.
Hierarchy	Architecture of a project, divided into several POUs. The hierarchy tree represents the links between parent programs and children programs. See also Parent Program.

I - N

I/O Board	An I/O board corresponds to a piece of equipment having inputs or outputs. OEM parameters enable providing parameters to I/O boards. Integrators define I/O boards.
I/O Channel	See Channel.
I/O Device	Element grouping several channels of the same data type and direction. These can be either an I/O board or a complex equipment.
I/O Driver	"C" code which makes the interface between a virtual machine and the devices. The driver can be statically linked to the virtual machine or in a separate DLL (such as for the Windows NT target).
I/O Variable	Variable connected to a channel of an I/O device. An array can be connected to an I/O device if all elements are connected to contiguous channels, the type of the array must be the same type as the I/O device.
I/O Wiring	Definition of the links between the variables of the project and the channels of the I/O devices existing on the target platform.
Identifier	Unique word used to represent a variable or a constant expression in the programming.
IFB	Indicates an IEC 61131 user-defined function block
IFU	Indicates an IEC 61131 user-defined function
Initial Situation	Set of the initial steps which represents the context of the program when it is started.
Initial Step	A Step that is activated when the program starts.
Initial Value	Value which has a variable when the virtual machine starts the execution of the application. The initial value of a variable can be the default value, a value given by the user when the variable is defined or the value of the retain variable after the virtual machine has stopped.
Input	Direction of a variable or an I/O device. An input variable is connected to an input channel of an input device.

Input Parameter	Input argument of a function or a function block. These parameters can only be read by function or function block. A parameter is characterized by a type.
Instance (of a Function Block)	A variable containing a copy of the internal data of a function block persisting from one call to the other. This word is used, by extension, to say that a program calls a function block instance and not the function block itself.
Instruction	An elementary operation of a program, entered on one line of text.
Internal	Attribute of a variable, which is not linked to an I/O device. Such a variable is called an internal variable.
Label	The identifier for an instruction within a program. Labels can also be used for jump operations.
Language Container	A workspace enabling the development of graphic or textual POUs programmed using one of the available programming languages. Individual language containers can only use one programming language. When editing a container, the toolbox displays the corresponding elements for the specific programming language. The multi-language editor (MLGE) enables the creation of language containers.
LD	Ladder Diagram. Programming language.
Library	Special projects made up of devices in which you define functions and function blocks for reuse throughout ISaGRAF projects. Libraries also enable you to modularize projects and to isolate functions and function blocks so that these can be validated separately.
Link	A graphic component connecting elements in a network diagram.
Literal	A lexical unit that directly represents a value.
Local scope	Scope of a declaration applying to only one POU.
Maximum time	Time of the longest cycle since the virtual machine has started the execution of the application.
MESSAGE	Character string. Basic type available for defining a variable, a parameter (POU) or a device.

MLGE	Multi-language Editor.
Modbus	A communications protocol using programmable logic controllers (PLCs).
Monitoring	A process by which the user views virtual machine running states, system events, target capability, network card status, and various online statistics in a read format.
MSI	Windows installers (.msi) used to install applications and files typically used by the end user of the application.
Network	The term network is used in different contexts:The means of communication between the target platform and their clients.For the execution order of graphic programs, a sequence of connected blocks.
Network Driver	"C" code which makes the interface between the vitual machine network layer and the physical network.
Non-stored Action	A list of statements, executed at each target cycle, when the corresponding step is active.
0 - R	
OEM	Original Equipment Manufacturer
OEM Parameter	Parameters attached to an IO device. A parameter is characterized by a type. An OEM parameter is defined by the designer of the device. It can be a constant, or a variable parameter entered by the user during the I/O connection.
Online Mode	Mode in which the Application Builder is connected to a target enabling target management, monitoring and debugging.
OPE	Indicates an operator.
Operator	Basic logical operation such as arithmetic, boolean, comparator, and data conversion.
Output	Direction of a variable or an I/O device. An output variable is connected to an output channel of an output device.

Output Parameter	Output argument of a function or function block. These parameters can only be written by a function or function block. A function has only one output parameter. A parameter is characterized by a type.
Overflow	Integer value which corresponds to the number of times the cycle time has been exceeded. Always 0 if cycle time is 0.
Package	The Target Definition Builder enables OEMs to provide packages containing the drivers of several I/O devices and/or "C" functions and function blocks available for a specific target.
	See also Plug-in
Parameter (POU)	See Input Parameter, Output Parameter, and Hidden Parameter
Parent Program	A program which controls other programs, called its children. See also Child.
PLC	Programmable Logic Controller
Plug-in	A Visual Studio-based add-in or package integrated into a broad platform enabling the extension of the Workbench or the Automation Collaborative Platform.
POU	Program Organization Unit: set of instructions that are programs, functions or function blocks.
Power Rail	Main left and right vertical rails at the extremities of a ladder rung.
Program	See POU. A program belongs to a project. It is executed by the Virtual Machine, depending on its location (order) in the device.
Project	Set of programs making up an application.
Project Updater	A program allowing to convert projects developed using previous versions for use within the latest version. Each time you upgrade to a newer version, you need to update projects.
Pulse Action	A list of statements executed only once when the corresponding step is activated.
Qualifier	Determines the way the action of a step is executed. The qualifier can be N, S, R, P0 or P1.

REAL	Type of a variable, stored in a floating IEEE single precision 32-bit format. Basic type that can be used to define a variable, a parameter (POU) or a device.
Real I/O Device	I/O device physically connected to an I/O driver on the target. See also Virtual I/O Device.
Real-time Mode	The virtual machine normal execution mode of an application where execution cycles are triggered by the cycle timing. Another execution mode for applications is cycle-to-cycle.
Reserved Keyword	Reserved identifier of the languages unavailable for use as names of POUs or variables.
Retain	Attribute of a variable. The value of a retain variable is saved by the Virtual Machine at each cycle. The value stored is restored if the Virtual Machine stops and restarts.
Return	Graphic component of a program representing the conditional end of a program.
Return Parameter	See Output Parameter.
Rising Edge	A rising edge of a Boolean variable corresponds to a change from FALSE (0) to TRUE (1).
Rung	Graphic component of a program representing a group of circuit elements leading to the activation of a coil in an LD diagram. A rung is situated between left and right power rails.
Run-time Error	Application error detected by the virtual machine.
S - Z	
Scope	See Global Scope, Common Scope, Local scope.
Section	Program, Function and Function block sections are where are located the POUs of a device. POUs located in the Program section are executed by the virtual machine.
Security State	The indication of the level of access control that is applied to a device, a POU, or a project.

Selection List	Also known as a 'combo-box'.
	When a selection list is provided for a particular cell, clicking on its right part (down arrow), displays the available choices. To make a selection, perform one of the following operations: - click on the item (use the scroll bar first if the required choice is not visible)
	 move in the list using the cursor keys and press Enter type the first letter (if more than one item starts with this letter, press the letter again to select the next occurrence).
Separator	Special character (or group of characters) used to separate the identifiers in a literal language.
Sequential Program	A program that is executed according to the dynamic behavior of the programming language and where the time variable explicitly synchronizes operations.
Server	The part of the target that receives Modbus requests to retrieve information about the device run by the virtual machine.
SFB	Indicates a function block
SFU	Indicates a function
SFU Shape	Indicates a function The spatial form or appearance of an object.
SFU Shape Simulation Mode	Indicates a function The spatial form or appearance of an object. Mode in which virtual machines execute the code of the device and the Windows platform performs aspects such as POU execution.
SFU Shape Simulation Mode Solution	 Indicates a function The spatial form or appearance of an object. Mode in which virtual machines execute the code of the device and the Windows platform performs aspects such as POU execution. A container holding projects and libraries. A solution contains elements that represent the references, data connections, folders, and files needed to make up an application.
SFU Shape Simulation Mode Solution Solution Explorer	 Indicates a function The spatial form or appearance of an object. Mode in which virtual machines execute the code of the device and the Windows platform performs aspects such as POU execution. A container holding projects and libraries. A solution contains elements that represent the references, data connections, folders, and files needed to make up an application. A view with a tree-like structure enabling the management of items such as devices, programs, functions, function blocks and dictionaries.
SFU Shape Simulation Mode Solution Solution Explorer	 Indicates a function The spatial form or appearance of an object. Mode in which virtual machines execute the code of the device and the Windows platform performs aspects such as POU execution. A container holding projects and libraries. A solution contains elements that represent the references, data connections, folders, and files needed to make up an application. A view with a tree-like structure enabling the management of items such as devices, programs, functions, function blocks and dictionaries. Structured Text. Programming language.
SFU Shape Simulation Mode Solution Solution Explorer ST Standard IEC 61131 Types	 Indicates a function The spatial form or appearance of an object. Mode in which virtual machines execute the code of the device and the Windows platform performs aspects such as POU execution. A container holding projects and libraries. A solution contains elements that represent the references, data connections, folders, and files needed to make up an application. A view with a tree-like structure enabling the management of items such as devices, programs, functions, function blocks and dictionaries. Structured Text. Programming language. Double integer (DINT), Boolean (BOOL), REAL, TIME, and MESSAGE. See also Data Type.
Step	A basic graphic component representing a steady situation of the process. A step is referenced by a name. The activity of a step is used to control the execution of the corresponding actions. See also Action.
-------------------	--
Sub-program	A program called by a Parent Program. A sub-program is also called a Child program. To call sub-programs written in another language, use a function. A function can be called by any POU.
Symbol Table	The appli.txt text file corresponding to the variables defined for an application. This file is downloaded onto the target platform.
Target Management	Operations that control the application of a target including downloading, uploading, starting, stopping, and discovering.
Target Platform	The hardware platform on which virtual machines run.
TIC	Target Independent Code produced by the ISaGRAF compiler for execution on virtual machines.
Timer (TIME)	Unit of a timer is the millisecond. Basic type that can be used to define a Variable, a Parameter (POU) or an I/O Device.
Token (SFC)	Graphical marker used to identify the active steps of an SFC program.
Tool Window	A Microsoft Visual Studio control that enables application creation and editing.
Toolbox	The utility containing the elements and shapes available for language and ISaVIEW containers. For language containers, the available elements differ for the individual programming languages.
Top Level Program	Program put at the top of the hierarchy tree. A top level program is activated by the system. See also Parent Program.
Transition	A basic graphic component representing the condition between different steps. A transition is referenced by a name. A Boolean condition is attached to each transition.

Trigger Cycles	Application property indicating whether a virtual machine cycle executes according to a defined cycle timing.
User Data	User data is any data of any format (file, list of values) which have to be merged with the generated code of the device in order to download them into the target platform. Such data is not directly operated by the virtual machine and is commonly dedicated to other software installed on the target platform.
User Types	Types that the user can define using basic types or other user types. User types can be arrays.
User-Defined Function Block	A custom function block. You create user-defined function blocks in the Function Blocks section for a device.
Validity of a Transition	Attribute of a transition. A transition is validated (or enabled) when all the preceding steps are active.
Variable	Unique identifier of elementary data used as information placeholders within POUs. Variables also include function block instances.
Variable Name	A unique identifier, defined in ISaGRAF , for a storage location containing information used in exchanges between devices.
Virtual I/O Device	I/O Device which is not physically connected to an I/O driver on the target platform.
Virtual Machine	The compiled ISaGRAF software running on the target platform.
VS2010	Microsoft Visual Studio 2010.
Wiring	The property of a variable indicating the I/O channel to which the variable is wired. See also I/O Wiring

Licensing

ISaGRAF enables the creation of virtual machines running on hardware components, called targets.

ISaGRAF is available in two types of software licenses:

- Demo version, delivered with the product and available for testing the product. This is a 60 day trial of the fully operational version of **ISaGRAF**.
- Integrated license, included in the installation of the **ISaGRAF** software. The product is licensed upon installation. The Integrated license is available as a Full license or a Limited license. A Full license is a fully operational version of the product while a Limited license can only have one device.
- Engineering license, obtained by manually activating an unlicensed version of the product. The Engineering license is available as a Full license or a Limited license. A Full license is a fully operational version of the product while a Limited license can only have one device.

The Integrated and Engineering licenses are available for the following activation periods:

- Lifetime (does not expire)
- 1 month
- 6 months
- 12 months

To access Licensing

1. From the Help menu, click Licensing CAM 3.

The Licensing for the ISaGRAF 3 Concrete Automation Model is displayed.

To obtain an authorized Engineering license

1. From the Help menu, click Licensing CAM 3.

The Licensing for the **ISaGRAF 3** Concrete Automation Model is displayed along with three User Codes.

- Send an e-mail containing the desired activation period and the three User Codes to the support team: support@ISaGRAF.com
- 3. The support team will email you back Registration Keys 1 and 2.
- 4. Insert the Registration Keys in their appropriate regions and click Validate.

ISaGRAF is now licensed.

To remove an authorized license

1. From the Help menu, click Licensing CAM 3.

The Licensing for the **ISaGRAF 3** Concrete Automation Model is displayed along with three User Codes.

- 2. Send an email containing the three User Codes to the support team: support@ISaGRAF.com
- 3. The support team will email you back Registration Keys 1 and 2.
- 4. Insert the Registration Keys in their appropriate regions and click Validate.

A confirmation code appears.

5. Send an email containing the confirmation code to the support team: support@ISaGRAF.com

ISaGRAF is no longer licensed.

ISaGRAF 5 Concrete Automation Model

The **ISaGRAF 5** Concrete Automation Model enables the creation of **ISaGRAF 5** applications supporting multi-process control. Applications consist of virtual machines running on hardware components, called targets. The development process consists of creating projects made up of devices, representing individual target platforms, on which one or more instances of resources are downloaded. At runtime, instances of resources become individual virtual machines running on these target platforms.

Projects can be developed using different programming languages including some from the IEC 61131-3 standard. When building, resources are compiled to produce very fast "target independent code" (TIC) or "C" code.

Within resources, you can declare variables using standard IEC 61131-3 data types (i.e., Boolean, integer, real, etc.) or user-defined types such as arrays or structures.

You develop projects on a Windows development platform. The **Automation Collaborative Platform** graphically represents and organizes devices, resources, POUs, and networks within a project from many views.

You can choose to simulate the running of a project, after building a project, using high-level debugging tools, before actually downloading the resources making up devices to the target platforms.

Creating a Project

You can create projects as part of new or existing solutions in the Automation Collaborative Platform. A solution can hold multiple projects and libraries. You can import **ISaGRAF 6** projects that were previously exported in the 7-Zip (.7z) compressed file format.

The following templates are available for ISaGRAF 6 projects:

- Import ISaGRAF 5 Project
 Library
- Import ISaGRAF Zip Project
 PRJ61499_TPL
- ISaFREE_TPL Simulator

For projects, you can specify the following properties:

CAM

CAM Project	Type of project consisting of the CAM name and version. For example, ISaGRAF 5.23.
Comment	Text displayed next to the project name in the Solution Explorer
Description	Free-form text describing a project
Is Password Protected	Indication that the project is protected by a password controlling its access
Name	Name of the project. Project names can have up to 128 characters.
Online Behavior	 Behavior of the project when switching to online or simulation mode. Possible options are the following: Design where the project remains in design mode when switching to online or simulation mode Debug Only where the project remains in design mode until switching to online mode; switching to simulation mode does not affect the project Simulate Only where the project remains in design mode until switching to simulation mode; switching to online mode does not affect the project Simulate Only where the project remains in design mode until switching to simulation mode; switching to online mode does not affect the project Always where the project switches to either online or simulation mode

Path	Complete path where the Concrete Automation Mode project file stored on the computer. The path is auto assigned: %USERPROFILE%\My Documents\ 6.x\Projects\SolutionName\ProjectName	el (CAM) omatically ISaGRAF
Info		
Name	Name of the project. Project names can have up to 128 ch	aracters.
Path	Complete path where the Automation Collaborative (ACP) project file stored on the computer. The path is auto assigned: %USERPROFILE%\My Documents\ 6.x\Projects\SolutionName\ProjectName	Platform omatically ISaGRAF

You can add devices and add resources to existing projects.

Projects are stored in the Projects directory, as MS-Access database (.MDB) files:

%USERPROFILE%\My Documents\ISaGRAF 6.x\Projects

To create a project

- 1. From the File menu, point to New, and then click **Project** (or press **Ctrl+Shift+N**).
- 2. In the Project Types list, expand the CAM Projects option, then click ISaGRAF 5.
- 3. From the list of available project templates, click the required template.
- 4. Specify a name and location for the project, indicate whether to add the project to an existing solution or create a new solution by defining a solution name, then click **OK**. For new solutions, you can choose to create a directory.

To import an ISaGRAF project

You can import ISaGRAF 6 projects that were previously exported in the 7-Zip (.7z) compressed file format.

1. From the File menu, point to New, and then click Project.

- 2. In the Project Types list, expand the CAM Projects option, then click ISaGRAF 5.
- 3. In the *ISaGRAF installed templates* list, click **Import ISaGRAF 5 Project**.
- 4. Specify a name and location for the project, indicate whether to add the project to an existing solution or create a new solution by defining a solution name, then click **OK**. For new solutions, you can choose to create a directory.
- 5. In the Choose an *.mdb File dialog box, locate and select the **ISaGRAF 5** project database file (*.mdb) from the previous **ISaGRAF** version, then click **Open**.

To import a compressed project

You can import projects created using previous versions of **ISaGRAF 5** and saved in the 7-Zip (.7z) compressed file format.

- 1. From the File menu, point to New, then click Project.
- 2. In the Project Types list, expand the CAM Projects option, then click ISaGRAF 5.
- 3. In the *ISaGRAF installed templates* list, click **Import ISaGRAF Zip Project**.
- 4. Specify a name and location for the project, indicate whether to add the project to an existing solution or create a new solution by defining a solution name, then click **OK**. For new solutions, you can choose to create a directory.
- 5. In the Choose a File dialog box, locate and select the compressed **ISaGRAF 5** project file from the previous **ISaGRAF** version, then click **Open**.

To create a library project

You can create a library project.

- 1. From the File menu, point to New, and then click Project.
- 2. In the Project Types list, expand the CAM Projects option, then click ISaGRAF 5.
- 3. In the *ISaGRAF installed templates* list, click Library.

4. Specify a name and location for the project, indicate whether to add the project to an existing solution or create a new solution by defining a solution name, then click **OK**. For new solutions, you can choose to create a directory.

See Also Creating a Library

Devices

A device corresponds to a programmable logic controller. Devices contain one or more resources. You can perform the following tasks for devices from the Solution Explorer:

- Adding devices
- Renaming devices
- Deleting devices

For devices, you need to specify the following properties:

Hardware Enhanced Target Indication of whether the device supports the enhanced target including motion control function blocks, safety function blocks, and cycle time in microseconds. Memory Size Memory allocated by the compiler for hidden temporary variables used while solving complex expressions Support IEC 61850 Indication of whether the device supports the IEC 61850 standard for the design of electrical substation automation. Using this feature requires importing a structure related to the standard. Target Target type to which is attached the device. Changing targets for a device affects all resources attached to the device Info Comment Text displayed next to the device name in the Solution Explorer Description Free-form text describing a device Full Name Full name of device using the following syntax: *ProjectName.DeviceName* Is Password Protected Indication that the device is protected by a password controlling its access Name Name of the device. Device names can have up to 128 characters.

Path	Complete path where the device files are stored on the computer. The path is automatically assigned to a device folder within the project folder: %USERPROFILE%\My Documents\ ISaGRAF 6.x\Projects\SolutionName\ProjectName\ProjectName\ DeviceName
Settings	
Online Behavior	 Behavior of the device when switching to online or simulation mode. Possible options are the following: Design where the device remains in design mode when switching to online or simulation mode Debug Only where the device remains in design mode until switching to online mode; switching to simulation mode does not affect the device Simulate Only where the device remains in design mode until switching to simulation mode; switching to online mode does not affect the device Always where the device switches to either online or simulation mode

To add a device

• In the Solution Explorer, right-click the project element, point to Add, and then click New Device.

To rename a device

• In the Solution Explorer, right-click the device, click **Rename**, and then type a name for the device.

To delete a device

Deleting a device also removes all resources belonging to the device.

• In the Solution Explorer, right-click the device, and then click **Delete**.

See Also

Creating a Project Creating a Library

Resources

Resources contain the POUs (programs, functions, and function blocks) and definitions within devices. You can create user-defined functions and user-defined function blocks in the Lib section of the Solution Explorer. You can perform the following tasks for resources from the Solution Explorer:

- Adding resources
- Renaming resources
- Deleting resources

For resources, you need to specify the following properties:

Code

Code For Simulation Indication of whether to produce code for simulation for an application

Compiler Options Check Array Index - Indication of whether to verify array indices Dump Configuration Files - Indication of whether to generate of resource level files containing debugging information and place them at the root of the resource folder. The files are named using the resource name as a prefix with .ttc and .tws as extensions.

Dump Network - Indication of whether to generate network and device level files containing debugging information. The files are placed at the root of the network folder and at the root of the device folder. The files placed in the network folder are named "NetworkConf" and have the extensions .ttc and .tws. The files placed in the device folder are named using the resource name as a prefix and have .ttc and .tws as extensions.

Dump POU Files - Indication of whether to generate resource level files containing debugging information and place these at root of the resource folder. Some of the files are named using the resource name as a prefix, the POU name as a suffix, and have the extensions .ttc and .tws. Other files are named using the POU name with .lst and .unc as extensions.

Enable Code Optimization - Indication of whether to optimize common expressions in a linear part of code and set the code generator to optimize the TIC code. Optimization performs many tasks: removes unused temporary variables, replaces each constant expression with its result, replaces repeated expressions and subexpressions with their equivalent values, suppresses unused and surplus target labels and null jumps, and simplifies arithmetic operations.

Function Internal State Enable - Indication of whether to produce internal state information for functions. Functions containing no internal state information denote that the invocation of a function with the same arguments always yields the same values. When set to *True*, local variables having the *var* direction are initialized using their initial values only at run-time startup. When set to *False*, function calls only initialize local variables, having the *var* direction, at every call.

Generate Map File - Indication of whether to generate resource level files containing debugging information. The files are placed at the root of the resource folder and are named using the resource name as a prefix with .ttc, .tws, and .map as extensions.

Embed Symbol Table	Indication of whether to embed, on the target, the symbol table specified as the type to embed
Embedded Table Type	The type of symbol table to download to the virtual machine with the resource code: None, Reduced, and Complete. The symbol table groups the variable names of the resource. The reduced symbol table contains only names of variables having a defined address.
Embedded Zip Source	Indication of whether to embed an exchange file (compressed 7-Zip format) holding all data from a project, device, or resource on the target. This exchange file is the same as the file created when exporting an element.
Structured C Source Code	Indication of whether structured C source code is produced by the compiler. Structured C source code can then be compiled and linked with libraries to produce embedded executable code.
TIC Code	Indication of whether Target Independent Code is produced by the compiler. TIC code can be executed on virtual machines.
Hardware	
Target	The hardware platform on which Virtual Machines run resources of
-	a project
Info	a project
Info Comment	a project Text displayed next to the resource name in the Solution Explorer
Info Comment Description	a project Text displayed next to the resource name in the Solution Explorer Free-form text describing a resource
Info Comment Description Extended Parameters	a project Text displayed next to the resource name in the Solution Explorer Free-form text describing a resource OEM-defined parameters for resources enabling the customization instances of individual ISaVM tasks. These parameters are sent to virtual machines with the resource code.
Info Comment Description Extended Parameters Full Name	a project Text displayed next to the resource name in the Solution Explorer Free-form text describing a resource OEM-defined parameters for resources enabling the customization instances of individual ISaVM tasks. These parameters are sent to virtual machines with the resource code. Full name of resource using the following syntax: <i>ProjectName.DeviceName.ResourceName</i>
Info Comment Description Extended Parameters Full Name Is Password Protected	a project Text displayed next to the resource name in the Solution Explorer Free-form text describing a resource OEM-defined parameters for resources enabling the customization instances of individual ISaVM tasks. These parameters are sent to virtual machines with the resource code. Full name of resource using the following syntax: <i>ProjectName.DeviceName.ResourceName</i> Indication that the resource is protected by a password controlling its access
Info Comment Description Extended Parameters Full Name Is Password Protected Memory Usage (Code)	a project Text displayed next to the resource name in the Solution Explorer Free-form text describing a resource OEM-defined parameters for resources enabling the customization instances of individual ISaVM tasks. These parameters are sent to virtual machines with the resource code. Full name of resource using the following syntax: <i>ProjectName.DeviceName.ResourceName</i> Indication that the resource is protected by a password controlling its access Indication of the amount of memory used by the code for the programs of the resource (in bytes)

Memory Usage (Retain Space)	Indication of the amount of memory used by the retain variables of the resource (in bytes)	
Name	Name of the resource. Resource names can have up to 128 characters.	
Number	Unique number identifying a resource within the project. This number is automatically assigned. When changing this number, you need to assign a number that is unique within the project. The resource number identifies the virtual machine that will run the resource code.	
Path	Complete path where the resource files are stored on the computer. %USERPROFILE%\My Documents\ ISaGRAF 6.x\Projects\SolutionName\ProjectName\ProjectName\ DeviceName\ResourceName	
Memory Size for Online Changes		
Code Size	For online changes, the amount of memory reserved for code sequence changes	
Maximum Extra POUs	The maximum number of POUs that can be added during online changes	
SFC States Mem Size	The memory space allocated for step and transition structures. A step requires 40 bytes and a transition requires 20 bytes.	
User Variable Size	For online changes, the amount of memory reserved for adding variables data. When generating symbol monitoring information for a POU, the same amount of memory is also reserved for the POU.	
Settings		
Cycle Time	The amount of time given to each cycle. If a cycle is completed within the cycle timing period, the system waits until this period has elapsed before starting a new cycle. The cycle consists of scanning the physical inputs of the process to drive, executing the POUs of the resource, then updating physical outputs. The virtual machine executes the resource code according to the execution rules.	

Cycle Time Units	Unit of measure for the cycle time. Possible values are ms (milliseconds) or μ s (microseconds). To use μ s, the target must support this unit of measure.
Detect Errors	Indication of whether to store errors. You need to define Nb Stored Errors .
Execution Mode	Indication of whether a resource executes in real time or cycle-to-cycle. RealTime mode is the run time normal execution mode where target cycles are triggered by the cycle timing. In cycle-to-cycle mode, the virtual machine loads the resource code but does not execute it until you execute one cycle or activate real-time mode.
Memory For Retain	Location where retained values are stored (the required syntax depends on the implementation)
Nb Stored Errors	Number of entries, i.e., the size of the queue (FIFO) in which detected errors are stored
Online Behavior	 Behavior of the resource when switching to online or simulation mode. Possible options are the following: Design where the resource remains in design mode when switching to online or simulation mode Debug Only where the resource remains in design mode until switching to online mode; switching to simulation mode does not affect the resource Simulate Only where the resource remains in design mode until switching to simulation mode; switching to online mode does not affect the resource Always where the resource switches to either online or simulation mode
Trigger Cycles	Indication of whether a resource cycle executes according to the defined Cycle Time

SFC Dynamic Behavior Limits

Gain Factor	For SFC, specifies factor of dynamic behavior limits determining the amount of memory, allocated by a target at initialization time, designated to manage token moving. The amount of allocated memory is calculated as a linear relation with the number of SFC POUs:
	Alloc Mem (bytes) = N * NbElmt * sizeof(typ va)
	NbElmt = GainFactor * NbOfSFC + OffsetFactor
	Where:
	N = 5 (constant linked to SFC engine design) NbElmt = The maximum number of transitions that can be valid for each executed cycle, i.e., transitions with at least one of their previous steps being active.
	typVa = 16 bits in the medium memory model (32 bits in the large memory model)
	GainFactor and OffsetFactor = the linear parameters of the linear relation NbOfSEC = the number of SEC POUs in the project
Offset Factor	Same as Gain Factor

For bindings, resources use the HSD network.

To add a resource

• In the Solution Explorer, right-click the device element, point to Add, and then click New Resource.

A resource is added to the device.

To rename a resource

• In the Solution Explorer, right-click the resource, click **Rename**, and then type a name for the resource.

To delete a resource

Deleting a resource also removes all programs, functions, function blocks, and variables defined for the resource.

• In the Solution Explorer, right-click the resource, and then click **Delete**.

See Also

Debugging

Programs

You define programs in the Programs section of a resource in the Solution Explorer. Within a Programs section, sequential programs must be adjacent. Programs belonging to a same section must have different names.

For programs, you need to specify the following properties:

Code Generation

Generate Debug Info	Indication of whether to generate information required for debugging using step-by-step execution
Generate Monitoring Symbols	For graphical POUs, indication of whether to generate information required for graphically displaying the output values of elements when debugging or simulating
Info	
Comment	Text displayed next to the program name in the Solution Explorer
Description	Free-form text describing a program
Full Name	Full name of program using the following syntax: ProjectName.DeviceName.ResourceName.ProgramName
Is Password Protected	Indication that the program is protected by a password controlling its access
Language	Programming language of the POU
Name	Name of the program. Program names must begin with a letter and can have up to 128 characters.
Order	Position of the program within the execution order
Path	Complete path where the program files are stored on the computer. %USERPROFILE%\My Documents\ ISaGRAF 6.x\Projects\SolutionName\ProjectName\ProjectName\ DeviceName\ResourceName\ProgramName

Settings

Interrupt Enabled	For targets supporting interrupts, you can configure interrupts to control the moment of execution of cyclic programs (ST, LD, FBD, and SAMA). Such programs are executed independently of the execution order applied to other programs. Interrupts can be called from code to execute a program. When enabled for a program, the program moves to the Interrupts section of the Solution Explorer. When enabling an interrupt for a program, you need to define interrupt parameters:
	 Interrupt Data Type, the data type of the interrupt Interrupt Initial Value, the initial value of the interrupt

- Interrupt Selection, enables selecting from available interrupt definitions.

To add a program

You define programs for a resource.

• In the Solution Explorer, right-click the program element for a resource, point to Add, and then click the required programming language.

To rename a program

• In the Solution Explorer, right-click the program, click **Rename**, and then type a name for the program.

To configure an interrupt for a program

- 1. In the Solution Explorer, select the program.
- 2. In the Properties window, set the Interrupt Enabled property to True.

The program moves to the Interrupts section.

3. In the Interrupts section, select the program, then expand the Interrupt Parameters properties and configure the interrupt settings.

To delete a program

• In the Solution Explorer, right-click the program, then click **Delete**.

Functions

You define functions in the Functions section of a resource in the Solution Explorer.

For functions, you can specify the following properties:

Code Generation

Generate Debug Info	Indication of whether to generate information required for debugging using step-by-step execution.
Info	
Comment	Text displayed next to the function name in the Solution Explorer
Description	Free-form text describing a function
Full Name	Full name of function using the following syntax: ProjectName.DeviceName.ResourceName.FunctionName
Is Password Protected	Indication that the function is protected by a password controlling its access
Language	Programming language of the POU
Name	Name of the function. Function names are limited to 128 characters beginning with a letter followed by letters, digits, and single underscore characters. These names cannot have two consecutive underscore characters.
Order	Position of the function within the execution order
Path	Complete path where the function files are stored on the computer: %USERPROFILES%\My Documents\ ISaGRAF 6.x\Projects\SolutionName\ProjectName\ProjectName\ DeviceName\ResourceName\FunctionName

When adding functions, you also need to define parameters. Functions can have a maximum of 128 parameters (inputs and outputs). When defining parameters, consider the following limitations:

• Parameter names are limited to 128 characters and can begin with a letter followed by letters, digits, and single underscores

- Possible data types for parameters are BOOL, SINT, USINT, BYTE, INT, UINT, WORD, DINT, UDINT, DWORD, LINT, ULINT, LWORD, REAL, LREAL, TIME, DATE, STRING, Array types, Structure types, Function blocks
- For String type variables, string capacity is limited to 252 characters excluding the terminating null character (0), a byte for the current length of the string, and a byte for the maximum length of the string
- For user defined addresses, the format is hexadecimal and the value ranges from 1 to FFFF
- For dimensions, example: [1..10] for a one dimensional array, [1..4,1..7], for a two dimensional array

To add a function

- 1. In the Solution Explorer, right-click the Functions element, point to Add, and then click the required programming language for the function.
- 2. To define the parameters for the function, right-click the function and then click **Parameters**.

The Block Selector displays the Parameters section where you define the parameters for the function.

To rename a function

• In the Solution Explorer, right-click the function, click **Rename**, and then type a name for the function.

To delete a function

• In the Solution Explorer, right-click the function, and then click **Delete**.

Function Blocks

You define function blocks in the Function Blocks section of a resource in the Solution Explorer.

For function blocks, you can specify the following properties:

Code Generation

Generate Debug Info	Indication of whether to generate information required for debugging using step-by-step execution.
Generate Monitoring Symbol	For graphical POUs, indication of whether to generate information required for graphically displaying the output values of elements when debugging or simulating
Instance Symbols Extra Bytes	Size of memory reserved for each function block instance for adding symbols monitoring information during online changes. Note that a string-type output takes up to 260 bytes.
Info	
Comment	Text displayed next to the function block name in the Solution Explorer
Description	Free-form text describing a function block
Full Name	Full name of function block using the following syntax: ProjectName.DeviceName.ResourceName.FunctionBlockName
Is Password Protected	Indication that the function block is protected by a password controlling its access
Language	Programming language of the POU
Name	Name of the function block. Function block names are limited to 128 characters beginning with a letter followed by letters, digits, and single underscore characters. These names cannot have two consecutive underscore characters.
Order	Position of the function block within the execution order
Path	Complete path where the function block files are stored on the computer: %USERPROFILES%\My Documents\ ISaGRAF 6.x\Projects\SolutionName\ProjectName\ProjectName\ DeviceName\ResourceName\FunctionBlockName

Settings

Tokens LimitFor SFC and basic IEC function blocks, the maximum number of
tokens for a POU is equal to the number of parallel steps below a
transition plus one. For example, when there are four parallel steps
below a transition, the tokens limit must be set to a minimum of
five.

When adding function blocks, you also need to define parameters. Function blocks can have a maximum of 128 parameters (inputs and outputs). When defining parameters, consider the following limitations:

- Parameter names are limited to 128 characters and can begin with a letter followed by letters, digits, and single underscores
- Possible data types for parameters are BOOL, SINT, USINT, BYTE, INT, UINT, WORD, DINT, UDINT, DWORD, LINT, ULINT, LWORD, REAL, LREAL, TIME, DATE, STRING, Array types, Structure types, Function blocks
- For String type variables, string capacity is limited to 252 characters excluding the terminating null character (0), a byte for the current length of the string, and a byte for the maximum length of the string
- For user defined addresses, the format is hexadecimal and the value ranges from 1 to FFFF
- For dimensions, example: [1..10] for a one dimensional array, [1..4,1..7], for a two dimensional array

For instances of function blocks, you can reset the initial values defined for individual instances.

To add a function block

1. In the Solution Explorer, right-click the Function Blocks element, point to Add, and then click the required programming language for the function.

2. To define the parameters for the function block, right-click the function block, and then click **Parameters**.

The Block Selector displays the Parameters section where you define the parameters for the function block.

To reset the initial values of function block instances

- 1. From the Solution Explorer, right-click the function block, point to **Refactor**, and then click **Reset Initial Values of Instances**.
- 2. In the Refactoring dialog box, select the required instances of the function block for which to reset the initial values, and then click **OK**.

To rename a function block

• In the Solution Explorer, right-click the function block, click **Rename**, and then type a name for the function block.

To delete a function block

• In the Solution Explorer, right-click the function block, and then click **Delete**.

Variables

Variables are defined for their scope. For instance, global variables are available for use throughout the programs, functions, and functions blocks of a resource. Whereas, variables defined for a program, a function, or a function block are local to that element. You define variables in the Variables grid. You can create groups to which you add existing variables. Variables can belong to multiple groups. For individual variable scopes, you can import and export variables data having the Microsoft Excel (*.xls) format.

When defining variables data using a spreadsheet you enter each piece of information in a separate cell, leave cells empty if items are to be omitted, and save the file in XLS format. These requirements are automatically followed by the export utility; you must respect these when building a file to be imported.

When defining complex variables such as arrays and structures, the syntax for the variable name is as follows:

• For arrays: arrayname[index]

Name,Alias,Data Type,StringSize,InitValue,Direction,Wiring,Attribute ... array1,,BOOL,0,,, ... "array1[1,1]",,BOOL,0,,, ... "array1[1,2]",,BOOL,0,,, ... "array1[1,3]",,BOOL,0,,, ... "array1[1,4]",,BOOL,0,,, ... "array1[1,5]",,BOOL,0,,, ...

• For structures: structurename.membername

Name,Data Type,Dimension,Alias,Comment,InitValue,Direction ... structure1,,T9K_DI_FULL,0,, ... structure1.DI,,BOOL,0,, ... structure1.LF,,BOOL,0,, ... structure1.DIS,,BOOL,0,, ... structure1.CF,,BOOL,0,, ... structure1.V,,UINT,0,, ... structure1.STA,,USINT,0,, ...

When managing variables data, you can perform the following tasks:

- Import and export variables data
- Creating groups for variables data

To create a variable group

When adding variables to a group, you can add these to the group from the variables grid or you can drag these between the variables grid and the group grid.

1. In the Solution Explorer, right-click Variable Groups item, and then click Add New Variable Group.

The group is added.

- 2. To add variables to the group using the contextual menu options:
 - Open the variables grid, select one or more variables, then right-click the selection, point to **Add to Group**, and then click the required group name.
- **3.** To add variables to the group by dragging:
 - a) Open the variables grid and the group grid by double-clicking and place both grids side-by-side.
 - **b)** In the variables grid, select the consecutive variables, then drag the selected variables from the cell having the arrow in the left most column to within the variables group grid.

Choosing Project Templates for Targets

When creating projects, you select a project template depending on the operating system, target type, and features required to develop your application. Each template has different features and is designed for use with a corresponding target type. The following describes the templates, their compatible targets, and available features.

Template Name, Target Name	Description
Import ISaGRAF 5 Project	Enables importing a multi-resource ISaGRAF 4 or ISaGRAF 5 project into the ISaGRAF 6 workbench.
Import ISaGRAF Zip Project	Enables importing a compressed ISaGRAF 6 multi-resource project into the ISaGRAF 6 workbench.
ISaFREE_TPL, ISAFREE-TGT	Enables creating a single-resource project for use with the ISaGRAF Free Windows target. Projects can have a maximum size of 3200 bytes.
	Features: C functions and function blocks, enhanced target features (microsecond cycle timing, motion control and safety function blocks), password protection, TIC code optimization, online changes, bindings, retain values, interrupts, flexible arrays and function block parameters by reference, multiple network instances of the same type, set priority for SFC transitions, wiring for complex variable members.
Library	Enables creating a library project starting with one resource in one device.

PRJ61499_TPL, SIMULATOR	Enables creating a project using the IEC 61499 distributed method.
	Features: Enhanced target features (microsecond cycle timing, motion control and safety function blocks), password protection, TIC code optimization, bindings, online changes, retain values, microsecond cycle timing, flexible arrays and function blocks passed by reference, POUs of 64 KB and greater, multiple network instances of the same type, setting of SFC transition priority, and wiring on complex variable members.
Simulator, SIMULATOR	Enables creating a project starting with one resource in one device for use with the Simulator target.
	Features: Enhanced target features (microsecond cycle timing, motion control and safety function blocks), password protection, TIC code optimization, bindings, online changes, retain values, microsecond cycle timing, flexible arrays and function block parameters by reference, POUs of 64 KB and greater, multiple network instances of the same type, setting of SFC transition priority, and wiring on complex variable members.

See Also Creating a Project

Creating a Library

Libraries are special projects made up of devices and resources in which you define functions, function blocks, global variables, arrays and structures for reuse throughout **ISaGRAF** projects. Libraries also enable you to modularize projects and to isolate functions and function blocks so that these can be validated separately.

A project can depend on more than one library and different projects can call the same library. When creating a library, it can contain functions, function blocks, defined words, arrays and structures. These library elements can be called from a project once the library is added as a dependency. Functions and function blocks can be written using the IEC 61131-3 languages (FBD, LD, SAMA, SFC, or ST).

You create libraries as part of a solution in the Automation Collaborative Framework. A solution can hold multiple projects and libraries.

You base a library on a Library template then develop its elements, i.e., devices, resources, programs, functions, and function blocks. Libraries are stored in the same location as projects and are also MS-Access database (.MDB) files.

The target type of a library resource affects the usability of functions and function blocks throughout projects using the library. A library can only have one device target type. Functions and function blocks can only be used in resources referring to the same target type, except when they use the SIMULATOR target type. When library resources use the SIMULATOR target type, all of their functions and function blocks can be used in any project resource regardless of its target type.

Library functions and function blocks must have unique names. When they have the same names as those defined in a project in which they are used, only those from the project are recognized. Furthermore, you do not need to compile functions and function blocks in the library before using them in projects. These are compiled in the calling project space, in order to take care of the compiling options defined for the project.

To create a library

- 1. From the File menu, point to New, and then click Project.
- 2. In the Project Types list, expand the CAM Projects option, then click ISaGRAF 5.
- 3. From the list of available project templates, click the Library template.
- 4. Specify a name and location for the library, indicate whether to add the library to an existing solution or create a new solution by defining a solution name, then click **OK**. For new solutions, you can choose to create a directory.

See Also

Using a Library in a Project Creating a Project

Using a Library in a Project

Projects can use functions and function blocks from one or more libraries. You need to create libraries before using them. Furthermore, you need to define a project's dependencies, i.e., the set of libraries the project will use, before using a library's defined elements. A project can depend on more than one library.

Library functions and function blocks can refer to some global defined words or data types defined in the library. In such a case, these defined words and data types from the library can also be used in the project.

A library cannot use functions and function blocks from another library. In other words, you cannot define external dependencies for a library. However, a function or function block from a library can call other functions or function blocks from the same library. Furthermore, functions or function blocks from libraries can call 'C' written functions and function blocks defined for the corresponding target.

All functions and function blocks within a project, including those coming from libraries, must have unique names. When more than one uses the same name, the following conditions apply:

- If the functions or function blocks come from different libraries, warnings are generated at compilation and only the first definition is recognized.
- If one function or function block is defined in the project and the other from a library, only the one defined in the project is recognized. The other is ignored.

Furthermore, when the same name is used for several types or several defined words having different definitions in a project and attached libraries, an error is generated at compilation time. However, when a data type or defined word is defined several times with the same contents or definition, a warning is reported but the project can be compiled.

You add dependencies onto libraries from the Dependencies dialog box. In this dialog box, the Libraries list displays the libraries on which a project has dependencies while the Solution list displays all libraries contained in the solution.

Note: When redefining the location of a library dependency you can modify the path in the library properties; removing the library will result in a loss of all project references.

To use a library in a project

- 1. Right-click the project for which to add a dependency, point to Add, and then click Add **Dependency**.
- **2.** In the Dependencies dialog box, click Browse to locate the library on which to create the dependency.

The library is displayed in the Libraries list.

See Also Creating a Library

Setting Project Access Control

For project security, you can set access control using a password for projects, resources, devices, POUs, and library functions and function blocks. Password definitions are limited to eight characters and can consist of letters, digits, and symbols. When projects are password-protected they cannot be opened for editing. Project sub-elements, can have their own level of access control. For example, a POU having its own password remains locked and cannot be modified without entering its password.

Note: Since POUs are encrypted, you need to retain password definitions.

In the Solution Explorer, the following indicate the security state for elements:

Indicates that a lock is applied to the element

When opening a project having password-protected elements, you are only prompted to enter the password once for each element. Password-protected elements have the following modification restrictions:

assword-i rotected Element Modification Restrictions		
Project	Opening the project	
Device	Adding, editing, and deleting a resource, program, library function, or library function block	
Resource	Adding, editing, and deleting a program, library function, or library function block	
Program	Viewing the program	
Library Function	Viewing the function	
Library Function Block	Viewing the function block	

Password-Protected Element Modification Restrictions

You can edit existing passwords for projects and project sub-elements. You can also remove existing passwords. When copying, pasting, importing, and exporting elements having access control, password definitions are retained.

To set a password

1. In the Solution Explorer, right-click the required element, and then click Password.
- 2. In the Set Password dialog box, enter the required information, then click OK.
 - a) In the *Password* field, type the required password.
 - **b)** In the *Confirm Password* field, re-type the required password.

To edit a password

- 1. In the Solution Explorer, right-click the required element, and then click **Password**.
- 2. In the Set Password dialog box, enter the required information, then click OK.
 - a) In the *Old Password* field, type the current password.
 - **b)** In the *Password* field, type the required password.
 - c) In the *Confirm Password* field, re-type the required password.

To remove a password

- 1. In the Solution Explorer, right-click the required element, and then click Password.
- 2. In the Set Password dialog box, enter the required information, then click OK.
 - In the *Old Password* field, type the current password.
 - The Password and Confirm Password fields must remain blank.

See Also

Setting Target Access Control

Setting Target Access Control

For device target security, you can set access control by defining a password for the device target. Password definitions are limited to eight characters and can consist of letters, digits, and symbols. Target access control prevents the connection of all IXL clients not having the password for the target. Users having the password can attach the target to devices in different projects.

Note: The password definitions for device targets are saved on target platforms.

You can edit existing passwords for device targets. You can also remove existing passwords for device targets. When setting, editing, and deleting the password for a device target, the attached target must be running.

To set a target password

- 1. In the Solution Explorer, right-click the device element, and then click Target Password.
- 2. In the Set Password dialog box, enter the required information, then click OK.
 - a) In the *Password* field, type the required password.
 - b) In the Confirm Password field, re-type the required password.

To edit a target password

- 1. In the Solution Explorer, right-click the required device element, and then click Target Password.
- 2. In the Set Password dialog box, enter the required information, then click OK.
 - a) In the *Old Password* field, type the current password.
 - **b)** In the *Password* field, type the required password.
 - c) In the *Confirm Password* field, re-type the required password.

To remove a target password

- 1. In the Solution Explorer, right-click the required device element, and then click Target Password.
- 2. In the *Set Password* dialog box, enter the required information, then click **OK**.
 - In the *Old Password* field, type the current password.
 - The Password and Confirm Password fields must remain blank.

See Also

Setting Project Access Control

Importing Target Definitions

You can import target definitions into a project. These target definitions are *.tdb files.

To import a target definition file into a project

- 1. From the Solution Explorer, right-click the project and point to **Import**, and then click **Import Target Definitions**.
- 2. In the Open window, browse to locate the target definitions (*.tdb) file to import into the project, then click **Open**.

When the importation process is completed, the features from the target definition are available for use in the project.

Importing and Exporting Elements

You can import elements, i.e., projects, devices, resources, and POUs, having been previously exported. Exporting an element creates a copy in XML format of the element definitions, including sub-elements, and stores this information in a compressed 7-Zip (.7z) exchange file. You can import elements into devices, resources, and programs in the same project or in other projects.

When importing elements, you can select individual sub-elements to import or choose to import all sub-elements. **ISaGRAF** places imported elements at the proper location within a project. For example, when importing a resource element into a POU, the resource is added to the device containing the POU. The Output window details the progress of import operations.

When exporting definitions for elements, the resulting exchange file contains all sub-element definitions as well as global and local variables. You can also choose to export only the variables for certain elements. For devices and resources, you can export global variables. For POUs, you can export local variables.

You specify the location in which to save exchange files. You can also choose to set a password for an exported exchange file. When importing and exporting elements having access control, password definitions are retained.

To import elements

You can only import elements having been previously exported and stored as compressed exchange files.

- 1. In the Solution Explorer, right-click the destination element for the exchange file, point to **Import**, and then click **Import Exchange File**.
- 2. In the Import Export dialog box, on the *Import Exchange File* tab, browse to select the exchange file to import.
 - In the Select Import Exchange File dialog box, select the exchange file to import, and then click Open.
- 3. From the *Select Elements to Import* display, select the elements to import, and then click **Import**.

Import Export			- □ ×
📓 Import E	xchange File 🛛 🔄 Export	Exchange File	
File Name Select Elem	C:\Users\user\Document	ts\ISaGRAF 6.3\Proj	Browse
	Name	Replace	Select All
- 🗸 🚞	DEMO_ENERGY		Clear All
	Control_Room		
9	🗹 🗾 Control		
	🗹 🔄 Production		
	🗹 🔤 Alarms		
	🗹 🔤 City		
• E	SolarFarm		
• E	WindFarm		
• E	Hydraulic_Station		
=	IV Nuclear_Plant		
Destinatio	DEMO_ENERGY		
		Import	Close

Using the *Select All* option, you can select all the elements displayed. The *Clear All* option enable you to deselect all elements, then reselect only those required.

- 4. When the imported element name exists at the destination, you need to choose one of the following actions to resolve the conflict.
 - Skip imported element and use existing one instead.
 - Create a new copy of the element from the imported one.
 - Replace existing element with the imported one.
- 5. When the import process is complete, in the Import Export dialog box, click \mathbf{x} .

The imported elements are available for use.

To export elements

When exporting elements, these are saved as exchange files having a 7-Zip (.7z) compressed format.

- 1. In the Solution Explorer, right-click the element to export, point to **Export**, and then click **Export** *Item*.
- 2. In the Import Export dialog box, specify the options for the exchange file (optional), then click **Export**.
 - To export only the variables associated with the element, select the *Export Variables Only* option.
 - To set a password for the exported exchange file, select the *Set Password* option, then define and confirm the password by typing in the fields provided.

Import Export	× 🗆 ×
Import Exchange File	Export Exchange File
Export Variables Only	
Set Password	
Password	
Password ••	••
Confirm Password	••
Element Exported DEMO	_ENERGY.Control_Room.Control
	Export Cancel

- **3.** On the Save As dialog box, specify a name and location in which to save the exported file, then click **Save**.
- 4. When the export process is complete, in the Import Export dialog box, click \mathbf{x} .

The exchange file containing the exported element is placed at the specified location.

Importing and Exporting Variables Data

You can import variables that were previously exported and saved as Microsoft Excel spreadsheets (.xls). Exporting variables enables management of variables data in Excel, including adding, removing, and modifying variables. You can import previously exported Excel files into other resources and programs in the same project or in other projects.

When importing variables, you import the fields selected during the export process. For previously exported Excel files containing modified content, any additional columns of data using proper syntax will be imported. The Output window details the progress of import operations, including the names and location of the variables added.

When exporting variables, you can select the fields of the variables to export. You also specify the location in which to save the exported files.

You can also import files containing manually defined variables for use in resources and programs. When importing files created manually, you must include a header row containing the same syntax used in files exported from **ISaGRAF**. The Excel file syntax uses the internal names for the columns of data instead of those displayed in the Variable Export/Import dialog box. Any rows of data using improper syntax will not be imported.

The following table displays the syntax used in Excel files and the associated dictionary properties:

File Column	Dictionary Property	Description
Name	Name	Name of the variable
Data Type	Data Type	Data type of the variable
Dimension	Dimension	The number of elements defined for an array
String Size	String Size	The maximum character length for string-type variables
Initial Value	Initial Value	The value held by a variable when the virtual machine begins executing the resource. The format is comma separated values (CSV).

File Column	Dictionary Property	Description
Direction	Direction	For I/O wiring, indicates whether a variable is an input, output, or internal.
Attribute	Attribute	Indicates the read and write access rights
Retained	Retained	Indicates whether the value of the variable is saved by the virtual machine at each cycle
Comment	Comment	User-defined free-format text for variables
Alias	Alias	Any name
Wiring	Wiring	Indicates the I/O channel wired to the variable
Address	Address	User-defined address of the variable
Retained Flags	Retained	Enables retaining specific elements of a variable and indicates whether to use the initial value of a variable or the value previously retained on the target. The format is comma separated values (CSV).
Groups	Groups	Variable group containing the variables listed in alphabetical order
Comment Fields	Comment	User-defined free-format text for array elements. Each array element of the same type can have a different comment. The format is comma separated values (CSV).

To import variables

You can only import variables having been previously exported and stored as Excel (.xls) files.

- 1. In the Solution Explorer, right-click the destination element for the Excel file, point to Import, then click Variables from Excel.....
- 2. In the Variable Export/Import dialog box, on the *Import Variables* tab, click browse to select the Excel file to import.

• In the Import/Export File dialog box, select the Excel file to import, then click Open.

Variable Exp	ort/Im	port - Co	ontrol				▼ 🗆 ×
Import Vari	ables	Export V	ariables				
File name	C:\Us	ers\user\D	ocument	s\ISaG	RAF	Bro	owse
			Help		Import [3	Cancel

- 3. In the Variable Export/Import dialog box, click Import.
- 4. When the import process is complete, click \mathbf{x} .

The imported variables are available for use.

To export variables

You can export selected fields of variables data in Excel (.xls) format.

- 1. In the Solution Explorer, right-click the resource or POU containing the variables to export, point to Export, then click **Variables to Excel...**.
- 2. In the Variable Export/Import dialog box, on the *Export Variables* tab, browse to select the destination for the exported variables.

- 3. In the Import/Export File dialog box, specify the name of the Excel file, and then click Save.
- 4. From the *Fields to Export* check box list, select the variables data to export, then click **Export**.

Variable Export/Impo	ort - Nuclear	- □ ×
Import Variables E	xport Variables	
File name C:\Users	s\user\Documents\ISaGRAF	Browse
Fields to Export	Clear All	Select All
✓ Name ✓ Data Type ✓ Dimension ✓ String Size ✓ Initial Value ✓ Direction ✓ Attribute ✓ Retained ✓ Comment ✓ Alias ✓ Wiring ✓ Retained Flags ✓ Groups ✓ Comment Fields	Format Excel	xport Cancel

Using the *Select All* option, you can select all the fields displayed. The *Clear All* option enable you to deselect all fields, then reselect only those required.

5. When the export process is complete, click \mathbf{x} .

The variables are exported to the specified file.

Generating Code

Before downloading code onto your target systems, you need to build the code for the whole solution. This operation builds the code for all projects within the solution, and builds information used to recognize your systems on networks. When a solution contains more than one project, you can build the code for individual projects within the solution. Once a solution or project has been built, subsequent build operations only regenerate the parts of the solution or project needing regeneration. You can also choose to build project elements, including devices, resources, and POUs. When building POUs, **ISaGRAF** only verifies the programming syntax without producing code.

When managing code, you can perform the following tasks:

- Building Solutions and Project Elements
- Rebuilding Solutions
- Cleaning Solutions and Project Elements

Building Solutions and Project Elements

You can choose to compile project files that were modified since the last build. You can build modified project files belonging to entire solutions. Once a project has been built, subsequent builds only recompile the parts of the project needing recompiling.

When a solution contains more than one project, you can build the modified project files for individual projects. You can also choose to build individual project elements including devices, resources, and POUs.

You can rebuild solutions to ensure that the compiled version is up-to-date. When rebuilding solutions, intermediate and output files are deleted, then a build operation is performed. Deleting the intermediate and output files ensures that the entire solution is compiled during a rebuild operation. After rebuilding solutions, online changes become unavailable.

The compiler generates different code for simulation than for targets. Therefore, you need to specify the applicable target in the properties of devices before building.

When building solutions and project elements, you can view the progress of the build in the Output window. When the build is complete, you can view generated errors in the Error List.

To build a solution or project element

This operation builds the code for all resources of the projects and builds information used to recognize your systems on networks. You cannot build projects open in read-only mode. Before building a project, make sure the applicable target type is specified for the devices.

• In the Solution Explorer, right-click the required solution or project element, then click **Build** (or press **Ctrl+Shift+B**).

The build process is initiated for the required project element or solution.

To view the build progress and generated errors

- 1. From the Tools menu, click **Options**.
- 2. In the Options dialog box, expand **Projects**, click **General**, then select the following options, and then click **OK**.

- Always show Error List if build finishes with errors
- Show Output window when build starts
- **3.** Build the required solution or project element.

The Output and Error List windows are displayed.

See Also

Downloading Code to Targets Rebuilding Solutions Cleaning Solutions and Project Elements

Rebuilding Solutions

You can choose to clean solutions, deleting the intermediate and output files, then rebuild all project files and components. After rebuilding solutions, online changes become unavailable.

You can view the progress of rebuild operations in the Output window. When the rebuild is complete, you can view generated errors in the Error List.

To rebuild a solution

- 1. In the Solution Explorer, click the solution element.
- 2. From the Build menu, click Rebuild Solution.

The rebuild process is initiated for the solution.

To view the rebuild progress and generated errors

- 1. From the Tools menu, click **Options**.
- 2. In the Options dialog box, expand **Projects**, click **General**, then select the following options, and then click **OK**.
 - Always show Error List if build finishes with errors
 - Show Output window when build starts
- **3.** Build the required solution.

The Output and Error List windows are displayed.

See Also

Downloading Code to Targets Cleaning Solutions and Project Elements

Cleaning Solutions and Project Elements

You can clean solutions, projects, devices, and resources. Cleaning these deletes the intermediate and output files generated during the last build operation. Performing cleaning operations removes the capacity to perform online changes for the selected element. For example, after cleaning a device, online changes become unavailable for that equipment.

To clean a solution

• In the Solution Explorer, right-click the solution, then click Clean Solution.

The intermediate and output files are deleted for the solution.

To clean a project, device, or resource

• In the Solution Explorer, right-click the required project, device, or resource, then click **Clean Selection**.

The intermediate and output files are deleted for the project element.

See Also

Building Solutions and Project Elements Rebuilding Solutions

Running an Application Online

Running online signifies that an application is connected to a target allowing for the normal execution where target cycles are triggered by the cycle timing. While running online, you can perform target management, debugging, and monitoring operations. However, you cannot perform target management and debugging operations at the same time. You can also simulate the running of an application for debugging purposes.

Before running an application on a target, you need to build the project code and download the application code onto the target.

To run an application online

1. Specify the applicable target type and IP addresses for the devices in the project.

Note: The compiler generates different code for simulation than for targets.

- 2. Build the project code.
- 3. To run an application online, download the application code onto the target.
- 4. In the Debug toolbar, from the drop-down combo-box, select **Online**.
- 5. In Debug menu, click Start Debugging.

See Also

Simulating Debugging Target Management Monitoring

Target Management

Target management operations affecting target behavior include downloading resource code to targets, uploading code from targets, stopping and starting resources as well as performing online changes.

See Also

Debugging

Downloading Code to Targets

You perform download operations for projects having resources with code to send to targets. When simulating a project, you do not need to perform a download operation. When performing download operations, you can also choose to send custom files to the target except when using failover mechanisms. Such files are placed at the root of the target folder on the target platform.

Each time you perform a download operation, the **Automation Collaborative Platform** verifies the coherency between the current resource definitions and the resources' code to download. The Workbench also verifies the coherency between all versions of the resource code.

The code (corresponding to the run-time engine capabilities) must first be generated by building the project. The code type is determined by the target definition.

The Configuration manager must be running on the target platform.

The computer where the **Automation Collaborative Platform** is installed must be connected to the hardware device through a network supported by the Debugger. The standard networks used by the **Automation Collaborative Platform** are Ethernet (ETCP) and Serial COM port (ISaRSI).

You can choose to store resource, device, and project code on targets. When setting up a resource's properties, you select the required element to download to the target from the EmbeddedZipSource options.

To download project code to a target

1. To store code on the target, from the Solution Explorer, select the required resource, then from the Properties window, perform one of the following:

- To store code for the resource, from the *EmbeddedZipSource* drop-down combo-box, select **Resource**
- To store code for the device, from the *EmbeddedZipSource* drop-down combo-box, select **Device**.
- To store code for the project, from the *EmbeddedZipSource* drop-down combo-box, select **Project**.
- 2. To send custom files to the target, place the required files in the *To Download* folder located in the device directory.

Note: Custom files are placed at the root of the target folder on the target platform. When using a failover mechanism, you cannot send custom files to a target.

- **3.** Build the project code.
- 4. In the Solution Explorer, right-click the project element, and then click **Download**.

Uploading Code from Targets

You can upload code for projects, devices, and resources when the code has been stored on the target (if non-volatile storage exists for the platform). When uploading, a copy of the element is added to the Solution Explorer.

Before uploading an element's source file, you need to download its source code onto the target. When setting up the resource's properties, you select the required element to download to the target in the EmbeddedZipSource option.

To upload an element from sources on a target

• From the Solution Explorer, right-click the resource, device, or project for which to upload source code, and then click **Upload**.

A copy of the element is added to the Solution Explorer.

See Also

Downloading Code to Targets

Stopping and Starting Resources

You can stop and start a virtual machine. Stopping a resource terminates the virtual machine, changing the resource state to CODE. The resource state appears next to the resource icon in the Solution Explorer. Starting a resource launches the kernel process, producing the same result as downloading a resource. Once the resource is running online, you can apply the necessary execution mode, affecting the resource state.

Note: The STOP resource state indicates the cycle-to-cycle execution mode.

To stop a resource running on a target

- 1. In the Solution Explorer, select the resource to stop.
- 2. From the Target Execution toolbar, click

To start a resource on a target

- 1. In the Solution Explorer, select the resource to start.
- **2.** From the Target Execution toolbar, click

See Also Downloading Code to Targets Debugging

Performing Online Changes

You can modify a resource while it runs. This is sometimes necessary for chemical processes where any interruption may jeopardize production or safety. When performing online changes, you can choose to update a running resource at the time of download or at a later time. Note that sending custom files located in the *To Download* folder to a target is only available when performing a download operation; sending custom files is not possible when performing online changes.

Warning: Online changes should be used with care. **ISaGRAF** may not detect all possible conflicts generated by user-defined operations as a result of these online changes.

The initial values of variables are applied upon starting resources. Online changes do not start resources.

For all **ISaGRAF** versions, the following limitations exist for online changes:

Declared, i.e., user-defined, arrays and structures cannot be modified. Declared arrays and structures are defined as data types.

I/O device instances cannot be added or deleted; these instances can be modified.

Device and resource properties cannot be modified.

Undeclared arrays cannot be added or deleted. Undeclared arrays are defined as variables in a dictionary instance.

The following tasks are available for various **ISaGRAF** versions when performing online changes:

ISaGRAF 4.X	Internal	Adding, deleting, and relocating internal variables.
targets or later	Variables	Modifying the body of POUs.

ISaGRAF 5.10 targets or later	Bindings	To enable online changes for legacy bindings, set the <i>LegacyBindingDefault</i> property to 0 in the diamond.ini file. This file is installed at the following location: %ALLUSERSPROFILE%\ISaGRAF\6.x\CAM ISaGRAF 5\5.3\Bin
		Adding, deleting, and editing.
		Creating and deleting bindings between variables.
		Changing the consumer error variable and consumption behavior of a binding. Changing the producing variable, consuming variable, or network for a binding creates a new one.
		Adjusting the update timeout period in the resource network parameters. The update timeout period is the maximum time during which the consumer can remain in the update state.
	I/O Variables	Wiring, unwiring, and swapping I/O variables whose data type (scalar type for arrays), length (string variables), dimension (arrays), and address remains unchanged. For these I/O variables, you can modify the direction (input or output only), scope, attribute (read, write, or free), retain flag, alias, and comment. When modifying the direction, I/O variables cannot change to or from the internal type. Note that modifying the I/O wiring causes the values of new and removed output I/O variables to be reinitialized.
	I/O Channels	Changing the wired variable as well as the reverse/direct, gain, offset, and conversion settings.

ISaGRAF 5.23 targets or later	Internal Variables	When renaming or changing the data type of internal variables, the Workbench creates new variables. Therefore, variables are initialized.
		Changing the alias, initial value, group, scope, direction, retain setting, address, and comment of variables. When changing the initial value of a read-only internal variable, the Workbench reinitializes the variable. When changing the scope of a variable, the Workbench reinitializes the variable.
		Modifying the length of string variables. When decreasing the length, the contents of the string is truncated to the new length.
		Switching a variable attribute between the input and output attribute. You cannot switch variables between the internal and input/output attribute.
		Adding and removing elements in arrays for internal variables. For multi-dimensional arrays, you can only add elements to the first dimension. The Workbench initializes these new elements. Adding elements to other dimensions causes the Workbench to initialize a new array.
	Programs	Adding, deleting, renaming, and reordering (for execution within the programs section) programs. When renaming programs, the Workbench detects a CRC mismatch and updates the code on the target for the program and reinitializes all local variables. When renaming SFC programs, instance data and local variables are not preserved, i.e, elements are reset to their initial state.
		When planning to add programs (other than SFC) using online changes, you need to allocate a sufficient number of maximum extra POUs.
		When planning to add SFC programs using online changes, you need to allocate sufficient memory space for SFC programs.
		Adding, deleting, renaming steps and transitions as well as modifying the initial step or the flow between
Automation Col	laborative Platfo	and local variables is preserved, i.e., elements are not reset to their initial state.

ISaGRAF 5.50	Functions and	Adding and deleting "C" function block instances having
targets or later	Function	initialization or exit functionality implemented.
	Blocks	

To perform an online change

You can perform online changes after building a project. Online changes are unavailable after cleaning projects, cleaning solutions, and rebuilding solutions.

• From the Solution Explorer, right-click the project for which to perform the online change, then click **Online Change**.

Debugging

When developing an application, you can choose to debug, i.e., detect and remove errors, from a project while running the application online, i.e., on a target, or simulating. Before running an application online, you need to download the application code onto the target.

While in real-time mode, each resource is executed by a virtual machine on the real platform. A download operation is required to download the code of each resource onto the corresponding platform. You can also switch a resource to cycle-to-cycle mode.

A resource where real-time mode is activated is in the RUN state.

When debugging, the state of a resource is displayed in its icon in the Solution Explorer. The possible states of a resource are the following:

The resource is running on the device. The resource is in the RUN, STOP, ERROR, STEPPING, or STEPPING_ERROR state.

The application running on the virtual machine does not match the project.

1

The virtual machine is unable to establish communication with the target run-time or unable to locate the code. The resource is in the CODE or NOCODE state.

To enable debugging a project, you must first build the project, then download the project code to the target.

When switching an application to debugging, the Automation Collaborative Platform verifies the coherency between the current resource definitions and the resources' compiled code. The Automation Collaborative Platform also verifies the coherency between all versions of the resource code.

You can execute a resource in one of two execution modes:

• Real-time, the run time normal execution mode where target cycles are triggered by the programmed cycle timing. While in real-time mode, you can switch the resource to cycle-to-cycle mode. When debug information is generated for POUs in a resource, the resource automatically switches to step-by-step mode when the application encounters a breakpoint.

• Cycle-to-cycle, a cyclical execution mode where the virtual machine loads the resource code but does not execute it until you execute one cycle or activate real-time mode. When debug information is generated for POUs in a resource, the resource automatically switches to step-by-step mode when the application encounters a breakpoint. You can also switch to step-by-step mode by stepping.

The state of the resource appears next to the resource icon in the Solution Explorer.

Resource State	Description
RUN	The resource is running in real-time mode. You can switch the resource to cycle-to-cycle mode.
STOP	The resource is in cycle-to-cycle mode. Possible operations are: - switch the resource to real-time mode - execute one cycle - step into or step over the next line of code (when step-by-step mode is instantiated)
ERROR	The resource is in error. Possible operations are: - switch the resource to real-time mode - execute one cycle - step into or step over the next line of code (when step-by-step mode is instantiated)
STEPPING	The resource is in step-by-step mode. Possible operations are: - switch the resource to real-time mode - switch the resource to cycle-to-cycle mode returning the resource to the start of its cycle without executing the remaining code - execute one cycle - step into or step over the next line of code (when step-by-step mode is instantiated)
STEPPING_ERROR	The resource is in stepping error mode. This state is caused when an invalid operation occurs such as a division by 0 or a bound check error. You can switch the resource to cycle-to-cycle mode returning the resource to the start of its cycle without executing the remaining code.

Resource State	Description
CODE	The virtual machine is unable to execute the resource. Verify that the virtual machine matches the target definition in the Workbench.
NOCODE	The virtual machine is unable to locate the application code.

When running online, a resource is activated in the RUN state. A resource where cycle-to-cycle mode is activated can be in one of three states: STOP, BREAK, and ERROR. When viewing the values of variables in dictionary instances, the logical and physical values display the following temporary messages before loading the actual values:

- OFFLINE, indication that the variable is not present in the running application code
- WAIT, indication that the variable is either:
 - In online mode and attempting to connect to the target
 - In simulation mode and attempting to connect to the simulator

While debugging, you can lock and unlock I/O channels of an I/O device.

To debug an application

Before debugging an application, you need to build the application code and download the code to the target.

- **1.** Build the project code.
- 2. Download the code to the target.
- 3. In the Debug toolbar, from the drop-down combo-box, select **Online**.
- 4. From the Debug menu, click **Start Debugging** (or press **F5**).

See Also

Resources Forcing the Values of Variables

Accessing Diagnostic Information (System Variables)

You can access diagnostic information for individual resources while running an application in simulation mode.

System variables hold the values of resource variables relating to cycle count, timing, kernel bindings, and resource information. You can view system variables from the dictionary instances for resources. You can read from and write to system variables. The available system variables are the following:

Variable Name	Туре	Read/Write	Description
SYSVA_CYCLECNT	DINT	Read	Cycle counter
SYSVA_CYCLEDATE	TIME	Read	Timestamp of the beginning of the cycle in milliseconds
SYSVA_KVBPERR	BOOL	Read/Write	Kernel variable binding producing error (production error) This system variable is not available for use.
SYSVA_KVBCERR	BOOL	Read/Write	Kernel variable binding consuming error (consumption error)
SYSVA_MICROCYCLEDATE	UDINT	Read	Timestamp of the beginning of the current cycle in microseconds (µs)
SYSVA_MICROTCYMAXIMUM	UDINT	Read	Maximum cycle time since last start in microseconds (µs)
SYSVA_MICROTCYCURRENT	UDINT	Read	Current cycle time in microseconds (µs)
SYSVA_MICROTCYCYCTIME	UDINT	Read/Write	Programmed cycle time in microseconds (µs)
SYSVA_RESNAME	STRING	Read	Resource name (max length=255)

Variable Name	Туре	Read/Write	Description
SYSVA_SCANCNT	DINT	Read	Input scan counter
SYSVA_TCYCYCTIME	TIME	Read/Write	Programmed cycle time
SYSVA_TCYCYCTIMEBASE	UDINT	Read/Write	Current cycle base time in milliseconds (ms) or microseconds (µs)
SYSVA_TCYCURRENT	TIME	Read	Current cycle time
SYSVA_TCYMAXIMUM	TIME	Read	Maximum cycle time since last start
SYSVA_TCYOVERFLOW	DINT	Read	Number of cycle overflows

Variable Name	Туре	Read/Write	Description
SYSVA_RESMODE	SINT	Read	Resource execution mode. Possible modes are: -4: Stopped in stepping mode after bound check exception -3: Stopped in stepping mode after division by zero exception -2: Stopped in stepping mode after exception -1: Fatal error 0: No resource available 1: Stored resource available NOT USED (CMG) 2: Ready to run 3: Running in real time 4: Running in cycle by cycle 5: Stopped from encountering an SFC breakpoint 7: Stopped while in stepping mode
SYSVA_CCEXEC	BOOL	Write	Execute one cycle when application is in cycle to cycle mode

Warning: For the _SYSVA_CCEXEC system variable, its use in an ST program is not significant since resources run in cycle-to-cycle mode. Therefore, programs are not executed.

To view system variables

• From the Solution Explorer, double-click the **Global Variables** instance for the required resource.

The system variables are displayed in the grid.

Logging Target Execution Events

You can log target execution events received from **ISaGRAF** targets. Logged events are stored in a log file, in Unicode format, located in the Events Logger folder of the current project's directory. A new log file is automatically created each day at 00:00:00 hours.

You can view log files in text format using a text editor.

When logging events from the workbench, the workbench automatically points towards the application's project and the logger is started. You can also choose to start logging events from a command line.

To log target execution events

When logging events, the application must be online.

- 1. From the *Target Execution* toolbar, click 💋 .
- 2. In the Output window, select the Events Logger option from the drop-down combo-box.

Output			×
Show output from:	Events Logger Test_Project.Device1	- 🗟 🖓 🖓 🕞	3
	Build Debug		^
	Events Logger Test_Project.Device1		
	Subversion - AnkhSVN		
			~
<		>	

The Output window displays the events in real-time and a copy of the events is saved in the log file.

3. To stop logging events, in the *Target Execution* toolbar, click *1*.

To view a log file

The default location of the log file is in the Events Logger folder of the project's directory. The name of the log file is Events_*YYYYMMDD*.txt where *YYYY* is the year, *MM* is the month, and *DD* is the day on which the file is created.

• In the Events Logger folder, double-click the .txt file.

Forcing the Values of Variables

While debugging, you can force, i.e., override, the values of variables. These variables can be user-defined or directly represented. The behavior of a variable is defined by its logical value, physical value, lock state, and direction. When forcing the values of variables, the value to overwrite depends on the direction of the variable. You lock, unlock, and force the values of variables from the Dictionary.

Locking and unlocking operates differently for simple variables, array and structure elements, and function block parameters. For simple variables, individual variables are locked and unlocked directly. For simple-type members of a complex variable such as a structure or array, locking or unlocking any member affects the entire complex variable. For array and structure elements, locking and unlocking an element affects all members. For function block parameters, locking a parameter affects only that parameter. For function blocks, you need to instantiate these before locking their parameters.

For locked variables, the values displayed in the Logical Value and Physical Value columns differ depending on their direction:

Internal Variable (Read) Behavior

Example: To force a counter for a function block.

Internal Variable (Write) Behavior

Example: To force the result of an internal calculation.

Input Variable (Read) Behavior

Example: To force the temperature reading from a sensor.

Output Variable (Write) Behavior

Example: To force the closing of an actuator valve.

When forcing the values of unlocked variables, these values may be overwritten by the next cycle execution.

To force the value of a variable

While debugging, you can force the values of locked user-defined or directly-represented variables.

1. From the Dictionary instance, double-click the required variable.

The Write dialog box is displayed.

- 2. To modify the lock on the variable, in the *Lock* field, click the slider, then click Write.
- **3.** To write the required value for the variable, modify the *DataType value* field, then click **Write**.

When modifying a date in the *DataType value* field, a calender box is displayed. To select a date, click within the calender box. You can move between months using the arrow buttons.

See Also

Debugging

Simulating

Simulating the running of an application signifies that virtual machines execute the code of individual resources and the Windows platform performs aspects such as POU execution. Virtual machines ignore inputs and outputs.

The compiler generates different code for simulation than for online.

Before simulating an application on a target, you need to build the project code.

To simulate the running of an application

- 1. From the Deployment view, specify the applicable target type and IP addresses for the devices in the project.
 - a) Click the target, then from the Properties window, expand the *Hardware* node and in the *Target* property, select the required target from the drop-down combo-box.
 - **b)** Click the connection between the target and the network, then from the Properties window, expand the *Info* node and type the required IP address in the field provided.
- **2.** Build the project code.
- 3. In the Debug toolbar, from the drop-down combo-box select Simulation.
- 4. From the Debug menu, click Start Debugging.

Monitoring

While running an application online, debugging, or simulating, you can monitor variables, updated by the running online (TIC) code or simulation code, in Dictionary instances as well as graphical programs and function block instances. For individual graphical POUs, you enable monitoring by generating symbols monitoring for each. Generating monitoring information increases the size of the TIC code created.

For dictionary instances, the logical values, physical values, and lock status of variables are displayed in their respective columns. For graphical programs and function block instances, values are displayed differently depending on their type:

- Boolean type variables are displayed using color. The variable color continues to the next input. The default colors are red when True and blue when False.
- SINT, USINT, BYTE, INT, UINT, WORD, DINT, UDINT, DWORD, LINT, ULINT, LWORD, REAL, LREAL, TIME, DATE, and STRING type variables are displayed as a numeric or textual value. When the variable is a structure type, the displayed value is the selected member.

When variables are unavailable, in Dictionary instances, the logical and physical values display the following messages:

- OFFLINE, indication that the variable is not present in the running application code
- WAIT, indication that the variable is either:
 - In online mode and attempting to connect to the target
 - In simulation mode and attempting to connect to the simulator

To generate symbols monitoring information for a graphical POU

When debugging graphical POUs, you can monitor the output values of functions and operators by enabling the *Generate Symbols Monitoring* property.

- 1. In the Solution Explorer, select the graphical POU for which to generate symbols monitoring.
- 2. In the Properties window, set the *Generate Symbols Monitoring* property to True.

See Also Running an Application Online Debugging Simulating

Getting Started

The **ISaGRAF 5** Concrete Automation Model enables the creation of applications supporting multi-process control. Applications consist of virtual machines running on hardware components, called target platforms. The development process consists of creating projects made up of devices representing individual target platforms, on which one or more instances of resources are downloaded. At runtime, instances of resources become individual virtual machines running on these target platforms.

Solutions containing one or more projects are developed in the following languages of the IEC 61131-3 standard: SFC: Sequential Function Chart, FBD: Function Block Diagram, LD: Ladder Diagram, SAMA (Scientific Apparatus Makers Association) diagrams, and ST: Structured Text. Using the IEC 61499 language, i.e., distribution method, enables the distribution of function blocks across multiple resources. When building, resources are compiled to produce very fast "target independent code" (TIC) or "C" code.

Within resources, you can declare variables using standard IEC 61131-3 data types (i.e., Boolean, integer, real, etc.) or user-defined types such as arrays or structures. Resources can share variables using external bindings. For IEC 61499 programs, bindings between function blocks declared in different resources are automatically created.

You develop projects on a Windows® development platform. The Automation Collaborative Platform graphically represents and organizes devices, resources, POUs, variables, and networks within a solution from many views:

- Add-in Manager
- Block Library
- Controller Status
- Data Types
- Description Window
- Dictionary
- Error List
- Find and Replace
- ISaVIEW
- Locked Variables Viewer

- Bindings
- Block Selector
- Customize...
- Deployment View
- Device View
- Document Overview
- External Tools
- I/O Wiring
- Language Editors
- Navigation Window

- Options...
- Parameters View
- Solution Explorer
- Toolbox
- Variable Selector

- Output Window
- Properties Window
- Spy Lists
- Variable Dependencies

Libraries made up of devices and resources enable defining functions, function blocks, global variables, arrays, and structures for reuse throughout projects.

Individual resources, from the devices making up a project, are downloaded, using the ETCP (TCP-IP), HSD, or ISARSI (Windows COM port) network, onto target nodes running real-time operating systems. Communication between devices can be implemented using the default TCP-IP network or proprietary network protocol.

You can choose to simulate the running of a project, after building a project, using high-level debugging tools, before actually downloading the resources making up devices to the target nodes.

When getting started, the following information guides you through the different facets:

- System Requirements for Development Platforms
- Differences with Previous Versions
- Naming Conventions and Limitations
- Introducing the Automation Collaborative Platform (ACP)
- Walking Through an Existing Application
- Starting with a Basic Application
- Importing an Existing Application

System Requirements for Development Platforms

Suggested Requirements

To use ISaGRAF, you need the following hardware and software.

Hardware

- A computer with a 2.2 GHz or faster processor.
- RAM
 - 1 GB of RAM for x86 operating systems
 - 2 GB of RAM for x64 operating systems
 - When running ISaGRAF on a Virtual Machine, an additional 512 MB of RAM is necessary
- 4 GB of available hard disk space
- A hard disk running at 5400 RPM
- A CD-ROM drive on the Windows network (for installation from disk)
- A TCP/IP network
- An SVGA monitor having at least 1024 X 768 pixels screen resolution
- A DirectX 9-capable video card that runs at a display resolution of 1024 x 768 or higher

Software

ISaGRAF supports the following operating systems:

- Windows® 7 (x86 and x64)
- Windows® 8 (x86 and x64)

Note: If Visual Studio 2010 was previously installed, when running the ISaGRAF installation the Visual Studio 2010 Service Pack 1 will be installed. This may affect Visual Studio functionality.

Differences with Previous Versions

For users of previous versions of **ISaGRAF**, the following list compares different aspects of the workbench:

ISaGRAF 6.x Workbench	ISaGRAF 5.x Workbench			
Provides a tab-oriented environment enabling navigation between multiple POUs and Dictionary instances	Provides a window/editor-based environment requiring closing the Dictionary before using newly-defined variables in a POU.			
Supports the FBD, LD, SFC, and ST IEC 61131-3 programming languages as well as SAMA diagrams using the FBD programming language. Also supports the IEC 61499 programming language.	Supports the FBD, LD, SFC, LD, FC, and IL IEC 61131-3 programming languages.			
The Solution Explorer provides an organized view of projects and their elements. The Solution Explorer can display multiple projects. You can also perform many tasks from this view.	The Project Tree view displays the project structure and enables accessing most aspects of a currently opened project.			
The dictionary displays variables in contextual instances for individual resources	The dictionary displays all variables for individual resources.			
and POUs. In accordance with the IEC 61131-3 standard,	The available options for dictionary variables are the following:			
the available options for dictionary variables are the following:	1) For Attribute: Free, Read, and Write			
1) For Attribute: Read/Write, Write, and Read.	2.) For Direction: Internal, Output, and Input			
2) For Direction: Var (replacing Internal), VarOutput (replacing Output), VarInput (replacing Input), VarDirectlyRepresented, and VarGlobal.				
Opening projects in Read-Only mode is not available.	Can open an existing project in Read-Only mode.			

ISaGRAF 6.x Workbench

ISaGRAF 5.x Workbench

Supports external bindings. Internal bindings are automatically converted to external bindings.	Supports external and internal bindings
Devices represent target definitions; devices replace configurations	Configurations represent target definitions
Elements are imported/exported in compressed 7-zip (.7z) exchange files	Elements are imported/exported in compressed .PXF exchange files
POUs are displayed and edited using language containers in the language editor. POUs are also displayed in the Solution Explorer.	POUs are displayed in the link architecture view. POUs are editable using various language editors.
In the language editor, a document overview and zooming enables focusing on areas of the workspace	In the language editor, zooming enables focusing on POUs displayed in the workspace
You define the properties of projects, devices, resources, and POUs by selecting the element in the Solution Explorer and entering the required information in the Properties window.	You define the properties of project elements from various dialog boxes accessed from the menus.
After rebuilding the solution, online changes are not permitted	You can perform online changes after rebuilding projects
You can download code for resources, devices, or projects and store it on the target	You can download code for resources and store it on a disk or use another storage method
You can set a password for devices (sets the access control for the target), projects, POUs, and library functions and function blocks	You can set a password for resources, projects, POUs, and targets
The Toolbox displays the language-specific elements for a selected POU.	The Toolbar displays the language-specific elements for a selected POU.
I/O wiring is performed from the I/O Device View, which is accessed from the contextual menu for the resource within the Solution Explorer.	I/O wiring is performed from the I/O wiring tool

ISa	GRAF 6.x Workbench	ISa	GRAF 5.x Workbench				
The the proj	Deployment View graphically displays devices, networks, and connections of jects and solutions in a separate window.	The disp con	hardware architecture view graphically blays the configurations, networks, and nections of a project in the workspace.				
You dev can	u can generate documentation for projects, ices, resources, POUs, and variables. You specify the following options:	You ope opti	You can build and print documentation for open projects. You can specify the following options:				
•	Choose the Sections template, modifying the items listed in the Sections pane. Set the page orientation for the generated documentation	•	Set the page orientation for printing. You can choose to print FBD and LD diagrams differently from the rest of the document. Diagrams are automatically scaled to fit the paper				
•	Set the page size for the generated documentation	•	Enable displaying headers/footers on each page and on cover pages				
•	Set the margins for the generated documentation	•	Choose the image displayed and select the format for headers/footers				
•	Select the Microsoft Word® template, includes whether footers are included	•	Specify the page numbering method				
•	Set the POU diagram scaling	•	Choose to include printing history on cover pages				
•	Set the link type	•	Enable displaying margins and define				
•	Set the comment style		margin widin				
•	Define the output file name and location	•	Define the font used to print text				
Des edit reso the the exp	scription window enables displaying and ting text descriptions for projects, devices, burces, and POUs. Clicking items within Solution Explorer refreshes the contents of Description window, enabling the loration of projects.	Des men in th arch con	criptions are accessed via contextual nus for programs and resources displayed he link architecture and hardware nitecture views, respectively. Descriptions tain editable text only.				

ISaGRAF 6.x Workbench	SaGRAF 5.x Workbench					
Error List window displays warnings, errors, and messages generated when building projects and solutions, projects, devices, resources, or POUs. Errors in the code are accessed directly from the Error List view.	Error List window displays warning, errors, and messages generated by building solutions, projects, configurations, resources, or POUs. Errors in the code are accessed from the Output window.					
Cross Reference Browser displays information including names, properties, locations, and comments associated with the variables, programs, functions, function blocks, and defined words used within projects.	The Browser displays information including names and locations associated with the variables, programs, functions, function blocks, and defined words used in projects.					
Add-in Manager enables specifying the loading method of registered add-ins displayed in the dialog box. You can define whether add-ins loads at start-up time, using command line prompts, or both. You can also enable and disable add-ins displayed in the Add-in Manager dialog box.	ProHook dynamic link library enables the usage of user-programmed functions (i.e. hook functions) with the ISaGRAF workbench. At start-up time, the library is loaded and the hook functions are enabled.					
External Tools option enables launching other applications from inside ISaGRAF .	Tools contained in external applications are launched from outside ISaGRAF .					
Renumbering addresses is not available	Renumbering addresses automatically generates contiguous addresses in the variables grid					
Default fonts and colors are modified in the Options dialog box.	Fonts and colors are customized using the options available in the customization editor.					

Naming Conventions and Limitations

Projects

Project names	Project names can have up to 128 characters and must begin with a letter or single underscore followed by letters, digits, and single underscores.
Device quantity	Projects can contain multiple devices
Resources	
Resource names	Resource names can have up to 128 characters and must begin with a letter or single underscore followed by letters, digits, and single underscores.
Devices	
Device names	Device names can have up to 128 characters and must begin with a letter or single underscore followed by letters, digits, and single underscores.
Networks	
Network instances	Projects can have an unlimited quantity of network instances
POUs (Programs, Fu	inctions, and Function Blocks)
POU names	POU names can have up to 128 characters and must begin with a letter or single underscore followed by letters, digits, and single underscores.
POUs per project	Projects can contain up to 65 536 POUs
Function parameters	Functions can have a maximum of 128 parameters (127 inputs and one output)
Function parameter names	Function parameter names can have up to 128 characters and must begin with a letter or single underscore followed by letters, digits, and single underscores.
Function block parameters	Function blocks can have a maximum of 128 parameters (inputs and outputs)
Function block parameter names	Function block parameter names can have up to 128 characters and must begin with a letter or single underscore followed by letters, digits, and single underscores.

Variables

Variable name	Variable names can have up to 128 characters and must begin with a letter or single underscore followed by letters, digits, and single underscores.
BOOL variables	Boolean variables can have the boolean value TRUE (1) or FALSE (0).
SINT variables	SINT variable integer values range from -128 to +127. Short integer constants must begin with a prefix identifying the base. There is no prefix for DECIMAL values. For HEXADECIMAL values the prefix is "16#", for OCTAL values the prefix is "8#", and for BINARY values the prefix is "2#".
USINT variables	USINT variable integer values range from 0 to 255. Unsigned short integer constants must begin with a prefix identifying the base. There is no prefix for DECIMAL values. For HEXADECIMAL values the prefix is "16#", for OCTAL values the prefix is "8#", and for BINARY values the prefix is "2#".
BYTE variables	BYTE variable integer values range from 0 to 255. BYTE constants must begin with a prefix identifying the base. There is no prefix for DECIMAL values. For HEXADECIMAL values the prefix is "16#", for OCTAL values the prefix is "8#", and for BINARY values the prefix is "2#".
INT variables	INT variable integer values range from -32768 to +32767. Integer constants must begin with a prefix identifying the base. There is no prefix for DECIMAL values. For HEXADECIMAL values the prefix is "16#", for OCTAL values the prefix is "8#", and for BINARY values the prefix is "2#".
UINT variables	UINT variable integer values range from 0 to 65535. Unsigned integer constants must begin with a prefix identifying the base. There is no prefix for DECIMAL values. For HEXADECIMAL values the prefix is "16#", for OCTAL values the prefix is "8#", and for BINARY values the prefix is "2#".

WORD variables	WORD variable integer values range from 0 to 65535. WORD constants must begin with a prefix identifying the base. There is no prefix for DECIMAL values. For HEXADECIMAL values the prefix is "16#", for OCTAL values the prefix is "8#", and for BINARY values the prefix is "2#".
DINT variables	DINT variable integer values range from -2147483648 to +2147483647. Double integer constants must begin with a prefix identifying the base. There is no prefix for DECIMAL values. For HEXADECIMAL values the prefix is "16#", for OCTAL values the prefix is "8#", and for BINARY values the prefix is "2#".
UDINT variables	UDINT variable integer values range from 0 to 4294967295. Unsigned double integer constants must begin with a prefix identifying the base. There is no prefix for DECIMAL values. For HEXADECIMAL values the prefix is "16#", for OCTAL values the prefix is "8#", and for BINARY values the prefix is "2#".
DWORD variables	DWORD variable integer values range from 0 to 4294967295. Double word constants must begin with a prefix identifying the base. There is no prefix for DECIMAL values. For HEXADECIMAL values the prefix is "16#", for OCTAL values the prefix is "8#", and for BINARY values the prefix is "2#".
LINT variables	LINT variable integer values range from -9223372036854775808 to +9223372036854775807. Long integer constants must begin with a prefix identifying the base. There is no prefix for DECIMAL values. For HEXADECIMAL values the prefix is "16#", for OCTAL values the prefix is "8#", and for BINARY values the prefix is "2#".
ULINT variables	ULINT variable integer values range from 0 to 18446744073709551615. Unsigned long integer constants must begin with a prefix identifying the base. There is no prefix for DECIMAL values. For HEXADECIMAL values the prefix is "16#", for OCTAL values the prefix is "8#", and for BINARY values the prefix is "2#".
LWORD variables	LWORD variable integer values range from 0 to 18446744073709551615. Long word constants must begin with a prefix identifying the base. There is no prefix for DECIMAL values. For HEXADECIMAL values the prefix is "16#", for OCTAL values the prefix is "8#", and for BINARY values the prefix is "2#".

REAL variables	Real variables have six significant digits. For larger values, the maximum possible value is $\pm 3.402823466E+38$ while for smaller values, the minimum possible value is $\pm 1.175494351E-38$. Therefore, values greater than $\pm 3.402823466E+38$ and greater than 0.0 but less than $\pm 1.175494351E-38$ are not supported. Real literal values can be written with either decimal or scientific representation. The exponent part of a real scientific expression must be a signed integer value ranging from -37 to +37. The scientific representation uses the 'E' letter to separate the mantissa part and the exponent.
LREAL variables	Long real variables have 15 significant digits. For larger values, the maximum possible value is $\pm 1.7976931348623158e+308$ while for smaller values, the minimum possible value is $\pm 2.22507385850721E-308$. Therefore, values greater than $\pm 1.7976931348623158e+308$ and greater than 0.0 but less than $\pm 2.22507385850721E-308$ are not supported. Long real literal values can be written with either decimal or scientific representation. The range of a real scientific expression must be a signed integer value from 1.7E -308 to 1.7E +308.
TIME variables	Time variables can have positive values ranging from 0 to 49d17h2m47s294ms. The time literal value must begin with the "T#" or "TIME#" prefix.
DATE variables	Date variable values range from 1970-01-01 to 2038-01-18. The date literal expression must begin with the "D#" or "DATE#" prefix.
STRING variables	STRING variable string capacity is limited to 252 characters excluding the terminating null character (0), a byte for the current length of the string, and a byte for the maximum length of the string. String variables can contain any character of the standard ASCII table. Characters must be preceded and followed by single quote (') characters. When placing single quote (') characters within a string literal, these characters must be preceded by the dollar (\$) character.
Alias names	Alias names can have up to 128 characters consisting of letters, digits, and the following special characters: !, #, \$, %, &, *, +, -, /, <, :, =, >, ?, @, ^, _, `, , and ~.
Address	The user-defined address of a variable consists of four digits in hexadecimal format ranging from 0001 to FFFF.

Array names	Array names can have up to 128 characters and must begin with a letter or single underscore followed by letters, digits, and single underscores.					
Structure names	ructure names can have up to 128 characters and must begin with a tter or single underscore followed by letters, digits, and single inderscores.					
Defined Words						
Defined Word names	Defined word names can have up to 128 characters and must begin with a letter or single underscore followed by letters, digits, and single underscores.					
Defined word equivalents	Defined word equivalents can have up to 128 characters.					
I/O Wiring						
I/O device order	The I/O device order ranges from 0 to 65535					
SFC Programs						
Priority of transitions	The priority of transitions value ranges from 1 to 255.					
Access Control						
Password definitions	Password definitions are limited to eight characters consisting of letters, digits, and symbols.					

Introducing the Automation Collaborative Platform (ACP)

The Automation Collaborative Platform (ACP) provides a robust integrated development environment (IDE) enabling the development of process control applications. The ACP workbench offers a complete suite of tools for building applications.

To get to know the different aspects of the ACP

1. From the Start menu, click All Programs, then ISaGRAF 6.4, and then click Automation Collaborative Platform.

The **ACP** is launched displaying the Start Page, Solution Explorer, and Output window. The Toolbox is displayed in auto hide mode.

Start Page - Automation Collaborative Platform (Administrator)	
File Edit View Debug Tools Window Help	
: B Z 型 ¥ A 書 書 汪 ;: / 殘 皆 省 陷 [逸 智 ; _	
🏂 Start Page 🗙	✓ Solution Explorer ▼ ₽ ×
ISagRAF	
Tutorials Help	
Deen Project Introducing ISaGRAF	
Recent Projects	
Inved.cing 55682	
Outout	× 1 ×
Show output from: Subversion - AnkhSVM	
4	•
Ready	

The **Start Page** enables opening new or recent projects, viewing tutorials, as well as accessing the Getting Started help pages. The **Solution Explorer** displays open solutions consisting of projects and their elements. The **Output window** displays the compilation progress and errors. The **Toolbox** displays the available elements for insertion in programs.

- 2. When adding elements in the language container, you can use the following ACP features:
 - To display program-specific elements for insertion in the language container, from the View menu, click **Toolbox**.

Toolbox	▼ 🗖	×
▲ FBD		-
k	Pointer	
Ð	Variable	
0	Block	
	Comment	
-	Region	
->>	Jump	
-0	Return	
۲	Label	Ε
	Rung	
\vdash	Left Power Rail	
\neg	Right Power Rail	
Ŧ	Vertical Bar	
٩F	Direct Contact	
-11-	Reverse Contact	
μν	Pulse Falling Edge Co	
ᆊᄘ	Pulse Rising Edge Con	
-0-	Direct Coil	
-0-	Reverse Coil	
-®-	Reset Coil	
-6-	Set Coil	-

To display variables defined for a program, from the Toolbox, drag the Variable icon into the language container. The **Variable Selector** is displayed.

Name Type Global Scope Local Scope BOOL + Resource1 - Prog1 Slobal Variables - Resource1 Local Variables - Prog1 System Variables - Resource1 Directly Represented Variables - Resource1 Defined Words - Name Data Type Dimension String Size Initial Value Direction Attribute Retained Comment Alias Wiring Ad * off												_			or	ible Select	Varia
BOOL Prog1 Sideal Variables - Resource1 Directly Represented Variables - Resource1 Defined Words - Name Data Type Dimension String Size Initial Value Direction Attribute Retained Comment Alias Wiring Addition Varin1 BOOL <th></th> <th>Scope</th> <th>Local Scop</th> <th>]</th> <th>pe</th> <th>Global Sco</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>lype</th> <th></th> <th></th> <th></th> <th></th> <th>Name</th>		Scope	Local Scop]	pe	Global Sco						lype					Name
Global Variables - Resource 1 Local Variables - Prog1 System Variables - Resource 1 Direction Attribute Retained Comment Atias Wring Addition	•	1	Prog1	-	1	Resource		•				BOOL					
Stobal Variables - Resource1 Directive Represented Variables - Resource1 Defined Words - Name Data Type Dimension String Size Initial Value Direction Attribute Retained Comment Alias Wring Ad V off <																	
Name Data Type Dimension String Size Initial Value Direction Attribute Retained Comment Alias Wiring Add	oject1	d Words - Project	Defined Wor	source1	/ariables - Reso	presented V	y Re	Direc	urce1	- Resou	stem Variables	es - Prog 1 Sy	Local Variable	e1	Resourc	Variables -	Global
• ofe • ofe <td< th=""><th>ress Groups</th><th>ring Address</th><th>as Wiring</th><th>t Alia</th><th>Comment</th><th>Retained</th><th>ute</th><th>Attri</th><th>ction</th><th>Direc</th><th>Initial Value</th><th>String Size</th><th>Dimension</th><th>Гуре</th><th>Data 1</th><th>Name</th><th></th></td<>	ress Groups	ring Address	as Wiring	t Alia	Comment	Retained	ute	Attri	ction	Direc	Initial Value	String Size	Dimension	Гуре	Data 1	Name	
Varin BODL * Varinp, * Read * Varinp, * Read * Varinp, * Varin3 BODL * Varinp, * Read * Varinp, * Read * Varinp, * Varin3 BODL * Varinp, * Read * Varinp, * Read * Varinp, * Varin5 BODL * Varinp, * Read * Varinp, * Read * Varinp, * Varin5 BODL * Varinp, * Read * Varinp, * Read * Varinp, * VarOut1 DINT * VarOut * Virite * VarOut * Virite * VarOut * VarOut2 DINT * VarOut * Virite * VarOut * Virite * VarOut * VarOut3 DINT * VarOut * Virite * VarOut * Virite * VarOut * Virite * VarOut * Virite * VarOut * Var2 REAL * Var * Read/N * Var2 Var3 REAL * Var * Var * Read/N * Var3 Var3 REAL * Var * Var * Var4 Var4 Var4 Var4 Var4 Var4 Var4 Var4 <t< th=""><th>dt v d</th><th>d' d'</th><th>dt dt</th><th>5° -</th><th>· #</th><th>· d*</th><th>di"</th><th></th><th>đ</th><th>-</th><th>· d</th><th>· #*</th><th>× dt</th><th>đ</th><th></th><th>- dt</th><th></th></t<>	dt v d	d' d'	dt dt	5° -	· #	· d*	di"		đ	-	· d	· #*	× dt	đ		- dt	
Varin2 BOOL • Varinpu • Read • Varin3 BOOL • Varinpu • Read • Varin4 BOOL • Varinpu • Read • VarOut1 DINT • VarOut • Virite • • VarOut2 DINT • VarOut • Virite • • VarOut2 DINT • VarOut • Virite • • VarOut3 DINT • • VarOut • Virite • • Var1 REAL • Var • Read/h • • Var3 REAL • • Var • Read/h • • Var6 REAL • • Var • Read/h • • Var6 REAL • • Var • Read/h • • Var6 REAL • <					-		-	Read	- DL -	VarInp	-			-	BOOL	VarIn1	
Varin3 BOOL Varinpu * Read * Varin4 BOOL Varinpu * Read * Varin5 BOOL Varinpu * Read * Varin5 BOOL Varinpu * Read * Varin5 BOOL Varin5 Varin5 Ead Varin5 BOOL Varin5 Varin5 Ead Varin5 BOOL Varin5 Varin5 Ead VarOut1 DINT VarOut * Write * * VarOut2 DINT VarOut * Write * * VarOut3 DINT * VarOut * Write * * Var10 REAL Var VarOut * Write * Var3 REAL Var Var * Read/\theta * Var6 REAL Var Var * Read/\theta * Var6 REAL Var Var * Read/\theta * Var6 REAL Var * Read/\theta * * Var6 REAL Var * Read/\theta * * Var6							+	Read	р. т	VarInp					BOOL	VarIn2	
Varin4 BOOL · Varinpi · Read · · <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>Read</td> <td>р. т</td> <td>VarInp</td> <td></td> <td></td> <td></td> <td></td> <td>BOOL</td> <td>VarIn3</td> <td></td>							-	Read	р. т	VarInp					BOOL	VarIn3	
Varin5 BOOL Varinpi Read Varinpi Read Varinpi VarOut1 DINT VarOut Virite VarOut Virite VarOut VarOut2 DINT VarOut Virite VarOut Virite VarOut VarOut2 DINT VarOut2 Virite VarOut2 Virite VarOut2 Var1 REAL Var VarOut2 Virite Var0 Var0 Var2 REAL Var Var4 Read/N * Var0 Var4 Var0 Var4 Var1 Var4 Var2 Var4							+	Read	р	VarInp				*	BOOL	VarIn4	
VarOut DINT · VarOut Write · VarOut2 DINT · VarOut Write · VarOut2 DINT · VarOut Write · VarOut3 DINT · VarOut · Write · · VarOut3 IREAL · VarOut · Write · · Var2 REAL · Var · Read/\low · · Var3 REAL · Var · Read/\low · · Var3 REAL · Var · Read/\low · · Var6 REAL · Var · Read/\low · · Var7 REAL · Var · Read/\low · · · Var8 REAL · Var · Read/\low · · · · Var8 REAL · Var · Read/\low · · · · · Var8 REAL · · · · · · · · · Var8 r · ·								Read	рі т	VarInp					BOOL	VarIn5	
VarOut2 DINT · VarOut · Virite · · VarOut3 DINT · VarOut · Virite · · VarOut3 DINT · · VarOut · Virite · · Var1 REAL · · Var · Read/\log · · Var3 REAL · · Var · Read/\log · · Var4 REAL · · Var · Read/\log · · Var6 REAL · · Var · Read/\log · · Var6 REAL · · Var · Read/\log · · Var8 REAL · · Var · Read/\log · · Var9 REAL · · Var · Read/\log · · Var8 REAL · · Var · Read/\log · · · Var9 REAL · · · · · · · Var9 read/\log · · · · · · ·							*	Write	ut 🔹	VarOu				*	DINT	VarOut1	
VarOut 3 DINT * VarOut * Vrite * Var1 REAL * Var * Read/\n * * Var3 REAL * Var * Read/\n * * Var3 REAL * Var * Read/\n * * Var3 REAL * Var * Read/\n * * Var4 REAL * Var * Read/\n * * Var5 REAL * Var * Read/\n * * Var6 REAL * Var * Read/\n * * Var6 REAL * Var * Read/\n * * Var6 REAL * Var * Read/\n * * Var7 REAL * Var * Read/\n * * Var9 REAL * Var * Read/\n * *								Write	ut 👻	VarOu				•	DINT	VarOut2	
Var Real var Read/h var Var2 REAL var Var Read/h var Var3 REAL var Var Read/h var Var4 REAL var Var Read/h var Var5 REAL var Var Read/h var Var6 REAL var Var Read/h var Var7 REAL var Var Read/h var Var9 REAL var Var Read/h var							*	Write	ut 🝷	VarOu				*	DINT	VarOut3	
Var2 REAL * Var * Read/h * Var3 REAL * Var * Read/h * Var4 REAL * Var * Read/h * Var5 REAL * Var * Read/h * Var6 REAL * Var * Read/h * Var6 REAL * Var * Read/h * Var7 REAL * Var * Read/h * Var9 REAL * Var * Read/h * Var9 REAL * Var * Read/h *							۰.	Read/		Var					REAL	Var1	
Var3 REAL - Var * Read/h * Var4 REAL - Var * Read/h * Var5 REAL - Var * Read/h * Var6 REAL - Var * Read/h * Var7 REAL - Var * Read/h * Var8 REAL - Var * Read/h * Var8 REAL - Var * Read/h * Var9 REAL - Var * Read/h *							•	Read/		Var					REAL	Var2	
Var4 REAL * Var * Read/h * Var5 REAL * Var * Read/h *<							1.	Read/	•	Var				•	REAL	Var3	
Var5 REAL · Var · Read/N · Var6 REAL · Var · Read/N · ·							• •	Read/		Var					REAL	Var4	
Var6 REAL · Var · Read/N · Var7 REAL · Var · Read/N ·<							17	Read/		Var					REAL	Var5	
Var Kead/N Image: Constraint of the sead/N Image: Constan = 1 Image: Constraint of the sead/				_			• •	Read/		Var					REAL	Var6	
Var8 REAL * Var * Read/N * Var9 REAL * Var * Read/N *<							1.	Read/		Var					REAL	Var7	
Var V Head/V V							•	Read/		Var					REAL	Var8	
							1 *	Read/		Var				*	REAL	Var9	
							×		×					×			*
ОК	Cancel	ОК	OK														

To display the list of the blocks available for a program, from the Toolbox, drag the Block icon into the language container. The **Block Selector** is displayed. You can also access the **Parameters** display from the Block Selector.

Block Selector (Pr	og1)								×
BLINK (Project1)									*
Search								Show Pa	rameters
Name	Туре	Category	Comment	*		BLINK			
BATCHTOTALIZER	CFB	Process Control			-{* RUN (* RUN *) 🛄*}-	V Pdate (* Pdat *)	-	Q(* Q *)	>
BIAS	CFB	Process Control			-{*CYCLE (* CYCL *)	★ ET (* ET *)			
BIASCALIBRATION	CFB	Process Control				✓ Redge (* Redg *) [∠] ✓			
BLINK	SFB	Signal generation	Blinking boolean signal	-					
CHAR	SFU	String manipulation	ASCII code -> Character						
CHARACTERIZER	CFB	Process Control							
СМР	SFB	Comparators	Full comparison function block						
COMPARATOR	CFB	Comparator Operations							
CONNECT	SFB	Communications	Communication Function Block						
COS	SFU	Arithmetic	Cosine						
COS_LREAL	CFU	Arithmetic	Cosine						
•	-		•	Ť			J		
Instance : BLIN	VK_1								• (New)
							ОК	Ca	ncel

To display a graphical view of standard operators, as well as standard and user-defined functions and function blocks available for the POUs of a project, from the View menu, click **Block Library**.

BlockLibrary					▼ [×
A						2
Standard					^	
1 -	*	1	-+	-		
-		- <u>-</u>	-		SFU.	=
<>	=	×)	>=	1 gain	ABS	
4	1 0 ^{8HD} +0	10010	BOOL	ВУТЕ	DATE	
ACOS	AND	AND_MASK	ANY_TO_BOOL	ANY_TO_BYTE	ANY_TO_DATE	
	DWORD ANY_TO_DWORD			LREAL ANY_TO_LREAL	LWORD ANY_TO_LWORD	
REAL ANY_TO_REAL						
		WORD	MəA	1	×	
ANY_TO_ULINT	ANY_TO_USINT	ANY_TO_WORD	ASCII	ASIN	ATAN	•

To view, add, or edit the rich text descriptions for ISaGRAF project elements, select the required element in the Solution Explorer, then from the View menu, click **Description Window**.

Description Window	- □ ×
I	

3. To work in full screen mode, from the View menu, click **Full Screen**. Full screen mode enlarges the workspace to fill the screen, hiding other tabbed windows.

File Edit View	Project	Build De	ebug Tools	Window	Help	Full Screen				
Prog1-POU* ×										
REAL Var2			REK VarOut1							
						Ln 3	3	Col 44	Ch0	

4. To display the Properties window, from the View menu, click **Properties Window**. The properties window enables viewing and editing the properties of items selected within language containers, ISaVIEW instances, the Solution Explorer, and the Deployment View. You can view properties alphabetically or categorically.

- 5. You can navigate through program content, including application code, using the following ACP features:
 - To find and replace strings and expressions in files, from the Edit menu, point to Find and Replace, and then click the required option. For example, click Quick Find to display Quick Find options.

Find and Replace 🗾 🔻 🗖 >	¢
🔜 Quick Find 🝷 👌 Quick Replace 🝷	
Find what:	
-	
Look in:	
Current Project 🔹	
 Find options 	
Match case	
Match whole word	
🕅 Search up	
🔲 Use:	
Regular expressions v	
Find Next Bookmark All	

To focus on an area displayed within a program opened for editing, from the View menu, click **Document Overview**.

Document Ove	rview	→ 🗆 ×
The standy b in early form a discriming a di		

To view and jump to instances of ISaGRAF elements within a project, from the View menu, click Cross Reference Browser, refresh the list of cross references, then locate the required element by entering the required search information.

Cross Re	erence Br	owser										- □ ×
Find					- 强 <	<type filter="" k<="" th=""><th>eyword></th><th></th><th>▼ Variables</th><th></th><th> 🔍 🖨</th><th>⊉</th></type>	eyword>		▼ Variables		🔍 🖨	⊉
Name	Scope	Alias	Туре	Project	Device	Resource	Comment	*	<fbd>,(DEVICE1,RE</fbd>	SOURCE1, PF	ROG1)::(21,17),READING FRON
VarIn1	Global		DINT	Project1	Device1	Resource1						
VarIn2	Global		DINT	Project1	Device1	Resource1						
VarIn3	Global		DINT	Project1	Device1	Resource1						
VarIn4	Global		DINT	Project1	Device1	Resource1						
VarIn5	Global		DINT	Project1	Device1	Resource1						
VarIn6	Global		DINT	Project1	Device1	Resource1		=				
VarIn7	Global		DINT	Project1	Device1	Resource1						
VarIn8	Global		DINT	Project1	Device1	Resource1						
VarIn9	Global		DINT	Project1	Device1	Resource1						
i66	Global		BOOL	Project1	Device1	Resource1		-	۰ III			۱.

To view the ascending and descending dependencies of variables, from a graphic program or dictionary instance, right-click the required variable, and then click **Dependencies**. Before viewing variable dependencies, refresh the cross references for the project.

	(TEMP (REAL) -2.0 (REAL) 0.0	(P TEMP {REAL} -2.0 CONSUMPTION
BLINK (AUTOMATIC)	(CONSUMPTION (REAL) 0.0 (ALARM_MEMO (BOOL): False	{REAL} 0.0

Dependencies are also available while editing, debugging, or running online.

- 6. You can navigate through the different elements and aspects of projects using the following ACP features:
 - To navigate through project aspects and elements, from the View menu, click Navigation Window. The environment provides the global view (listing the devices contained in one or more projects within a solution), the deployment view, and the device view.

Navigation Window	▼ 🗆 ×
Global	► *
E Deployment View	
	► ≈
C Functions & Function Blocks	
I Target I/O Devices	
Target Features	
➡ <u>Bindings</u>	
Resource1	*
I/O Device	
Global Variables	
E FBDprog	*
Local Variables	

The initial aspects and elements displayed vary depending on the item selected in the Solution Explorer.

To navigate through project elements, from the Solution Explorer, right-click the required device and then click Open. The Device View is displayed and enables accessing device and resource information such as available POUs, C function and function block parameters, interrupts, target I/O devices, target features, and resource properties.

To navigate through Active Files open in the current project, from the Window menu, click Windows. Active files consist of language containers, the Deployment view, and other windows docked in the workspace.

Window	5		? 💌
Name	· ·	Path	Activate
Deplo Devic FBDpi FBDpi	yment.isadpl e1 rog-POU rog-VAR	C:\Users\user\documents\isagraf	Save Close Window(s)
			ОК

7. When managing elements, you can use the following **ACP** features:

To manage local variables, global variables, arrays, structures, and defined words, in the Solution Explorer, double click the required Local Variables, Global Variables or Data Type instance. The **Dictionary** is displayed.

Proje	ct1 -	DataTyp	es				▼ □ ×	Cor	ntrol-VAR									-
Arra	ys :	Structure	s Defi	ned	Words				Name	Data	Туре	Dimensi	String S	Initial ¥	Direc	tion	Attribute	Retained
		Jamo	Data		Dimension	String Size	Comment		· A		- A	- A*	 → A² 	* A*		* A	- d	* • A
		vanie	Data	урс	Dimension	String Size	comment		Prod_Hydrau	REAL	*				Var	*	Read/Write 👻	
		* A*		of '	* A*	* of**	- A*		Prod_Solar	REAL	*				Var	-	Read/Write 🔹	
		Array1	BOOL	*	13				Prod_Wind	REAL	*				Var	*	Read/Write 👻	
		Array2	DINT	*	210				Prod_Nuclear	REAL	*				Var	*	Read/Write 🔹	
		Arrav3	REAL	+	03.210				Sun	REAL	*				Var	-	Read/Write 👻	
*				-					Consumption	REAL	*				Var		Read/Write 🔻	
1								1										>

To manage parameters and local variables for user-defined POUs, right-click the POU, and then click **Parameters**.

Parameters				▼ 🗆 ×
	FB1		0 and	171
-{ <u>× VarInput1 (* *)</u> -	⊗ Var1 (* *) 📈⊗	{≫ Va	rOutput1 (* *) 🦯	<u></u>
-{> VarInput2 (* *) 1				
true Eligit				
1/1 71-				
171 m		1 1		
Ha Ha				
1/1				
1911 (m. 191		terres 1		
New Input	New Variable		New Output	
Name : Var1 Alias :	Initial values	c		
DataType : BOOL -	Var1(BC	DOL)		
Dimension : Attribute : B	leadA 🔻			
Comment :				•

8. To create external bindings, i.e., access paths, between variables located in different resources, in the Solution Explorer, right-click the project, device, or resource and then click **Binding**.

Binding - DEMO_ENERGY				▼ 🗆 ×
🛋 Add Producing Group 🛋 Add C	onsuming Group All bine	dings		-
History of selection				-
History of selection Producing Groups	Producing Variables Prod_Nuclear Percent_Nuclear Capacity_Nuclear 	Consuming Variables Prod_Nuclear Percent_Nuclear Capacity_Nuclear	Consuming Groups	
			⊡	

- **9.** When debugging applications, you can oversee application performance using the following **ACP** features:
 - To view the build information, from the View menu, click **Output**.

To view the errors, warnings, and messages produced when editing and building programs, from the View menu, click **Error List**.

_									
Error List 🔹 🗸									
C	• 4	Errors 1 10 Warnings 1 0 Mess	ages						
		Description	File	Line	Column	Project			
3	1	>=: Output not connected	FBDPROG.stf	6	9	Project1			
8	2	Var12: Variable not used in this diagram	FBDPROG.stf	7	14	Project1			
3	3	+: Input not connected	FBDPROG.stf	12	28	Project1			
8	4	VarIn4: Variable not used in this diagram	FBDPROG.stf	13	21	Project1			

To view or unlock locked variables while debugging, running online, and simulating, from the Debug menu, click **Locked Variables**.

10. To add an ISaVIEW screen, right-click the device, resource, or program in the Solution Explorer, point to Add, and then click New ISaVIEW.

You can monitor or run control processes, locally or remotely, by creating ISaVIEW screens. You can define animation effects for the objects inserted in the ISaVIEW screens. Design mode enables editing the screen objects and animation mode executes the animation effects.

11. You can view information about devices using the following **ACP** features:

To graphically display the devices, networks, and connections of a project, from the View menu, click **Deployment View**.

To access real-time status information for all devices in a project, from the View menu, click **Controller Status**.

Controller Status			▼ 🗆 ×
Name	Status	Locked Variables	Cycle Time
Warning			
Device1/Resource1	Simulator running		

12. To implement a failover mechanism where a secondary device takes over if the primary device fails, in the Solution Explorer, right-click the device, and then click Failover Configuration.

The failover mechanism is available with the failover project template.

- **13.** For version source control, the following options are available for managing changes to ISaGRAF elements:
 - To view the files for the elements of repositories, from the View menu, click **Repository Explorer**.

Repository Explorer 🔹 🗖 🗙									
🐚 🌤 🞜 Location: file:///C:/Users/user/Documents/I 🔹 👫 🖨 🖏 🎁 🖏 📋 Open -									
Repository Folders	Name	Modified	Туре	Revision	Author	Size	Lock Owner		
📇 Subversion Repositories	🐌 DemoVSC	2014-12-02 1:2	File Folder	2	user				
🚊 🚛 Local Repositories	Project5	2014-12-02 1:3	File Folder	3	user				
🛓 📲 DemoVSC									
Project5									
۰ III ا									

To view the directories and files of local working copies from repositories, from the View menu, click **Working Copy Explorer**.

Washing Come Fundame						
Working Copy Explorer						* 0 ×
🖀 🕷 Location: C:\Users\user\Documents\	ISaGRA 📲 🖓 = 🗟 = 📩 🗙					
Working Copy Folders	Name	Modified	Туре	Change	Locked	Revision
Solution 'DEMO_ENERGY'	Control Control Control Control Control Room.isaxml Control Room_NetworkConf.rws Control Room_NetworkConf.xws	2014-12-02 6:26 PM 2014-12-02 6:26 PM 2014-12-02 6:26 PM 2014-12-02 6:26 PM	File Folder ISAXML File RWS File XWS File	None New None None		0 0 0
 Puclear_Plant SolarFarm SolarFarm WindFarm W						

To view a list of project changes that have not yet been committed to version source control, from the View menu, click **Pending Changes.**

Pendi	ng Changes - Source Files			*	
	🔺 Commit 🔹 💍 Update 📲 🖅 🖉 🔗 🖓 🔹	0-7 Q			
	Message:				
					* *
	Path ^	Project	Change	Full Path	-
	DEMO_ENERGY.isasIn	<solution></solution>	Added	C:\Users\user\Documents\ISaGRAF 6.4\Projects\DEMO_E	
	DEMO_ENERGY/DEMO_ENERGY.acfproj	DEMO_ENERGY	New	C:\Users\user\Documents\ISaGRAF 6.4\Projects\DEMO_E	
	DEMO_ENERGY/DEMO_ENERGY/Control_Ro	DEMO_ENERGY	New	C:\Users\user\Documents\ISaGRAF 6.4\Projects\DEMO_E	
	Marchine DEMO_ENERGY/DEMO_ENERGY/Control_Ro	DEMO_ENERGY	New	C:\Users\user\Documents\ISaGRAF 6.4\Projects\DEMO_E	
	DEMO_ENERGY/DEMO_ENERGY/Control_Ro	DEMO_ENERGY	New	C:\Users\user\Documents\ISaGRAF 6.4\Projects\DEMO_E	-

To view the history of elements committed to version source control, from the File menu, point to Subversion, then click **View History**.

History Viewer - DEMO_ENERGY.isaxml, DEMO_ENERGY.acfproj, Extende 🔻 🗖 🗙								
Target: <4 files>								all
Revision Author Date				Message				
	4 user 12/2/2014 2:15:18 PM							
Changed	path	s:				Log message:		
Action	Pa	ath		· ·	-			*
Added	/[emoVSC/DI	EMO_ENE	RGY/DEM	0			
Added	/[emoVSC/DI	EMO_ENE	RGY/DEM	0			
Added	/0	emoVSC/DI	MO_ENE	RGY/DEM	0			=
Added /DemoVSC/DEMO_ENERGY/DEMO				0				
Added	/[emoVSC/DI	MO_ENE	RGY/DEM	0			
Added	/[emoVSC/DI	EMO_ENE	RGY/DEM	0 🚽			-
•				1		۰ III	•	
To compare different version of elements committed to version source control, from the File menu, point to Subversion, and then click **Compare.**

To revert elements to a prior version, from the File menu, point to Subversion, and then click **Revert**.

S	elect Items to Revert			? 💌
	Path	Project	Change	Full Path
	DEMO_ENERGY/DEMO_ENERGY/Control_Room	DEMO_EN	Modified	C:\Users\user\Documents\ISaGRAF 6.
	DEMO_ENERGY/DEMO_ENERGY/DEMO_ENERG	DEMO_EN	Modified	C:\Users\user\Documents\ISaGRAF 6.
	DEMO_ENERGY/DEMO_ENERGY/Hydraulic_Stati	DEMO_EN	Modified	C:\Users\user\Documents\ISaGRAF 6.
	DEMO_ENERGY/DEMO_ENERGY/Hydraulic_Stati	DEMO_EN	Modified	C:\Users\user\Documents\ISaGRAF 6.
	DEMO_ENERGY/DEMO_ENERGY/Nuclear_Plant/	DEMO_EN	Modified	C:\Users\user\Documents\ISaGRAF 6.
	DEMO_ENERGY/DEMO_ENERGY/SolarFarm/Sola	DEMO_EN	Modified	C:\Users\user\Documents\ISaGRAF 6.
	DEMO_ENERGY/DEMO_ENERGY/WindFarm/Win	DEMO_EN	Modified	C:\Users\user\Documents\ISaGRAF 6.
	< [III			•
				OK Cancel

14. To view changes in the values of variables and function block instances, from the Debug menu, point to **Spy Lists**, then click the required spy list instance.

Spy L	ist Na	me[1]										*			
Nam	Name: Spy List Name[1] Refresh Rate: 100 🚔 🗙														
		Name		Alias	Logical	Value	Physical	¥alue	Lock	Comment	Access Path	Data T	ype		
			▼ 0€*	▼ A*		▼ 0€*		▼ 0 f *	▼ A*	▼ A*	▼ <i>d</i> t	•	• A*		
	Cit	y_2			OFFLINE		OFFLINE				DEMO_ENERGY.Control_Room.Control	BOOL			
	Wi	ndy			OFFLINE		OFFLINE				DEMO_ENERGY.Control_Room.Control	REAL			
	- Rtr	ig1									DEMO_ENERGY.Control_Room.Control	R_TRIG			
	-	Variable	s: 3 Item	ns											
		Rtrig	1.CLK	CLK	OFFLINE		OFFLINE			any boolean	DEMO_ENERGY.Control_Room.Control	BOOL			
		Rtrig	1.Q	Q	OFFLINE		OFFLINE			TRUE when C	DEMO_ENERGY.Control_Room.Control	BOOL			
		Rtrig	1.Redge	Redg	OFFLINE		OFFLINE			Rising edge	DEMO_ENERGY.Control_Room.Control	BOOL			
	Pro	od_Solar			OFFLINE		OFFLINE				DEMO_ENERGY.SolarFarm.Solar	REAL			
	Pa	nel_01			OFFLINE		OFFLINE				DEMO_ENERGY.SolarFarm.Solar	BOOL			
	Ca	pacity_W	ind		OFFLINE		OFFLINE				DEMO_ENERGY.WindFarm.Wind	REAL			
*															
•								A M							

15. To generate documentation for projects, devices, resources, programs, and variables, from the File menu, click **Generate Documentation**.

Generate Documentation		
Document Options	Sections	TOC Preview
Sections Template DefaultTemplate Format Word Orientation Landscape Legal 8:50 in X 14:00 in Margins : Narrow Left : 0:50 in Top : 0:50 in Bottom : 0:50 in Top : 0:50 in Bottom : 0:50 in Bottom : 0:50 in Microsoft Word Template Isagraffooter.dotx Diagram Scaling 100 % Link Type Hyperlinik Comment Style /* comment */	 Title Page Table of content Deployment View Arrays Structures Defined Words Target I'O Wring Binding Variable I'SaVIEW Language Container POU Resource Configuration Project 	♥ Title Page ♥ Table of content ♥ Deployment View ♦ Project1 ♥ Arrays ♥ Structures ♥ Defined Words ♥ Target ● Powie1 ● W Resource1 ● Binding ● Global Variables ● FBDprog ● FBDprog Diagram ● Ø FBDprog Diagram ● Ø FSCprog ● Ø FSCprog ● Ø FSVEW1 ● Ø FSVEW1 ● Ø FSVEW1 ● Ø FSVEW1 ● Ø SKOreg ● Ø SAMAprog ● Ø SAMAprog ● Ø FB1
Default Settings		Generate Close

16. You can customize the Workbench using the following **ACP** features:

To customize the environment, project, Source Control, Block Library, Deployment view, Device view, various grids, I/O device, IEC languages, ISaVIEW, and Spy List options, from the Tools menu, click **Options...**

Options	? <mark>*</mark>
Environment Projects Source Control Block Library Settings DeploymentView Settings Device View Grid Settings I/O Device Settings CAM3	Recent files 10 items shown in Window menu 6 items shown in recently used lists Visual experience Item and the state of t
 I/O Device Settings CAM5 IEC Languages ISaVIEW Settings Spylist Settings 	 Enable rich client visual experience Use hardware graphics acceleration if available Visual Studio is currently using software rendering. The visual experience settings automatically change based on system capabilities. Show status bar Close button affects active tool window only Auto Hide button affects active tool window only Restore File Associations
	OK Cancel

To create or customize Toolbars, Menu bars, and Context menus, from the Tools menu, click **Customize...**

Customize			? 💌
Toolbars Comma	nds		
Choose a menu or	toolbar to rearrange:		
Menu bar:	Menu Bar		•
Toolbar:	Build		~
Context menu:	Editor Context Menus		•
Controls:			
<u>F</u> ile		•	Add Command
<u>E</u> dit		•	Add New Menu
View		•	
<u>P</u> roject			Delete
Debug			Move Up
F <u>o</u> rmat		•	Move Down
<u>R</u> esources			Indify Selection 💌
<u>T</u> ools		• =	iouny selection +
<u>W</u> indow		•	Reset All
<u>H</u> elp		•	
E Full Screen			
		Kaula	ard Close
		Keybo	Close

17. You can manage add-ins and external tools using the following ACP features:

To manage registered add-ins, from the Tools menu, click Add-in Manager...

Add-in Manager		? 🗙
Available Add-ins	Start	Command L
☑ ISaGRAF 5 Binding Tool		
✓ ISaGRAF 5 I/O Device Tool	Image: A start and a start	
☑ ISaGRAF.Workbench.DebuggerSettings	~	
Locked Variables Viewer	V	
Description:		
ISaGRAF 5 Binding Tool		
Sucrear 5 binding room		
		Ŧ
ſ	OK	Cancel
L	UK	Cancer

To add external tools, from the Tools menu, click External Tools...

External Tools	
Menu contents:	
[New Tool 1]	Add
	Delete
	Move Up
	Move Down
Title:	[New Tool 1]
Command:	
Arguments:	
Initial directory:	
Use Output window	Prompt for arguments
Treat output as Unicod	e 🔽 Close on exit
	OK Cancel Apply

Walking Through an Existing Application

This section describes a demo project included with the default installation.

To walk through an existing application

- 1. Launch the ACP and open an existing application.
 - a) From the Start menu, point to All Programs, click ISaGRAF 6.4, and then click Automation Collaborative Platform.

b) From the File menu, point to Open, then click Project/Solution....

	utomation Collaborative Platforn	n		
File	Edit View Debug Tools	Window Help		
	New	• 1	🗟 Find	- 🛛 🛃 🚝 🔍 🏷 🛈 - 📑 🖽 🗒
	Open		Project/Solution Ctrl+Shift+O	
	Close	(Subversion Project	Solution Explorer 🚽 🗸 🕹
đ	Close Solution			E.
	Save Selected Items	Ctrl+S		
	Save Solution As			
ø	Save All	Ctrl+Shift+S		
	Subversion	•		
	Recent Projects and Solutions	•		
	Exit	Alt+F4		
ι.				
ι.				
Out	put			~ ↓ ×
Sh	ow output from: Subversion - Ar	nkhSVN	- 🖗 🎝 素 🗾	
ι.				*
ι.				
4				* }
Rear	hr.			
meau	y			

c) In the Open Project dialog box, select and open the **DEMO_ENERGY.isasIn** project, located in the following directory:

%USERPROFILE%\My

Documents\ISaGRAF 6.x\Projects\DEMO_ENERGY\DEMO_ENERGY.isasIn

🔄 Open Project				×
	Projects > DEMO_ENERGY >	👻 🍫 Sea	rch DEMO_ENERGY	م
Organize 🔻 New folder			!≡ ▼ 🚺	0
Automation Collat	ame	Date modified	Type Size	
Projects	DEMO_ENERGY	12/1/2014 10:55 AM	File folder	
	DEMO_ENERGY.isasIn	12/2/2014 1:26 PM	isasInFile	3 KB
■ Desktop Downloads Recent Places Libraries Documents Music Pictures Videos				
File name:	DEMO_ENERGY.isasIn		roject Files (*.isasln;*.acf	iprı ▼ el

The DEMO_ENERGY project is displayed.

- 2. Review the application components.
 - a) From the View menu, click Solution Explorer.
 - **b)** To view available programs, expand the project, device, resource, and program elements, then view the programs by double-clicking the required program instance.

Solar_Panels-POU ×	✓ Solution Explorer
1 gain	
	Solution DEMO_ENERGY DEMO_ENERGY
Bool Panel 03	E E DataTypes
Banel 04	→ Control_Room
Bool Panel 05	▶ IIII Nuclear_Plant
BOOL -	SolarFarm
eool Panel_07	▲ 📴 Programs
FooL Panel_08	Production Production Production
500L Panel_09	Capacity
BOOL Panel_10	Solar_Panels
Switch_2	Global Variables
BOOL Panel_12	Ib Sector Sec
BOOL Panel_13	▶ 🛄 WindFarm
eooL Panel_14	
BOOL Panel_15	
·	•

Opened programs are displayed in the language container.

c) To view the dictionary variables, in the Solution Explorer double-click Global Variables.

Sola	r-VAR ×							→ Solution Explorer → 부 ×
	Name	Data Type	Dimension	String Size	Initial Value	Direction	Attribute R	
	- A*	- of	· 0#*	- A*	- o#*	× 1	- 0E+	Solution 'DEMO_ENERGY' (1 project)
	Prod_Solar Sun Consumption Percent_Solar Panel_01 Panel_02 Panel_03	REAL * REAL * REAL * BOOL * BOOL * BOOL *				Var - Var - Var - Var - Var - Var - Var -	Read/Write * Read/Write * Read/Write * Read/Write * Read/Write * Read/Write *	Control_Room Control_Room Hydraulic_Station Muclear_Plant SolarFarm SolarFarm Solar Programs Solar Production Solar Solar
	Panel_04 Panel_05 Panel_06 Panel_07 Panel_08 Panel_09 Panel_10	BOOL ~ BOOL ~				Var - Var - Var - Var - Var - Var - Var -	Read/Write *	 Percentage Capacity Solar Panels SOLARFARM Global Variables Lib Lib Variable Groups WindFarm

The dictionary is displayed in the workspace. You can add, edit, and remove variables. You can sort and filter the variables displayed, as well as arrange the columns to display.

- 3. Configure bindings for variables located in different resources.
 - a) To configure directional links between variables located in different resources, from the Solution Explorer, right-click the project, resource, or device, and then click **Binding**.

b) From the Bindings View, in the *Producing Groups* column, expand the resource node, then view the binding variables by clicking

The variables displayed in the *Producing Variables* column are bound to the variables displayed in the *Consuming Variables* column. You can edit, add, and delete the groups of producing and consuming variables.

4. For each resource, program, and target, set the properties for debugging.

a) From the View menu, click Properties Window.

b) In the Solution Explorer, select the individual resources, then from the Properties window, set *Code For Simulation* to **True**.

Pro	Properties 🔹 🗖 🗙							
Re	Resource: Control 🔹							
	2↓ 🖻							
⊿	Code	•						
	Code For Simulation	True 🔹						
⊳	Compiler Options	True						
	Embed Symbol Table	False 🗟 🗌						
	Embedded Table Type	кеаисеа						
	Embedded Zip Source	None						
	Structured C Source Code	False						
	TIC Code	True						
4	Hardware							
	Target	SIMULATOR						
⊿	Info							
	Comment	Resource Number 1 $_{\pm}$						
Co Inc for	Code For Simulation Indication of whether to produce code for simulation for an application							

c) In the Solution Explorer, select individual programs, then in the Properties window, make the following modifications for each programming language:

- For ST programs, set Generate Debug Info to True.

- For LD programs, set *Generate Debug Info* and *Generate Monitoring Symbols* to **True**.

- For FBD programs, set *Generate Debug Info* and *Generate Monitoring Symbols* to **True**.

- For SAMA programs, set Generate Monitoring Symbols to True.

- For IEC 61499 programs, set *Generate Debug Info* and *Generate Monitoring Symbols* to **True**.

d) From the View menu, click **Deployment View**, and then make the following modifications to the properties:

- In the Deployment view, select the target, then in the Properties window, for the *Target* property, select the required target type from the drop-down combo box.

- In the Deployment view, select the connection between the target and the network, then in the Properties window, in the *IPAddress* property, type the required IP address.

- 5. Build the solution, then view any generated errors, warnings, and messages.
 - a) In the Solution Explorer, right-click the solution element, then click Build Solution.

b) To view the build information, from the View menu, click Output.

Output	▼ □ ×
Show output from: Build 🔹 🚽 🖓 🗐 😨	
Build started: Project : DEMO_ENERGY	
Checking database	
Check project for resource(s) to pre-build: DEMO_ENERGY	=
DEMO_ENERGY: 0 error(s), 0 warning(s)	
Checking database	
Build project: DEMO_ENERGY	
Build resource: CONTROL Configuration: CONTROL_ROOM	
ALARMS	
CITY	
Linking for SIMULATOR	
CONTROL: 0 error(s), 0 warning(s)	
Compiling for SIMULATOR	
PRODUCTION	
PERCENTAGE	
CAPACITY	-
4	•

c) To view the errors, warnings, and messages generated during the build, from the View menu, click Error List.

Error List				▼ 🗆 ×
🔕 0 Errors 🔒 🚹 0 Warnings	(i) 0 Messages			
Description	File	Line	Column	Project

You can choose to display errors, warnings, or messages in the Error List. You can also sort the list of errors, warnings, and messages displayed.

6. Debug the project.

You can simulate the running of an application without downloading code onto your target platform. However, when running an application online, you must download the project code onto the target before debugging.

a) In the Target Execution toolbar, from the Solution Configurations drop-down combo-box, select Simulation.

File Edit Vie	w Project Build Debug	Tools Window Help	
🛅 • 🛅 •	🚽 🦪 X 🖻 🛍 🔊	- (* - 💭 - 🖳 🔜 Find	- 🔊 🛠 🖾 🏷 📑 -
: 🖾 📇 👗	Online 🗾 🕨 📓	💠 🗐 🇊 🦓 🎭 🧌 🎚 🎚 🎲 🆓 🎡 🖉 🖉 Password Cycle Tir	ning (ms):
:	Online		: : III
·	Simulation	a el tunte el elterte de la construcción de la serie	
	Configuration Manager		

b) To begin the debugging process, from the Debug menu, click Start Debugging.

File Edit View Project Build	Debu	g Tools Window Help	
i 🛅 • 🖮 • 🔚 🥔 🐰 🖬 🛙		Windows	•
		Start Debugging	F5
	<u>چ</u>	Step Into	F11
	Ç⊒	Step Over	F10
		Toggle Breakpoint	F9
	${}_{\infty}^{(n)}$	Delete All Breakpoints	Ctrl+Shift+F9
		Spy Lists	•
		Options and Settings	

You can monitor the progress of the simulation using the Output window.

- 7. While in debug mode, view the programs and dictionary variables.
 - a) From the Solution Explorer, view the individual programs by double-clicking the required program instance.

The program is displayed in the language container. Boolean variables are displayed using color: red when True and blue when False. Numerical and textual values are displayed in red.

Alar	ms-POU 🗙	Solution Explorer $ extsf{$
	Total production calculation. Alamif consumption grater than production	Solution 'DEMO_ENERGY' (1 proj 🔺
1	Percent_Solar ENO Prod_Total Consumption ENO Temp 0.0 i1 o1 0.0 0.0 i1 -2.0 i2 Percent_wind i2 + -2.0 i2 -2.0 i2 Percent_Hydrau 0.0 i3 -i4 -4.0 -4.0 -4.0	Child Children Control Room Control Room RUN - Control RUN - Control RUN - Control RUN - Production City MIN Global Variables City Hydraulic_Station MUN - Hydraulic Tity Tity RUN - Hydraulic Tity Tity Tity
1	III	🖏 Solution Explorer 🛛 Properties

b) From the Solution Explorer, view the dictionary variables by double-clicking **Global Variables** or **Local Variables**.

The dictionary is displayed in the workspace. Note that the logical and physical values are displayed in red.

E DEN	MO_ENERGY (Running Edit View Project	g) - Automation C Build Debug	ollaborative Platfor Tools Window	m (Adm Help	ninistrator)			
1	· 🖽 - 🔙 🔊 🕹	ta 🔁 🔊 - (2 - 3 - B, 1	Find				- 🛛 🛃 🚰 🔍 🎌 🛈 - 📮 🗒
Mic	rosoft Sans Se - 8	- B Z	<u>u</u> • K A ≡	= =		9. 1. 2.	4 🖻 🖕	
Contr	ol-VAR × Alarms-	POU						Solution Explorer 🛛 🝷 म 🗙
	Name	Logical Value	Physical Value	Lock	Data Type	Dimension	String Size	
	- A*	-	7		- <i>-</i>	* - A*	- <i>d</i> t	Solution 'DEMO_ENERGY' (1 proj 🔺
	Dryness	0.0			REAL			⊿ ■ DEMO_ENERGY
	Percent_wind	0.0			REAL -			Control_Room
	Percent_Hydrau	0.0			REAL -			🔺 🗾 RUN - Control
	Percent_Solar	0.0			REAL -			Programs
	Percent_Nuclear	0.0			REAL -			Production Alarms
	Prod_Total	0.0			REAL -			⊳ ••• City
	Alarm_Prod				BOOL 🔹			MAIN
	Capacity_Solar	80.0			REAL 🔷			Global Variables
	Capacity_Wind	80.0			REAL 🔹			Lib
	Capacity_Hydrau	66.6			REAL -			Hydraulic Station
	Capacity_Nuclear	50.0			REAL -			RUN - Hydraulic
	Temn	-2.0			REAL -		~	
								Solution Explorer Properties
Ready								INS

8. To stop the debugging process, from the Debug menu, click Stop Debugging.

Starting with a Basic Application

This section is a guideline to creating a basic solution and project by following the required steps. The project detailed in this section uses the ISaFREE_TPL template consisting of one resource in one device.

To start a new project having one resource in one device

- 1. To launch the ACP and create a new solution, perform the following:
 - a) From the Start menu, point to All Programs, click ISaGRAF 6.4, and then click Automation Collaborative Platform.

The Workbench is displayed.

b) From the File menu, point to New, and then click Project...

- A	utomation Collaborative Platfo	rm (Administrator)		
File	Edit View Debug Tools	Window Help		
	New	•	Project Ctrl+Shift+N	📲 🚽 🖸 🔍 🎢 🔍 🐎 🕐 📲
	Open	•	≡≡≡ ≓♥; / % Ъ № № • • •	
	Close			Solution Explorer 🚽 🗸 🗸
đ	Close Solution			
	Save Selected Items	Ctrl+S		
	Save Solution As			
9	Save All	Ctrl+Shift+S		
	Subversion	•		
	Recent Projects and Solutions	•		
	Exit	Alt+F4		
	Output		- ↓ ×	
	Show output from: Debug		- 🖗 🧔 🐺 🖃	
			A	
	4		*	
Page	h.			
Read	y			

c) In the New Project dialog box, expand the ISaGRAF 5 projects node, select the Windows template section, then click the ISaFREE_TPL template. You then select *Create directory for solution* and specify a solution name. You must also specify a name and save location for the project, then click OK.

New Project						? 💌
Recent Templates		Sort by:	Default	•		Search Installed Templates
Installed Templates						Type: CAM Projects
 CAM Projects ISaGRAF 3 ISaGRAF 5 Import Simulator Windows ISaGRAF installed t 	emplates		ISaFREE_TPL		CAM Projects	Template for ISaGRAF Free Windows target v5.23 or later
Name:	MyProject					
Location:	c:\users\user\do	ocuments\	isagraf 6.4\Projects		Browse	
Solution name:	MySolution					 Create directory for solution Add to Subversion
						OK Cancel

2. In the Solution Explorer, expand the project elements and note the device and resource created from the ISaFREE_TPL template.

- 3. Specify the properties for the device and the resource.
 - a) In the Solution Explorer, select the device, then from the View menu, click **Properties Window**.

MySo	lution -	Automation Collaborative PI	atform (Administrator)		
File Ed	it Viev	v Project Build Debug	Tools Window He	lp	
i 🛅 • i		Pending Changes	CHI+N, C	d	- 🛛 🛃 🚰 🔍 🏷 🖸 - 🚦 🗒
Micro	sof 🖻	Navigation Window			
		Deployment View			Calution Fundamentaria 🖉 🖉 🗙
- Vep	¹⁰) 🔍	Repository Explorer	Ctrl+K, R	* s	Column Explorer Y Y X
O Works	tatic 🎜	Working Copy Explorer	Ctrl+K, W		
Š.		Block Library	Ctrl+Alt+T		Solution 'MySolution' (1 project)
	0	Cross Reference Browser	Ctrl+W, Ctrl+C	=	
	đ 📑	Description Window		-	▲ Device1
	•	Document Overview			Resource1
Work	atal 👸	Error List	Ctrl+∖, E		Programs
-		Output	Ctrl+Alt+O		Interrupts Global Variables
_		Start Page			⊿ 📴 Lib
	X	Toolbox	Ctrl+Alt+X		Functions
		Find Results	•		I Function Blocks
		Other Windows	•	· · · · · · · · · · · · · · · · · · ·	Variable Groups
Out	out	Toolbars	•	- ↓ ×	
Sho	w 🔳	Full Screen	Shift+Alt+Enter	- 🎝 🛵 🛼 🖬	
		Navigate Backward	Ctrl+-		
		Navigate Forward	Ctrl+Shift+-		
	1	Properties Window	F4	•	
•	1	Property Pages	Shift+F4	•	
Creating	pre 🧟	Refresh			

b) In the Properties window, note the definitions for the memory size, target type, comment, description, password protection, and name.

Properties 👻 🗖 🗙					
Device:Device1	-				
2 ↓ □					
▲ Hardware					
Enhanced Target	True				
Memory Size	32768				
Support IEC 61850	False				
Target	ISAFREE-TGT				
▲ Info					
Comment	This is the Config 1				
Description					
Full Name	MyProject.Device1				
Is Password Protected	False				
Name	Device1				
Path	c:\users\user\documents\				
▲ Settings					
Online Behavior	Always				
Name					
Name of the element					

c) In the Solution Explorer, select the resource, then in the Properties window, note the many properties for the code, hardware, info (resource), memory size for online changes, memory usage info, settings, and SFC dynamic behavior limits.

Pro	Properties 🔹 🗖 🗙					
Re	esource: Resource1	•				
	2↓ 🗀					
⊿	Code					
	Code For Simulation	True				
⊳	Compiler Options					
	Embed Symbol Table	True				
	Embedded Table Type	Complete				
	Embedded Zip Source	None				
	Structured C Source Code	False				
	TIC Code	True				
⊳	Hardware					
⊳	Info					
⊳	Memory Size for Online (Changes				
⊳	Memory Usage Info					
⊳	Settings					
⊳	SFC Dynamic Behavior Limits					
Compiler Options						
Par opt	rameters used by the code o timize target code	generator to compile and				

- 4. In the Solution Explorer, add a program and define the program name.
 - a) Right-click the programs element, point to Add, and then click the required programming language.

b) Right-click the added program, click **Rename**, and then type the desired name in the space provided.

- 5. In the Properties window, define the properties for the program.
 - a) For *Comment*, type a comment in the space provided.

_						
Pro	perties	▼ □ ×				
PO	POU: MyFBDProg					
	2↓ 🖻					
4	Code Generation					
	Generate Debug Info	False				
	Generate Monitoring Sym	True				
4	Info					
	Comment	Simple FBD program]				
	Description					
	Full Name	MyProject.Device1.Resource				
	Is Password Protected	False				
	Language	FBD				
	Name	MyFBDProg				
	Order	1				
	Path	c:\users\user\documents\				
4	Settings					
	Interrupt Enabled	False				
Co Co	Comment Comment for the element					

b) Set Generate Monitoring Symbols and Generate Debug Info to True.

Pro	perties	- □ ×					
P	OU: MyFBDProg	•					
•	2↓ 🖻						
⊿	Code Generation						
	Generate Debug Info	True 💌					
	Generate Monitoring Symbols	True					
4	Info	False ¹ 3					
	Comment	SIMPLE FBD program					
	Description						
	Full Name	MyProject.Device1.Res					
	Is Password Protected	False					
	Language	FBD					
	Name	MyFBDProg					
	Order	1					
	Path	c:\users\user\docume					
4	Settings						
	Interrupt Enabled	False					
Ge Inc	Generate Debug Info Indication of whether to generate information require						

- 6. In the language container, add elements to the program.
 - a) From the Solution Explorer, double-click the program instance. The program is displayed in the language container. By default, the Toolbox is auto-hidden as a tab on the left edge of the Integrated Development Environment (IDE).
 - **b)** To display the Toolbox, click the tab so the Toolbox slides into view. From the Window menu, click **Dock**.

The Toolbox window is docked in the IDE.

c) Add a block in the language container.

i) From the Toolbox, drag the **Block** element into the language container.

Toolbox	.	η×		MyFBDProg-POU* ×
FBD		-		
k	Pointer		I	
÷	Variable			
-0:	Block			
	Comment			
	Region			
->>	Jump	Ξ		
~	Return			
•	Label			
⊢∾	Rung			
	Left Power Rail			
-	Right Power Rail			
∃	Vertical Bar		1	
41-	Direct Contact			
-11-	Reverse Contact			
-INF-	Pulse Falling Edge			
⊣₽⊢	Pulse Rising Edge .			
-0-	Direct Coil		I	
	Davana Cail	-		

The Block Selector is displayed.

ii) In the *Block Selector* list, select the required POU, specify the instance and the number of inputs (when applicable), then click **OK**.

Block Selector	r (MyFBDProg)		
+ (MyProject)			*
Search			Show Parameters
Name	Туре	Category	Comment
+	OPE	Arithmetic	Addition of two or more integer or real variables
<	OPE	Comparators	Tests whether one value is LESS THAN another (on integer, real, time, or st
<=	OPE	Comparators	Tests whether one value is LESS THAN or EQUAL TO another (on integer, $\ensuremath{\mathbf{r}}$
\diamond	OPE	Comparators	Test whether one value is NOT EQUAL to another (on integer, real, time, or
=	OPE	Comparators	Tests whether one value is EQUAL to another (on integer, real, time, or stri
>	OPE	Comparators	Tests whether one value is GREATER THAN another (on integer, real, time $\boldsymbol{\varsigma}$
>=	OPE	Comparators	Tests whether one value is GREATER THAN or EQUAL TO another (on integ
1 gain	OPE	Arithmetic	Assignment of one variable to another
ABS	SFU	Arithmetic	Absolute value
ABS_LREAL	CFU	Arithmetic	Absolute value
ACOS	SFU	Arithmetic	Arc cosine 🔹
•			
Inputs :	3	10	
			OK Cancel

The block is displayed in the language container.

d) Add a variable in the language container.

i) From the Toolbox, drag the **Variable** element into the language container.

The Variable Selector is displayed, with tabs containing lists for *Global variables*, *Local variables*, *System variables*, *Directly Represented Variables*, and *Defined Words*.

ii) In the *Local Variables* list, enter the variable name, data type, and other required information into the cells provided, then click **OK**.

🖥 Vari	able Selector										_	- • •
Name Value	e1		Type) T	•	Global Scope Resource1	•		-	Local MyFE	Scope 3DProg	-
Globa	l Variables - Resou	ırce1	Local V	′ariables - MyF	BDProg S	ystem Variables -	Resource1	D	irectly F	Repres	sented Variat	oles - Res
	Name	Data	Туре	Dimension	String Siz	e Initial¥alue	Directio	m	Attri	bute	Retained	Comment
	<i>~ ₫</i> *		* A*	× A*	* d	* - A*	•	A*		A*	<i>~ ₫*</i>	- A*
	Value1	DINT	× .				VarInput	*	Read			
	Value2	DINT	-				VarInput	•	Read	•		
	Value3	DINT	-				VarInput	•	Read	-		
	AdditionResult	DINT					VarOutput	-	Write	-		
*			-					•		•		
4												•
											ок	Cancel

The variable is displayed in the language container.

e) Draw links from the variable to another variable, a block input, or a block output.

- 7. In the Solution Explorer, configure an interrupt to control the moment of execution for cyclic programs (SFC, ST, LD, FBD, or SAMA) and modify the properties.
 - a) Right-click the interrupts element, point to Add, and then click the desired programming language.

Solution Explorer	r ⊟ ×			
Solution 'MySolution' (1 project MyProject DataTypes Device1 Resource1 MyFBDProg MyFBDProg	:t)			
🗊 Global Vari	Add	•	ħ	New SFC : Sequential Function Chart
⊿ 📴 Lib	Paste	Ctrl+V	æ	New ST : Structured Text
题 Functio 题 Functio	Properties	Alt+Enter	11-0-	New LD : Ladder Diagram
📁 Variable Groups				New FBD : Function Block Diagram
			恝	New SAMA

b) From the Interrupt Selector dialog box, select the required interrupt, and then click **OK**.

S 1	nterrupt Selector: Prog1		—
	Select an interrupt that will launch this program. Your current options suggest that you select an interrupt before proceed	ding	
	MYTIMERIRQ_0	•	
	MYTIMERIRQ_0		
	MYTIMERIRQ_1		
	MYTIMERIRQ_2	≡	
	MYTIMERIRQ_3		Cancel
	MYTIMERIRQ_4		
	MYTIMERIRQ_5		
	MYTIMERIRQ_6		
	MYTIMERIRQ_7		
	MYTIMERIRQ_8		
	MYTIMERIRQ_9		
	MYTIMERIRQ_10	_	

- c) Right-click the added interrupt program, click **Rename**, and then type the desired name in the space provided.
- d) In the Properties window, note the definitions for the *Interrupt Parameters*.

Properties	→ 🗆 ×					
POU: LDInterrupt	-					
<mark>€ 2↓</mark> 🖻						
▲ Code Generation						
Generate Debug Info	False					
Generate Monitoring Symbols	True					
▲ Info						
Comment						
Description						
Full Name	MyProject.Device1.Resou					
Is Password Protected	False					
Language	LD					
Name	LDInterrupt					
Order	2					
Path	c:\users\user\documents					
Settings						
Interrupt Parameters						
Interrupt Data Type	UDINT					
Interrupt Enabled	True					
Interrupt Initial Value						
Interrupt Selection	MYTIMERIRQ_1					
Interrupt Parameters Interrupt parameters for this program						

- e) From the Solution Explorer, double-click the interrupt instance. In the language container, add elements to the interrupt program.
- **8.** To link variables to the channels of I/O devices existing on a target system, perform the following:
 - a) From the Solution Explorer, right-click the resource, and then click I/O Device.

The I/O Wiring view is displayed in the workspace.

b) From the I/O Wiring toolbar, add an I/O Device.

Resource1 I/O Device * 🗙	*
HERMA	-
Add Device Ctrl+N	Index Name
飾	
8	
10 million	
8	4 III
2	
	L

The Device Selector dialog box is displayed.

c) From the Device Selector dialog box, select the required I/O device, then click OK.

ackage	Driver	Device	Data Type	Direction	Comment	
Isa	ModbusTcpClient_	ClientStatus	CLIENT_STATUS	Input		
🖬 Isa	ModbusTcpClient_	Client_RIR_DINT	DINT	Input		
👅 Isa	ModbusTcpClient_	Client_RW_M_DINT	DINT	Output		
👅 Isa	ModbusTcpClient_	Client_RMR_DINT	DINT	Input		
🗐 Isa	ModbusTcpClient_	Client_WMR_DINT	DINT	Output		
👅 Isa	ModbusTcpClient_	Client_RMR_INT	INT	Input		
Tea	ModhusTcnClient	Client WMR INT	ent WMR INT INT			
ndex: Alias:	0 Number of Comment:	Channels: 62	A V			

d) Double-click an empty channel and from the Variable Selector select the variable to wire, then click **OK**.

- **9.** From the Solution Explorer, build the solution, then view any generated errors, warnings, and messages.
 - a) Right-click the solution element, then click Build Solution.

b) To view the build information, from the View menu, click Output

Output	•	
Show output from:	Build - 😽 🛃 🛼 🐺 🖬	
MYFBDPROG Linking for SI RESOURCE1: MYPROJECT: Build E ====== Bui	MULATOR 0 error(s), 0 warning(s) 0 error(s), 0 warning(s) nd ld: 1 succeeded, 0 failed, 0 up-to-date, 0 skipped =========	*
•	III	Þ.

c) To view the errors, warnings, and messages generated during the build, from the View menu, click Error List.

Error List 👻 🗖 🛛								
3 0 Errors 0 Warnings 0 Messages								
Description	File	Line	Column Project					

- 10. Begin the debugging process, then view the programs and dictionary variables.
 - a) From the Target Execution toolbar, in the Solution Configurations drop-down combo-box, select **Simulation**.

b) From the Debug menu, click Start Debugging.

File E	lit View	Project	Build	Debu	g Tools	Window	Help	
: 🛅 -	钿 - 📙	Ø 🛛 🕷	B (Windows			•
					Start Debu	gging []		F5
				۶ī	Step Into	μų.	\$	F11
				Ç⊒	Step Over			F10
					Toggle Brea	akpoint		F9
					Delete All B	ireakpoint	s	Ctrl+Shift+F9
					Spy Lists			•
					Options an	d Settings		

c) From the Solution Explorer, view the program by double-clicking the program element.

Note the debugging information regarding boolean variables is displayed using color: red when True and blue when False. Numerical and textual values are displayed in red.

d) From the Solution Explorer, view the dictionary variables by double-clicking Local Variables for the required program.
Myl	BDProg-VAR × My	/FBDProg-POU					-	Solution Explorer 🛛 👻 🕂 🗙
	Name	Logical Value	Physical Value	Lock	Data T	уре	Dimension	
	✓ d ⁴ Value1	1			DINT	•	- 01	Solution 'MySolution' (1 project)
	Value2	2			DINT	•		Data Types
	Value3 AdditionResult	3			DINT	* *		 RUN - Resource1 Frograms
	Result				BOOL	•		MyFBDProg Implement MyFBDProg
	Var1 Var2	0.0 65.3			LREAL LREAL	• •		Interrupts Global Variables
•							•	▲ ib

Note the logical values are displayed in red. Physical values are only displayed when running online.

11. To stop the debugging process, from the Debug menu, click **Stop Debugging**.

Importing an Existing Application

When importing applications created with **ISaGRAF** 5, some features of your projects are converted for use in the current environment.

To import an ISaGRAF 5 project into ISaGRAF 6

When importing **ISaGRAF 5** projects into **ISaGRAF 6**, the targets associated with the **ISaGRAF 5** projects must be supported by **ISaGRAF 6**.

- 1. Import the ISaGRAF 5 project into ISaGRAF 6.
 - a) From the File menu, point to New, then click Project.

b) From the New Project dialog box, expand the **ISaGRAF 5** projects node, select the Import template section, and click **Import ISaGRAF 5 Project**. You then enter the required information in the fields provided and click **OK**.

New Project					8 🛛
Recent Templates		Sort by: D	efault	• 💷 🛄	Search Installed Templates
Installed Templates CAM Projects IsaGRAF 3 ISaGRAF 5 Import Simulator Windows ISaGRAF installed templates		Eg ir	mport ISaGRAF 5 Project	CAM Projects	Type: CAM Projects
		Import ISaGRAF Zip Project CAM Projects		ct CAM Projects	Project
Name:	ImportedISa5Pro	9j			
Location:	c:\users\user\do	cuments\isa	graf 6.4\Projects	•	Browse
Solution: Create new solut		tion		•	
Solution name: MyImportSolution		on			Create directory for solution
					Add to Subversion
					OK Cancel

c) From the Choose an .mdb File dialog box, select the **ISaGRAF 5** project file, then click **Open**.

You may encounter a message asking if you want to update the database to the current version. To continue the importation process, click OK.

Choose an *.mdb F	ile					x
🔾 🗢 📕 « De	moElevator	2 DemoElevator2		Search D	emoElevator2	Q
Organize 🔻 Ne	w folder				= -	0
☆ Favorites	^ N	ame	Date modified	Туре	Size	
🧮 Desktop		Device1	12/1/2014 10:55 AM	File folder		
🝌 Downloads		SymbolTable	12/1/2014 10:55 AM	File folder		
🖳 Recent Places		PrjLibrary.mdb	11/24/2014 4:12 PM	MDB File	2,272 KB	
 ➢ Libraries ➢ Documents ➢ Music ➢ Pictures ➢ Videos 						
🖳 Computer	-					
	File name:	PrjLibrary.mdb	•	ISaGRAF 5 Open	File (PrjLibrary.mdl	•) ▼

The **ISaGRAF 5** project is imported.

- 2. View the project in ISaGRAF 6.
 - a) In the Solution Explorer, expand the project, device, resource, and program elements, then view the individual programs by double-clicking the required program instance.

Opened programs are displayed in the language container.

Lift	t-POU* × Deployment.isadpl	✓ Solution Explorer ▼ 4 ×
Г	lf no power. ext program	
		Solution 'MyImportSolution' (1 program)
	Energize	ImportedISa5Proj
		Device1
Ľ	Col array in called form and local	Resource1
		Programs
		⊿ <u>⊪o Lift</u>
	Up_1 Memo_Up_1	Local Variable
2		
	Up_2 Memo_Up_2	📴 Variable Groups
	op_o memo_op_o	
	Down_2 Memo_Down_2	-
•		• • • • • • •

- 3. Build the solution, then view any generated errors, warnings, and messages.
 - a) In the Solution Explorer, right-click the solution element, and then click **Build Solution**.

b) To view the build information, from the View menu, click Output.

c) To view errors, warnings, and messages generated during build, from the View menu, click Error List.

Error List				▼ □ ×
🔕 0 Errors 🛛 🛕 0 Warnings	i) 0 Messages			
Description	File	Line	Column	Project

4. Debug the project.

a) To download the resource code to the target, in the Solution Explorer, right-click the project element, then click **Download**.

You can monitor the progress of the download operation using the Output window.

b) In the Target Execution toolbar, from the drop-down combo-box, select Online.

File Edit View Project Build Debug Tools Window Help		
i 🛅 • 🖼 - 🛃 🦼 👗 🛍 🛍 👘 • (* • 🚚 • 🖳 🕨	Online 🔹 🗟	- 🛛 🖓 🕾 🗞 🖞 🗄 🗒
Microsoft Sans Seri - 9 - B Z U - K 🗛 🗐 🗐	Online Simulation	
	Configuration Manager	

c) To begin the debugging process, from the Debug menu, click Start Debugging.

5. To stop the debugging process, from the Debug menu, click **Stop Debugging**.

Version Source Control

You manage the changing versions of **ISaGRAF** elements including solutions, projects, devices, resources, POUs (other than IEC 61499 and SFC with child), and ISaVIEW screens by saving them to a repository. Saving these elements to a repository enables multiple users to work on the same solutions and project elements at the same time as well as retrieve older versions of elements at a later time.

This product includes software developed by * CollabNet (http://www.Collab.Net/) based on the Subversion AnkhSVN source control plug-in for Visual Studio.

When creating a solution, you can choose to commit, i.e., save, the solution into a repository. You should commit changes to elements such as projects, devices, resources, programs, deployment views, and ISaVIEW screens from the pending changes feature (while retaining all items selected). When committing elements to a repository, a default repository is installed in the following location:

%USERPROFILE%\My Documents\ISaGRAF 6.x\Repository

After committing a solution to a repository, you can choose to lock the solution or sub-elements for exclusive access when making changes. Upon making changes to previously committed elements, these elements become locked for your exclusive access. Afterwards, you can commit changes made to these elements into the repository. When committing solutions, all sub-elements are also committed to the repository.

When deleting, renaming, and adding elements in the Solution Explorer, you need to have locked the parent of that element.

Element	Parent
POU	Resource
Resource	Device
Device	Project
ISaView Screen	Project

When retrieving, i.e., updating, a solution from the repository, you can update the solution to the latest version. For reference purposes, you can access specific revisions.

When using version source control, the following best practices are recommended:

- When committing elements, save all changes, then commit all modified files at once.
- When locking elements, avoid stealing locks unless absolutely required. For instance, when a user having the elements checked out is no longer available. Modifications performed on such elements by the original lock holder are no longer available for committing.
- When getting the latest version, perform the operation from the solution.
- When getting a specific version, place the retrieved files in an empty folder; avoid placing the retrieved files in the current existing working copy.
- When canceling a modification, revert all modified files at once, wait for the completion of the rollback operation, then unlock all files having no more modifications.
- When using libraries, always use an absolute path for binding a library. All other users (different computer or folder) retrieving the library from the repository must also use the same absolute path and get all library solutions before project solutions. Place libraries and projects in different solutions since libraries need to be loaded before projects can access their elements.

The version control status of elements is indicated in the Solution Explorer:

1	Unmodified. The solution is unmodified from the current repository version.
1	Modified but not saved on local disk. The solution is modified from the current repository version.
	Modified and saved on local disk. The solution is modified from the current repository version.
•	New element (solution, project, device, resource, POU, or ISaVIEW screen) having a reserved location in the repository. The element has been added to the Solution Explorer and is in queue for committing to the repository.
*	New element. The element (solution, project, device, resource, POU, or ISaVIEW screen) has been added and is in queue for committing to the repository.

6	Locked and unmodified. The element (project, device, resource, POU, or ISaVIEW screen) is locked for exclusive use from the repository and has not been modified; The element is not available to others.
8	Locked and modified. The element (project, device, resource, POU, or ISaVIEW screen) is locked for exclusive use from the repository and has been modified; The element is not available to others.
æ	Read-only. The element (project, device, resource, POU, or ISaVIEW screen) may be available for modification from the repository if no other has locked it for exclusive access. When committing an element, you can choose to keep it locked.
\$	Renamed. The element (solution, project, device, resource, POU, or ISaVIEW screen) has been renamed from the current repository version.
×	Deleted. The element (solution, project, device, resource, POU, or ISaVIEW screen) has been deleted from the local working copy.
?	Missing. The element (solution, project, device, resource, POU, or ISaVIEW screen) is missing from the repository.
9	Conflicted. A conflict occurred between the element (solution, project, device, resource, POU, or ISaVIEW screen) in the working copy and the repository while performing a get specific version, performing a get latest version, or committing to the repository.

See also

Defining a Repository Using the Repository Explorer Using the Working Copy Explorer Committing Pending Changes Locking and Unlocking Elements Getting Versions of Elements Reverting Versions of Elements Creating a Working Copy from a Repository Viewing the History of Elements Comparing Element Versions Canceling Local Modifications

Using the Repository Explorer

The Repository Explorer enables viewing the files for the elements committed to a local repository. When committing, the repository includes a folder structure containing the respective source control files for individual elements ranging from the solution to the resources.

Element Type	Retained in Repository
Solution	Solution and deployment files
Project	Project and target files
Device	Device file
Resource	Resource file
Programs	Program properties, program coding, and language editor properties files

You set up repositories within a defined URL

In the Repository Explorer, you can perform management tasks:

- Add a URL
- Remove a URL
- Refresh the contents of repositories
- Copy directories or files to another location within a URL
- Move directories or files to another location within a URL. You can only move items not locked by any user.
- Create directories
- Delete directories or files. You can only move items not locked by any user.

To access the Repository Explorer

The Repository Explorer displays the contents of the repository.

• From the View menu, choose Repository Explorer.

To add a URL in the explorer

You can add multiple URLs for viewing in the Repository Explorer.

- 1. In the Repository Explorer, select Local Repositories in the tree.
- 2. Click 🥑 on the toolbar
- **3.** In the Browse Repository dialog box, enter the URL or select one from the available URLs.

To remove a URL from the explorer

- 1. In the Repository Explorer, select Local Repositories in the tree.
- **2.** To remove a URL, click **o** on the toolbar.

To refresh the contents of a URL or repository

You can refresh the contents of a selected URL or repository.

• In the Repository Explorer, select the URL or repository for which to refresh the displayed contents, then click on the toolbar.

To copy a directory or file

You can copy a directory or file to another location within a URL.

• In the Repository Explorer, select the folder or file to copy, then click in the toolbar.

To move a directory or file

You can move a directory or file to another location within a URL.

• In the Repository Explorer, select the folder or file to copy, then click is on the toolbar.

To create a directory

You can create directories within a URL.

• In the Repository Explorer, select the location in which to create the directory, then click

To delete a directory or file

You can only delete files and directories while these are not locked by any users.

• In the Repository Explorer, select the file or directory to delete, then click X on the toolbar.

Using the Working Copy Explorer

The Working Copy Explorer enables viewing the directories and files of local working copies from repositories. The current solution is displayed at the topmost of the explorer window. You can also add new roots, i.e., mappings, to the Working Copy Explorer pointing to items such as other solutions under source control. These added roots are temporary and are automatically removed upon closing the Working Copy Explorer.

When using the Working Copy Explorer, you can perform the following tasks:

- Add a new root
- Update to latest version (recursive)
- Show the history viewer for a selected item
- Compare a file to another version
- Open or select a file in another environment
- Export a directory or file
- Delete directories and files

To access the Working Copy Explorer

The Working Copy Explorer displays the contents of the currently opened project in the local repository.

• From the View menu, choose Working Copy Explorer.

To add a new root

- **1.** In the Working Copy Explorer, click ¹ on the toolbar.
- 2. In the Browse Working Copy dialog box, enter the path or browse to locate the root.

To update to the latest version (recursive)

When updating versions of solutions, the current version must be latest committed version. You can update the current solution to the latest version recursively.

• In the Working Copy Explorer, select the current solution, then click in the toolbar.

To show the History viewer for a selected item

• In the Working Copy Explorer, select the current solution, then click 🧐 on the toolbar.

To compare a file to another version

You can compare the current solution to another version in a side-by-side editor. Available versions for comparison include original, latest, committed, previous, and specific revisions.

• In the Working Copy Explorer, select the current solution, then click on the toolbar and choose the version for comparison from the drop-down list.

To open or select a file in another environment

You can choose to open a file or select a file in an environment other than the Working Copy Explorer. For opening files, available options include: Visual Studio, default application, and text. You can also open the folder containing the file. For selecting files, the available options include: Solution Explorer, Working Copy Explorer, and Repository Explorer.

• In the Working Copy Explorer, locate and select the file from the current solution, then

click click on the toolbar and choose the required option from the drop-down list.

To export a directory or file

You can export a directory or file to another folder. You can choose to make exports non-recursive.

- 1. In the Working Copy Explorer, select the directory or file to export, then click in the toolbar.
- 2. In the Export dialog box, specify the version of the directory or file to export, then locate or specify the path of the destination. To export only the selected directory or file, select Non-recursive.

To delete a directory or file

• In the Working Copy Explorer, select the directory or file to delete, then click in the toolbar.

Defining a Repository

When using version source control for managing changes in **ISaGRAF** element versions, you need a repository. The repository contains all necessary files storing the changes for the elements. When opening the Workbench for the first time, you can define a repository in a location other than the default installation:

%USERPROFILE%\My Documents\ISaGRAF 6.x\Repository

You view the contents of a repository from the Repository Explorer. You can also view the contents of a local solution from the Working Copy Explorer.

To define a repository in a location other than the default installation

You can only define a repository at a different location when opening the Workbench for the first time; changing the location of a repository at a later time causes link issues with elements saved in a previous repository. The Repository Explorer displays all local repositories and their contents.

- **1.** From Windows Explorer, copy the complete Repository directory from the default installation and paste this directory in the required location.
- 2. From the View menu, point to **Repository Explorer**.
- 3. From the Repository toolbar, click 🧖, then specify the location or select one from the list of available repositories in the Browse Repository dialog box.

See also

Using the Repository Explorer Version Source Control

Committing Pending Changes

You can commit pending changes for **ISaGRAF** elements such as solutions, projects, devices, resources, programs, deployment views, and ISaVIEW screens to a repository. Committing pending changes enables managing the changing versions of elements and referencing specific revisions. You can also commit pending changes for elements in previously committed solutions. Committing changes to elements consists of adding elements in a queue for committing, then committing to the repository.

You commit changes from the pending changes window after selecting an element in the Solution Explorer hierarchy:

- Deleting projects, devices, resources, POUs, and ISaVIEW screens
- Renaming projects, devices, resources, POUs, and ISaVIEW screens
- Modifying passwords for projects, devices, resources, and POUs
- Reordering POUs
- Cutting, copying, and pasting projects, devices, resources, and POUs

Note: Make sure to commit entire projects and commit changes following a few changes.

From the pending changes window, you can perform the following tasks for elements selected in the Solution Explorer.

- Commit a solution to a repository
- Commit an element to a previously committed solution
- Compare files with other versions
- Refresh the list of files pending changes

To commit a solution to a repository

When committing solutions, the necessary files are added to the repository.

1. From the Solution Explorer, right-click the solution to add to the repository.

- 2. From the contextual menu, point to Add Solution to Subversion.
- **3.** In the Add to Subversion dialog box, specify the project name and the repository URL, then click **OK**. The local path is set automatically.
- 4. When prompted, provide a meaningful comment.

The solution structure is queuing for commitment to the repository. The solution is displayed with a yellow plus sign and all sub-elements with a blue plus sign.

- 5. From the File menu, point to Subversion, then click Pending Changes.
- 6. From the Pending Changes window, leave all items selected, then click **Commit** in the toolbar.

The solution and all sub-elements are saved in the repository and are displayed with a lock in the Solution Explorer.

To commit an element to a previously committed solution

When committing an element to a previously committed solution, you save all changes, then commit the element to the repository. Elements available for adding to a project's control structure are displayed with a blue plus sign.

- 1. From the Solution Explorer, select the element to commit.
- 2. From the File menu, point to Subversion, then click Pending Changes.
- **3.** From the Pending Changes window, leave all items selected, then click Commit and one of the following options from the drop-down menu:
 - To commit changes while keeping locks on the files, click **Commit Changes**.
 - To commit changes while keeping the files locked for exclusive access, click **Commit Keeping Locks**.

The element is saved in the repository and is displayed with a lock in the Solution Explorer.

See also

Version Source Control Locking and Unlocking Elements Comparing Element Versions

Getting Versions of Elements

You can get, i.e., retrieve or update, different versions including the latest version, previous version, and a specific revision for solutions, projects, devices, resources, functions, function blocks, programs, and ISaVIEW screens.

When updating versions of elements, the current version must be latest committed version.

When getting versions of elements, you can perform the following tasks:

- Get the latest version for a working copy
- Get a specific version for an element

To get the latest version for a working copy

You get the latest versions for a working copy from the solution level.

- 1. From the Solution Explorer, right-click the solution.
- 2. From the contextual menu, click Update Solution to Latest Version.

To get a specific version of an element

You can get a specific version for an element from the repository for reference purposes only. When modifying previous versions, conflicts may arise for different reasons such as elements being no longer available, renamed, or deleted. When getting a specific version, avoid placing the retrieved files in the current existing working copy.

1. In the History Viewer, note the revision number for the specific version of the element to retrieve, then close the viewer.

			s T	Solution Explorer	
History Viewe	r - Project17(3))	× E	🖥 🗙 Folution 'Project17' (1 pr	roject)
Target: Pro	ect17(3)		- Follow Copies 🛛 🤣 Fetch	all Project17	
Revision	Author	Date	Message	Device1	
44	User	8/19/2015 2:58:30	Added Resource2	E b B Resource1	
43	User	8/19/2015 2:56:58	Added two POUs to Resource1	Resource2	
42	User	8/19/2015 2:55:54	48		
41	User	8/19/2015 2:54:13	Added Resource1	-	
Changed pat	ns:		Log message:	ties	
Action F	ath	~		*	
				I. C	
				-	
•			F 4 F	•	

- 2. Close the solution.
- 3. From the File menu, point to Subversion, then click Open from Subversion.
- 4. In the Open from Subversion dialog box, select the required solution in the repository, then click **Open**.

Open	from Sul	oversion			?	×
U	lrl: fi	le:///C:/Users/Use	r 😰			
		<mark>}} Project17 [®]<u>∎</u> Project17.is</mark>	ash			
		File name:	Project17.isasIn		Oper	n
		Files of type:	All Project Files (*.isasln;*.acfproj)	•	Canc	el
		Sig wit	ee Subversion Repository Hosting from CloudForge n-up for CloudForge and get free Subversion repository hosting n unlimited users and repositories, plus free agile tracker tools.			

5. In the Open from Subversion dialog box, verify the project and location information, select the Revision type, specify the revision number for the version to retrieve, and define the empty local directory in which to place the solution, then click **OK**.

Project: Project:	file:///C:/Users/User/Documents/ISaGRAF 6.4/Repository/Project17/Project17.isasIn
From:	file:///C:/Users/User/Documents/ISaGRAF 6.4/Repository/Project17/
	Type: Revision • 43
	Append Branch or Tag Name to the Local Directory
Local Direct	ory:
Directory:	C:\Users\User\Documents\ISaGRAF 6.4\Projects\Project17(4)

The solution files for the specific revision is opened in the Solution Explorer.

See also

Reverting Versions of Elements Viewing the History of Elements Comparing Element Versions Version Source Control

Reverting Versions of Elements

You can revert, i.e., roll back, versions of solutions and all sub-elements to a specific revision to continue making modifications from this revision. Reverting enables duplicating a project from repository (as a branch) either from the latest version or any previous version. Reverting the solution, project, device, or resource to a previous version involves getting a working copy, removing the element from the source control, and reinserting the element in the source control. Reverting POUs (without child) and ISaVIEW screens involves reverting from the element history and locking the element for exclusive use.

When reverting versions of elements, you can perform the following tasks:

- Revert a solution to a specific revision and proceed from this version
- Revert a project, device, resource, or POU to a specific revision and proceed from this version
- Revert a POU (without child) or ISaVIEW screen to a previous version and proceed from this version

To revert a solution to a specific revision and proceed from this version

When reverting a solution to a specific revision for duplication in a repository, you need to get a working copy of the required revision from the repository, remove all source control bindings from the version, then duplicate the solution in the repository either using the same name or a different name.

- 1. Get a working copy of the solution to remove from binding to the repository.
- **2.** Close the solution.
- 3. Remove source control from the retrieved solution:
 - a) From Windows Explorer while displaying hidden files, locate the solution folder and delete the .svn folder.

	* #	And and a second second	-	
🔁 💬 🔒 🕨 Libraries 🔸	Documents + ISaGRAI 6.4 + Projects + Project91(2) +	Probane Darbas Preser	• 4: Sea	oh.Project93.03
Ele Edit View Jooh H R Project01(2)	fp			
Organize • 🛛 📜 Open	Share with . E-mail Burn New folder			B • 0 6
Downloads *	Documents library			Arrange by: Folder •
Libraries	Name	Date modified	Type	Size
3 Documents	6 Project91	7/7/2015 7-33 PM	File folder	
🛃 Music	1 an	7/7/2015 7:33 PM	File folder	
& Pictures	Project9Lisasuo	7/7/2015 7:36 PM	ISASUO File	10 KB
.8. Subversion	Project91.isasin	7/7/2015 7:36 PM	isastofile	3.68
A Videos	 Deployment.isadpl 	7/7/2015 7:33 PM	ISADPL File	1.03

b) Re-open the solution in the workbench.

Note: You can choose to rename the solution or retain the existing name to prepare a duplicate in the repository.

c) From the File menu, point to Subversion, then click Change Source Control.

File	Edit View Project Build I	Debug Tools	Window	v Help	
	New Open		: -	- BZUKA	
	Add		• yE	plorer ×	
đ	Close Close Solution		1	Location: file:///C/Users/kboily/Doo	cumentsy •
	Save Project91.isasIn Save All	Ctrl+S Ctrl+Shift+S	L Pi	oject86 * oject87	Progl_r.isa
	Subversion			Update to Specific Version	
	Generate Documentation	Ctrl+P	'n	Compare	
	Recent Projects and Solutions		, e	View History	
	Exit	Alt+F4		Open from Subversion Add Project from Subversion	
				Selected File	,
			- 15	Change Source Control	
		- I	C	Pending Changes	Ctrl+K, C

d) In the Change Source Control dialog box, click **Disconnect**, then **OK**.

inge	Source Con	ntrol - Proj	ect91.is	isln				? →
Cgnn	nect 8 Dis	sconnect	© Befre	sh				
Con	nected Sc V So	Discon	nect	Repository	SCC Rinding	Status knot found>	Relative Path Users'(biol)((Documents)(SaGRAF 6.4)(Projects)(Project91)2	Rinding Pati
5								_
X	Solution L	ocation	C\Users	/kboily/,Doi	cuments\JSaG	RAF 6.4\Projects\P	roject91(2/\Project91.isasin	_
500	SCC Balati	ive Dath	Lineralie	naibit Docum	mandel No/CRA	E & & Deciartel Deci	art\$1(7)	
S	SCC Bindie	no Liti	090370	iony pocon	nena joarorov	r and indecession	R031(c)	
	acc bride	- W. C.	The Bin	ding specifi	ed here is use	d for actions on th	e solution level (including open from subversion)	
-							ОК	Cancel

e) From the File menu, click Save All.

All bindings to the repository are removed.

- 4. Duplicate the solution in the same repository:
 - a) In the Solution Explorer, right-click the solution, then click Add Solution to Subversion, from the contextual menu.
 - **b)** In the Add to Subversion dialog box, select the repository URL and the location in which to place the solution duplication, then click **Create Folder**.

c) In the Create Folder dialog box, provide a name for the duplicate solution, then click **OK**.

rate Directory	- Ø- 🔤
New Directory:	
Duplicate	
Log Message:	
*	

d) In the Add to Subversion dialog box, select the solution folder from the Repository URL list for the duplicate solution, then click **OK**.

-
_
-
_
reate Folder.

- e) From the Pending Changes window, commit the entire duplicate solution to the repository.
- 5. In the Repository Explorer, note the duplicate solution in the tree structure.

pository Folders	Name	Modified	Type	Revisi	Author	Size	Lock Owner	
C/Mers/Pro//Documents/SaGRAF 6.4/Rep - Dopicate Dopicate Soverage Project21 Dopicate Project21 DeviceLren Project3 Project31 Project31 Project31 Project31 Project31 Project31 DeviceLren Dopicate Dopicate	I Project91 □ Deployment.isadpi □ Project91.isasin	2015-07-07 2015-07-07 2015-07-07	File Folder ISADPL File isasInfile	95 95 95	kboily kboily kboily	59 2924		

Each solution is separate in the repository and follows individual sets of changes.

To revert a project, device, resource, or POU to a specific revision and proceed from this version

You can revert, i.e., rollback, elements such as projects, devices, resources, and POUs to a specific revision and continue making modifications from this revision. You can revert element after getting a version of the solution containing the required elements.

- 1. From the retrieved solution, right-click the desired element and export the element in the *.7z format.
- 2. Place the *.7z file for the element in a safe location. You can choose to delete the retrieved solution working copy.
- 3. Create a working copy of the latest solution from the repository.
- **4.** To replace the element from the latest solution with the element exported in the *.7z format. To add the retrieved element without deleting anything, skip this step.
 - a) Delete the element to replace from the solution.
 - b) From the File menu, click Save All.
 - c) From the Pending Changes window, commit all changes to the repository.
- 5. Lock the immediate parent of the element to replace.

- 6. Import the replacement element *.7z file while making sure not to replace any existing elements. Specify all imported elements as "new". Incorrect elements must be replaced before importing.
- 7. From the Pending Changes window, commit all changes to the repository.

The current solution containing the imported (and reverted) element is available as a working copy in which to make modifications.

To revert a POU or ISaVIEW screen to a previous version and proceed from this version

You can revert, i.e., rollback, a POU (without child) or ISaVIEW screen to a specific revision from the repository. Reverting a POU or ISaVIEW screen consists of getting a specific revision from the element history. You can also revert elements having been renamed, however, such elements retain the latest name. For example, when reverting POU3 to a previous revision where it was named POU2, the POU retains the POU3 name. Following reversion, you can rename the element to its previous name.

1. In the History Viewer, right-click the required revision number for the specific version of the element to retrieve.

						Soluti	on Explorer	
							\$	
History Vi	ewer	- ISaVIEV	V1.hmi			▼ 🗆 X	🕮 🛄 Devicel	
Target:	ISaVI	EW1.hmi	i		- Follow Copies	🕂 Fetch all	Resource1 Image Programs	
Revis	sion	Author	Date	Message			Interrupts	
	47	User	8/19/2015 3:20:08	Added a guage to IS	aVIEW		Global Variables	
	46	United	0/40/2016 2.40.21	A 444 4 4 4 4 10 4 4 4 4 4 4 4 4 4 4 4 4	to ISaVIEW		iliaview1 ≦	
	45	U: 🚅	Compare with Working co	ру	Resource1		b 📴 Lib	
		- SP	Show Changes				🚞 Variable Groups	
Changed	paths	5:	Change Log Message				ties	
Action	Pa	th 🌱	Revert to this Revision		se and triangle to ISa	/IEW 🔺	evision Information	
File Cha.	/P	roj 🄊	Revert Changes from this	revision		H		
			Copy Revision			Ψ.	thor	Js
•	_	- D	Сору	Ctrl+C	<u>"</u>	÷.	ommit date 2	20

2. From the contextual menu, click **Revert to this Revision**.

The element is available as defined for the retrieved specific revision.

- 3. Lock the element and make the required modifications.
- 4. From the File menu, click Save All.

5. From the Pending Changes window, commit all changes to the repository.

See also

Getting Versions of Elements Viewing the History of Elements Comparing Element Versions Version Source Control

Creating a Working Copy from a Repository

You can create a local working copy of a solution stored in a repository.

To create a local working copy of a solution from a repository

- 1. From the File menu, point to Subversion, then click Open from Subversion.
- 2. In the Open from Subversion dialog box, select the required solution in the repository, then click **Open**.

3. In the Open from Subversion dialog box, verify the project and location information, select the Latest Version type, and specify the local directory in which to create the working copy, then click **OK**.

Project: Project:	file:///C:/Users/User/Documents/ISaGRAF 6.4/Repository/Project17/Project17.isasIn
From:	file:///C:/Users/User/Documents/ISaGRAF 6.4/Repository/Project17/
	Type: Latest Version 🔻
	Append Branch or Tag Name to the Local Directory
Local Direct	ory:
	CALLearny Like A De autor anti-A IC+ CDAE 6 40 Decise 44 A Decise 417

The local working copy of the solution from the repository is opened in the Solution Explorer.

See also

Getting Versions of Elements Reverting Versions of Elements Viewing the History of Elements Version Source Control

Locking and Unlocking Elements

You can lock elements to establish exclusive access when making changes. When committing changes to locked files, the lock is removed unless you select the Keep locks option. When you complete changes on locked elements, you can unlock these elements to enable access to others.

Warning: When opening solutions and projects from a repository, i.e., checking out, you can steal locks from others having locks on these same elements. However, you should avoid performing such operations unless absolutely required, for instance, when a user having the elements checked out is no longer available. Modifications performed on such elements by the original lock holder are no longer available for committing.

To lock an element for exclusive access

When locking elements, sub-elements are not locked.

- 1. From the Solution Explorer, right-click the element to lock for exclusive access.
- 2. From the contextual menu, click Lock.

To unlock an element to enable access to others

When unlocking elements, sub-elements are unlocked.

- 1. From the Solution Explorer, select the element to unlock.
- 2. From the File menu, point to Subversion, then click Unlock.

See also

Committing Pending Changes Version Source Control

Viewing the History of Elements

You can view the history of elements such as solutions, projects, devices, resources, POUs, and ISaVIEW screens. The history of an element is usually available from the time of creation.

You view the history of elements in the History Viewer. The viewer displays log messages from the repository. The viewer is split into three panes: list of revisions, changed paths, log message. The top pane lists the revisions including the date and time, author and first line of the log message for each revision. The Changed paths pane lists the files and folders associated with a selected revision. The files or folders having changed paths are displayed using colored font: blue font for modifications, red font for deletions, and dark red for additions. The Log message pane displays the complete log message for a selected revision.

In the History viewer, you can fetch all revisions for an element. You can also choose to view the strict node history displaying the equivalent of svn log with the --stop-on-copy option. You can also choose to display the changed paths and log messages.

To view the history of an element

- 1. From the Solution Explorer, right-click the element for which to view the history.
- 2. From the contextual menu, click View History.

The History Viewer displays all revisions for the element. For some element revisions, you can open the XML format in a textual editor.

To modify the layout of the History viewer

- 1. To display the changed paths for revisions, click \blacksquare .
- 2. To display the complete log messages for revisions, click \checkmark .

See also

Comparing Element Versions Canceling Local Modifications Version Source Control
Comparing Element Versions

You can choose to compare the XML format files for different versions of elements including projects, devices, resources, POUs, and ISaVIEW screens. These different versions can include the latest version, working version, base version, committed version, previous version, and a specific revision. You compare these revisions in a side-by-side textual editor having many basic editing, search, and comparison functions. For a selected line, both versions of text are placed in the lower pane.

You can also perform a unified differences of all items within a project. These different versions can include the latest version, working version, base version, committed version, previous version, and a specific revision version. You view the differences in single-pane window.

For comparisons and unified differences, the differences are displayed using colored font: red font for deletions, green font for changes, and blue font for insertions.

fc71	lb0525ce747dc978e5ae7df7b7fc5.patch ×		•
Pro	jectVSC5/ProjectVSC5/Device1/Device1.xml		-
	Index: ProjectVSC5/ProjectVSC5/Device1/Device1.xml		÷
			^
	ProjectVSC5/ProjectVSC5/Device1/Device1.xml (revision 18)		
	+++ ProjectVSC5/ProjectVSC5/Device1/Device1.xml (working copy)		
	00 -7,4 +7,5 00		
	<resource <="" elementguid="5d8c551e-d1b0-4d5b-aea5-89384a45a424" name="Resource1" td=""><td>/></td><td></td></resource>	/>	
	<resource <="" elementguid="2c4eff51-4ae9-4e5f-87f6-8e8b3308948a" name="Resource2" td=""><td>/></td><td></td></resource>	/>	
	+ <resource <="" elementguid="a6a5126e-3721-4a21-962b-53551513f066" name="Resource3" td=""><td>1></td><td></td></resource>	1>	
	\ No newline at end of file		
			~
100	% - (>	

To compare versions of an element

- 1. In the Solution Explorer, select the element for which to build a comparison.
- 2. From the File menu, point to Subversion, then click Compare.
- **3.** In the Compare Files dialog box, select the element for the comparison, specify the From type and the To type to compare, then click **OK**.

Each file for the comparison file is displayed in a side-by-side textual editor.

To perform a unified differences for a solution

- 1. In the Solution Explorer, select the solution for which to build a unified differences, then right-click.
- 2. From the contextual menu, point to Subversion, then click Unified diff.
- **3.** In the Unified Diff dialog box, select the items for which to view differences, then specify the From version and the To version, then click **OK**.

The differences between the versions for the selected element are displayed in a single window.

See also

Viewing the History of Elements

Getting Versions of Elements Canceling Local Modifications Version Source Control

Canceling Local Modifications

You can choose to cancel modifications made locally to elements, i.e., revert, to the state prior to local changes since it was last updated.

To revert an element to the state prior to local changes

- 1. In the Pending Changes window, highlight all files, then right-click.
- 2. From the contextual menu, click Revert.

The element is returned to the latest committed version state.

- **3.** To unlock the elements, in the Pending Changes window, highlight all files having the Locked state, then right-click.
- 4. From the contextual menu, point to Subversion, then click Unlock.

The element is available for all users.

See also

Viewing the History of Elements Getting Versions of Elements Comparing Element Versions Version Source Control

Version Source Control Keyboard Shortcuts

The following keyboard shortcuts are available for use with the Repository Explorer and Working Copy Explorer.

Ctrl+K, R	Opens the Repository Explorer
Ctrl+K, W	Opens the Working Copy Explorer
Ctrl+K, C	Opens the Pending Changes - Source Files window
Alt+Left Arrow	Collapses the selected folder
Alt+Right Arrow	Expands the selected folder
Shift+Home	In the explorer view, moves to the first item.
	In the folder view, selects from the current file/folder to the first file/folder.
Shift+End	In the explorer view, moves to the last item.
	In the folder view, selects from the current file/folder to the last file/folder.
Home	Moves to the first item
End	Moves to the last item

Dictionary

The Dictionary, i.e., tag editor, is the environment where you manage variables, arrays, structures, and defined words. The Dictionary is made up of multiple grids having different purposes.

- Arrays Grid, enables managing the arrays for a project
- Structures Grid, enables managing the structures for a project
- Defined Words Grid, enables managing the defined words for a project
- Variables Grid, enables managing the variables for resources and programs. Each resource and program has its instance of the grid. For resources, the grid displays global variables. For programs, the grid displays local variables.

The grids each display the properties for the type of element. You can open multiple grid instances simultaneously. When working in a grid, you can navigate the cells using the mouse controls. For complex data types, you can expand fields using Ctrl+PLUS SIGN on numeric keypad (+) and collapse fields using Ctrl+MINUS SIGN on numeric keypad (-).

You access Dictionary instances from the Solution Explorer.

You can customize the Dictionary environment by arranging the columns to display and setting the display colors.

To access a Dictionary grid instance

- 1. From the Solution Explorer, expand the project and device nodes.
- 2. For the variables of a resource, expand the required resource node, then double-click the **Global Variables** element.

The Dictionary instance is displayed containing the variables belonging to the resource.

3. For the variables of a program, expand the required program node, then double-click the **Local Variables** element.

The Dictionary instance is displayed containing the variables belonging to the program.

4. For the data types of a project, expand the required **Project** node, then double-click the **Data Types** element.

The data types Dictionary instance is displayed with the Arrays, Structures, and Defined Words tabs.

To arrange the columns to display

To retain customized display settings, you must save the Dictionary instance before closing.

1. To move a column, drag the column header to another location.

When dragging a column header, arrows indicate the current position of the header.

- 2. To hide a column, right-click a column header, then click Hide Column.
- **3.** To show a column, right-click on any column header, click **Show Column**, and then select the desired column name.

Arrays Grid

The Arrays grid of the Dictionary enables managing the arrays for a project. You can perform the following tasks from the Arrays grid:

- Creating arrays
- Editing existing arrays
- Deleting arrays
- Sorting arrays in the grid
- Filtering arrays in the grid

For arrays, the properties are the following:

Column	Description	Possible Values
Name	Name of the array	Limited to 128 characters beginning with a letter or underscore character followed by letters, digits, and single underscore characters. These names cannot have two consecutive underscore characters.
Data Type	Type of the array	BOOL, SINT, USINT, BYTE, INT, UINT, WORD, DINT, UDINT, DWORD, LINT, ULINT, LWORD, REAL, LREAL, TIME, DATE, STRING, User arrays, Structures
Dimension	The dimension of the array	Example: [110] for a one dimensional array, [14,17], for a two dimensional array. The dimension is defined as a positive double integer (DINT) value.

Column	Description	Possible Values
Comment	Comment for the array	Free-format text
String Size	If Data Type is STRING, represents the length	String capacity is limited to 252 characters excluding the terminating null character (0), a byte for the current length of the string, and a byte for the maximum length of the string

You can customize the Dictionary environment by arranging the columns to display.

To create an array

- 1. From the Solution Explorer, access the Dictionary instance for the data types of the project.
- 2. From the Data Types instance, click the Arrays tab.
- **3.** In an empty row of the Arrays grid, define the required properties for the array, then press ENTER.

To edit an existing array

- 1. From the Solution Explorer, access the Dictionary instance for the data types of the project.
- 2. From the Data Types instance, click the Arrays tab.
- 3. In the Arrays grid, make the required changes.

To delete an array

You can delete arrays from the Arrays grid.

- 1. From the Solution Explorer, access the Dictionary instance for the data types of the project.
- 2. From the Data Types instance, click the Arrays tab.

3. In the Arrays grid, select the array by clicking the left-most column, and then click **Delete**.

To sort arrays in the grid

You can sort the arrays in the grid using an ascending or descending order for the individual columns.

- 1. From the Solution Explorer, expand the project, device, resource, and lib nodes, then double-click the **Data Types** item.
- 2. From the Data Types instance, click the Arrays tab.
- 3. In the Arrays grid, select the required column header.

An arrow showing the current order is displayed on the column header.

4. Toggle the column header to switch between ascending and descending order.

To filter arrays in the grid

You can filter arrays displayed on the Arrays tab of Data Types instance. When filtering, you create a view displaying only the arrays containing specified characters.

The filter row is the top row of the grid. You can filter arrays by typing alphabetical and numerical characters in the cells of the filter row. You can also select from the drop-down-combo box. Matching arrays are automatically displayed.

- 1. From the Solution Explorer, access the Dictionary instance for the data types of the project.
- 2. From the Data Types instance, click the Arrays tab.

- 3. In the filter row of the Arrays grid, click the required cell, then do one of the following:
 - Type the characters to use in the filtering operation
 - Select the required array from the drop-down combo-box

See Also

Dictionary

Structures Grid

The Structures grid of the Dictionary enables managing the structures for a project. You can perform the following tasks from the Structures grid:

- Creating structures
- Editing existing structures
- Deleting structures
- Sorting structures in the grid
- Filtering structures in the grid

For structures, the properties are the following:

Column	Description	Possible Values
Name	Name of the structure	Limited to 128 characters beginning with a letter or underscore character followed by letters, digits, and single underscore characters. These names cannot have two consecutive underscore characters.
Data Type	Type of the structure	BOOL, SINT, USINT, BYTE, INT, UINT, WORD, DINT, UDINT, DWORD, LINT, ULINT, LWORD, REAL, LREAL, TIME, DATE, STRING, User arrays, Structures
Comment	Comment for the structure	Free-format text
String Size	If Data Type is STRING, represents the length	String capacity is limited to 252 characters excluding the terminating null character (0), a byte for the current length of the string, and a byte for the maximum length of the string

You can customize the Dictionary environment by arranging the columns to display.

To create a structure

- 1. From the Solution Explorer, access the Dictionary instance for the data types of the project.
- 2. From the Data Types instance, click the Structures tab.
- **3.** In an empty row of the Structures grid, define the required properties for the structure, then press ENTER.

To edit an existing structure

- 1. From the Solution Explorer, access the Dictionary instance for the data types of the project.
- 2. From the Data Types instance, click the Structures tab.
- 3. In the Structures grid, make the required changes, then press ENTER.

To delete a structure

You can delete structures from the Structures grid.

- 1. From the Solution Explorer, access the Dictionary instance for the data types of the project.
- 2. From the Data Types instance, click the Structures tab.
- **3.** In the Structures grid, select the structure by clicking the left-most column, and then click **Delete**.

To sort structures in the grid

You can sort the structures in the grid using an ascending or descending order for the individual columns.

- 1. From the Solution Explorer, access the Dictionary instance for the data types of the project.
- 2. From the Data Types instance, click the Structures tab.

3. In the Structures grid, select the required column header.

An arrow showing the current order is displayed on the column header.

4. Toggle the column header to switch between ascending and descending order.

To filter structures in the grid

You can filter structures in Structures grid. When filtering, you create a view displaying only the structures containing specified characters.

The filter row is the top row of the grid. You can filter structures by typing alphabetical and numerical characters in the cells of the filter row. You can also select from the drop-down-combo box. Matching structures are automatically displayed.

- 1. From the Solution Explorer, access the Dictionary instance for the data types of the project.
- 2. From the Data Types instance, click the Structures tab.
- **3.** In the filter row of the Structures grid, click the required cell, then do one of the following:
 - Type the characters to use in the filtering operation
 - Select the required structure from the drop-down combo-box

See Also

Dictionary

Defined Words Grid

The Defined Words grid of the Dictionary enables managing the defined words for a project. You can perform the following tasks from the defined words grid:

- Creating defined words
- Editing existing defined words
- Deleting defined words
- Sorting defined words in the grid
- Filtering defined words in the grid

For defined words, the properties are the following:

Column	Description	Possible Values	
Word	Name of the defined word	Limited to 128 characters beginning with a letter followed by letters, digits, and underscores. Defined words cannot contain defined words.	
Equivalent	String replacing the defined word during compilation. For example, the defined word "PI" is replaced by its equivalent "3.14159"	Limited to 128 characters	
Comment	Comment for the defined word	Free-format text	

You can customize the Dictionary environment by arranging the columns to display.

To create a defined word

- 1. From the Solution Explorer, access the Dictionary instance for the data types of the project.
- 2. From the Data Types instance, click the **Defined Words** tab.
- 3. In the Defined Words grid, define the required properties, then press ENTER.

To edit an existing defined word

- 1. From the Solution Explorer, access the Dictionary instance for the data types of the project.
- 2. From the Data Types instance, click the **Defined Words** tab.
- 3. In the Defined Words grid, make the required changes.

To delete a defined word

You can delete defined words from the Defined Words grid.

- 1. From the Solution Explorer, access the Dictionary instance for the data types of the project.
- 2. From the Data Types instance, click the **Defined Words** tab.
- **3.** In the Defined Words grid, select the defined word by clicking the left-most column, and then click **Delete**.

To sort defined words in the grid

You can sort the defined words in the grid using an ascending or descending order for the individual columns.

- 1. From the Solution Explorer, access the Dictionary instance for the data types of the project.
- 2. From the Data Types instance, click the **Defined Words** tab.
- 3. In the Defined Words grid, select the required column header.

An arrow showing the current order is displayed on the column header.

4. Toggle the column header to switch between ascending and descending order.

To filter defined words in the grid

You can filter defined words in Defined Words grid. When filtering, you create a view displaying only the defined words containing specified characters.

The filter row is the top row of the grid. You can filter defined words by typing alphabetical and numerical characters in the cells of the filter row. You can also select from the drop-down-combo box. Matching defined words are automatically displayed.

- 1. From the Solution Explorer, access the Dictionary instance for the data types of the project.
- 2. From the Data Types instance, click the **Defined Words** tab.
- **3.** In the filter row of the Defined Words grid, click the required cell, then do one of the following:
 - Type the characters to use in the filtering operation
 - Select the required defined word from the drop-down combo-box

See Also

Dictionary

Variables Grid

The variables grid of the Dictionary enables managing the variables for a resource or program. Each resource and program has its instance of the grid. For resources, the grid displays global variables. For programs, the grid displays the local variables. You can perform the following tasks from the variables grid:

- Creating variables
- Editing existing variables
- Dragging variables
- Deleting variables
- Sorting variables in the grid
- Filtering variables in the grid

For variables of resources or programs, the properties are the following:

Column	Description	Possible Values
Name	Name of the variable	Limited to 128 characters beginning with a letter or underscore character followed by letters, digits, and single underscore characters. These names cannot have two consecutive underscore characters.
Logical Value	Available while monitoring applications. Displays the value used by code being executed on the virtual machine. You can force the value of variables.	Values are displayed according to the variable data type
Physical Value	Available while monitoring applications. Displays the value sent to and received from the drivers. You can force the value of variables.	Values are displayed according to the variable data type

Column	Description	Possible Values
Lock	Available when online. The indication of whether the value of the variable is locked. Locking operates differently for simple variables, array and structure elements, and function block parameters. For simple variables, individual variables are locked directly. For structure and array elements, locking an element locks all the elements of the structure or array.	Yes or No
Data Type	Data type of the variable	BOOL, SINT, USINT, BYTE, INT, UINT, WORD, DINT, UDINT, DWORD, LINT, ULINT, LWORD, REAL, LREAL, TIME, DATE, STRING, Array types, Structure types, Function blocks
Dimension	The size (number of elements) of an array.	For example: [13,110] - represents a two-dimensional array containing a total of 30 elements.
String Size	For String type variables, indicates the maximum length	String capacity is limited to 252 characters excluding the terminating null character (0), a byte for the current length of the string, and a byte for the maximum length of the string
Initial Value	Value held by a variable when the virtual machine starts the execution of the resource code	The initial value of a variable can be the default value, a value given by the user when the variable is defined or the value of the retain variable after the virtual machine has stopped.
Direction	For I/O wiring, indicates whether a variable is an input, output, or internal.	VarInput, VarOutput, or Var

Column	Description	Possible Values
Attribute	The property of a variable indicating its read and write access rights.	Read, Write, or Read/Write
Retained	The indication of whether the value of the variable is saved by the virtual machine at each cycle.	Yes or No
Comment	User-defined text	Free format
Alias	Any name (for use in LD POUs)	Limited to 128 characters consisting of letters, digits, and the following special characters: !, #, \$, %, &, *, +, -, ,/ <, :, =, >, ?, $(a_1, b_2, b_3, b_3, b_3, b_3, b_3, b_3, b_3, b_3$
Wiring	Read-only cell, generated by the I/O wiring tool indicating the I/O channel to which the variable is wired	Uses the syntax of Directly Represented Variables
Address	User-defined address of the variable	The format is hexadecimal and the value ranges from 1 to FFFF.
Groups	Variable groups containing the variable listed in alphabetical order	User-defined variable group names

You can customize the Dictionary environment b y arranging the columns to display.

To create a variable

- **1.** From the Solution Explorer, access the Dictionary instance for the required resource or program.
- **2.** In an empty row of the variables grid, define the required properties for the variable, then press ENTER.

To edit an existing variable

- 1. From the Solution Explorer, access the Dictionary instance for the required resource or program.
- 2. In the variables grid, make the required changes.

To drag a variable

You can drag variables from a Dictionary instance to multiple locations within a project. These locations include other Dictionary instances as well as elements within a language container.

You drag variables to other locations individually. When dragging a variable to another Dictionary instance, you can place the variable anywhere in the grid. When dragging a variable into a language container, you can place the variable anywhere in the language container. To retain changes made to Dictionary instances and language containers, save the respective instance or POU before closing.

- **1.** From the Solution Explorer, access the Dictionary instance containing the required variable and the destination for the variable.
- 2. From the Dictionary instance containing the required variable, in the variables grid, select the variable by clicking the cell in the left-most column.

The selection indicator (\mathbf{b}) is displayed in the leftmost column.

3. Drag **D**, placing the variable in the grid or open language container.

The variable is displayed at the destination.

To delete a variable

You can delete variables from Dictionary instances. Deleting variables from an instance opened for a program element removes the variables from the instance only.

1. From the Solution Explorer, access the Dictionary instance for the required resource or program.

2. In the variables grid, select the variable by clicking in the left-most column, and then click **Delete**.

To sort variables in the grid

You can sort the variables in the grid using an ascending or descending order for the individual columns.

- 1. From the Solution Explorer, access the Dictionary instance for the required resource or program.
- 2. In the variables grid, select the required column header.

An arrow showing the current order is displayed on the column header.

3. Toggle the column header to switch between ascending and descending order.

To filter variables in the grid

You can filter variables in variables grid instances. When filtering, you create a view displaying only the variables containing specified characters.

The filter row is the top row of the grid. You can filter variables by typing alphabetical and numerical characters in the cells of the filter row.You can also select from the drop-down-combo box. Matching variables are automatically displayed.

- 1. From the Solution Explorer, access the Dictionary instance for the required resource or program.
- 2. In the filter row of the variables grid, click the required cell, then do one of the following:
 - Type the characters to use in the filtering operation
 - Select the required variable from the drop-down combo-box

See Also

Dictionary

Cross Reference Browser

The cross reference browser provides an overview of the variables, programs, functions, function blocks, and defined words existing in a project including information such as names, various properties, location of usage, and comments. When locating items in the browser, you need to select a context view for the type of elements to locate. You can find specific elements by name or filter the element list. In the browser, some columns from the different context views reflect the respective properties of the items. You can sort the items in the list according to the different column headings in ascending or descending order.

The Cross Reference Browser toolbar contains the following:

Find	Enables locating elements within the element list. You can type the element name in the field or select a previous search from the drop-down combo-box.
B	Enables locating the element specified in the Find field within the element list
<type filter="" keyword=""></type>	Enables filtering the element list using text. You can type element name in the field or select a previous search from the drop-down combo-box. To remove a filter, select <remove filter=""> from the drop-down combo-box.</remove>
•	Enables selecting a context view for the element list. Possible views include Variable, Programs, Functions, Function Blocks, and Defined Words.
Q	Enables refreshing the element list to include the latest elements from the solution
(III)	Enables displaying the previous instance of the selected element within the project
	Enables displaying the next instance of the selected element within the project

The properties for the Variables view are the following:

Name	Name of the variable
Scope	Range of accessibility of a variable in relation to POUs of a resource
Alias	Alias name of the variable
Туре	Data type of the variable
Project	Project using the variable
Device	Device using the variable
Resource	Resource using the variable
Comment	Comment of the variable
Group	Group containing the variable

The properties for the Programs view are the following:

Name	Name of the program
Language	Programming language of the program
Project	Project using the program
Device	Device using the program
Resource	Resource using the program
Comment	Comment of the program

The properties for the Functions and Function Blocks views are the following:

Name	Name of the function or function block
Category	Type of function or function block. Possible types are standard, user-defined, and native.
Language	Programming language of the function or function block
Project	Project using the function or function block
Device	Device using the function or function block
Resource	Resource using the function or function block
Comment	Comment of the function or function block
From Library	Library containing the function or function block

The properties for the Defined Words view are the following:

Name	Name of the defined word
Equivalent	String replacing the defined word during compilation. For example, the defined word "PI" is replaced by its equivalent "3.14159"
Project	Project using the defined word
Comment	Comment for the defined word

In the element list, color is used to identify elements used within the project. Element displayed as blue are used at least once within the project. Elements displayed as red are not in use. For elements other than programs, you can select elements displayed as blue to view the location information for each instance of the element within the project. You can jump to the location of individual instances by double-click in the instance list.

When working in the Cross Reference Browser, you can navigate using keyboard and mouse controls.

Arrow keys	Enable moving up, down, left and right within the rows of the elements list
Tab key	Enables moving left and right within the fields and commands of the toolbar. Also enables moving from the elements list to the list of instances.
Esc key	Enables moving from the Cross Reference Browser to the workspace

To access the Cross Reference Browser

• From the View menu, click Cross Reference Browser (or press Ctrl+W, Ctrl+C).

The Cross Reference Browser is displayed.

To locate element in the Cross Reference Browser

When locating elements in the Cross Reference Browser, you refresh the list of cross references by clicking (or pressing Ctrl+T, Ctrl+R).

- 1. From the Context View drop-down list, select the type of elements to display.
- 2. To refine the element list, do one of the following:

- To sort the elements list, click the column heading by which to sort in an ascending order. Clicking twice sorts in descending order.
- To filter the elements list, type in the filter field or select a previous filter from the drop-down combo-box.
- 3. Select the required element by performing one of the following:
 - Type the name of the element in the Find field or select a previous search from the drop-down combo-box, then click .
 - Scroll through the element list.

To jump to an instance of an element

In the element list, elements displayed in blue are used at least once within the project. For these elements, selecting in the element list displays all related instances in the instance list.

- 1. In the Cross Reference Browser, locate the required element.
- 2. In the instance list, double-click the required instance of the element (or press F8 or Shift+F8).

The program containing the instance of the element is displayed with the instance selected.

Device View

The device view is a graphical environment enabling navigation through project elements including devices, resources, and POUs. The navigation consists of vertical links on the left pane and a breadcrumbs trail in the address field. The device view displays information for individual devices and resources. For individual devices, you can access the following information:

- Device information such as the name, comment, target, description, memory size, and online behavior
- The resources contained in a device
- The list of C functions and function blocks available for the device based on the target type. Furthermore, selecting C functions or function blocks enables viewing the parameters.
- The list of target I/O devices available for the device. Information available for the I/O devices includes package, driver, name, data type, direction, channels, parameters, and channel parameters.
- Features of the target type attached to the device, including target name, memory size, and supported characteristics

For individual resources, you can access the following information:

- Resource information such as the name, comment, number, description, and size of code.
- The POUs and interrupts defined in a resource. For programs and interrupts, you can open individual programs or interrupts by double-clicking the required instance. For user-defined functions and function blocks, you can access the parameters view by single-clicking the instance or open the POU by double-clicking the instance.
- The list of interrupts available for a resource
- Other elements attached to resources including ISaVIEW screens and variable groups
- Resource properties such as cycle time, memory size for online changes, code type, compiler options, and extended parameters.

You can open an instance of the device view for each device within your project.

To access the Device View

• In the Solution Explorer, right-click the required device, and then click **Open**.

The device view is displayed in the workspace.

To view device and resource information

1. To view device information, click the device instance located in the left pane of the Device View.

The device information is displayed in the properties pane.

2. To view resource information, in the Device View, click 🞽 on the device item, then click the required resource instance.

The resource information is displayed in the properties pane.

To display device elements

- **1.** To display the list of available C Functions and Function Blocks including the parameters, perform the following:
 - From the Device View, in the breadcrumbs trail, click [∛] and then click C **Functions & Function Blocks**.
- 2. To display the I/O devices available for the target including information for each I/O device instance, perform the following:
 - From the Device View, in the breadcrumbs trail, click [∞] and then click Target I/O Devices.
- 3. To display the features of the target type attached to the device, perform the following:

• From the Device View, in the breadcrumbs trail, click [≥] and then click Target Features.

To display resource elements

- 1. From the Device View, in the breadcrumbs trail click \checkmark at the device level, then click the required resource instance.
- 2. To display programs, click in on the **Programs** item, then double-click the required program instance.

The program is displayed in the language container.

- 3. For interrupts click on the **Interrupts** item, then perform the following:
 - To display the list of Interrupts, double-click the Interrupts item.
 - To open the interrupt POU in the language container, double-click the interrupt instance.
- **4.** For functions, click **i** on the **Functions** item, then perform the following:
 - To display the Parameters view for a function, click the required function instance.
 - To open the function in the language container, double-click the function instance.
- 5. For function blocks, click item, then perform the following:
 - To display the Parameters view for a function block, click the function block instance.
 - To open the function block in the language container, double-click the function block instance.
- 6. To display ISaVIEW screens, click ≥ on the Others item, then double-click the required ISaVIEW instance.

7. To display variable groups, click in the **Others** item, expand the Variables Group item, then double-click the required variable group instance.

To display resource properties

1. From the Device View, in the breadcrumbs trail click $\stackrel{>}{\sim}$ at the resource level, and then click Properties.

The resource properties are displayed

Controller Status

You can access real-time status information for all controllers, i.e., devices, in a project. The available information is the following:

Name	Name of the controller
Status	Status of the controller: - Building, indicates that the project, device, or resource (if supported by the CAM) build is in progress - Unable to Connect, indicates that the Workbench is unable to connect with the controller - Need Password, indicates that the Workbench requires the controller password to connect and provide status information - Need Save Status, indicates that the project requires saving then refreshing the controller status - Unavailable, indicates that the Workbench is switching from design to online or simulation mode - Simulator Running, indicates that the Workbench is unable to connect with the controller since it is in simulation mode - Connecting, indicates that the Workbench is retrieving status information or is unable to communicate with the controller - Running, indicates that the controller is running an application while displaying the application version and date - Stopped, indicates that the controller is not running an application
	health condition: Healthy, Faulted, or Warning.
Locked Variables	Number of locked input and output variables for the controller.
Cycle Time	Current cycle time of the controller

When viewing the Controller Status, the Name column displays icons that indicate the connection status of the controllers.

-

Faulted, indicates an unhealthy, faulted status

A Warning, indicates a connection problem or a mismatch between the local and running application versions

To access the status information for controllers

• From the View menu, click **Controller Status**.

I/O Wiring

I/O wiring enables the definition of links between variables defined for a project and I/O channels of I/O devices existing on a target system. You perform I/O wiring from an I/O Device instance accessed for a resource. Each resource can instantiate none, one, or multiple I/O device instances.

When performing I/O wiring for a resource, you access an I/O Device instance, add I/O devices, and wire the I/O channels to variables. When defining I/O wiring for the first time, an I/O Device instance is empty.

An I/O Device instance consists of three sections:

- A hierarchical tree-like structure displaying devices, parameters, and comments
- A wiring grid enabling the association of channels with variables. The wiring grid displays the name of all variables. When online, the wiring grid also displays the logical value, physical value, and lock status of all variables.
- A section listing the options for individual channels

The I/O Wiring toolbar enables performing many tasks in I/O Device instances:

Adding an I/O device

Deleting an I/O device

Freeing all channels of an I/O device

Frees individual channels of an I/O device

Toggles an I/O device between real and virtual

While debugging, locks a channel

While debugging, unlocks a channel

Shows or hides I/O device information

The tree-structure hierarchy is composed of the following items:

To access an I/O Device instance

• From the Solution Explorer, right-click on a resource, then click I/O Device.

I/O Wiring is displayed in the workspace.

See Also

I/O Devices I/O Channels
I/O Devices

I/O devices contain multiple channels having the same type and direction. When adding I/O devices, the Device Selector enables selecting from those available for the target. You specify a device index and a number of channels. You can also include an alias name and comment. The device index value can range from 0 and 65535.

While running online, when devices are set to real, I/O variables are directly linked to the corresponding I/O devices. Input or output operations in the programs correspond directly to the input or output conditions of the actual I/O device fields. When devices are set to virtual, I/O variables are processed as internal variables. The debugger can read or update these to enable simulating I/O processing, but no actual connection is made.

When adding complex devices, the number of channels, i.e., device size, of individual simple devices making up a complex device varies depending on the definition of the complex device in the target.

You manage I/O devices from the hierarchical tree-like structure in an I/O Device instance where these are one of two types:

Real device

When selecting I/O devices, their properties are displayed in the Properties window.

From an I/O device instance, you can perform the following tasks when managing the I/O devices of a resource:

- Adding I/O devices
- Toggling I/O devices between real and virtual
- Modifying existing I/O devices
- Deleting I/O devices
- Showing or hiding I/O device information

To add an I/O device

1. On the I/O Wiring toolbar, click 📕

The Device Selector is displayed.

2. Select the required I/O device from the list of available devices.

You can sort the listed I/O devices in ascending or descending order by clicking the Name column heading.

3. Specify a device index number, the number of channels, an alias name, and a comment for the I/O device.

To toggle the real/virtual attribute

You can toggle between the real and virtual attribute for a selected I/O device.

• From the I/O Wiring toolbar, click

To modify an existing I/O device

- 1. From the I/O Wiring tree structure, double-click the required I/O device.
- 2. In the Device Selector, make the required changes to the properties of the device.

To delete an I/O device

You can delete devices. You can also disconnect variables attached to selected channels. Note that when deleting devices, all variables are unwired from the device (as with Free I/O device channels).

- 1. From the I/O Wiring tree structure, click the I/O device element.
- 2. From the I/O Wiring toolbar, click

The device is deleted.

To show or hide I/O device information

You can toggle between displaying and hiding I/O device information.

• From the I/O Wiring toolbar, click

See Also I/O Wiring

I/O Channels

I/O channels represent hardware I/O points. These can be inputs and outputs. A variable is generally connected to a channel to be used in POUs. You can also use directly represented variables in POUs. When adding I/O devices, you specify the number of channels. All I/O channels of a device have the same type and direction.

You wire variables to channels of a device in the wiring grid. When wiring channels, you can apply various operations to individual channels depending on their type. For Boolean channels, you can toggle between the original value (direct) or its negation (reverse). For numerical channels, you can apply gain and offset factors to the value. For all channel types, you can apply conversions available for the target implementation. You apply these operations to individual channels:

—	Direct	Boolean channels only
	Reverse	Boolean channels only
t4	Gain	Numeric channels only
t4	Offset	Numeric channels only
	Conversion	All channel types, depending on target implementation

When applying the Gain/Offset factors, the resulting value differs for inputs and outputs. For inputs, the original value (coming from the input device) is multiplied by the gain, and the offset value is added. This results in the value used by the programs of the resource. For outputs, the value of the variable resulting from the execution of the program is multiplied by the gain and the offset value added, before updating the output device. The Gain factor consists of a multiplier factor and a divider factor. The Gain/Offset formula is applied as follows:

```
NewValue = (Value * MultFactor) / DivFactor + Offset
```

Conversions are available for all channel types. However, the available conversions depend on the target implementation.

For details on device-specific implementations of the Gain/Offset factors and conversions, refer to the device documentation.

You can import I/O channel OEM parameters defined in target definition files. I/O channel parameters enable using different settings for individual channels of an I/O device. Individual I/O channel parameter definitions include the parameter name, access type, format, default value, and comment text.

Device2 🗙 Naviga	tion Window	Deployment.isadpl							•
🗾 🕨 🛄 Device2 🛛	🎬 Target I/O De	vices							
Package	Driver	Name	-	loSimple1					
SamplePackage	SampleDriver	loComplex1		Data type	BOOL				
SamplePackage	SampleDriver	loSimple1		Direction	Input				
SamplePackage	SampleDriver	loSimple2		Channels	From : 5 To :	5			
				Parameters					
				Name	Access	Format	Default	Comment	
				DeviceParam1	UserDefined	Boolean	TRUE		
				DeviceParam2	UserDefined	Boolean	FALSE		
				DeviceParam3	ReadOnly	Long	10		
				Channel Parameter	S				
				Name	Access	Format	Default	Comment	
				ChannelParam1	UserDefined	Boolean	TRUE		
				ChannelParam2	UserDefined	Boolean	FALSE		
				ChannelParam3	ReadOnly	Long	5		
				ChannelParam4	ReadOnly	Long	10		

You can use direct variable representation (%IX1.1) to access I/O values when I/O channels have no wiring.

When deleting variables in the Dictionary, channels are automatically unwired. For each deleted variable a new variable is created in the Dictionary. The name of the new variable refers to the name of the channel wired to the deleted variable. For example, deleting a variable wired to channel %IX0.0 creates a variable with the name _IO_IX0_0. Renaming variable _IO_IX0_0 rewires it to channel %IX0.0.

After having wired channels of a device to variables, you can choose to free individual wired channels of a device or free all wired channels of a device.

While debugging, you can choose to force the values of I/O variables.

To wire the channels of an I/O device

1. Access the I/O Device instance for the required resource.

- **2.** From the tree structure, click the device having the I/O channels to wire. For complex devices, channels are accessed from the simple devices making up the complex device.
- 3. In the wiring grid, double-click the channel to wire.
- 4. From the Variable Selector, select the variable for the channel, then click **OK**.

The channel's Name field indicates the wired variable. For Boolean channels, the default value operations are direct and no conversion.

- 5. For Boolean channels, to toggle between the direct and reversion operations, select the channel in the grid, then double-click the (Direct) or (Reversion) item below the grid.
- **6.** For numerical channels, to set a Gain and Offset factor, select the channel in the grid and do the following:
 - a) Double-click the ¹/₄ (Gain or Offset) item below the grid.
 - b) In the I/O Filter dialog box, specify the required values in the Filter section.
- 7. To apply a conversion to a channel, select the channel in the grid and do the following:

Note: Conversions are only available when implemented for a target.

- a) Double-click the (Conversion) item below the grid.
- **b)** In the I/O Filter dialog box, select the required conversion.

To view I/O channel OEM parameters

- 1. Import the required target definition file containing the I/O channel parameters.
- 2. From the Solution Explorer, right-click the required device, and then click **Open**.
- 3. From the Device View, click $\stackrel{\otimes}{\sim}$, and then click **Target I/O Devices**.

The Device View displays information on the Target I/O devices.

4. In the left-hand pane, select the required I/O device.

The I/O device definition, I/O device parameters, and I/O channel parameters are displayed in the right-hand pane.

To free individual channels of an I/O device

You can free one channel in a device.

- 1. In the wiring grid, select the wired channel.
- 2. From the I/O Wiring toolbar, click

To free all channels of an I/O device

You can free all channels of a device.

- 1. In the tree-like structure, select the device having the channels to unwire.
- 2. From the I/O Wiring toolbar, click

To lock and unlock an I/O variable

You can also lock and unlock variables from a Dictionary instance.

- 1. Access the I/O Device instance for the required resource.
- 2. In the tree-like structure, select the device having the channels to lock or unlock.
- **3.** To lock a channel, select the channel in the wiring grid, then click , from the I/O Wiring toolbar.
- 4. To unlock a channel, select the channel in the wiring grid, then click , from the I/O Wiring toolbar.

See Also

I/O Devices I/O Wiring

I/O Wiring Keyboard Shortcuts

The following keyboard shortcuts are available for use with I/O wiring. Some shortcuts do not apply or may differ while debugging.

Ctrl+NAdds a device (not available while debugging)Ctrl+FFrees all channels of a selected device (not available while debugging)Ctrl+RFrees a channel (not available while debugging)Ctrl+HToggles between a real or virtual I/O device (not available while debugging)Ctrl+LWhile debugging, locks a channelCtrl+UWhile debugging, unlocks a channelCtrl+SToggles between showing or hiding the full device name

Bindings

Bindings are directional links, i.e., access paths, between variables located in different resources. One variable is referred to as the producing variable and the other as the consuming variable. The value stored in the producing variable is transferred to the consuming variable. **ISaGRAF** enables external bindings, which exist between resources belonging to different projects.

When defining bindings, devices must be connected via a network that supports bindings. For bindings between resources on the same device, the HSD network type must be used. You define network connections using the Deployment View.

Note: Online changes are possible as long as binding definitions remain the same.

Binding the variable V1 from resource R1 to the variable V2 of resource R2 means that V1 is periodically copied to V2 using memory sharing or network exchanges.

Variables coming from bindings (consumed variables) are refreshed in the resource at the beginning of the cycle, each time the producing resource sends them, i.e. on each end of the producing resource cycle.

The variable is not updated in the consuming resource until the producing resource sends them through the binding media. For example:

No update of the variable on that cycle

ISaGRAF does not impose the read-only accessibility for consumed variables. **However, it is highly recommended to declare consumed variables with read-only attribute in order to avoid conflicts between Binding and execution of POUs.**

Binding error variables

Binding error variables enable the management of binding errors at the consumer resource level; one error variable for one consumer resource for each resource that produces to this resource. The virtual machine gives specific values to these error variables.

Example

Production errors

The variable 'A' of the R1 resource represents the producer error variable for all binding links starting from R1 and using the HSD driver

(in the example only link from R1 to R3).

The variable 'B' of the R1 resource represents the producer error variable for all binding links starting from R1 and using the ETCP network

(links from R1 to R4 and from R1 to R5).

Consumption errors

The variable 'F' of the R5 resource represents the consumer error variable for the unique binding link that comes from R1 and using ETCP.

The variable 'G' of the R5 resource represents the consumer error variable for the unique binding link that comes from R2 and using ETCP.

Depending on the driver used the error variables can take different values with different meanings.

Warning: Once the error variable is set to a non-zero value, it has to be reset to 0 by user or by Programs.

To test globally that there is a binding error, you can test the value of the following system variables:

- _____SYSVA_KVBPERR: for a production error. It is a Boolean variable. If it is true it means there is a production error.
- _____SYSVA_KVBCERR: for a consumption error. It is a Boolean variable. If it is true it means there is a consumption error.

You access the Bindings View from the contextual menu for the projects, devices, and resources in the Solution Explorer.

For HSD:

To test values of one binding error variable, you should create the following defined words in the dictionary of your project:

The 0 value in the error variable indicates there is no error.

ISA_HSD_KVB_ER_MUTEX	1	An error occurred with semaphore management
ISA_HSD_KVB_ER_SPACE	2	An error occurred with memory space access
ISA_HSD_KVB_ER_NOKERNEL	3	The bound producer is stopped (not running). This error happens only for consumer resources.
ISA_HSD_KVB_ER_TIMEOUT	4	Variable was not refreshed within the maximum time allowed (ValidityTime). This error happens only for consumer resources.
ISA_HSD_KVB_ER_BAD_CRC	5	Producer and consumer have different CRC.
ISA_HSD_KVB_ER_INTERNAL	6	Internal error

For ETCP:

To test values of binding error variables, you should create the following defined words in the dictionary of your Project:

A value of 0 in the error variable indicates no error.

ETCP_KVB_ERR_BINDING_IN_PROCESS	1	The binding initialization process is on its way.
ETCP_KVB_ERR_NO_PRODUCER	2	The remote producer is not currently runnin g. This error happens only for consumer resources.
ETCP_KVB_ERR_BAD_CRC	3	Producer and consumer have different CRC.
Obsolete error value	4	The producer has been stopped. This error happens only for consumer resources.
ETCP_KVB_ERR_DATA_DIFFUSSION	5	Error during diffusion process.
ETCP_KVB_ERR_TIMEOUT	6	ETCP server does not answer quickly enough (TimeOut). This error happens only for consumer resources.
ETCP_KVB_ERR_IMPOSSIBLE_TO_BIND	7	Impossible to bind.

External Bindings

External variable bindings are bindings between the variables of resources belonging to different projects. When defining external variable bindings, you need to define groups of producer variables in the producer project, then create bindings by defining groups of consuming variables from a consumer project.

You can define external bindings using the Bindings View.

To open the Bindings View

The Bindings View is accessed from the Solution Explorer.

• In the Solution Explorer, right-click the project, device, or resource, then click Bindings.

The Bindings View is displayed.

See Also Bindings View

Bindings View

Bindings are defined using the Binding View. In the Solution Explorer, you can access the Bindings View from the contextual menus for the project and devices, as well as resources with targets that support bindings. You can open multiple instances of the Bindings View. However, each instance of the Bindings View must have a different scope.

Column	Description
Producing Groups	Displays a hierarchical view of projects, devices, resources, and defined producing groups.
Producing Variables	Displays the list of producer variables included in a selected producing group
Consuming Groups	Displays a hierarchical view of the projects, devices, resources, and consuming groups
Consuming Variables	Displays the list of consumer variables included in a selected consumer group

When working in the Bindings View, you can navigate the cells using the mouse controls.

The Bindings View toolbar contains the following:

Enables selecting from a list of the most recently defined bindings. Selected bindings are displayed automatically.

In the Bindings View, you can define groups of producer variables from the resources of your project. Individual variables of a resource can belong to a one or more producing groups. You can connect a producing group to consuming groups belonging to different resources. You can also edit the contents of producing groups from their originating resource.

You can add variables from a Dictionary by dragging them into the Bindings View and place them Producing Variables column. You can also drag variables from the Variable Selector into the Bindings View and place them Producing Variables column. System variables and those belonging to function block instances cannot be used in bindings.

Consuming groups are automatically updated to reflect changes made to producing groups. For example, deleting a producer variable automatically removes the associated consumer variable.

You can delete producing groups having producer variables used in bindings. However, deleting such producing groups causes the bound variables to display errors.

In the Bindings View, you can define a group of consumer variables from local or external projects by identifying the project, the resource, and the producing group. When creating a consuming group, a link to an existing producing group is created. The Bindings View displays the linked producer and consumer variables at the same level within their respective columns. The link between producer and consumer variables flows in one direction, from producer to consumer. You can also choose to use binding error variables.

When linking structure and array variables, these must have the same byte order and alignment. Variables having the elementary data types are automatically adjusted for differences in byte order and alignment.

Using the Bindings View, you can edit the contents of consuming groups. You can also delete groups of consumer variables.

For consuming and producing variable groups and external bindings, ① indicates errors that can occur for different situations such as the following:

 The project of a variable group cannot be found The variable group cannot be found within the specified project A conflict exists between the consumer and producer resources One of the bound variables no longer exists
- The variable used in the binding no longer exists

To define a group of producer variables

You define a producing group by adding producer variables within the Producing Variables column and by dragging them from the Dictionary. When defining a producing group, the consuming group column is empty.

 In the Producing Groups column, select the required resource, then click Add Producing Group

The producing group is displayed in the Producing Groups column.

- 2. Click the producing group.
- 3. To add producer variables, do one of the following:
 - In the **Producing Variables** column, click, , then select the required variable from the drop-down combo-box.
- 4. To add subsequent variables, from the **Producing Variables** column, click below the existing producer variable, then repeat step 3.

To edit an existing group of producer variables

You can edit an existing producing group by replacing or deleting its variables individually. Note that local producing groups are modifiable. However, the properties of external producing groups are not editable using the Bindings View.

- 1. In the **Producing Groups** column, click the producing group.
- 2. In the Producing Variables column, click the variable, then do one of the following:

- To replace the variable, right-click the variable, click **Edit**, then select another variable from the drop-down combo-box.
- To delete the variable, right-click the variable, then click **Delete**.

To delete a producing group

You can delete producing groups from the Bindings View.

• In the **Producing Groups** column, right-click the producing group, then click **Delete**.

The producing group is permanently deleted.

To define a group of consumer variables

You can define a group of consumer variables by accessing the consuming resource of a project. When defining consumer variables, a link is established between the producing resource and the consuming resource.

- 1. In the Consuming Group column, select the required resource, then click Add Consuming Group
- 2. From the Add consuming group dialog:
 - a) Click, select the project library file containing the required consumer variables, then click **Open**.
 - **b)** In the **Resource Number** field, select the required resource number from the drop-down combo-box.

The drop-down combo-box contains the resource numbers of the resources within the library file selected in step 2a.

c) In the Group ID field, select the group ID from the drop-down combo-box.

The drop-down combo-box contains the group IDs for the producing groups located the Producing Groups column of the Bindings View.

The Group Comment field displays the name of the producing group corresponding to the group ID selected.

- **d)** In the **Binding Error Variables** section, select the binding error variable from the drop-down combo-box (optional), then click **OK**.
- 3. In the Consuming Groups column, click the consuming group.
- 4. To add variables to the Consuming Variables column, do one of the following:
 - Click ... , then select the required variable from the drop-down combo-box.
- 5. To add more consumer variables, in the **Consuming Variables** column, click below the existing variable, then repeat step 4.

To edit an existing consuming group

You can edit an existing consuming group by individually replacing or deleting the consumer variables within the Consuming Variables column.

- 1. In the Consuming Groups column, click the consuming group.
- 2. In the Consuming Variables column, select the variable, then do one of the following:
 - To replace the variable, right-click the variable, click **Edit**, then select another variable from the drop-down combo-box.
 - To delete the variable, right-click the variable, then click **Delete**.

To delete a consuming group

• In the Consuming Groups column, right-click the consuming group, then click Delete.

The consuming group is permanently deleted.

See Also

Bindings

Failover Mechanism

The failover mechanism is a secondary backup operational mode which is an essential part of mission-critical systems where availability is without compromise. The failover mechanism provides a more fault-tolerant industrial application. When a failure occurs in the primary components of an industrial system or when a scheduled down time is performed, the functions of the industrial system are backed by the failover mechanism running on a secondary industrial system.

The failover mechanism consists of two devices (primary and secondary) executing the same application. At the end of each cycle, both devices synchronize their data by exchanging CRCs (data link). This parallel execution allows a bumpless switch-over between both devices. During execution, only one device is active. This device updates the output while the other device remains on standby. A heartbeat signal is sent between devices to ensure availability.

The failover mechanism sequence is executed as follows:

1. Download the application onto the active device.

The workbench downloads onto active devices. When the primary is not active, the workbench automatically switches to the secondary.

2. The application is automatically transferred to the standby device.

The workbench always performs only one download to the active devices. When a device is in error and is being replaced, the active device downloads the application to the standby device turned active upon reconnecting.

- 3. Both devices execute the same application code in parallel.
- 4. Before each execution cycle, input values are transferred from the primary device to the secondary device.

The performance of the failover mechanism is directly affected by the quantity of input values transferred during data synchronisation between the primary device and the secondary device.

- 5. At the end of each cycle, a check sum mechanism runs to ensure the integrity of the data and results. In case of a mismatch, the full data space of the active device is transferred to the standby device.
- 6. The active device generates the heartbeat, then verifies that the standby device can receive it before sending the heartbeat across the link.
- 7. In case of failure on the active device, the standby device becomes the active one and controls the process.

When the standby device (secondary device) does not detect activity during the time determined in the *FailoverHeartbeatDeactivationTimeMs* property, it becomes active. If the now active secondary device detects activity, it means the primary device is also active. You can only have one active device, so the primary active device is forced into standby for the duration of time specified in the *FailoverHeartbeatDeactivationTimeMs* property.

When a device contains multiple resources, each resource is executed independently and performs data synchronization based on its defined cycle time. To optimize data synchronization, a high priority resource should use a minimal amount of memory space.

The following system variables provide information for a failover system:

_SYSVA_FO_ISENABLE BOOL READ Activation status of the failover system for the device

		KLAD	system. The associated bits of the variable represent the following errors: 0 = No error 1 = The standby device failed toread the heartbeat from the activedevice $2 = The devices are unable toestablish communication across thedata link3 = System mismatch between bothdevices making up the failovermechanism - each device has adifferent type4 = Capability$ mismatch between the devices making up the failover mechanism - each device supports different features
_SYSVA_FO_ISPRIMARY	BOOL	READ	Indication of whether the active device is the primary for the failover system
_SYSVA_FO_ISACTIVE	BOOL	READ	Indication of whether the device is active
_SYSVA_FO_DATASYNCTIME	UDINT	READ	Time between data synchronizations from the active to the standby device
_SYSVA_FO_DATASYNCCNT	UDINT	READ	Number of full data synchronizations since starting the target (available from ISaGRAF 5.40 targets)
_SYSVA_FO_HBEATSYNCTIME	UDINT	READ	Time between heartbeat synchronization from the standby to the active device

The failover mechanism executes only the most recent application code. When downloading this code to the active device, the compilation date is used to determine whether the downloaded code is older than the existing code on the device. To execute an older version of an application, you must recompile the code before downloading to the active device.

Since the failover mechanism executes the same application code on the active and standby devices, the code must contain conditions that can be executed by both devices. For example, the __SYSVA_FO_ISACTIVE system variable can only be true for the active device. Therefore, when __SYSVA_FO_ISACTIVE is true, the standby device does not execute the following code. As a result, a CRC mismatch occurs and the failover mechanism requires a full data synchronization, causing extended cycle time.

```
if (__SYSVA_FO_ISACTIVE = TRUE) THEN
 (...)
end_if;
```

See Also

Limitations for Failover Mechanisms

Configuring a Failover Mechanism

The workbench provides tools where engineers see one device during the programming phase and both devices during monitoring and debugging. To emphasize the concept of primary, secondary, and active devices, the workbench always remains focussed on active devices:

- Only one project with one device to manage
- Only one compilation to perform
- Only one download to perform to the active devices
- Only one connection to establish to the active devices

Failover mechanisms for devices are available for projects created using the failover project template and in which was imported a failover *.TDB file.

A project with a failover mechanism has one device representing two devices. In the deployment view, the failover mechanism is represented as a standalone device with the graphical representation showing two devices where one represents the primary device and the other represents the secondary device.

From the deployment view, you can configure a failover mechanism using one of two methods:

• In the properties window for a connection link accessed by selecting the connection link between the device and the ETCP network, then right-clicking and then clicking **Properties** (or pressing the F4 key).

Properties	- ₽ ×
Connection:	•
₽ <mark>2↓</mark> 🖂	
EnableFailover	FALSE
FailoverDatalinkPrimary	127.0.0.1
FailoverDatalinkSecond	127.0.0.1
FailoverHeartbeatDeac	10000
FailoverHeartbeatSock	6003
FailoverHeartbeatTime	2000
FailoverPrimaryIP	127.0.0.1
FailoverSecondaryIP	127.0.0.1
IPAddress	127.0.0.1

• In the failover configuration graphical environment accessed by selecting a device, then right-clicking and then clicking **Failover**.

Device1 🗙 Deployment.isadpl* 🗸 👻				
📕 🕨 🛄 Device1 🛛	📲 Failover			
Primary Device		*		
	FailoverPrimaryIP	127.0.0.1		
E III	FailoverDatalinkPrimaryIP	127.0.0.1		
	Status			
Secondary Device		*		
	FailoverSecondaryIP	127.0.0.1		
d and a	FailoverDatalinkSecondaryIP	127.0.0.1		
	Status			
Failover System		*		
	IPAddress	127.0.0.1		
	EnableFailover	FALSE		
	FailoverHeartbeatTimeoutMs	2000		
E D	FailoverHeartbeatDeactivationTimeMs	10000		
	FailoverHeartbeatSocketPort	6003		
WARN IN SWAFO JEENWARE, MARINA A MANAGEMAN				

Configuring a failover mechanism consists of setting parameters defined by the OEM where some may differ depending on whether it uses an Ethernet, serial, or another link type. Since a failover mechanism requires Ethernet communication for the dialog between devices and the workbench, the configuration is similar for all implementations:

Primary	Device

FailoverPrimaryIP	STRING	IP add	IP address of the primary device on			
		the	network	used	for	
		comm	unication	with	the	
		workt as IPA	ench. This v Address.	alue is the	same	
FailoverDatalinkPrimaryIP	STRING	IP address of the primary device on the data link used for communication between the active and standby devices				

Secondary Device

FailoverSecondaryIP	STRING	IP address of the secondary device on the network used for communication with the workbench
FailoverDatalinkSecondaryIP	STRING	IP address of the secondary device on the data link used for communication between the active and standby devices
Failover System		
EnableFailover	BOOL	Activates the failover mechanism for the device
FailoverHeartbeatTimeoutMs	UDINT	Time delay, in milliseconds, before the standby device takes over from the active device
FailoverHeartbeatDeactivationTimeMs	UDINT	Time delay, in milliseconds, before the standby device takes over from the active device following a loss of communication. This delay does not apply for actual breakdowns of the active device.

You can configure the timeout of the data synchronization for a resource using the following extended parameter. This is accessed from the properties for the individual resources.

FailoverDatalinkTimeoutMs UDINT Maximum time, in milliseconds, that the active device waits for a reply from the standby device before resuming the control cycle. When the timeout is reached, the communication is re-initialized.

See Also

Extended Parameters

Monitoring the Failover Mechanism Implementing Failover Mechanisms on a Windows Platform Limitations for Failover Mechanisms

Monitoring the Failover Mechanism

You can access information for the failover mechanism from the Device and Deployment views while running online or debugging. From the navigation view, you can access the failover mechanism information for the primary device, the secondary device, general system, and system variables.

From the deployment view, the real-time status of the primary and secondary devices is displayed using color:

GreenDevice is activeYellowDevice is on standbyRedDevice is in error

While running online, you can also monitor the failover mechanism including system variables from the Device View. The status color displays are similar to those for the Deployment View.

Device1 ×								
弄 🕨 📖 Device1 🛛 🍓 Failover								
Primary Device				*				
	FailoverPrimaryIP		50.92.59.9					
	FailoverDatalinkPrimaryIP		50.92.59.9					
	Status		Running					
Secondary Device								
	FailoverSecondaryIP		50.92.58.66					
	FailoverDatalinkSecondaryIP		50.92.58.66					
	Status		Standby					
Failover System								
	IPAddress		50.92.59.9		_			
	EnableFailover		TRUE					
	FailoverHeartbeatTimeoutMs		2000					
£	FailoverHeartbeatDeactivationTimeM	s	10000					
	FailoverHeartbeatSocketPort		1131					
	SYSVA_FO_ISENABLE		True					
	SYSVA_FO_ERRCODE		0					
	SYSVA_FO_ISPRIMARY		True					
	SYSVA_FO_ISACTIVE		True					
	SYSVA_FO_DATASYNCTIME		1					

See Also

Failover Mechanism Implementing Failover Mechanisms on a Windows Platform

Implementing Failover Mechanisms on a Windows Platform

You can only implement failover mechanisms for systems running with targets having the failover feature.

- 1. Create a project using the Win32_L_Failover_TPL template.
- 2. From the Deployment View, right-click the device for which to define a failover mechanism, and then click Failover Configuration.

3. In the Device view, set EnableFailover to TRUE, then define the remaining properties for the primary device, secondary device, and failover system. When not using a separate data link connection for the devices, the respective data link properties must use the same IP address as the corresponding failover IP address properties.

Device1 × Deployment.isadpl* •						
룾 🕨 📖 Device1 🛛 🍓 Failover						
Primary Device	*					
	FailoverPrimaryIP	127.0.0.1				
	FailoverDatalinkPrimaryIP	127.0.0.1				
	Status					
Secondary Device		*				
	FailoverSecondaryIP	127.0.0.1				
	FailoverDatalinkSecondaryIP	127.0.0.1				
	Status					
Failover System						
	IPAddress	127.0.0.1				
	EnableFailover	FALSE				
	FailoverHeartbeatTimeoutMs	2000				
	FailoverHeartbeatDeactivationTimeMs	10000				
	FailoverHeartbeatSocketPort	6003				
	SWAFO ISCAUGUE	Anna				

- 4. Set up the ISaGRAF targets for the primary and secondary devices.
 - a) From the PRDK, install the ISaGRAF targets on the respective computers.
 - **b)** From a command prompt (Start menu > All Programs > Accessories > Command Prompt), launch the targets using the following command lines to identify which will run the primary and secondary systems.

Primary or Secondary	Window (MonoTask)	Windows (MultiTask)
Primary system	ISa.exe -PR	ISaGRAF.exe -PR
Secondary system	ISa.exe -SE	ISaGRAF.exe -SE

Note: Before proceeding to download the application, make sure firmware (definition of C functions, I/O drivers, etc.) is identical for the primary and secondary systems.

5. Build the application and perform a download.

The application is downloaded onto the active device and automatically duplicated on the standby device. When launching the failover mechanism, the active device is the primary and the standby device is the secondary.

- 6. Switch the application to run online by choosing Start Debugging from the Debug menu.
- 7. From the Device View, note the status information for the primary and secondary devices as well as the values for the failover system variables.

See Also

Failover Mechanism Monitoring the Failover Mechanism

Limitations for Failover Mechanisms

While using a failover mechanism, systems have no particular limitations. Most workbench features are supported while the code behind the failover mechanism is highly portable enabling it to run on any hardware platform that meets the requirements for ISaGRAF firmware. The main limitations are the following:

- Failover requires using Ethernet communication between the workbench and firmware
- The OPC server and OPC gateway support automatic switching only on ETCP (Ethernet TCP/IP)
- Failover supports the bindings feature from the ISaGRAF 5.40 targets
- Failover does not yet support the interrupt feature enabling to control the moment of execution of cyclic programs (ST, LD, FBD, and SAMA)
- Failover does not support sending custom files, placed in the *To Download* folder of a device directory, to the target when downloading onto the target platform

See Also Failover Mechanism
IEC 61499 Language

The IEC 61499 language is a distribution method enabling the distribution of individual IEC 61499 function blocks belonging to an IEC 61499 program across multiple resources. The IEC 61499 standard function blocks are available with the IEC 61499 library.

In an IEC 61499 project, you create programs into which you insert IEC 61499 basic function blocks and composite function blocks.

Note: The IEC 61499 implementation is based on the *Function blocks - Part 1: Architecture* and *Function blocks - Part 2: Software Tools Requirements* documents available from the ANSI webstore.

IEC 61499 Program Main Format

In IEC 61499 programs, IEC 61499 function blocks are distributed across resources. Inputs and outputs from these function blocks distributed between resources are connected with bindings. These bindings are automatically created. Inputs and outputs between function blocks must respect data types. For IEC 61499 function blocks, identifiers can only be literals or defined words.

Insertion of an IEC 61499 basic function block or composite function block into a program is enabled following its creation in the project library.

When splitting an IEC 61499 function block output to connect with two inputs, **ISaGRAF** automatically performs the split. Therefore, use of the E_SPLIT function block is not required.

Resources having an instance of an IEC 61499 function block display the IEC 61499 program in which the function block is defined. Therefore, a given IEC 61499 program can appear in multiple resources. Bindings between resources are displayed in the Binding View.

IEC 61499 function blocks are distinct from IEC 61131-3 function blocks; An execution control chart handles the events and algorithms handle the data. IEC 61499 is implemented as either ECC (basic function blocks) or IEC 61499 FBD (composite function blocks). IEC 61499 function blocks have specific parameter types, for instance, event input and event output.

In an execution control chart, individual items represent SFC elements:

- a box with a double outline indicates the initial step
- arrows indicate transitions
- boxes with a single outline indicate steps
- double boxes indicate generated outputs. The space on the left indicates an algorithm name when one is defined.

An IEC 61499 program is built with blocks from the IEC 61499 library and user-defined IEC 61499 function blocks. The language editor displays IEC 61499 programs. The following elements are available for IEC 61499 programs:

Function Blocks

Links

Variables

• Comments

• Regions

Cycle Execution Time in IEC 61499 Programs

In IEC 61499 programs, total execution time depends on the cycle execution of multiple resources and the individual IEC 61499 function blocks. For instance, when using basic IEC 61499 function blocks, the diagram consisting of FB1, FB2, FB3, and FB4 completes execution after a minimum of four complete cycles of each resource. Each resource cycle executes the steps of an event control chart until reaching a false transition.

The following formula expresses the minimum total time required to execute one cycle of the above program:

Total time = cycle time (ResourceA) X 2 + cycle time (ResourceB) X 2

Debugging IEC 61499 Programs

When debugging IEC 61499 programs, you can monitor the output values of elements. These values are displayed using color, numeric, or textual values according to their data type:

- Output values of boolean type are displayed using color. The output value color continues to the next input. When the output value is unavailable, boolean elements remain black. The colors are red when True and blue when False.
- Output values of SINT, USINT, BYTE, INT, UINT, WORD, DINT, UDINT, DWORD, LINT, ULINT, LWORD, REAL, LREAL, TIME, DATE, and STRING type are displayed as a numeric or textual value in the element. When the output is a structure type, the displayed value is the selected member.

When the output value for a numeric or textual value is unavailable, the *WAIT* text is displayed in the output label. Values are also displayed in the corresponding dictionary instance.

IEC 61499 Function Block Main Format

IEC 61499 function blocks are made up of event inputs and outputs as well as data inputs and outputs:

An IEC 61499 function block is represented by a box having an upper section representing the event control chart and a lower section representing the data process. Three names are indicated in the block: the instance name at the top, the function block name just below, and the resource in which it is declared at the bottom.

The parameters for standard IEC 61499 function blocks are displayed in the local variables instance with their equivalent direction attribute. The E_TABLE function block shows the following directions for its inputs and outputs:

E_TABLE-VAR												
		Name	Data Type		Dimension	String Size	Initial Value	Direction	ı	Attribut	e	Comment
		- A*	÷.	A*	- A*	- A*	- A*	+	A.	×.	A.	~ A*
	+	DTime	DFourTime	*				VarInput	•	Read	•	time interval (ms)
		N	DINT	•				VarInput	•	Read	•	occurances
		START	USINT	•				EventInput	•	Read	•	start event
		STOP	USINT	•				EventInput	•	Read	•	stop event
		CV	DINT	•				VarOutput	•	Write	•	current value
		EO	USINT	•				EventOutput	•	Write	•	Event Output
	+	CTRL	E_TABLE_CTRL	•				Var	•	Read/Write	•	
	÷	DLY	E_DELAY	•				Var	•	Read/Write	•	
	+	LocalEventInput_START	LocalEventInput	*				Var	•	Read/Write	•	
	÷	LocalEventInput_STOP	LocalEventInput	•				Var	*	Read/Write	Ŧ	
	+	latch1	E_LATCH_DINT	*				Var	•	Read/Write	•	
*				*					*		*	
	▲									•		

- DT and N data inputs having the VarInput direction
- START and STOP event inputs having the EventInput direction.
- CV data output having the VarOutput direction
- EO event output having the EventOutput direction
- LocalEventInput_START and LocalEventInput_STOP are created for the START and STOP arguments of the function block

See Also

Basic IEC 61499 Function Blocks Composite IEC 61499 Function Blocks

Basic IEC 61499 Function Blocks

Basic IEC 61499 function blocks are defined using SFC elements to develop their execution control chart.

- Steps (States)
- Transitions
- Sequence Controls
- Jumps to Steps

ISaGRAF automatically implements the WITH qualifier to ensure synchronization between data inputs and event inputs.

When inserting steps and transitions, these are assigned a default naming convention including numbering. For steps, the default naming is Sn where S indicates a step and n indicates the numbering for the step. For transitions, the default naming is Tn where T indicates a transition and n indicates the numbering for the transition. You can rename steps and transitions. However, when renaming steps and transitions using the default naming convention and changing only the numbering, you can renumber these steps and transitions to a numbering scheme starting from top to bottom, then from left to right.

The following example shows the E_Merge function block made up of an initial step, two transitions, and a step:

Event Control Chart

E_MERGE

SFC Equivalent

(* gets the events *) LocalEventInput_EI1(EI1); LocalEventInput_EI2(EI2);

(*tests for an event *) LocalEventInput_EI1.Trigger or LocalEventInput_EI2.Trigger;

(*processes the algorithm *) EOLocal:=EOLocal+1; EO:=EOLocal;

When defining the parameters of basic IEC 61499 function blocks, for each argument having the event input type, a local variable having the Local_prefix is automatically created. Also, for each argument having the event output type, a defined word having the Generate_prefix is automatically created. From actions, you can call defined words for these event outputs.

Parameters		→ ‡ ×
New Input event	E_MERGE	New Output event
	🗧 EOLocal (* EO *) 🛛 🏹 🕹	EO (* EO *) ∠ ×
	SocialEventInput_EI1 (* *) ∑ ≤	
1012	Vertice State Sta	
- Million		i i i i i i i i i i i i i i i i i i i
1027		1007
1/1)//,
res)		rent l
New Input	New Variable	New Output
Name: El1 Al	lias : El1 Initial values :	
DataType : USINT -	EII(USINI)	
Dimension : Attrib	ute : Read 🔹	
Comment : First input event		

Typically, an event transition in an SFC diagram is made up of LD statements.

To add parameters to a basic function block

- **1.** In the Solution Explorer, locate the basic function block by expanding the Function Blocks section.
- 2. Right-click the block, then choose Parameters from the contextual menu.

A graphic representation of the function block is displayed in the Parameters window.

3. To add a new input, output, or variable, click the respective option below the function block representation and define the arguments for the block.

To renumber steps and transitions

Renumbering ignores steps and transitions using a naming convention other than the default Sn for steps and Tn for transitions.

- 1. Open the basic IEC 61499 function block for which to renumber the steps and transitions.
- 2. From the Tools menu, choose Multi-language Editor, then Renumber Steps and Transitions.

States

For an IEC 61499 ECC, an initial step corresponds to an execution control initial state (EC initial state) and a step corresponds to an execution control state (EC state).

Intial steps express the initial situation of an SFC program. Whereas, steps are placed throughout an SFC program. An SFC program must contain at least one initial step. Initial steps and steps are referenced by a name, written in their square symbol. This information is the level 1 of the step.

An initial step has a double bordered graphic symbol.

A step is represented by a single square.

At run time, a token indicates that the step is active. For initial steps, a token is automatically placed in each when the program is started.

Steps have attributes. These can be used in any of the other languages.

StepName.x activity of the Step (Boolean value) StepName.t activation duration of the Step (time value)

(where StepName is the name of the step)

Activity of a step is an attribute of a step which is activated by an SFC token.

For SFC function blocks, when reading a child active step or duration from a father:

ChildName.___S1.x activity of the Step (Boolean value) ChildName.___S1.t activation duration of the Step (time value)

(where ChildName is the name of the child. Note that S1 is preceded by two underscore (_)characters)

To insert an initial step

• From the Toolbox, drag the initial step element into the language container.

The initial step is displayed in the language container.

To insert a step

• From the Toolbox, drag the step element into the language container.

The step is displayed in the language container.

Transitions

For an IEC 61499 ECC, transitions and event transitions correspond to an execution control transition (ECC transition). Event transitions are transitions programmed to trigger from an event input. Event transitions are pre-programmed in LD.

Transitions are represented by a small horizontal bar that crosses the connection link. Event transitions are displayed with an additional arrow pointing towards the connection link. Each transition is referenced by a name, displayed next to the transition symbol.

To insert a transition

• From the Toolbox, drag the transition element into the language container.

The transition is displayed in the language container.

To insert an event transition

• From the Toolbox, drag the event transition element into the language container.

The event transition is displayed in the language container.

Sequence Controls

Sequence controls are divergences or convergences. These elements adjust automatically to the context of the SFC diagram. For instance, the editor automatically inserts the type of sequence control required according to the elements at the insertion point. Moreover, when adding a parallel element below a sequence control, the sequence control automatically branches out to the added element. Also, when a sequence control is placed erroneously within a diagram, the editor displays it as red.

- Selection Divergences, a multiple link from a step to multiple transitions
- Selection Convergences, a multiple link from multiple transitions to a single step
- Simultaneous Divergences, a multiple link from a transition to multiple steps
- Simultaneous Convergences, a multiple link from multiple steps to a single transition

Divergences are multiple links from one SFC element (step or transition) to multiple SFC symbols. Convergences are multiple connections from more than one SFC symbol to one other symbol.

When inserting a sequence control, the type is determined logically according to the number of SFC elements of a same type (whether multiple) located initially above then below the control.

To insert a sequence control

• From the Toolbox, drag the sequence control to the desired location in the language container.

The sequence control element is displayed in the language container.

Selection Divergences

A selection divergence (OR) is a multiple link from one step to multiple transitions. The selection divergence enables an active token to pass into one of a number of branches.

Conditions attached to the different transitions at the beginning of a selection divergence are not implicitly exclusive. Exclusivity of transitions is defined by the priorities set to those transitions following the divergence.

Selection divergences are represented by single horizontal lines.

The first transitions following a single divergence are set in a group to define their priority of execution. The workbench automatically assigns the priority of transitions, displayed on the left, in the order of creation of the divergence branch. You can specify a different priority for a transition in the properties. The possible priority values range from 1 to 255.

Example

(* ECC with selection divergence and convergence *)

See Also

Selection Convergences Simultaneous Divergences

Selection Convergences

A selection convergence (OR) is a multiple link from multiple transitions to a single step. Selection convergences are generally used to group branches which were started using selection divergences. Selection convergences are represented by single horizontal lines.

See Also Selection Convergences Simultaneous Convergences

Simultaneous Divergences

A simultaneous divergence (AND) is a multiple link from one transition to multiple steps. A simultaneous divergence corresponds to parallel operations of a process. Simultaneous divergences are represented by double horizontal lines.

Example

(* Program with simultaneous divergence and convergence *)

See Also

Simultaneous Convergences Selection Divergences

Simultaneous Convergences

A simultaneous convergence (AND) is a multiple link from multiple steps to a single transition. Simultaneous convergences are generally used to group branches which were started using simultaneous divergences. Simultaneous convergences are represented by double horizontal lines.

See Also Simultaneous Divergences Selection Convergences

Jumps to Steps

Jump symbols are available to indicate a connection link from a transition to a step, without having to draw a connection line. The jump symbol must be referenced with the name of the destination step. A jump symbol cannot represent a link from a step to a transition.

Jump to Step S1

To insert a jump to a step

- 1. From the Toolbox, drag the jump element into the language container and place it directly below the existing transition.
- 2. In the language container, click the jump element.
- 3. In the drop-down combo-box, click the desired step.

Example

The following charts are equivalent. The chart on the left uses links to return from the bottom to the top of the chart while the chart on the right uses jumps to return to the top of the chart.

Coding Action Blocks for Steps

Action blocks are operations executed when a step is active. Steps can contain multiple action blocks of the same or different type. You add action blocks to the level 1 of a step. Depending on the action block type, you may need to program the level 2 for the block. You program level 2 code for an action block in a level 2 window, displayed to the right of the POU. The available action block types are the following:

- Boo where the action block name is automatically associated to Boolean variable selected from the variable selector. Possible qualifiers are Action (N), Reset (R), and Set (S).
- LD where you program an LD diagram in the level 2 window. Possible qualifiers are Action (N), Reset (R), Set (S), Pulse on Deactivation Action (P0), and Pulse On Activation Action (P1).
- SFC where the action block name is automatically associated to the SFC child. Possible qualifiers are Action (N), Reset (R), and Set (S).
- ST where you define ST code in the level 2 window. Possible qualifiers are Action (N), Reset (R), Set (S), Pulse on Deactivation Action (P0), and Pulse On Activation Action (P1).
- Event Action where an ST action is automatically generated following the selection of an event output. The ST action is named using the event output name preceded by the *Generate_* prefix.

Individual SFC steps are executed in the following order:

- 1. Step activation beginning when the previous transition is cleared. During this period, defined action blocks are executed in the order of appearance.
- 2. Step cycle beginning when the step becomes active and ending when the step completes deactivation. During this period, defined action blocks are executed in the order of appearance.
- **3.** Step deactivation ending when the following transition becomes active. During this period, defined action blocks other than Boolean (Boo) action blocks having the N qualifier are executed in the order of appearance. Boolean (Boo) action blocks are executed after all other action blocks.

To add action blocks to steps

- 1. Select the step for which to define operations.
- 2. Right-click the step, then from the contextual menu choose Add, then the required action block type.
- **3.** Specify the required properties for the action block from the Properties window by clicking the action block definition on the step.
 - a) To rename the action block, type the required text in the Name field.

Note: The names for Boo and SFC action blocks are automatically associated to their respective assignation (Boolean variable or SFC child).

- **b)** To specify the qualifier for the action block, choose the required type in the Qualifier field.
- c) To include a comment, type the required text in the Comment field.
- **4.** For a Boo action block, double-click the action block name, then from the Variable Selector, select the variable for use in the block.
- 5. For an ST or LD action block, access the level 2 for the block by double-clicking the action block name on the step, then program the required level 2 operations in the level 2 window displayed to the right of the POU.
- 6. For an Event Action block, select an event output from the Select Output Event window.

To rearrange the order of action blocks for a step

- 1. On the step, select the action block to displace.
- 2. Right-click the action block, the choose Move Up or Move Down from the contextual menu.

To delete an action block

- 1. On the step, select the action block to remove.
- 2. Right-click the action block, the choose **Delete** from the contextual menu.

Boolean Actions

Boolean Actions assign a Boolean Variable with the activity of the Step. The Boolean Variable can be a VarInput or VarOutput variable. It is assigned each time the Step activity starts or stops. This is the meaning of the basic Boolean Actions:

N on a Boolean Variable	assigns the Step activity signal to the variable
S on a Boolean Variable	sets the variable to TRUE when the step activity signal becomes TRUE
R on a Boolean Variable	resets the variable to FALSE when the step activity signal becomes TRUE

The Boolean variable must be VarInput or VarOutput. The following SFC programming leads to the indicated behavior:

Pulse Actions

A pulse action is a list of instructions, which are executed only once at the activation of the Step: P1 Qualifier, or executed only once at the deactivation of the Step: P0 Qualifier. Instructions are written using the ST or LD syntax. The following shows the results of a pulse Action with the P1 Qualifier:

Step Activity	
Execution	

Example

In the following program, step S1 is assigned an ST action named EdgeInit having the P1 qualifier and S2 is assigned an ST action named EdgeCount having the P1 qualifier. The code for these actions is programmed in their respective level 2 window.

Non-Stored Actions

A non-stored (normal) action is a list of ST or LD instructions which are executed at each cycle during the whole active period of the step. Instructions are written according to the used language syntax. Non-stored actions have the "N" qualifier. The following are the results of a non-stored Action:

Step Activity

Example

Execution

In the following program, step S1 is assigned an ST action named EdgeInit having the P1 qualifier and S2 is assigned an ST action named EdgeCount having the N qualifier. The code for these actions is programmed in their respective level 2 window.

Coding Conditions for Transitions

You code conditions for the clearing of transitions by programming these in the level 2 window. When defining the properties of conditions, you indicate a name, a comment (optional), and the programming language (type). The available programming languages for transitions are LD and ST.

When no expression is attached to the Transition, the default condition is TRUE.

To code conditions for transitions

- 1. Select the transition for which to code a condition.
- 2. Right-click the transition, then from the contextual menu choose Properties.
- 3. Specify the required properties for the transition from the Properties window.
 - a) To rename the transition, type the required text in the Name field.
 - **b)** To specify the type (programming language) for the transition condition, choose the required type in the Type field.
 - c) To include a comment, type the required text in the Comment field.
- 4. In the Level 2 window, program the required condition.

Conditions Programmed in ST

The Structured Text (ST) language can be used to describe the condition attached to a Transition. The complete expression must have Boolean type and may be terminated by a semi colon, according to the following syntax:

< boolean_expression > ;

The expression may be a TRUE or FALSE constant expression, a single input or an internal Boolean Variable, or a combination of Variables that leads to a Boolean value.

Example

(* Program with ST programming for Transitions *)

Conditions Programmed in LD

The Ladder Diagram (LD) language can be used to describe the condition attached to a transition. The initial diagram is composed of a rung.

Example

(* Program with LD programming for transitions *)

Calling Functions from Transitions

Any Function (written in ST, LD, or FBD), or a "C" Function can be called to evaluate the condition attached to a Transition, according to the following syntax in ST:

< function >();

The value returned by the Function must be Boolean and yields the resulting condition:

return value = FALSE	->	condition is FALSE
return value = TRUE	->	condition is TRUE

Example

(* Program with function call for transitions *)

Calling Function Blocks from Transitions

It is not recommended to call a function block in an SFC condition for the following reasons:

- A function block should be called at each cycle, typically in a cyclic program.
- An SFC condition is evaluated only when all of its preceding steps are active (not at each cycle)

Composite IEC 61499 Function Blocks

Composite IEC 61499 function blocks are defined using IEC 61499 FBD calling standard IEC 61499 function blocks, basic function blocks, and composite function blocks to perform the required operations.

A composite IEC 61499 function block is like a function block network where nodes are basic and/or composite function blocks and their parameters and where branches are data connections and event connections. **ISaGRAF** automatically implements the WITH qualifier to ensure synchronization between data inputs and event inputs.

The following example shows the E_CYCLE composite function block:

IEC 61499 FBD Equivalent

The following elements are available for composite IEC 61499 function blocks:

- Function Blocks
- Variables

•

Links

Regions

• Comments

Function Blocks

In IEC 61499 programs and composite function blocks, you can include standard IEC 61499 or user-defined function blocks. You include functions blocks by inserting block elements into the language container then selecting the function block from the block selector. Following insertion, you connect inputs and outputs to variable blocks (literals or defined words) or other block inputs or outputs. Formal parameter short names are displayed inside the blocks.

To insert a block element

1. From the **Toolbox**, drag the block element into the language container.

The Block Selector is displayed.

2. In the **Block Selector**, choose the required function block, then click **OK**. You can sort the block list according to the columns by setting these in ascending or descending order.

The selected function block is displayed in the language container.
Variables

In IEC 61499 programs and composite function blocks, variable blocks can only be literals or defined words.

To connect a new symbol to an existing one (a block input or output), drag the element until its connecting line on the left (or right) overlaps an existing connecting point. When the mouse is released, the new symbol is automatically created and linked.

When entering variable blocks, you need to enter a literal or select a defined word by double-clicking the variable element. Available defined words are displayed in a drop-down list.

To insert a variable element

- 1. From the toolbox, drag the variable element to the required input or output.
- 2. Double-click the variable element, then do one of the following:
 - To specify a literal, type the required value in the text box.
 - To specify a defined word, select a defined word from the drop-down list.

The variable element is displayed in the language container with the specified value.

Links

You draw connection links between block inputs and outputs. For variable elements, the links are automatically drawn when the element approaches an input or output.

Negation connection links are equivalent to placing a NOT block on a direct link.

Links are always drawn from an output to an input point (following the direction of the data flow).

To insert a link between outputs and inputs in programs

- 1. Click an output, then drag while holding the mouse depressed to the required input.
- 2. To set the link to negation, right-click the link and choose Properties from the contextual menu, then in the Properties window, set the Is Negation property to True.

To insert a link between outputs and inputs in composite function blocks

• Right-click an output and from the contextual menu choose Connect To, then the required function block and input with which to connect.

Regions

Regions delineate and group together areas of an IEC 61499 POU. A region consists of a header and a delineated zone grouping together elements. The header section enables entering free-format text. After entering text in the header, click elsewhere in the region to exit editing mode. When moving the location of a region in the language container, you can also move all the content grouped within. You can resize regions.

Region text					

To insert a region

• From the Toolbox, drag the region element into the language container.

The region element is displayed in the language container.

To move a region

- 1. In the language container, left-click the top right corner of the region element and hold the mouse button.
- 2. Drag the region element to the required location and release the mouse button.

The region and the elements contained inside have moved location in the language container.

See Also

Comments

Comments

Comments are free format text inserted anywhere in the POU, for documentation purposes only. After entering text, click elsewhere in the workspace to exit editing mode.

To insert a comment

- 1. From the toolbox, drag the comment element to the required location in the language container.
- 2. Double-click the comment element, then type the required text within the space provided.

The comment is displayed in the language container.

Execution Control Chart Behavior

The execution control chart behavior consists of three states: initial situation (start), code execution, and end. Each virtual machine cycle consists of determining all clearable transitions and executing as many active steps as possible. Execution ends upon reaching unclearable transitions, the end of the control chart, or a previously executed step.

Within the execution cycle, the dynamic behaviors of the SFC language are the following:

Initial situation

The Initial Situation is characterized by the initial steps which are, by definition, in the active state at the beginning of the operation. At least one initial step must be present in each SFC program.

Clearing of a transition

A transition has three properties: enabled/disabled, active/inactive, and clearable/non-clearable. A transition is enabled when all immediately preceding steps linked to its corresponding transition symbol are active, otherwise, the transition is disabled. A transition is active if its condition is True.

A transition is clearable if it is enabled and active at the same time. When a transition is clearable, the steps immediately preceding it become inactive and those immediately following it become active. When transitions follow a divergence, multiple transitions may become clearable.

Changing of state of active steps

The clearing of a transition simultaneously leads to the active state of the immediately following steps and to the inactive state of the immediately preceding steps. The code within a step is only executed if the step is active.

Simultaneous clearing of transitions

All transitions (of all SFC programs) that can be cleared (enabled and active), are simultaneously cleared.

End

The End is characterized by reaching the end of clearable transitions, the end of the control chart, or a previously executed step.

IEC 61499 Keyboard Shortcuts

The following keyboard shortcuts are available for use with IEC 61499. Some shortcuts do not apply or may differ while debugging.

Ctrl+A	Selects all elements (not available while debugging)
Ctrl+C	Copies the selected elements to the clipboard (not available while debugging)
Ctrl+V	Pastes elements saved on the clipboard to the insertion point (not available while debugging)
Ctrl+X	Cuts the selected elements to the clipboard (not available while debugging)
Ctrl+Y	Redoes the previous command (not available while debugging)
Ctrl+Z	Undoes the previous command (not available while debugging)
Shift+Ctrl+Alt+G	Enables/disables the grid in the language container
Shift+Alt+Enter	Toggles between full-screen and windowed modes
Ctrl+R	Toggles between Auto-Input and Manual-Input. Auto-Input automatically opens the Block Selector and Variable Selector (not available while debugging).
Ctrl+B	Bolds selected comment text (not available while debugging)
Ctrl+I	Italicizes selected comment text (not available while debugging)
Ctrl+U	Underlines selected comment text (not available while debugging)
Enter	When a function block is selected, opens the Block Selector (not available while debugging).
	When a comment is selected, starts editing it (not available while debugging).
Ctrl+Enter	When a variable is selected, opens the drop-down list of available variables (not available while debugging).
	When editing a comment, confirms the text (not available while debugging).
Ctrl+-	Decreases the magnification
Ctrl+=	Increases the magnification

Ctrl+0	100% magnification
Ctrl+1	Inserts a variable (not available while debugging)
Ctrl+2	Inserts a function block (not available while debugging)
Ctrl+3	Inserts a comment (not available while debugging)
Shift+Up Arrow	Reduces the height of the selected element (not available while debugging)
Shift+Down Arrow	Increases the height of the selected element (not available while debugging)
Shift+Left Arrow	Reduces the width of the selected element (not available while debugging)
Shift+Right Arrow	Increases the width of the selected element (not available while debugging)
Ctrl+Up Arrow	Moves the selection to the next element located higher in the diagram without keeping the previous element selected (not available while debugging)
Ctrl+Down Arrow	Moves the selection to the next element located lower in the diagram without keeping the previous element selected (not available while debugging)
Ctrl+Left Arrow	Moves the selection to the next element located to the left in the diagram without keeping the previous element selected (not available while debugging)
Ctrl+Right Arrow	Moves the selection to the next element located to the right in the diagram without keeping the previous element selected (not available while debugging)
Alt+Shift+Up Arrow	When a function block is selected, navigates up the different inputs and outputs (not available while debugging)
Alt+Shift+Down Arrow	When a function block is selected, navigates down the different inputs and outputs (not available while debugging)
Alt+Shift+Left Arrow	When a function block is selected, navigates left across the different inputs and outputs (not available while debugging)
Alt+Shift+Right Arrow	When a function block is selected, navigates right across the different inputs and outputs (not available while debugging)
Ctrl+Page Up	Jumps to the top of the language container

Ctrl+Page Down	Jumps to the bottom of the language container
Alt+Up Arrow	Scrolls up
Alt+Down Arrow	Scrolls down
Alt+Left Arrow	Scrolls left
Alt+Right Arrow	Scrolls right
Up Arrow	Moves selected elements up the language container. While debugging, scrolls up.
Down Arrow	Moves selected elements down the language container. While debugging, scrolls down.
Left Arrow	Moves selected elements left across the language container. While debugging, scrolls left.
Right Arrow	Moves selected elements right across the language container. While debugging, scrolls right.
Delete	Removes the selected elements (not available while debugging)

FBD Language

The Functional Block Diagram (FBD) is a graphic language enabling programmers to build complex procedures by taking existing functions from the standard library, function section, or function block section.

In FBD containers, you can also include LD elements such as coils, contacts, jumps, labels, and returns. However, in contrast to LD elements usage in LD containers where these elements follow strict graphical positioning regulations, LD elements within FBD container are independent of these regulations.

See Also FBD Diagram Main Format Debugging FBD Programs

FBD Diagram Main Format

FBD diagrams describe a process between input variables and output variables. A process is described as a network of basic elements. Input and output variables are connected to blocks by connection lines. Outputs of blocks can also be connected to inputs of other blocks.

An entire process represented by an FBD program is built using the available variables, operators, functions, and function blocks. Each block has either a fixed or defined number of input and output connection points. A block is represented by a single rectangle. The inputs are connected on its left border. The outputs are connected on its right border. An elementary block performs a single function between its inputs and its outputs. The name of the function to be performed by the block is written inside its rectangular shape. Each input or output of a block is labeled and has a well defined type.

Function Name

Input variables of an FBD program must be connected to input connection points of blocks. The type of each variable must be the same as the type expected for the associated input. An input for FBD diagram can be a literal, any internal or input variable, an output variable, or a block output.

Output variables of an FBD program must be connected to output connection points of blocks. The type of each variable must be the same as the type expected for the associated block output. An output for FBD diagram can be any internal or output variable, or the name of the function (for functions only). When an output is the name of the currently edited function, it represents the assignment of the return value for the function (returned to the calling program).

Input and output variables, inputs and outputs of the blocks are wired together with connection lines, or links. Single lines can be used to connect two logical points of a diagram:

- An input variable and an input of a block
- An output of a block and an input of another block
- An output of a block and an output variable

The connection is oriented, meaning that the line carries associated data from left to right. The left and right ends of the connection line must be of the same data type.

Multiple right connections, also called divergences can be used to broadcast information from their left end to each of the right ends. All ends of the connections must be of the same data type.

See Also

Execution Order of FBD Programs

Execution Order of FBD Programs

When editing FBD programs, you can display the execution order of elements and networks. Within a program, a network is a sequence of connected blocks. The execution order for elements and networks can be defined automatically or manually. When using the manual definition for the execution order, a region is considered a sub-network where the rules of execution order apply to the elements inside the region. The execution order is displayed for the following elements in the form of numerical tags:

- blocks
- variables (where a value is assigned from another variable)
- coils
- contacts
- vertical bars
- returns
- jumps
- labels (manual definition only)

For manual definition of the execution order, a numerical tag is displayed with a red outline when the specified tag order for an element presents a possible malfunction.

Numerical tags are displayed using different colors depending on the type of execution order:

Beige. Automatic execution order.

Green. Manual definition for the execution order.

When using manual definition, you can perform the following task:

• reset the manual definition order to the default execution order

For the execution order of a program, a block is any object in the diagram, a network is a set of blocks linked together, and the position of a block is based on its top-left corner. The following rules apply to the execution order of the program:

- Networks are executed from top to bottom, left to right. During execution, a grouping is entirely processed before moving to the next grouping.
- All inputs must be resolved before executing a block. When the inputs of two or more blocks are resolved at the same time, the decision for the execution is based on the position of the block.
- The outputs of a block are assigned following execution

You can perform execution order operations from the menu bar, the toolbar, or keyboard shortcuts.

To display the execution order in an FBD diagram

• From the Tools menu, click **Execution Order** (or press **Ctrl+W**).

Numerical tags in the individual elements display the default execution order.

To manually define the execution order in an FBD diagram

Before manually defining the execution order, you need to display the execution order for a diagram. You specify manual definition of the execution order from the contextual menu, accessed by right-clicking in the language container.

- 1. To specify manual definition of the execution order, right-click in the language container, point to **Execution Order**, and then click **Manual Definition** (or press **Ctrl+Alt+M**).
- 2. To start redefining the execution order of individual elements, right-click in the language container, point to **Execution Order**, and then click **Start Renumbering**.

The numerical tags displaying the execution order are available for renumbering.

3. Click the individual elements in the required order of execution.

When renumbering is complete, right-click in the language container, point to Execution

Order, and then click Stop Renumbering.

To reset the manual definition to the default execution order rules

You reset the execution order from the contextual menu, accessed by right-clicking in the language container.

1. To reset the execution order to use the default rules, right-click in the language container, point to **Execution Order**, and then click **Reset**.

See Also FBD Diagram Main Format Regions

Debugging FBD Programs

When debugging FBD programs, you can monitor the output value of elements. These values are displayed using color, numeric, or textual values according to their data type:

• Output values of boolean type are displayed using color. The output value color continues to the next input. When the output value is unavailable, boolean elements remain black. The colors are red when True and blue when False.

• Output values of SINT, USINT, BYTE, INT, UINT, WORD, DINT, UDINT, DWORD, LINT, ULINT, LWORD, REAL, LREAL, TIME, DATE, and STRING type are displayed as a numeric or textual value in the element. When the output is a structure type, the displayed value is the selected member.

When the output value for a numeric or textual value is unavailable, the *WAIT* text is displayed in the output label. Values are also displayed in the corresponding dictionary instance.

For FBD programs, you enable step-by-step execution by generating debug information for individual POUs. When debug information is generated for FBD programs in a resource, the resource automatically switches to step-by-step execution when the application encounters a breakpoint. You instantiate step-by-step execution by setting breakpoints to functions, function blocks, operators, user-defined functions, and user-defined function blocks. In the language editor, breakpoints appear as red circles located at the top left corner of blocks. When a breakpoint is encountered, a yellow arrow is displayed on the breakpoint and the block is highlighted in yellow. When debugging, the application stops when it encounters a breakpoint. At this time, the resource is in the DEBUGGING state and you can choose to perform one of the following operations:

- Step into the highlighted block (available for user-defined functions and function blocks), executes the highlighted block then steps to the subsequent block.
- Step over the highlighted block, skips the highlighted block then steps to the subsequent block.
- Switch execution to real-time mode
- Switch execution to cycle-to-cycle mode
- Execute one cycle

Note: You can only set breakpoints for TIC POUs; you cannot set breakpoints for C source code POUs.

To generate debug information for an FBD POU

Generate debug information for FBD POUs enables step-by-step debugging within the POU.

- 1. In the Solution Explorer, select the FBD POU for which to generate debug information.
- 2. In the Properties for the POU, set *Generate Debug Info* to True.

To set a breakpoint in an FBD POU

• Right-click the block on which to add a breakpoint, then click Add Breakpoint.

A breakpoint is displayed as a red circle at the top left corner of the block.

To disable a breakpoint

Disabling a breakpoint prevents the block execution.

Right-click the block on which to disable a breakpoint, then click **Disable Breakpoint**.

To enable a breakpoint

Enabling a breakpoint allows block execution.

Right-click the block on which to enable a breakpoint, then click **Enable Breakpoint**.

To delete a breakpoint

Right-click the block having a breakpoint to remove, then click **Delete Breakpoint**.

The breakpoint is deleted from the block.

To step into the user-defined function or function block

From the Debug menu, click Step Into (or press F11).

The POU executes the highlighted user-defined function or function block then steps to the next block.

To step over the block

From the Debug menu, click Step Over (or press F10).

The POU skips the highlighted block then steps to the next one.

To switch execution to real-time mode

From the Target Execution toolbar, click 🚳.

The POU executes in real-time mode.

To switch execution to cycle-to-cycle mode

• From the Target Execution toolbar, click 🚳.

The POU executes in cycle-to-cycle mode.

To execute one cycle

• From the Target Execution toolbar, click 🔯.

Executes the remaining POUs until the next cycle.

FBD Elements

When programming in FBD, you place elements in the workspace by dragging them from the Toolbox into the language container. For FBD POUs, the following elements are available:

- Blocks
- Variables
- Vertical Bars
- Labels
- Jumps
- Returns
- Rungs
- Left Power Rails
- Right Power Rails
- Coils
- Contacts
- Regions
- Comments

See Also

FBD Diagram Main Format Execution Order of FBD Programs

Blocks

Block elements can be operators, functions, or function blocks. You connect block inputs and outputs to variables, contacts or coils, or other block inputs and outputs. You insert block elements in language containers.

Functions and function blocks are represented by a box displaying the name of the function, function block, or operator, and the parameter names. For function blocks, the instance name is displayed in italics.

For functions, the return parameter is the only output. For function blocks, multiple return parameters can provide multiple outputs. The return parameter of a function has the same name as the function. The return parameters of a function block can have any name.

You define the parameters of POUs in the Parameters view.

For loops in blocks, you need to use local variables since these are initialized with a value. When using loops, the first execution may produce incorrect outputs due to the execution order of elements in the diagram or the initial values of temporary variables. For example, the following diagram produces a warning when compiling since the TON block is executed before the XOR operator. Whereas, moving the XOR operator to the upper left corner of the diagram eliminates the warning since the XOR operator becomes first in the execution order.

You can resize blocks elements.

To access the parameters view

The parameters view is available from function or function block instances located in the Solution Explorer.

1. In the Solution Explorer, right-click the required function or function block, then click **Parameters**.

The Parameters view is displayed.

2. To define the parameters of a function or function block, in the Parameters view, enter the required information in the fields provided.

To insert a block element

1. From the Toolbox, drag the block element into the language container.

The Block Selector is displayed.

2. In the Block Selector, choose the required function block, then click **OK**. You can sort the block list according to the columns by setting these in ascending or descending order.

The selected block is displayed in the language container.

See Also FBD Diagram Main Format

Variables

To connect a new symbol to an existing one (another variable, a block input, or a block output) in the workspace, keep the mouse button depressed (the cursor becomes a "ghost" symbol) and drag the element until its connecting line on the left (or right) overlaps an existing connecting point. When the mouse is released, the new symbol is automatically created and linked.

Drag to place the existing element:

Release the mouse button. The variable is automatically connected:

You replace existing variables in POUs by double-clicking them to access the Variable Selector or single-clicking them to select from a drop-down combo-box containing the global and local variables. Also, you can single-click a variable, then type a literal value in the text box provided. When inserting literal values that being with a letter or an underscore, enclose these in single quotes as follows: 'abc'.

Select a variable from the drop-down combo-box:

Type a literal value in the text box:

When selecting items such as local variables, global variables, system variables, and defined words from the drop-down combo-box, typing characters in the text box focuses on the possible items. You can focus on listed items by typing letters, digits, and specific special characters: $!, \#, \$, \%, \&, \backslash, *, +, -, ./ <, :, =, >, ?, @, \backslash, ^, _, `, |, and ~.$

For input and output variables, you can choose to display comments entered in the dictionary. From the View menu, you can access the Properties window where you can define the *Comment Position* property.

Variable Style	Properties				<
Alpha 255 Background Color SteelBlue Background Gradient Color LightSteelBlue Comment Position Top V Display Mode None Top Comment Position Bottom Position of the comment in refe Left shape. Possible values are top, Right	Variable Style			-	
Alpha 255 Background Color SteelBlue Background Gradient Color LightSteelBlue Comment Position Top V Display Mode None Top Comment Position Bottom Position of the comment in refe Left shape. Possible values are top, Right					
Background Color SteelBlue Background Gradient Color LightSteelBlue Comment Position Top V Display Mode None Top Comment Position Bottom Position of the comment in refe Left shape. Possible values are top,Right	Alpha	255			
Background Gradient Color LightSteelBlue Comment Position Top Display Mode None Top Comment Position Bottom Position of the comment in refe Left shape. Possible values are top,Right	Background Color		SteelBlue		
Comment Position Top ♥ Display Mode None Top Comment Position Bottom Position of the comment in refe Left shape. Possible values are top, Right	Background Gradient Color		LightSteelE	lue	
Display Mode None Top Comment Position Bottom Position of the comment in refe Left shape. Possible values are top, Right	Comment Position	Тор		~	2
Top Comment Position Position of the comment in refe Left shape. Possible values are top, Right	Display Mode	None	,		
Eomment Position Bottom Position of the comment in refe Left shape. Possible values are top, _{Right}		Тор			
Position of the comment in refe Left shape. Possible values are top, Right	Comment Position	Botto	m		
shape. Possible values are top, Right	Position of the comment in refe	Left			
	shape. Possible values are top,	Right	:		

You can resize variables displayed in the workspace.

To insert a variable

1. From the Toolbox, drag the variable element into the language container.

The Variable Selector is displayed.

2. In the Variable Selector, select the required variable, then click **OK**.

The variable is displayed in the language container.

See Also

FBD Diagram Main Format

Vertical Bars

Vertical bars are graphic components of FBD programs enables closing multiple parallel links. More than one horizontal links on the left side of a vertical bar are connected to one link on the right side. The Boolean state of the right end is the logical OR between all the left extremities.

To insert a vertical bar

• From the Toolbox, drag the vertical bar element into the language container.

The vertical bar is displayed in the language container.

Labels

Labels can be placed anywhere in an FBD diagram. These are used as a target for jump instructions, to change the execution order of the diagram. Labels are not connected to other elements.

Place labels on the left of the diagram in order to increase diagram readability.

Labels are used to control the execution of the diagram. No other object may be connected on the right of a label symbol.

If the connection line on the left of the jump symbol has the Boolean state TRUE, the execution of the program directly jumps to after the corresponding label symbol.

Example

To insert a label

- 1. From the Toolbox, drag the label element into the language container.
- 2. In the language container, click the label, then type a label name in the space provided.

The label is displayed in the language container.

See Also

Jumps

Jumps

A Jump symbol must be linked to a Boolean point. When this Boolean (left) connection is TRUE, the execution of the diagram Jumps directly to the target Label.

Jumps are used to control the execution of the diagram. No other object may be connected on the right of a jump symbol.

If the connection line on the left of the jump symbol has the Boolean state TRUE, the execution of the program directly jumps to after the corresponding label symbol.

Example

To insert a jump to a label

Before inserting jumps, define one or more labels within the program.

- 1. From the Toolbox, drag the jump element into the language container.
- **2.** In the language container, click the jump element, then select the required label name from the drop-down combo-box.

The jump is displayed in the language container with the required label name.

See Also

Labels

Returns

If the connection line (to the left of the Return symbol) has the Boolean state TRUE, the Program ends - no further part of the diagram is executed.

No connection can be put on the right of a RETURN symbol.

The "<RETURN>" keyword may occur as a diagram output. It must be connected to a Boolean output connection point of a block. The RETURN statement represents a Conditional End of the program: if the output of the box connected to the statement has the Boolean value TRUE, the end (remaining part) of the diagram is not executed.

Example

(* ST equivalence: *)

If auto_mode OR alarm Then
Return;
End_if;
bo67 := (bi10 AND bi23) OR x_cmd;

To insert a return

• From the **Toolbox**, drag the return element into the language container.

The return is displayed in the language container.

Rungs

Rungs are graphic components of FBD programs and represent a group of circuit elements leading to the activation of a coil. Dragging the rung element into the workspace inserts a left power rail linked to a right power rail. Also, the rung contains a direct contact and a direct coil. Error symbols (1) indicate that the direct contact and direct coil are undefined.

To insert a rung

• From the Toolbox, drag the rung element into the language container.

The rung is displayed in the language container.

Left Power Rails

Left Power Rails are graphic components of FBD programs that represent the left boundary of a rung. Any horizontal link connected to a left power rail has the boolean state TRUE.

You can link left power rails to right power rails as well as many FBD and LD elements, including variables, blocks, jumps, returns, vertical bars, coils, and contacts.

To insert a left power rail

• From the Toolbox, drag the left power rail element into the language container.

The left power rail is displayed in the language container.

Right Power Rails

Right Power Rails are graphic components of FBD programs that represent the right boundary of a rung. The right power rail is optional; ending the rung with a coil also produces the correct code.

You can link right power rails to left power rails as well as many FBD and LD elements, including variables, blocks, vertical bars, coils, and contacts.

To insert a right power rail

• From the Toolbox, drag the right power rail element into the language container.

The right power rail is displayed in the language container.

Coils

Coils are graphic components of LD programs that you can use in FBD programs representing the assignment of Boolean outputs. A coil represents an action. It must be connected on the left to a Boolean symbol, such as a contact or the Boolean output of a block.

The following types of coils are available from the FBD toolbox:

- Direct Coil
- Reverse Coil
- Set Coil
- Reset Coil

You can change the type of a coil at any time following its insertion.

When inserting coils in POUs, you assign variables using the Variable Selector. Names of assigned variables are displayed above the coil elements within POUs. You replace existing variables by double-clicking the variable names to access the Variable Selector or by single-clicking variable names to select from drop-down combo-boxes containing the global and local variables. Also, you can single-click existing variables, then type literal values in the text boxes provided. When inserting literal values beginning with a letter or an underscore, enclose the variable name in single quotes as follows: 'abc'.

Select a variable from the drop-down combo-box:

output1	
SYSVA_SCANCNT SYSVA_TCYCURRENT SYSVA_TCYCYCTIME SYSVA_TCYMAXIMUM SYSVA_TCYOVERFLOW	^
input1 input2	≡
output1	-

Type a literal value in the text box:

To insert a coil

You can insert coils from the Toolbox.

1. From the Toolbox, drag the desired coil type into the language container and place it on the rung.

The Variable Selector is displayed.

2. In the Variable Selector, select the required variable, then click **OK**.

The coil element and its associated variable name are displayed in the language container.

To insert a parallel coil

1. From the Toolbox, drag a contact element into the language container while placing it parallel to the existing contact.

The Variable Selector is displayed.

- 2. In the Variable Selector, select the required variable, then click **OK**.
- 3. Drag the left and right connections to the respective connection points on the rung.

The contact and its associated variable name are displayed on the branch.

To change the type of a coil

• In the language container, select the coil, then select the required type in the Modify property of the Properties window.

Direct Coil

Direct Coils enable a Boolean output of a connection line Boolean state.

Left Right Connection Connection

The associated variable is assigned with the Boolean state of the left connection. The state of the left connection is propagated into the right connection. The right connection can be connected to the right vertical power rail.

The associated name can be the name of the program (for functions only). This corresponds to the assignment of the return value of the function.

Example

(* ST Equivalence: *)

output1 := input1; output2 := input1;

See Also

Coils

Reverse Coil

Reverse coils enable a Boolean output according to the Boolean negation of a connection line state.

Left Right Connection Connection

The associated variable is assigned with the Boolean negation of the state of the left connection. The state of the left connection is propagated into the right connection. The right connection can be connected to the right vertical power rail.

The associated name can be the name of the program (for functions only). This corresponds to the assignment of the return value of the function.

Example

(* ST Equivalence: *)

output1 := NOT (input1); output2 := input1;

See Also

Coils

Set Coil

Set coils enable a Boolean output of a connection line Boolean state.

Left Right Connection Connection

The associated variable is set to TRUE when the boolean state of the left connection becomes TRUE. The output variable keeps this value until an inverse order is made by a RESET coil. The state of the left connection is propagated into the right connection. The right connection can be connected to the right vertical power rail.

Example

See Also

Coils

Reset Coil

Reset coils enable Boolean output of a connection line Boolean state.

Left Right Connection Connection

The associated variable is reset to FALSE when the Boolean state of the left connection becomes TRUE. The output variable keeps this value until an inverse order is made by a SET coil. The state of the left connection is propagated into the right connection. The right connection can be connected to the right vertical power rail.

Example

See Also

Coils

Contacts

Contacts are graphic components of LD diagrams that you can use in FBD programs. Depending on the type of contact, it represents the value or function of an input or internal variable.

The following contact types are available from the FBD toolbox:

- Direct Contact
- Reverse Contact
- Pulse Rising Edge Contact
- Pulse Falling Edge Contact

You can change the type of a contact at any time following its insertion.

When inserting contacts in POUs, you assign variables using the Variable Selector. Names of assigned variables are displayed above the contact elements within POUs. You replace existing variables by double-clicking the variable names to access the Variable Selector or by single-clicking variable names to select from drop-down combo-boxes containing the global and local variables. Also, you can single-click existing variables, then type literal values in the text boxes provided. When inserting literal values beginning with a letter or an underscore, enclose the variable name in single quotes as follows: 'abc'.

Select a variable from the drop-down combo-box:

output1	
SYSVA_SCANCNT	^
SYSVA_TCYOVERFLOW	
input1 input2	≣
output1	
output2	\sim

Type a literal value in the text box:

'abc'	
SYSVA_CCEXEC	~
SYSVA_CYCLECNT	
SYSVA_CYCLEDATE	
SYSVA_KVBCERR	
SYSVA_KVBPERR	
SYSVA_RESMODE	
SYSVA_RESNAME	_
SYSVA_SCANCNT	\sim

To insert a contact

You can insert contacts from the Toolbox.

1. From the Toolbox, drag the desired contact type into the language container and place it on the rung.

The Variable Selector is displayed.

2. From the Variable Selector, select the required variable, then click **OK**.

The contact and its associated variable name are displayed in the language container.

To insert a parallel contact

1. From the Toolbox, drag a contact element into the language container while placing it parallel to the existing contact.

The Variable Selector is displayed.

- 2. In the Variable Selector, select the required variable, then click **OK**.
- 3. Drag the left and right connections to the respective connection points on the rung.

The contact and its associated variable name are displayed on the branch.

To change the type of a contact

• In the language container, select the contact, then select the required type in the Modifier property of the Properties window.

Direct Contact

Direct contacts enable a Boolean operation between a connection line state and a Boolean variable.

Left Right Connection Connection

The state of the connection line on the right of the contact is the logical AND between the state of the left connection line and the value of the variable associated with the contact.

Example

(* ST Equivalence: *)
output1 := input1 AND input2;

See Also

Reverse Contact

Reverse contacts enable a Boolean operation between a connection line state and the Boolean negation of a Boolean variable.

Left Right Connection

The state of the connection line on the right of the contact is the logical AND between the state of the left connection line and the Boolean negation of the value of the variable associated with the contact.

Example

(* ST Equivalence: *)

output1 := NOT (input1) AND NOT (input2);

See Also

Pulse Rising Edge Contact

Pulse rising edge (positive) contacts enable a Boolean operation between a connection line state and the rising edge of a Boolean variable.

Left Right Connection Connection

The state of the connection line on the right of the contact is set to TRUE when the state of the connection line on the left is TRUE, and the state of the associated variable rises from FALSE to TRUE. The state is reset to FALSE in all other cases.

Example

(* ST Equivalence: *)
output1 := input1 AND (input2 AND NOT (input2prev));
(* input2prev is the value of input2 at the previous cycle *)

See Also

Pulse Falling Edge Contact

Pulse falling edge (negative) contacts enable a Boolean operation between a connection line state and the falling edge of a Boolean variable.

Left Right Connection

The state of the connection line on the right of the contact is set to TRUE when the state of the connection line on the left is TRUE, and the state of the associated variable falls from TRUE to FALSE. The state is reset to FALSE in all other cases.

Example

(* ST Equivalence: *)
output1 := input1 AND (NOT (input2) AND input2prev);
(* input2prev is the value of input2 at the previous cycle *)

See Also

Regions

Regions delineate and group together areas of an FBD POU. A region consists of a header and a delineated zone grouping together elements. The header section enables entering free-format text. After entering text in the header, click elsewhere in the region to exit editing mode. When moving the location of a region in the language container, you can also move all the content grouped within. You can resize regions.

Region text	

Addition Block	
UNT ^{Var1}	UarOut

The region element affects the left to right, top to bottom manual execution order. During manual execution, a grouping is entirely processed before moving to the next grouping.

To insert a region

• From the Toolbox, drag the region element into the language container.

The region element is displayed in the language container.

To move a region

- 1. In the language container, left-click the top right corner of the region element and hold the mouse button.
- 2. Drag the region element to the required location and release the mouse button.

The region and the elements contained inside have moved location in the language container.

See Also Comments Execution Order of FBD Programs

Comments

Comments are free format text inserted anywhere in the FBD POU, for documentation purposes only. After entering text, click elsewhere in the workspace to exit editing mode.

You can expand and collapse comment elements displayed in the workspace by clicking the maximize and minimize buttons. You can also resize comments.

To insert a comment

You can apply text formatting options including bold, italic, underline, strikethrough, and justify from the Description Editor toolbar. You can also define the foreground color.

- 1. From the Toolbox, drag the comment element into the language container.
- **2.** In the language container, double-click the comment, then type the required text within the space provided.

The comment is displayed in the language container.

See Also Regions

Configuring Function Block Instances

For individual function block instances in FBD, a block configurator provides an integrated environment in which to modify parameters and visual settings. You can perform the following tasks for a function block instance from a block configurator:

CONNECT_1:	CONNECT						
Parameters	Visual Settin	gs					
POU Definit	ion						*
Scope :	Project	4.Device1.R	esource1.M	yFBDPr	og.CONN	NECT_1	
Comment :	Comm	unication Fu	unction Bloc	k - Con	nection		
Instance Cor	nment:						
		EN_C		-	VALID	-	
		PARTNER			ERROR	-	
					STATUS	-	
					ID	-	

CONNECT_1 : CONNECT			
Parameters Visual Settings			
Properties			*
Background Color			Display Instance Name 🛛
Background Gradient Color			Hide Unconnected Pins
Reset Background Color to	Default		Show All Pins
Reset Background Gradient Cole	or to Defaul	t	
Visible	EN_C	VALIC	Visible
Visible	PARTNER	ERROF	Visible
		STATUS	Visible
		IC	Visible

- Visualizing information such as the scope for the instance and comment for the block
- Specifying a comment for an instance
- Assigning initial values to unconnected inputs

- Setting background and gradient colors for an instance
- Displaying instance names
- Choosing the pins to display for the instance: hiding unconnected pins, showing all pins, or specifying individual pins. You can only hide unconnected pins.

When aliases are defined for variables, the aliases are displayed in the instance. For function block instances having hidden pins, the Display All Pins button $\stackrel{\text{\tiny \ef{eq: block}}}{=}$, enables showing all pins.

To access information and modify parameters for a function block instance

1. In the POU, click 1 in the upper-right corner of the block instance.

The block configurator window for the block instance is displayed.

- **2.** Click the Parameters tab.
- 3. To visualize the scope of the instance, the comment for the block, or specify a comment for the instance, expand the POU definition by clicking \ge .

To define visual settings for a function block instance

1. In the POU, click ① in the upper-right corner of the block instance.

The block configurator window for the block instance is displayed.

- 2. Click the Visual Settings tab.
- **3.** To set the background color or background gradient color for the instance, click the color swatch for the respective item, then from the color picker, choose or specify the required color.

You can also reset the background color or background gradient color for the instance.

- 4. To display the instance name in the block, select *Display Instance Name*.
- 5. Choose pins to display for the instance:
 - To mask unconnected pins, click Hide Unconnected Pins.
 - To display all connected and unconnected pins, click Show All Pins.
 - To specify individual pins to make visible, on the block representation, click the required pins to toggle from *Hidden* to *Visible*. You can only hide unconnected pins.

FBD Keyboard Shortcuts

The following keyboard shortcuts are available for use with the FBD language. Some shortcuts do not apply or may differ while debugging.

Selects all elements (not available while debugging)
Copies the selected elements to the clipboard (not available while debugging)
Pastes elements saved on the clipboard to the insertion point (not available while debugging)
Cuts the selected elements to the clipboard (not available while debugging)
Redoes the previous command (not available while debugging)
Undoes the previous command (not available while debugging)
Enables/disables the grid in the language container
Toggles between full-screen and windowed modes
Toggles between Auto-Input and Manual-Input. Auto-Input automatically opens the Block Selector and Variable Selector (not available while debugging).
Bolds selected comment text (not available while debugging)
Italicizes selected comment text (not available while debugging)
Underlines selected comment text (not available while debugging)
When a function block is selected, opens the Block Selector (not available while debugging).
When a variable is selected, opens the Variable Selector (not available while debugging).
When a comment is selected, starts editing it (not available while debugging).
When a variable is selected, opens the drop-down list of available variables (not available while debugging).
When editing a comment, confirms the text (not available while debugging).
Decreases the magnification

Ctrl+=	Increases the magnification
Ctrl+0	100% magnification
Ctrl+1	Inserts a variable (not available while debugging)
Ctrl+2	Inserts a function block (not available while debugging)
Ctrl+3	Inserts a comment (not available while debugging)
Shift+Up Arrow	Reduces the height of the selected element (not available while debugging)
Shift+Down Arrow	Increases the height of the selected element (not available while debugging)
Shift+Left Arrow	Reduces the width of the selected element (not available while debugging)
Shift+Right Arrow	Increases the width of the selected element (not available while debugging)
Ctrl+Up Arrow	Moves the selection to the next element located higher in the diagram without keeping the previous element selected (not available while debugging)
Ctrl+Down Arrow	Moves the selection to the next element located lower in the diagram without keeping the previous element selected (not available while debugging)
Ctrl+Left Arrow	Moves the selection to the next element located to the left in the diagram without keeping the previous element selected (not available while debugging)
Ctrl+Right Arrow	Moves the selection to the next element located to the right in the diagram without keeping the previous element selected (not available while debugging)
Alt+Shift+Up Arrow	When a function block is selected, navigates up the different inputs and outputs (not available while debugging)
Alt+Shift+Down Arrow	When a function block is selected, navigates down the different inputs and outputs (not available while debugging)
Alt+Shift+Left Arrow	When a function block is selected, navigates left across the different inputs and outputs (not available while debugging)
Alt+Shift+Right Arrow	When a function block is selected, navigates right across the different inputs and outputs (not available while debugging)

Ctrl+Page Up	Jumps to the top of the language container
Ctrl+Page Down	Jumps to the bottom of the language container
Alt+Up Arrow	Scrolls up
Alt+Down Arrow	Scrolls down
Alt+Left Arrow	Scrolls left
Alt+Right Arrow	Scrolls right
Up Arrow	Moves selected elements up the language container. While debugging, scrolls up.
Down Arrow	Moves selected elements down the language container. While debugging, scrolls down.
Left Arrow	Moves selected elements left across the language container. While debugging, scrolls left.
Right Arrow	Moves selected elements right across the language container. While debugging, scrolls right.
Delete	Removes the selected elements (not available while debugging)
Ctrl+D	Only available in debug mode for the date data type. When the Write Logical Value dialog box is open, enters the current date.
Ctrl+W	Displays the execution order of elements within the diagram (not available while debugging)
Ctrl+Alt+M	While displaying the execution order of elements, enables manually defining the execution order of individual elements and networks (not available while debugging)

LD Language

Ladder Diagram (LD) is a graphic representation of Boolean equations, combining contacts (input arguments) with coils (output results). The LD language enables the description of tests and modifications of Boolean data by placing graphic symbols into the program chart. LD graphic symbols are organized within the chart as an electric contact diagram. Thus, the term "ladder" coming from the concept of rungs connected to vertical power rails at both ends where each rung represents an individual circuit.

You can adjust editor and view settings for individual or all Ladder Diagrams. When working in a Ladder Diagram, you set the properties for the diagram from the Container properties in the Properties window. You set the properties for all Ladder Diagrams using the options available from the Tools menu. Some of the available properties include the following:

• background and gradient colors for operators, functions, and function blocks

- displaying the grid as well as the height and width of grid cells, in pixels
- the height and width of elements, in grid cells. Basic elements are blocks without inputs or outputs, coils, and contacts. For blocks, each input and output adds a basic element dimension. For example, note the contact using the default settings of one grid cell high by four grid cells wide. The following block uses a basic element width for the inputs, another for the block, and another for the outputs. The block uses a basic element height for the EN/ENO level, another for the first input and the output, and another for the second input.

- the font type, size, style, and color applied to the text displayed in elements
- various options such as displaying comments and labels, aligning coils, and setting the colors for variables, labels, comments, power rails, and rung headers

See Also

Debugging LD Programs

Debugging LD Programs

When debugging LD programs, you can monitor the output values of elements. These values are displayed using color, numeric, or textual values according to their data type:

- Output values of boolean type are displayed using color. The output value color continues to the next input. When the output value is unavailable, boolean elements remain black. The default colors are red when True and blue when False. You can customize the colors used for boolean items.
- Output values of SINT, USINT, BYTE, INT, UINT, WORD, DINT, UDINT, DWORD, LINT, ULINT, LWORD, REAL, LREAL, TIME, DATE, and STRING type are displayed as a numeric or textual value in the element. When the output is a structure type, the displayed value is the selected member.

When the output value for a numeric or textual value is unavailable, the *WAIT* text is displayed in the output label. Transitional elements such as Pulse rising edge (positive) contacts, having an unstable state, remain black. Values are also displayed in the corresponding dictionary instance.

For LD programs, you enable step-by-step execution by generating debug information for individual POUs. When debug information is generated for LD programs in a resource, the resource automatically switches to step-by-step execution when the application encounters a breakpoint. You instantiate step-by-step execution by setting breakpoints to rungs. When debugging, the application stops when it encounters a breakpoint. At this time, the resource is in the DEBUGGING state and you can choose to perform one of the following operations:

- Step into the highlighted rung (available for user-defined functions and function blocks), executes the highlighted rung then steps to the subsequent rung. When the highlighted rung includes a call to a function, stepping continues in the called function then returns to the subsequent rung in the POU.
- Step over the highlighted rung, skips the highlighted rung then steps to the subsequent rung.
- Switch execution to real-time mode
- Switch execution to cycle-to-cycle mode
- Execute one cycle

Note: You can only set breakpoints for TIC POUs; you cannot set breakpoints for C source code POUs.

In the language editor, breakpoints appear as red circles to the left of the rung. When a breakpoint is encountered, a yellow arrow is displayed on the breakpoint and the next rung is highlighted in yellow.

When stepping passes beyond the last rung of a POU, the arrow points downward.

To generate debug information for an LD POU

Generate debug information for LD POUs enables step-by-step debugging within the POU.

- 1. In the Solution Explorer, click the LD POU for which to generate debug information.
- 2. In the Properties for the POU, set *Generate Debug Info* to True.

To set breakpoints in an LD POU

- 1. In the Properties for the POU, set *Generate Debug Info* to True.
- 2. Select the rung or rungs requiring breakpoints, right-click the rung area, and then click Add Breakpoint.

Breakpoints are displayed as red circles to the left of rungs.

To remove breakpoints

• Select the rung or rungs requiring the removal of breakpoints, right-click the rung area, and then click **Remove Breakpoint**.

The breakpoints are removed from the selected rungs.

To step into the highlighted rung

• From the Debug menu, click **Step Into** (or press **F11**).

The POU executes the highlighted rung then steps into the next one and stepping continues in any called function before returning to the next rung of the POU.

To step over the highlighted rung

• From the Debug menu, click **Step Over** (or press **F10**).

The POU executes the current rung then steps to the next one.

To switch execution to real-time mode

• From the Target Execution toolbar, click 🚳.

The POU executes in real-time mode.

To switch execution to cycle-to-cycle mode

• From the Target Execution toolbar, click 🚳.

The POU executes in cycle-to-cycle mode.

To execute one cycle

From the Target Execution toolbar, click ⁽²⁾/₂.

Executes the remaining POUs until the next cycle.

LD Elements

When editing an LD POU, you can place elements in a language container by dragging them from the LD Toolbox. An element is inserted at the current position in the diagram. When inserting subsequent elements, these are placed to the right of the selected element on the rung, then onto the next rung. For LD POUs, the following elements are available:

- Rungs
- Blocks
- Coils
- Contacts
- Jumps
- Returns
- Branches

Rungs

Rungs are graphic components of LD programs and represent a group of circuit elements leading to the activation of a coil. Rungs have labels to identify them within the diagram. Labels along with jumps enable controlling the execution of a diagram. The label and jump must have the same name. When the connection on the left of the jump element has the TRUE Boolean state, the diagram execution proceeds at the label element. Comments are free format text inserted above the rung, for documentation purposes only.

To insert a rung

You can insert rungs from the Toolbox or using keyboard shortcuts.

• From the Toolbox, drag the rung element into the language container.

The rung is displayed in the language container.

To define the label for a rung

- 1. Right-click a rung, then click Add Label.
- 2. In the upper left-hand corner, click in the text area beside the grey square and type the required label text.

To define the comment for a rung

You place comments in the space above the rung. After entering text, click elsewhere in the workspace to 'validate' the comment. Text formatting options including bold, italic, underline, strikethrough, and justify, are available from the Format menu. Using the Format menu, you can also define the foreground color.

• In the language container, click the rectangular space above the rung, then type the required text.

Blocks

In a language container, you connect blocks to Boolean lines. Blocks can be operators, functions, or function blocks. Boolean inputs and outputs are not always contained within blocks. Boolean inputs connecting blocks to rungs are always executed each cycle. Boolean outputs connecting blocks to rungs control the remaining rung power flow. When inserting blocks in a diagram, the EN and ENO parameters are added to some block interfaces. You can also force the inclusion of the EN and ENO parameters for blocks having either one Boolean input, one Boolean output, or no Boolean input and output. You activate the *Enable EN/ENO* and *Display Instance Names* options from the Ladder Diagram options.

For functions and function blocks, you set the value of return parameters using coils. The return parameter of a function has the same name as the function. The return parameters of a function block can have any name.

When working with different resources, you can define parameters of POUs for multiple resources by navigating the tabs for individual resources displayed in the Parameters view.

You insert blocks from the LD Toolbox. You can set the type of a block using the Block Selector at any time following insertion. When you set the type of block, variables are automatically displayed and are connected to the inputs and outputs of the block.

You replace input and output variables by double-clicking them to access the Variable Selector or single-clicking them to select from a drop-down combo-box containing the global and local variables. Also, you can single-click a variable, then type a literal value in the text box provided. When inserting literal values that being with a letter or an underscore, enclose the variable name in single quotes as follows: 'abc'.

Select a variable from the drop-down combo-box:

Type a literal value in the text box:

When selecting items such as local variables, global variables, system variables, and defined words from the drop-down combo-box, typing characters in the text box focuses on the possible items. You can focus on listed items by typing letters, digits, and specific special characters: $!, \#, \$, \%, \&, \lor, *, +, -, ./ <$; $=, >, ?, @, \lor, ^, _, `, |, and ~.$

EN Input

For operators, functions, and function blocks where the first input is not a Boolean data type, another input called EN is automatically inserted at the first position since the first input is always connected to the rung. The block is executed only when the EN input is TRUE. The following example shows a comparison operator and its equivalent code expressed in ST.

ENO Output

For operators, functions, and function blocks where the first output is not a Boolean data type, another output called ENO is automatically inserted at the first position since the first output is always connected to the rung. The ENO output always has the same state as the first input of the block. The following example shows the AVERAGE function block and its equivalent code expressed in ST.

EN and ENO Parameters

In some cases, both **EN** and **ENO** parameters are required. The following example shows an arithmetic operator and its equivalent code expressed in ST.

To access the Parameters view

The Parameters view is available from function or function block instances located in the Solution Explorer.

1. In the Solution Explorer, right-click the required function or function block, and then click **Parameters**.

The Parameters view is displayed.

2. To define the parameters of a function or function block, enter the required information in the Parameters view.

To insert a block

You can insert blocks from the Toolbox or using keyboard shortcuts.

1. From the Toolbox, drag the block element into the language container and place it on the rung.

The Block Selector is displayed.

2. In the Block Selector, locate the required block. You can sort the block list according to the columns by setting these in ascending or descending order.

• To force the inclusion of the EN/ENO parameters, select *Enable EN/ENO*.

3. Click OK.

The selected block is displayed on the rung.

To insert a parallel block

- 1. From the Toolbox, drag the branch element onto the existing block in the language container.
- 2. To place a block element on the branch, do the following:
 - a) From the Toolbox, drag the block element into the language container, placing it on the branch.

The Block Selector is displayed.

- **b)** In the Block Selector, locate the required block. You can sort the block list according to the columns by setting these in ascending or descending order.
- To force the inclusion of the EN/ENO parameters, select *Enable EN/ENO*.
- c) Click OK.

The selected block is displayed on the branch.
Coils

Coils are graphic components of LD programs and represent the assignment of Boolean outputs. In an LD program, a coil represents an action. It must be connected on the left to a Boolean symbol, such as a contact or the Boolean output of a block.

The following types of coils are available from the LD toolbox:

- Direct Coil
- Reverse Coil
- Pulse Rising Edge Coil
- Pulse Falling Edge Coil
- Set Coil
- Reset Coil

You can change the type of a coil at any time following its insertion. When inserting coils in POUs, you assign variables using the Variable Selector. Names of assigned variables are displayed above the coil elements within POUs. You replace existing variables by double-clicking the variable names to access the Variable Selector or by single-clicking variable names to select from drop-down combo-boxes containing the global and local variables. Also, you can single-click existing variables, then type literal values in the provided text boxes. When inserting literal values beginning with a letter or an underscore, enclose the variable name in single quotes as follows: 'abc'.

Select a variable from the drop-down Type a literal value in the text box: combo-box:

e.		
	<u>co10</u>	
Ш	co10 📐	~
1	OutSignal "S	
	result	
	Signal	
	V1 (Var1)	
_	value1	
	value2	=
	Var1	=
	VarOut	~

When selecting items such as local variables, global variables, system variables, and defined words from the drop-down combo-box, typing characters in the text box focuses on the possible items. You can focus on listed items by typing letters, digits, and specific special characters: $!, \#, \$, \%, \&, \backslash, *, +, -, ./ <, :, =, >, ?, @, \backslash, ^, _, `, |, and ~.$

You can align the coils of all rungs making up diagrams to improve readability.

To insert a coil

You can insert coils from the Toolbox or using keyboard shortcuts.

1. From the Toolbox, drag the desired coil type into the language container and place it on the rung.

The Variable Selector is displayed.

2. In the Variable Selector, select the required variable, then click **OK**.

The coil element and its associated variable name are displayed on the rung.

To insert a parallel coil

- 1. From the Toolbox, drag the branch element into the language container, placing it on the required element.
- 2. From the Toolbox, drag a coil element into the language container, placing it on the branch element.

The Variable Selector is displayed.

3. In the Variable Selector, select the required variable, then click **OK**.

The coil element and its associated variable name are displayed on the branch.

To change the type of a coil

• In the language container, select the coil, then press the space bar.

To align all coils in a diagram

- 1. Right-click in the language container, and then click **Properties**.
- 2. In the Properties window, set the *Coil Alignment* property to True.

Direct Coil

Direct Coils enable a Boolean output of a connection line Boolean state.

Left Right Connection

The associated variable is assigned with the Boolean state of the left connection. The state of the left connection is propagated into the right connection. The right connection can be connected to the right vertical power rail.

The associated name can be the name of the program (for functions only). This corresponds to the assignment of the return value of the function.

Example

(* ST Equivalence: *)

output1 := input1; output2 := input1;

See Also

Reverse Coil

Reverse coils enable a Boolean output according to the Boolean negation of a connection line state.

Left Right Connection Connection

The associated variable is assigned with the Boolean negation of the state of the left connection. The state of the left connection is propagated into the right connection. The right connection can be connected to the right vertical power rail.

The associated name can be the name of the program (for functions only). This corresponds to the assignment of the return value of the function.

Example

(* ST Equivalence: *)

output1 := NOT (input1); output2 := input1;

See Also

Pulse Rising Edge Coil

Pulse rising edge coils or "Positive" coils enable Boolean output of a connection line Boolean state.

Left Right Connection Connection

The associated variable is set to TRUE when the Boolean state of the left connection rises from FALSE to TRUE. The output variable resets to FALSE in all other cases. The state of the left connection is propagated into the right connection. The right connection can be connected to the right vertical power rail.

Example

(* ST Equivalence: *)

```
IF (input1 and NOT(input1prev)) THEN
  output1 := TRUE;
ELSE
  output1 := FALSE;
END IF;
```

(* input1prev is the value of input1 at the previous cycle *)

See Also

Pulse Falling Edge Coil

Pulse falling edge coils or "Negative" coils enable Boolean output of a connection line Boolean state.

Left Right Connection Connection

The associated variable is set to TRUE when the Boolean state of the left connection falls from TRUE to FALSE. The output variable resets to FALSE in all other cases. The state of the left connection is propagated into the right connection. The right connection can be connected to the right vertical power rail.

Example

(* ST Equivalence: *)

```
IF (NOT(input1) and input1prev) THEN
   output1 := TRUE;
ELSE
   output1 := FALSE;
END IF;
```

(* input1prev is the value of input1 at the previous cycle *)

See Also

Set Coil

Set coils enable a Boolean output of a connection line Boolean state.

Left Right Connection Connection

The associated variable is set to TRUE when the boolean state of the left connection becomes TRUE. The output variable keeps this value until an inverse order is made by a RESET coil. The state of the left connection is propagated into the right connection. The right connection can be connected to the right vertical power rail.

Example


```
IF input2 THEN
    output1 := FALSE;
END IF;
```

See Also

Reset Coil

Reset coils enable Boolean output of a connection line Boolean state.

Left Right Connection Connection

The associated variable is reset to FALSE when the Boolean state of the left connection becomes TRUE. The output variable keeps this value until an inverse order is made by a SET coil. The state of the left connection is propagated into the right connection. The right connection can be connected to the right vertical power rail.

Example

END IF;

See Also

Contacts

Contacts are graphic components of LD diagrams. Depending on the type of contact, it represents the value or function of an input or internal variable.

The following contact types are available from the LD toolbox:

- Direct Contact
- Reverse Contact
- Pulse Rising Edge Contact
- Pulse Falling Edge Contact

You can change the type of a contact at any time following its insertion.

When inserting contacts in POUs, you assign variables using the Variable Selector. Names of assigned variables are displayed above the contact elements within POUs. You replace existing variables by double-clicking the variable names to access the Variable Selector or by single-clicking variable names to select from drop-down combo-boxes containing the global and local variables. Also, you can single-click existing variables, then type literal values in the text boxes provided. When inserting literal values beginning with a letter or an underscore, enclose the variable name in single quotes as follows: 'abc'.

Select a variable from the drop-down combo-box:

'abc'	
co10 OutSignal	^
result Signal V1 (Var1)	
value1 value2	=
Var1 VarOut	~

Type a literal value in the text box:

When selecting items such as local variables, global variables, system variables, and defined words from the drop-down combo-box, typing characters in the text box focuses on the possible items. You can focus on listed items by typing letters, digits, and specific special characters: $!, \#, \$, \%, \&, \backslash, *, +, -, /<, :, =, >, ?, @, \backslash, ^, _, `, |, and ~.$

To insert a contact

You can insert contacts from the Toolbox or using keyboard shortcuts.

1. From the Toolbox, drag the desired contact type into the language container and place it on the rung.

The Variable Selector is displayed.

2. In the Variable Selector, select the required variable, then click OK.

The contact and its associated variable name are displayed on the rung.

To insert a parallel contact

- 1. From the Toolbox, drag the branch element into the language container, placing it on the existing contact.
- 2. From the Toolbox, drag a contact element into the language container, placing it on the branch.

The Variable Selector is displayed.

3. In the Variable Selector, select the required variable, then click OK.

The contact and its associated variable name are displayed on the branch.

To change the type of a contact

• In the language container, select the contact, then press the space bar.

Direct Contact

Direct contacts enable a Boolean operation between a connection line state and a Boolean variable.

Left Right Connection

The state of the connection line on the right of the contact is the logical AND between the state of the left connection line and the value of the variable associated with the contact.

Example

(* ST Equivalence: *)

output1 := input1 AND input2;

See Also

Reverse Contact

Reverse contacts enable a Boolean operation between a connection line state and the Boolean negation of a Boolean variable.

Left Right Connection

The state of the connection line on the right of the contact is the logical AND between the state of the left connection line and the Boolean negation of the value of the variable associated with the contact.

Example

(* ST Equivalence: *)

output1 := NOT (input1) AND NOT (input2);

See Also

Pulse Rising Edge Contact

Pulse rising edge (positive) contacts enable a Boolean operation between a connection line state and the rising edge of a Boolean variable.

Left Right Connection Connection

The state of the connection line on the right of the contact is set to TRUE when the state of the connection line on the left is TRUE, and the state of the associated variable rises from FALSE to TRUE. The state is reset to FALSE in all other cases.

Example

(* ST Equivalence: *)

output1 := input1 AND (input2 AND NOT (input2prev));
(* input2prev is the value of input2 at the previous cycle *)

See Also

Pulse Falling Edge Contact

Pulse falling edge (negative) contacts enable a Boolean operation between a connection line state and the falling edge of a Boolean variable.

Left Right Connection

The state of the connection line on the right of the contact is set to TRUE when the state of the connection line on the left is TRUE, and the state of the associated variable falls from TRUE to FALSE. The state is reset to FALSE in all other cases.

Example

(* ST Equivalence: *)

output1 := input1 AND (NOT (input2) AND input2prev); (* input2prev is the value of input2 at the previous cycle *)

See Also

Jumps

Conditional and unconditional jump elements enable controlling the execution of diagrams. You cannot place connections to the right of a jump element. When the connection on the left of the jump element has the TRUE Boolean state, the diagram execution proceeds at the label. The label and jump must have the same name.

Example

To insert a jump

Before inserting jumps, define one or more labels within the program. You can insert jumps from the Toolbox or using keyboard shortcuts.

- 1. From the Toolbox, drag the jump element into the language container and place it on the rung.
- 2. In the language container, click the jump element, then select the required label name from the drop-down combo-box.

The jump is displayed on the rung with the required label name.

Returns

You can use RETURN elements as outputs representing a conditional end of a diagram. You cannot place connections to the right of a RETURN element.

When the left connection line has the TRUE Boolean state, the diagram ends without executing the equations located on the next lines of the diagram.

When the LD diagram is a function, its name is associated with an output coil to set the return value (returned to the calling diagram).

Example

(* ST Equivalence: *)

If Not (manual_mode) Then RETURN; End_if; result := (input1 OR input3) AND input2;

To insert a return

You can insert returns from the Toolbox or using keyboard shortcuts.

• From the Toolbox, drag the return element into the language container, placing it on the rung.

The return element is displayed on the rung.

See Also

Jumps

Branches

Branches create alternative routing for connections. You can add parallel branches to elements on a rung.

To insert a branch

You can insert branches from the Toolbox or using keyboard shortcuts.

• From the Toolbox, drag the branch element into the language container and place in on the rung.

A parallel branch is displayed.

Configuring Function Block Instances

For individual function block instances in LD, a block configurator provides an integrated environment in which to modify parameters and visual settings. You can perform the following tasks for a function block instance from a block configurator:

CONNECT_1 : CONN	ECT					×
Parameters Visua	l Settin	igs				
POU Definition						*
Scope :	Projec	t4.Device1	L.Resource1.MyLI	DProg.CON	INECT_1	
Comment :	Comm	nunication	Function Block -	Connectio	n	
Instance Comment:						
	E	N_C		VALID		
Assign variable	Q P	ARTNER		ERROR	Assign variable	Q
				STATUS	Assign variable	Q
				ID	Assign variable	٩

(CONNECT_1 : CO	ONNECT						×
	Parameters	/isual Settings						
	Properties							*
	Background C	olor			Display In	stance	Name	
	Background G	iradient Color			Hide Und	onnec	ted Pins	
	Reset Ba	ckground Colo	r to Default		Sho	w All P	ins	
	Reset Backgro	ound Gradient	Color to Defaul	t	Display	/ Pin N	lames	
					Display	/ Pin A	liases	
		EN.	C { EN_C }	{ V#	AL } VALID			
	Visible	e PAI	RTNER { PART }	{ ERI	R } ERROR		Visible	e
				{ STAT	} STATUS		Visible	e
					{ ID } ID		Visible	<u> </u>

- Visualizing information such as the scope for the instance and comment for the block
- Specifying a comment for an instance

- Assigning variables to inputs and outputs as well as defining structure elements within arguments
- Setting background and gradient colors for an instance
- Displaying instance names
- Choosing the pins to display for the instance: hiding unconnected pins, showing all pins, or specifying individual pins
- Choosing the pin information to display for the instance: pin names or pin aliases

For function block instances having hidden pins, the Display All Pins button $\stackrel{\clubsuit}{=}$, enables showing all pins.

To access information and modify parameters for a function block instance

1. In the POU, click ① in the upper-right corner of the block instance.

The block configurator window for the block instance is displayed.

- **2.** Click the Parameters tab.
- **3.** To visualize the scope of the instance, the comment for the block, or specify a comment for the instance, expand the POU definition by clicking \ge .
- **4.** To assign a variable to an input or output, click on the required item, then do one of the following:
 - Type the name of the variable in the field.
 - Click \mathbb{R} , then select the variable from the drop-down list.
- 5. For blocks having structure elements within arguments, click _____, then provide the required values in the fields.

To define visual settings for a function block instance

1. In the POU, click ① in the upper-right corner of the block instance.

The block configurator window for the block instance is displayed.

- 2. Click the Visual Settings tab.
- **3.** To set the background color or background gradient color for the instance, click the color swatch for the respective item, then from the color picker, choose or specify the required color.

You can also reset the background color or background gradient color for the instance.

- 4. To display the instance name in the block, select *Display Instance Name*.
- 5. Choose pins to display for the instance:
 - To mask unconnected pins, click Hide Unconnected Pins.
 - To display all connected and unconnected pins, click Show All Pins.
 - To specify individual pins to make visible, on the block representation, click the required pins to toggle from *Hidden* to *Visible*.
- 6. Choose the information to display for the instance pins:
 - To display the names of pins, click **Display Pin Names**.
 - To display the aliases for the pins, click **Display Pin Aliases**.

You can also toggle between displaying individual pin names and aliases by clicking the item.

LD Keyboard Shortcuts

The following keyboard shortcuts are available for use with the LD language. Some shortcuts do not apply or may differ while debugging.

Ctrl+A	Selects all rungs (not available while debugging)
Ctrl+C	Copies the selected elements to the clipboard (not available while debugging)
Ctrl+V	Pastes elements saved on the clipboard to the insertion point (not available while debugging)
Ctrl+X	Cuts the selected elements to the clipboard (not available while debugging)
Ctrl+Y	Redoes the previous command (not available while debugging)
Ctrl+Z	Undoes the previous command (not available while debugging)
Shift+Ctrl+Alt+G	Enables/disables the grid in rungs
Shift+Alt+Enter	Toggles between full-screen and windowed modes
Ctrl+R	Toggles between Auto-Input and Manual-Input. Auto-Input automatically opens the Block Selector and Variable Selector (not available while debugging).
Ctrl+B	Bolds selected comment text (not available while debugging)
Ctrl+I	Italicizes selected comment text (not available while debugging)
Ctrl+U	Underlines selected comment text (not available while debugging)
Enter	Calls the Variable/Block selector depending on the selected element (not available while debugging)
F9	Toggles between setting or removing a breakpoint on a selected rung (available when Generate Debug Info is True). If more than one rung is selected, only sets a breakpoint on the first selected rung.
Space Bar	For coils or contacts, toggles between the available types (not available while debugging)
Ctrl+0	Inserts a rung after a selected rung. When no rung is selected, a rung is added at the end of the rung list (not available while debugging).
Ctrl+Alt+0	Inserts a rung before a selected rung. When no rung is selected, a rung is added at the end of the rung list (not available while debugging).

Ctrl+1	Inserts a branch after a selected element (not available while debugging)
Ctrl+Alt+ 1	Inserts a branch before a selected element (not available while debugging)
Ctrl+2	Inserts a block after a selected element. When a branch is selected, a block is inserted on the branch (not available while debugging).
Ctrl+Alt+2	Inserts a block before a selected element. When a branch is selected, a block is inserted on the branch (not available while debugging).
Ctrl+3	Inserts a contact after a selected element. When a branch is selected, a contact is inserted on the branch (not available while debugging).
Ctrl+Alt+3	Inserts a contact before a selected element. When a branch is selected, a contact is inserted on the branch (not available while debugging).
Ctrl+4	When a rung or the last element on a rung is selected, inserts a coil at the end of the rung. When the last element selected on a rung is a branch, a coil is inserted on the branch (not available while debugging).
Ctrl+Alt+4	When a rung or the last element on a rung is selected, inserts a coil at the end of the rung. When the last element selected on a rung is a branch, a coil is inserted on the branch (not available while debugging).
Ctrl+5	When a rung or the last element on a rung is selected, inserts a jump at the end of the rung. When the last element selected on a rung is a branch, a jump is inserted on the branch (not available while debugging).
Ctrl+Alt+5	When a rung or the last element on a rung is selected, inserts a jump at the end of the rung. When the last element selected on a rung is a branch, a jump is inserted on the branch (not available while debugging).
Ctrl+6	When a rung or the last element on a rung is selected, inserts a return at the end of the rung. When the last element selected on a rung is a branch, a return is inserted on the branch (not available while debugging).
Ctrl+Alt+6	When a rung or the last element on a rung is selected, inserts a return at the end of the rung. When the last element selected on a rung is a branch, a return is inserted on the branch (not available while debugging).
Ctrl+Page Up	Jumps to the top of the language container

Ctrl+Page Down	Jumps to the bottom of the language container
Ctrl+Up Arrow	Slowly scrolls up.
Ctrl+Down Arrow	Slowly scrolls down.
Ctrl+Left Arrow	Slowly scrolls left.
Ctrl+Right Arrow	Slowly scrolls right.
Up Arrow	Moves up the elements.
Down Arrow	Moves down the elements.
Left Arrow	Moves to the left across the elements.
Right Arrow	Moves to the right across the elements.
Alt+Up Arrow	Selects the previous rung. When no element or rung is selected, selects the last rung.
Alt+Down Arrow	Selects the next rung. When no element or rung is selected, selects the first rung.
Alt+Left Arrow	Selects the rung of the selected element. When no element is selected, selects the first rung.
Alt+Right Arrow	Selects the rung of the selected element. When no element is selected, selects the first rung.
Shift+Up Arrow	Scrolls up
Shift+Down Arrow	Scrolls down
Shift+Left Arrow	Scrolls left
Shift+Right Arrow	Scrolls right
Delete	Removes a selected rung or element (not available while debugging)
Ctrl+D	Only available in debug mode for the date data type. When the Write Logical Value dialog box is open, enters the current date.

ST Language

ST (Structured Text) is a high level structured language designed for automation processes. This language is mainly used to implement complex procedures that cannot be easily expressed with graphic languages. ST language is also used for the description of the actions within the Steps and conditions attached to the Transitions of the SFC Language.

See Also

ST Main Syntax Debugging ST Programs

ST Main Syntax

An ST program is a list of ST statements. Each statement ends with a semi-colon (";") separator. Names used in the source code (variable identifiers, constants, language keywords...) are separated with inactive separators (space character, end of line or tab stops) or by active separators, which have a well defined significance (for example, the ">" separator indicates a "greater than" comparison.

Comments enable the inclusion of non-executed information throughout code. You can insert comments anywhere in an ST program. Comments can run multiple lines and must begin with "(*" and end with "*)". You cannot use interleave comments, i.e., comments within comments.

When typing statements, a drop-down combo-box automatically lists the available items such as identifiers, operators, functions, and function blocks. The listed items are filtered by typing letters, digits, and specific special characters: $!, \#, \$, \%, \&, \backslash, *, +, -, ./ <, :, =, >, ?, @, \backslash, ^, _, `, |, and ~.$

The following are basic types of ST statements:

- assignment statement (variable := expression;)
- function call
- function block call
- selection statements (IF, THEN, ELSE, CASE...) S
- iteration statements (FOR, WHILE, REPEAT...)
- control statements (RETURN, EXIT...)
- special statements for links with other languages

When entering ST syntax, basic coding is black while other items are displayed using customizable colors. The default colors for ST elements are the following:

- Comments are green
- The Editor background is white
- Identifiers are black

- Numbers are firebrick
- Operators are black
- POUs are blue-violet
- Punctuation marks are black
- Reserved words are fuchsia
- Strings of text are gray

Inactive separators between active separators, literals, and identifiers increase ST program legibility. ST inactive separators are the following: space (blank), tabs and end of line. You can place end of lines anywhere in a program. The following rules apply to using inactive separators:

- Write one statement on one line
- Use tabs to indent complex statements
- Insert comments to increase legibility of lines or paragraphs

Examples

Low Readability

```
imax := max_ite; cond := X12;
if not(cond (* alarm *)
then return; end_if;
for i (* index *) := 1 to max_ite
do if i <> 2 then Spcall();
end_if; end_for;
(* no effect if alarm *)
```

High Readability

```
(* imax : number of iterations *)
(* i: FOR statement index *)
(* cond: process validity *)
imax := max_ite;
cond := X12;
if not (cond) then
    return;
end_if;
(* process loop *)
for i := 1 to max_ite do
    if i <> 2 then
        Spcall ();
        end_if;
end_for;
```

To customize the default display settings for ST programs

- 1. From the Tools menu, click **Options**.
- 2. From the Options dialog box, expand IEC Languages, and then click Structured Text (ST).
- 3. Expand the respective category, customize the required setting, then click OK.

The customized settings are now the default values for ST programs.

To customize the display settings for the current ST program

1. From the View menu, click Properties Window

The Properties Window is displayed.

2. Select the ST Container

- **3.** From the Properties Window you can:
 - Customize the font for the required item by clicking . The Font dialog box is displayed allowing for customization of the font, text size, bold, italic, strikeout, and underline styles.
 - Customize the text color for the required items. The possible colors are custom, web, and system colors.

The customized settings only affect the current ST program.

Expressions and Parentheses

ST expressions combine ST operators and variable or constant operands. For each single expression (combining operands with one ST operator), the type of the operands must be the same. This single expression has the same data type as its operands, and can be used in a more complex expression. For example:

(boo_var1 AND boo_var2)	has BOOL type
not (boo_var1)	has BOOL type
$(\sin(3.14) + 0.72)$	has REAL type
(t#1s23ms + 78)	is an invalid expression

Parentheses are used to isolate sub parts of an expression and to explicitly order the priority of operations. When no parentheses are given for a complex expression, the operation sequence is implicitly given by the default priority between ST operators.

Expressions are executed from left to right and according to the following operator precedence table:

Precedence	Operators	Symbols
1 (Highest)	Function evaluation	identifier(arguement list) For example: MAX (X, Y)
2	Negation	-
	Complement	NOT
3	Multiplication	*
	Division	/
4	Addition	+
	Subtraction	-
5	Comparison	<, >, <=, >=
6	Equality	=
	Inequality	<>
7	Boolean AND	&, AND

8	Boolean Exclusive OR	XOR
9 (Lowest)	Boolean OR	OR

Examples:

2 + 3 * 6	equals 2+18=20	because multiplication operator has a higher priority
(2 + 3) * 6	equals 5*6=30	priority is given by parenthesis

Evaluating Boolean Expressions

Boolean expressions, executed from left to right, are evaluated only to the extent necessary in determining the resultant value. The evaluation of boolean expressions applies to the operators AND and OR. Evaluating boolean expressions prevents the Virtual Machine from stopping execution, as seen when dividing by 0.

```
(* Reduce Boolean Expression Evaluation property is set to TRUE*)
A := 0;
IF A > 0 AND 4/A = 4 THEN
B := 1;
END IF;
```

To evaluate boolean expressions

- 1. From the Solution Explorer, select the Resource.
- **2.** In the Properties window, set the *Reduce Boolean Expression Evaluation* property to TRUE.

Boolean expressions are now evaluated before execution.

Calling Functions

The ST programming language enables calling functions. Function calls can be used in any expression.

Name:	name of the called function written in IEC 61131-3 language or in "C"
Meaning:	calls a ST, LD, or FBD functions or a "C" function and gets its return value
Syntax:	<variable> := <funct> (<par1>, <parn>);</parn></par1></funct></variable>
Operands:	The type of return value and calling parameters must follow the interface defined for the function.

Return value: value returned by the function

When setting the value of the return parameter in the body of a function, assign the return parameter using the same name as the function: FunctionName := <expression>;

Example

Example1: IEC 61131-3 function call

```
(* Main ST program *)
(* gets an integer value and converts it into a limited time value *)
ana_timeprog := SPlimit ( tprog_cmd );
appl_timer := ANY_TO_TIME (ana_timeprog * 100);
(* Called FBD function named 'SPlimit' *)
```

Example2: "C" function call - same syntax as for IEC 61131-3 function calls

```
(* Functions used in complex expressions: min, max, right, mlen and
left are standard "C" functions *)
limited_value := min (16, max (0, input_value) );
rol_msg := right (message, mlen (message) - 1) + left (message, 1);
```
Calling Function Blocks

The ST programming language enables calling function blocks. Function block calls can be used in any expression.

Name:	name of the function block instance	
Meaning:	calls a function block from the standard library or from the user's library and accesses its return parameters	
Syntax:	(* call of the function block *) <blockname> (<p1>, <p2>); (* gets its return parameters *) <result> := <blockname>. <ret_param1>;</ret_param1></blockname></result></p2></p1></blockname>	
	 <result> := <blockname>. <ret_paramn>;</ret_paramn></blockname></result>	
Operands:	parameters are expressions which match the type of the parameters specified for that function block	
Return value:	See Syntax to get the return parameters.	

When setting the value of the return parameter in the body of a function block, assign the return parameter using its name concatenated with the function block name: FunctionBlockName.OutputParaName := <expression>;

Example

```
(* ST program calling a function block *)
(* declare the instance of the block in the dictionary: *)
(* trigb1 : block R_TRIG - rising edge detection *)
(* Function block activation from ST language *)
trigb1 (b1);
(* return parameters access *)
If (trigb1.Q) Then nb_edge := nb_edge + 1; End_if;
```

Debugging ST Programs

For ST programs, you can enable step-by-step execution by generating debug information for individual POUs. When debug information is generated for ST programs in a resource, the resource automatically switches to step-by-step execution when the application encounters a breakpoint. You instantiate step-by-step execution by setting breakpoints to lines of code. In the language editor, breakpoints appear as red circles to the left of the line of code and the line is highlighted in red.

When debugging, the application stops when it encounters a breakpoint. At this time, the resource is in the DEBUGGING state and you can choose to perform one of the following operations:

- Step into the highlighted line of code, executing the highlighted line of code then stepping into the subsequent line of code. When the next line of code includes a call to a function, stepping continues in the called function then returns to the next line of code in the POU.
- Step over the highlighted line of code, skips the highlighted line of code then steps to the susbsequent line of code
- Switch execution to real-time mode
- Switch execution to cycle-to-cycle mode
- Execute one cycle

Note: You can only set breakpoints for TIC POUs; you cannot set breakpoints for C source code POUs.

When a breakpoint is encountered, a yellow arrow is displayed beside the breakpoint and the next line of code is highlighted in pink.

When stepping passes beyond the last line of code of a POU, the arrow points downward.

To generate debug information for an ST POU

Generate debug information for ST POUs enables step-by-step debugging within the POU.

- 1. In the Solution Explorer, select the ST POU for which to generate debug information.
- 2. In the Properties for the POU, set *Generate Debug Info* to True.

To set a breakpoint in an ST POU

• Right-click in the margin to the left of the line of code on which to add a breakpoint, then click **Add Breakpoint**.

A breakpoint is displayed as a red dot to the left of the line of code.

To remove a breakpoint

• Right-click in the area to the left of the line of code having a breakpoint to remove, then click **Remove Breakpoint**.

The breakpoint is removed from the line of code.

To step into the highlighted line of code

• From the Debug menu, click **Step Into** (or press **F11**).

The POU executes the highlighted line of code then steps into the next one and stepping continues in any called function before returning to the next line of the POU.

To step over the highlighted line of code

• From the Debug menu, click **Step Over** (or press **F10**).

The POU skips the highlighted line of code then steps to the next one.

To switch execution to real-time mode

From the Target Execution toolbar, click . •

The POU executes in real-time mode.

To switch execution to cycle-to-cycle mode

From the Target Execution toolbar, click 🚳. •

The POU executes in cycle-to-cycle mode.

To execute one cycle

From the Target Execution toolbar, click 🔐. •

Executes the remaining POUs until the next cycle.

ST Basic Elements and Statements

The basic elements and statements of the ST language are the following:

- Assignments
- CASE Statement
- EXIT Statement
- FOR Statement
- IF-THEN-ELSIF-ELSE-END_IF Statement
- REPEAT Statement
- RETURN Statement
- WHILE Statement

See Also

ST Main Syntax

Assignments

Name:	:=	
Meaning:	Assigns a variable to an expression	
Syntax:	<variable> := <any_expression> ;</any_expression></variable>	
Operands:	Variable must be an internal or output variable and the expression must have the same type	

The expression can be a call to a function.

Example

```
(* ST program with assignments *)
(* variable <<= variable *)
bo23 := bo10;
(* Variable <<= expression *)
bo56 := bx34 OR alrm100 & (level >= over_value);
result := (100 * input_value) / scale;
(* assignment with function call *)
limited_value := min (16, max (0, input_value) );
```

To insert an Assignment

• In the language container, type :=.

CASE Statement

 Name:
 CASE ... OF ... ELSE ... END_CASE

 Meaning:
 executes one of several lists of ST statements selection is made according to an integer expression

 Syntax:
 CASE <integer_expression> OF

 <value> : <statements> ;
 <value> : <statements> ;

 ELSE
 <statements> ;

 <ch><statements> ;
 END_CASE;

CASE values must be double integer (DINT) constant expressions. You can convert other data types such as reals and long integers using the ANY_TO_DINT data conversion operator.

```
CASE integer_expression OF

ANY_TO_DINT(1): xx := 1;

ANY_TO_DINT(16#FFFFFFF): xx := 2; (* -1 *)

ANY_TO_DINT(16#10000000): xx := 3; (* 268435456 *)

ANY_TO_DINT(16#10000000): xx := 3; (* 268435456 *)

ANY_TO_DINT(8#777): xx := 4; (* 511 *)

ANY_TO_DINT(2#1111_1111_1111_1111): xx := 5; (* 65535 *)

ANY_TO_DINT(2#1111_1111_1111_1111): xx := 5; (* 65535 *)

ANY_TO_DINT(10.0): xx := 6; (* 10 *)

ELSE

xx := 99999;

END_CASE;
```

Several values, separated by commas, can lead to the same list of statements. The ELSE statement is optional.

Example

(* ST program using CASE statement *)

```
CASE error_code OF
255: err_msg := 'Division by zero';
fatal_error := TRUE;
1: err_msg := 'Overflow';
2, 3: err_msg := 'Bad sign';
ELSE
err_msg := 'Unknown error';
END CASE;
```

To insert a CASE

• From the Toolbox, drag the CASE element into the language container.

EXIT Statement

Name:	EXIT
Meaning:	exit from a FOR, WHILE or REPEAT iteration statement
Syntax:	EXIT;

The EXIT is commonly used within an IF statement, inside a FOR, WHILE or REPEAT block.

Example

```
(* ST program using EXIT statement *)
(* this program searches for a character in a string *)
length := mlen (message);
found := NO;
FOR index := 1 TO length BY 1 DO
   code := ascii (message, index);
IF (code = searched_char) THEN
    found := YES;
    EXIT;
END_IF;
END_FOR;
```

To insert an EXIT

• In the language container, type **EXIT**.

FOR Statement

Name: FOR ... TO ... BY ... DO ... END_FOR
 Meaning: executes a limited number of iterations, using an integer index variable
 Syntax: FOR <index> := <mini> TO <maxi> BY <step> DO
 <statement> ;
 <statement> ;
 <statement> ;
 END_FOR;
 Operands: index: internal integer variable increased at each loop
 mini: initial value for index (before first loop)
 maxi: maximum allowed value for index
 step: index increment at each loop

The [BY step] statement is optional. If not specified, the increment step is 1

Warning: Because the virtual machine is a synchronous system, input variables are not refreshed during FOR iterations.

This is the "WHILE" equivalent of a FOR statement:

```
index := mini;
while (index <= maxi) do
  <statement> ;
    statement> ;
    index := index + step;
end while;
```

Example

```
(* ST program using FOR statement *)
(* this program extracts the digit characters of a string *)
length := mlen (message);
target := ''; (* empty string *)
FOR index := 1 TO length BY 1 DO
   code := ascii (message, index);
   IF (code >= 48) & (code <= 57) THEN
      target := target + char (code);
   END_IF;
END FOR;</pre>
```

To insert a FOR

• From the Toolbox, drag the **FOR** element into the language container.

IF-THEN-ELSIF-ELSE-END_IF Statement

```
Name:
            IF ... THEN ... ELSIF ... THEN ... ELSE ... END IF
Meaning:
            executes one of several lists of ST statements
            selection is made according to the value of a Boolean expression
Syntax:
            IF <Boolean expression> THEN
              <statement>;
              <statement>;
            ELSIF <Boolean expression> THEN
              <statement>;
              <statement> :
              ...
            ELSE
              <statement>;
              <statement>;
              ...
            END IF;
```

The ELSE and ELSIF statements are optional. If the ELSE statement is not written, no instruction is executed when the condition is FALSE. You can use the ELSIF statement more than once. The ELSE statement, if used, must appear only once at the end of the 'IF, ELSIF...' sequence.

When the resource property *Reduce Boolean Expression Evaluation* is set to FALSE, **ISaGRAF** evaluates complete Boolean expressions. For instance, evaluating the following line of code, where i represents the array index having a definition of 2..10, causes a run-time error upon reaching the second part where it applies the value 1 as the array index.

IF i >= 2 and i <= 10 and matrix [i] > 5 THEN

You can avoid this type of error by using the following code:

IF i >= 2 and i <= 10 THEN
IF Array1[i] THEN</pre>

Example

```
(* ST program using IF statement *)
```

```
IF manual AND not (alarm) THEN
  level := manual_level;
  bx126 := bi12 OR bi45;
ELSIF over_mode THEN
  level := max_level;
ELSE
  level := (lv16 * 100) / scale;
END_IF;
 (* IF structure without ELSE *)
If overflow THEN
  alarm_level := true;
END IF;
```

To insert an IF-THEN-ELSIF-ELSE-END_IF

• From the Toolbox, drag the IF THEN ELSE element into the language container.

See Also

Expressions and Parentheses

REPEAT Statement

Name: REPEAT ... UNTIL ... END_REPEAT Meaning: iteration structure for a group of ST statements the "continue" condition is evaluated AFTER any iteration Syntax: REPEAT <statement> ; <statement> ; ... UNTIL <Boolean_condition>

END REPEAT;

Warning: Because the virtual machine is a synchronous system, input variables are not refreshed during REPEAT iterations. The change of state of an input variable cannot be used to describe the ending condition of a REPEAT statement.

Example

```
(* ST program using REPEAT statement *)
(* this program uses specific "C" functions to read characters *)
(* on a serial port *)
str := ''; (* empty string *)
nbchar := 0;
IF ComIsReady ( ) THEN
REPEAT
str := str + ComGetChar ( );
nbchar := nbchar + 1;
UNTIL ( (nbchar >= 16) OR NOT (ComIsReady ( )) )
END_REPEAT;
END_IF;
```

To insert a REPEAT

• From the Toolbox, drag the **REPEAT** element into the language container.

RETURN Statement

Name:	RETURN
Meaning:	terminates the execution of the current program
Syntax:	RETURN ;
Operands:	(none)

In an SFC action block, the RETURN statement indicates the end of the execution of that block only.

Example

(* FBD specification of the program: programmable counter *)


```
(* ST implementation of the program, using RETURN statement *)
If NOT (CU) then
  Q := false;
  CV := 0;
  RETURN; (* terminates the program *)
end_if;
if RESET then
  CV := 0;
else
  if (CV < PV) then
        CV := CV + 1;
  end_if;
end_if;
Q := (CV >= PV);
```

To insert a RETURN

• In the language container, type **RETURN**.

WHILE Statement

 Name:
 WHILE ... DO ... END_WHILE

 Meaning:
 iteration structure for a group of ST statements the "continue" condition is evaluated BEFORE any iteration

 Syntax:
 WHILE <Boolean_expression> DO <statement> ; <statement> ;

 ...
 ...

END_WHILE;

Warning: Since the virtual machine is a synchronous system, input variables are not refreshed during WHILE iterations. The change of state of an input variable cannot be used to describe the condition of a WHILE statement.

Example

```
(* ST program using WHILE statement *)
(* this program uses specific "C" functions to read characters *)
(* on a serial port *)
str := ''; (* empty string *)
nbchar := 0;
WHILE ((nbchar < 16) & ComIsReady ( )) DO
str := str + ComGetChar ( );
nbchar := nbchar + 1;
END WHILE;</pre>
```

To insert a WHILE

• From the Toolbox, drag the WHILE element into the language container.

ST Extensions

The following statements and functions are available to control the execution of SFC child programs. You can use these within action blocks written in ST for SFC steps.

GSTART	starts an SFC program or function block
GFREEZE	freezes an SFC program
GKILL	terminates an SFC program
GSTATUS	gets current status of an SFC program
GRST	restarts a frozen SFC program or function block

Warning: These functions are not part of the IEC 61131-3 standard.

Simple equivalents for the GSTART and GKILL statements are available using the following syntax in an SFC step:

- child_name with the S qualifier (* equivalent to GSTART(child_name); *)
- child_name with the R qualifier (* equivalent to GKILL(child_name); *)

The following fields enable accessing the status of an SFC step or child (from its parent):

StepName.x	Boolean value that represents the activity of the Step
StepName.t	time elapsed since the last activation of the step: activity duration (" StepName " represents the name of the SFC step)
ChildNameS1.x	Boolean value that represents the activity of the child
ChildNameS1.t	time elapsed since the last activation of the step: activity duration (" ChildName " represents the name of the SFC child)

GSTART Statement in SFC Action

Name:	GSTART
Meaning:	Starts an SFC child program or function block by placing a token into each of its initial steps. The abbreviated syntax is equivalent to an SFC Child action block having the S qualifier. The extended syntax only applies to SFC child function blocks.
Syntax:	<pre>GSTART (<child_name>); or GSTART (<child_name,step_name,input1,input2,inputn>) where child_name represents the name of the SFC child POU step_name represents the name of the active step. step_name must be preceded by two underscore characters (e.g.,S1) input1,input2,inputn indicate the values of the input parameters of the SFC child POU</child_name,step_name,input1,input2,inputn></child_name></pre>
Operands:	the specified SFC program must be a child of the one in which the statement is written
Return value:	(none)

Children of the child program are not automatically started by the GSTART statement. Since GSTART is not part of the IEC 61131-3 standard, it is preferable to use the S qualifier attached to the child name.

Example

To insert a GSTART

• In the language container, type **GSTART**.

GFREEZE Statement in SFC Action

Name:	GFREEZE
Meaning:	freezes a child SFC (program or function block); suspends its execution. The suspended SFC POU can then be restarted using the GRST statement.
Syntax:	GFREEZE (<i><child_name></child_name></i>); where <i>child_name</i> represents the name of the SFC child POU
Operands:	the specified SFC program must be a child of the one in which the statement is written
Return value:	(none)

Children of the child program are automatically frozen along with the specified program.

GFREEZE is not part of the IEC 61131-3 standard.

Example

To insert a GFREEZE

• In the language container, type **GFREEZE**.

GKILL Statement in SFC Action

Name:	GKILL
Meaning:	Terminates a child SFC program by removing the Tokens currently existing in its Steps. The syntax is equivalent to an SFC Child action block having the R qualifier.
Syntax:	GKILL (< <i>child_name</i> >); where <i>child_name</i> represents the name of the SFC child POU
Operands:	the specified SFC program must be a child of the one in which the statement is written
Return value:	(none)

Children of the child program are automatically terminated with the specified program.

Since GKILL is not part of the IEC 61131-3 standard, it is preferable to use the R qualifier attached to the child name.

Example

To insert a GKILL

• In the language container, type **GKILL**.

GSTATUS Statement in SFC Action

Name:	GSTATUS	
Meaning:	returns the current status of an SFC program	
Syntax:	<var> := GSTATUS (<<i>child_name</i>>); where <i>child_name</i> represents the name of the SFC child POU</var>	
Operands:	the specified SFC program must be a child of the one in which the statement is written	
Return value:	0 = Program is inactive (killed) 1 = Program is active (started) 2 = Program is frozen	

GSTATUS is not part of the IEC 61131-3 standard.

Example

To insert a GSTATUS

• In the language container, type **GSTATUS**.

GRST Statement in SFC Action

Name:	GRST
Meaning:	restarts a child SFC program frozen by the GFREEZE statement: all the tokens removed by GFREEZE are restored. The extended syntax only applies to SFC child function blocks.
Syntax:	<pre>GRST (<child_name>); or GRST (<child_name,input1,input2,inputn>); where child_name represents the name of the SFC child POU input1,input2,inputn indicate the value of the input parameter of the SFC child POU</child_name,input1,input2,inputn></child_name></pre>
Operands:	the specified SFC program must be a child of the one in which the statement is written

Return value: (none)

The GRST statement automatically restarts children of the child program.

GRST is not part of the IEC 61131-3 standard.

Example

To insert a GRST

• In the language container, type **GRST**.

ST Keyboard Shortcuts

The following keyboard shortcuts are available for use with the ST language. Some shortcuts do not apply or may differ while debugging.

Ctrl+A	Selects the entire document (not available while debugging)
Ctrl+C	Copies the selected text to the clipboard (not available while debugging)
Ctrl+Insert	Copies the selected text to the clipboard (not available while debugging)
Ctrl+V	Pastes text saved on the clipboard to the insertion point (not available while debugging)
Shift+Insert	Pastes text saved on the clipboard to the insertion point (not available while debugging)
Ctrl+X	Cuts the selected text to the clipboard (not available while debugging)
Shift+Delete	Cuts the selected text to the clipboard (not available while debugging)
Ctrl+L	Cuts the current line to the clipboard (not available while debugging)
Ctrl+Z	Undoes the previous command (not available while debugging)
Ctrl+Y	Redoes the previous command (not available while debugging)
Ctrl+Shift+Z	Redoes the previous command (not available while debugging)
Shift+Alt+Enter	Toggles between full-screen and windowed modes
Insert	Toggles between the overwrite/insert typing mode
Shift+Enter	Inserts a line break. While debugging, when the insertion point is on a variable it opens the Write Logical Value dialog box.
Ctrl+Enter	Inserts a line above the current line. While debugging, when the insertion point is on a variable it opens the Write Logical Value dialog box.

Ctrl+Shift+Enter	Inserts a line below the current line. While debugging, when the insertion point is on a variable it opens the Write Logical Value dialog box.
Ctrl+Shift+T	Transposes the current and previous word (not available while debugging)
Ctrl+Shift+Alt+T	Transposes the current and next line (not available while debugging)
Ctrl+Space	Displays a drop-down combo-box listing available items such as variables, operators, functions, and function blocks. You can filter displayed items by typing letters, digits, and specific special characters: !, #, \$, %, &, *, +, -, $\sqrt{<}$, :, =, >, ?, @, ^, _, ', , and ~. (not available while debugging)
Ctrl+Shift+Space	Displays a drop-down combo-box listing available items such as variables, operators, functions, and function blocks. You can filter displayed items by typing letters, digits, and specific special characters: !, #, \$, %, &, *, +, -, $\sqrt{<}$, :, =, >, ?, @, ^, _, ', , and ~. (not available while debugging)
Ctrl+Shift+U	Changes the selected text into uppercase (not available while debugging)
Ctrl+U	Changes the selected text into lowercase (not available while debugging)
Up Arrow	Moves up lines and characters
Down Arrow	Moves down lines and characters
Left Arrow	Moves left across lines and characters
Right Arrow	Moves right across lines and characters
Ctrl+Left Arrow	Moves to the previous statement or word
Ctrl+Right Arrow	Moves to the next statement or word
Home	Jumps to the start of the line
End	Jumps to the end of the line
Ctrl+Home	Jumps to the start of the document
Ctrl+End	Jumps to the end of the document
Page Up	Jumps to the top of the visible code

Page Down	Jumps to the bottom of the visible code
Ctrl+Page Up	Jumps to the top of the visible code
Ctrl+Page Down	Jumps to the bottom of the visible code
Ctrl+Up Arrow	Scrolls up
Ctrl+Down Arrow	Scrolls down
Shift+Up Arrow	Selects up
Shift+Down Arrow	Selects down
Shift+Left Arrow	Selects left
Shift+Right Arrow	Selects right
Ctrl+Shift+Left Arrow	Selects to the previous statement or word
Ctrl+Shift+Right Arrow	Selects to the next statement or word
Shift+Home	Selects from the insertion point until the start of the line
Shift+End	Selects from the insertion point until the end of the line
Ctrl+Shift+Home	Selects from the insertion point until the start of the document
Ctrl+Shift+End	Selects from the insertion point until the end of the document
Ctrl+Shift+Page Up	Selects from the insertion point until the top of the visible code
Ctrl+Shift+Page Down	Selects from the insertion point until the end of the visible code
Ctrl+Shift+W	Selects the next word
Shift+Alt+Up Arrow	Selects the current and previous lines
Shift+Alt+Down Arrow	Selects the current and next lines
Shift+Alt+Left Arrow	Selects left on the current line
Shift+Alt+Right Arrow	Selects right on the current line
Ctrl+Shift+Alt+Left Arrow	Selects available columns in lines of code from the left to right
Ctrl+Shift+Alt+Right Arrow	Selects available columns in lines of code from the right to left
Escape	Deselects the selected text
Ctrl+I	Opens the Variable Selector. While debugging, opens the Variable Monitoring dialog box.
Ctrl+Shift+I	Opens the Variable Selector. While debugging, opens the Variable Monitoring dialog box.

Ctrl+R	Opens the Block Selector. When the insertion point is on a variable during debugging, it is selected.
Ctrl+Alt+R	Opens the Block Selector. When the insertion point is on a variable during debugging, it is selected.
Ctrl+Shift+Alt+R	Opens the Block Selector. When the insertion point is on a variable during debugging, it is selected.
Delete	Removes the character on the right (not available while debugging)
Ctrl+Shift+L	Removes the current line (not available while debugging)
Ctrl+Delete	Removes the next word in the current line (not available while debugging)
Ctrl+Backspace	Removes the previous word in the current line (not available while debugging)
Backspace	Removes the character on the left (not available while debugging)
Shift+Backspace	Removes the character on the left (not available while debugging)

SFC Language

The SFC language is a graphic language used to describe operations of a sequential process. This language uses a simple graphic representation for the different steps of a process, and conditions that enable the change of active steps.

SFC is the core of the IEC 61131-3 standard. The other languages (other than Flow Chart) usually describe the actions within the steps and the logical conditions for the transitions.

See Also

SFC Main Format SFC Execution Behavior SFC Program Hierarchy Child SFC POUs Debugging SFC Programs SFC Elements

SFC Main Format

An SFC program is a graphic set of steps and transitions, linked together using oriented links. Divergences and convergences represent multiple connection links from 1 to n and n to 1 respectively. The basic graphic rules of SFC are the following:

- SFC programs must have at least one initial step
- A step must follow a transition
- A transition must follow a step

SFC programs describe sequential operations, where the time variable explicitly synchronizes basic operations. These are called sequential programs. Programs before and after SFC programs describe cyclic operations and are not time-dependent. These are called cyclic programs. Main sequential programs (at the top of the hierarchy) are executed according to the SFC dynamic behavior. Cyclic programs are systematically executed at the beginning of each run time cycle. In Programs sections, sequential programs are grouped together.

Main sequential programs are described with the SFC language; Cyclic programs cannot be described with the SFC language. Any SFC program can have one or more SFC child programs.

Functions and function blocks can be called from actions or conditions of SFC programs.

SFC programs and SFC child programs have dynamic behavior limits set at the resource level. These dynamic behavior limits determine the amount of memory, allocated by a target at initialization time, designated to manage SFC dynamic behavior (i.e. token moving). The amount of allocated memory is calculated as a linear relation with the number of SFC POUs:

```
Alloc Mem (bytes) = N * NbElmt * sizeof(typVa)
NbElmt = GainFactor * NbOfSFC + OffsetFactor
Where:
```

N = 5 (constant linked to SFC engine design)

NbElmt = The maximum number of transitions that can be valid for each executed cycle, i.e., transitions with at least one of their previous steps being active. typVa = 16 bits in the medium memory model (32 bits in the large memory model) GainFactor and OffsetFactor = the linear parameters of the linear relation NbOfSFC = the number of SFC POUs in the project

The following points offer a simplified and more approximate definition of the allocated memory:

- The maximum number of steps that can be active
- The maximum number of actions (N, P1 or P0 action linked to the step) that can be executed

When the available memory is insufficient at a specific moment for a target where check mode (ITGTDEF_SFCEVOCHECK defined in dsys0def.h) is generated, the target kernel generates a warning. This warning signals an SFC token moving error or an action execution error and the resource is set to ERROR mode, i.e., cycles are no longer executed or kernel behavior may become unpredictable.

For SFC function blocks and SFC child function blocks, each has a maximum number of tokens which is set in the properties of the block.

SFC function block instances, as their SFC child blocks, have a maximum number of tokens, unlike SFC programs whose dynamic behavior limits are set at the resource level.

See Also

SFC Execution Behavior SFC Program Hierarchy Child SFC POUs Debugging SFC Programs SFC Elements

SFC Execution Behavior

The SFC execution behavior consists of three stages: initial situation (start), code execution, and end. Each virtual machine cycle consists of determining all clearable transitions and executing their active steps. Execution ends upon reaching unclearable transitions or the end of the control chart.

Within the execution cycle, the dynamic behaviors of the SFC language are the following:

Initial situation

The Initial Situation is characterized by the initial steps which are, by definition, in the active state at the beginning of the operation. At least one initial step must be present in each SFC program.

Clearing of a transition

A transition has three properties: enabled/disabled, active/inactive, and clearable/non-clearable. A transition is enabled when all immediately preceding steps linked to its corresponding transition symbol are active, otherwise, the transition is disabled. A transition is active if its condition is True.

A transition is clearable if it is enabled and active at the same time. When a transition is clearable, the steps immediately preceding it become inactive and those immediately following it become active. When transitions follow a divergence, multiple transitions may become clearable.

Changing of state of active steps

The clearing of a transition simultaneously leads to the active state of the immediately following steps and to the inactive state of the immediately preceding steps. The code within a step is only executed if the step is active.

Simultaneous clearing of transitions

All transitions (of all SFC programs) that can be cleared (enabled and active), are simultaneously cleared.
However, for transitions following divergences, the only transition that is cleared is the one having the highest priority among those that are enabled and active.

End

The End is characterized by reaching the end of clearable transitions or the end of the control chart.

See Also

SFC Language

SFC Program Hierarchy

The system enables the description of the vertical structure of SFC programs. SFC programs are organized in a hierarchical-tree structure. Each SFC program can control (start, terminate,...) other SFC programs. Such programs are called children of the SFC program which controls them. SFC programs are linked together into a main hierarchy tree, using a "parent - child" relationship:

Parent Program

The basic rules implied by the hierarchy structure are:

- SFC programs having no parent are called "main" SFC programs
- Main SFC programs are activated by the system when the application starts
- A program can have several child programs
- A child of a program can only have one parent
- A child program can only be controlled by its parent
- A program cannot control the children of one of its own children

The basic actions that a parent SFC program can take to control its child program are:

Start (GSTART)	Starts the child program: activates each of its initial steps. Children of this child program are not automatically started.
Terminate (GKILL)	Terminates the child program by deactivating each of its active steps. All the children of the child program are also terminated.
Freeze (GFREEZE)	Deactivates each of the active steps of the program, and memorizes them so the program can be restarted. All the children of the child program are also frozen.

Restart (GRST)	Restarts a frozen SFC program by reactivating all the suspended steps. Children of the program are not automatically restarted.
Get status (GSTATUS)	Gets the current status (active, inactive or frozen) of a child program.

See Also

SFC Language

Child SFC POUs

Any SFC POU may control other SFC POUs. Such low level units are called child SFC POUs. A child SFC POU is a parallel unit that can be started, terminated, frozen, or restarted by its parent. The parent POU and child POU must both be described with the SFC language. A child SFC POU can have local variables.

When a parent POU starts a child SFC, it puts an SFC token (activates) into each initial step of the child. This command is described with the GSTART statement or with the name of the child with the S qualifier. When a parent POU terminates a child SFC, it clears all the tokens existing in the steps of the child. Such a command is described with the GKILL statement or with the name of the child and the R qualifier. When a parent POU starts a child, the parent continues its execution.

When a parent POU freezes a child SFC, it clears all the tokens existing in the child, and keeps their position in memory. Such a command is described with the GFREEZE statement. When a parent POU restarts a frozen child SFC, it restores all the tokens cleared when the child was frozen. Such a command is described with the GRST statement.

For details about the usage of the GSTART, GKILL, GFREEZE, and GRST statements in SFC child POUs, consult the ST Extensions section.

Child SFC function block instances, as for their SFC function block parents, have a maximum number of tokens, unlike SFC programs whose dynamic behavior limits are set at the resource level. You specify the tokens limit for an SFC function block in its settings properties.

When using an SFC function block with an SFC child, you can access, for read-only purposes, the local values of the child from its parent by entering the child's name and the parameter in an action or transition's code. For example, to access the *Local1* parameter of an SFC child named *FB_Child*, in an action or transition defined for the SFC function block parent, you would write the following syntax:

FB_Child.Local1

Debugging SFC Programs

When debugging SFC programs, you can visually follow the execution of the individual steps. Steps are colored red while active. You can also place SFC breakpoints on SFC steps or transitions. When a breakpoint is encountered, the resource switches to the BREAK state. This mode is equivalent to the cycle-to-cycle mode. Then to pass the breakpoint, you can choose either to execute one cycle or to switch to real-time mode. When a resource is in the BREAK state and step-by-step execution is activated for other POUs within the resource, you can also step to the first line of the first POU of the resource for which debug information is generated.

Note: You can only set breakpoints for TIC POUs; you cannot set breakpoints for C source code POUs. Furthermore, you cannot set or remove SFC breakpoints while a resource is in the STEPPING state.

For steps, two types of breakpoints are available:

- Breakpoint on Step Activation
- Breakpoint on Step Deactivation

Breakpoints appear as red circles with a white "X" displayed on the left part of the step or transition. For steps, breakpoints on activation are displayed at the top corner while breakpoints on deactivation are displayed at the bottom corner.

To set a breakpoint command on a step or transition

You set breakpoints onto steps and transitions from the contextual menu. For steps, you can apply a breakpoint on activation or a breakpoint on deactivation.

• Right-click the step or transition, and then click the required breakpoint command.

Once the breakpoint is reached, you can execute one cycle or switch to real-time mode to continue execution.

To remove breakpoints from steps or transitions

You remove breakpoints from steps and transitions from the contextual menu.

• Right-click the step or transition, and then click **Remove Breakpoint**.

See Also

SFC Language

Breakpoint on Step Activation

When the step goes from the inactive (no token) to the active (token) state, then breakpoint mode is set for the next cycle. The current cycle goes on executing normally. In particular around the step where the breakpoint is placed, before breakpoint mode is really set:

- All P0 actions, linked to all previous steps that become inactive, are executed.
- All P1 S R N actions, linked to the step that becomes active, are executed.

The following illustrates cycle execution when a breakpoint on step activation is encountered.

The behavior of setting a breakpoint on step activation is the same as setting a breakpoint on step deactivation of the previous step. Whether placing a breakpoint on step activation or on deactivation of the previous step, the target executes the break at the same moment.

To set a breakpoint on step activation

• Right-click the step, and then click **Set Breakpoint on Activation**.

Breakpoint on Step Deactivation

When the step goes from the active (token) to the inactive (no token) state, then breakpoint mode is set for the next cycle. Current cycle goes on executing normally. In particular around the step where the breakpoint is placed, before breakpoint mode is really set:

- All P0 actions, linked to the step that becomes inactive, are executed.
- All P1 S R N actions, linked to all successor steps that become active, are executed.

The following illustrates cycle execution when a breakpoint on step deactivation is encountered.

The behavior of setting a breakpoint on step activation is the same as setting a breakpoint on step deactivation of the previous step. Whether placing a breakpoint on step activation or on deactivation of the previous step, the target executes the break at the same moment. Both breakpoint on step activation and breakpoint on step deactivation are available to avoid setting multiple breakpoints as shown below.

Note: On a given step, you cannot set both a breakpoint on step activation and a breakpoint on step deactivation.

To set a breakpoint on step deactivation

• Right-click the step, and then click **Set Breakpoint on Deactivation**.

Breakpoint on Transition

When a transition becomes clearable (transition is valid i.e. all previous steps are active, and its receptivity is true) then breakpoint mode is set for the next cycle. The current cycle goes on executing normally except that the transition is not cleared and therefore related tokens are not moved.

The following illustrates cycles execution when a breakpoint on transition is encountered.

To set a breakpoint on a transition

• Right-click the transition, and then click Set Breakpoint.

Transition Clearing Forcing

You can force the clearing of a transition while in simulation whether all previous steps are active or not. The tokens are moved and the actions are executed the same as with usual transition clearings.

Tokens of all predecessor steps are removed and tokens of all successor steps are created. All P0 actions linked to predecessor steps and P1 - S - R - N actions linked to successor steps are executed.

S0 Force clearing S0 0 S1 S1 S1 S1 Cycle samples S0: P0 Actions S1: P1-S-R-N

The following illustrates cycle execution when forcing transition clearing:

Warning: Clearing a transition may cause abnormal behavior of your chart since several tokens may be created.

To clear a transition

• Right-click the transition while in simulation mode, and then click Clear Transition.

SFC Elements

When working in SFC programs, you can insert the following elements. A program always has an initial step.

- Steps
- Transitions
- Sequence Controls
- Jumps to Steps

When inserting steps and transitions, these are assigned a default naming convention including numbering. For steps, the default naming is Sn where S indicates a step and n indicates the numbering for the step. For transitions, the default naming is Tn where T indicates a transition and n indicates the numbering for the transition. You can rename steps and transitions. However, when renaming steps and transitions using the default naming convention and changing only the numbering, you can renumber these elements to a numbering scheme starting from top to bottom, then from left to right.

To renumber steps and transitions

Renumbering ignores steps and transitions using a naming convention other than the default Sn for steps and Tn for transitions.

- 1. Open the SFC program for which to renumber the steps and transitions.
- 2. From the Tools menu, point to Multi-language Editor, and then click Renumber Steps and Transitions.

See Also SFC Language

Steps

SFC programs contain initial steps and steps. Initial steps express the initial situation of an SFC program. Whereas, steps are placed throughout an SFC program. An SFC program must contain at least one initial step. Initial steps and steps are referenced by a name, written in their square symbol. This information is the level 1 of the step.

An initial step has a double bordered graphic symbol.

Initial Step

A step is represented by a single square.

Step

At run time, a token indicates that the step is active. For initial steps, a token is automatically placed in each when the program is started.

Active Step

Inactive Step

Steps have attributes. These can be used in any of the other languages.

StepName.x activity of the Step (Boolean value) StepName.t activation duration of the Step (time value)

(where StepName is the name of the step)

Activity of a step is an attribute of a step which is activated by an SFC token.

For SFC function blocks, when reading a child active step or duration from a father:

ChildName.__S1.x activity of the Step (Boolean value) ChildName.__S1.t activation duration of the Step (time value)

(where ChildName is the name of the child. Note that S1 is preceded by two underscore (_)characters)

To insert an initial step

• From the Toolbox, drag the initial step element into the language container.

The initial step is displayed in the language container.

To insert a step

• From the Toolbox, drag the step element into the language container.

The step is displayed in the language container.

Transitions

Transitions are represented by small horizontal bars that cross the connection link. Each transition is referenced by a name, written next to the transition symbol. This information is called the level 1 of the transition.

To insert a transition

• From the Toolbox, drag the transition element into the language container.

The transition is displayed in the language container.

Sequence Controls

Sequence controls are divergences or convergences. These elements adjust automatically to the context of the SFC diagram. For instance, the editor automatically inserts the type of sequence control required according to the elements at the insertion point. Moreover, when adding a parallel element below a sequence control, the sequence control automatically branches out to the added element. Also, when a sequence control is placed erroneously within a diagram, the editor displays it as red.

- Selection Divergences, a multiple link from a step to multiple transitions
- Selection Convergences, a multiple link from multiple transitions to a single step
- Simultaneous Divergences, a multiple link from a transition to multiple steps
- Simultaneous Convergences, a multiple link from multiple steps to a single transition

Divergences are multiple links from one SFC element (step or transition) to multiple SFC symbols. Convergences are multiple connections from more than one SFC symbol to one other symbol.

When inserting a sequence control, the type is determined logically according to the number of SFC elements of a same type (whether multiple) located initially above then below the control.

To insert a sequence control

• From the Toolbox, drag the sequence control to the required location in the language container.

The sequence control is displayed in the language container.

Selection Divergences

A selection divergence (OR) is a multiple link from one step to multiple transitions. The selection divergence enables an active token to pass into one of a number of branches.

Conditions attached to the different transitions at the beginning of a selection divergence are not implicitly exclusive. Exclusivity of transitions is defined by the priorities set to those transitions following the divergence.

Selection divergences are represented by single horizontal lines.

The first transitions following a single divergence are set in a group to define their priority of execution. The workbench automatically assigns the priority of transitions, displayed on the left, in the order of creation of the divergence branch. You can specify a different priority for a transition in the properties. The possible priority values range from 1 to 255.

Example

(* SFC Program with selection divergence and convergence *)

See Also

Selection Convergences Simultaneous Divergences

Selection Convergences

A selection convergence (OR) is a multiple link from multiple transitions to a single step. Selection convergences are generally used to group branches which were started using selection divergences. Selection convergences are represented by single horizontal lines.

See Also Selection Convergences Simultaneous Convergences

Simultaneous Divergences

A simultaneous divergence (AND) is a multiple link from one transition to multiple steps. A simultaneous divergence corresponds to parallel operations of a process. Simultaneous divergences are represented by double horizontal lines.

Example

(* SFC program with simultaneous divergence and convergence *)

See Also

Simultaneous Convergences Selection Divergences

Simultaneous Convergences

A simultaneous convergence (AND) is a multiple link from multiple steps to a single transition. Simultaneous convergences are generally used to group branches which were started using simultaneous divergences. Simultaneous convergences are represented by double horizontal lines.

See Also Simultaneous Divergences Selection Convergences

Jumps to Steps

Jump symbols may be used to indicate a connection link from a transition to a step, without having to draw the connection line. The jump symbol must be referenced with the name of the destination step. A Jump symbol cannot represent a link from a step to a transition.

Jump to Step S1

To insert a jump to a step

- 1. From the Toolbox, drag the jump element into the language container and place it directly below the existing transition.
- 2. In the language container, click the jump element.
- 3. In the drop-down combo-box, click the desired step.

The jump is displayed in the language container.

Example

The following charts are equivalent. The chart on the left uses links to return from the bottom to the top of the chart while the chart on the right uses jumps to return to the top of the chart.

Coding Action Blocks for Steps

Action blocks are operations executed when a step is active. Steps can contain multiple action blocks of the same or different type. You add action blocks to the level 1 of a step. Depending on the action block type, you may need to program the level 2 for the block. You program level 2 code for an action block in a level 2 window, displayed to the right of the POU. The available action block types are the following:

- Boo where the action block name is automatically associated to Boolean variable selected from the variable selector. Possible qualifiers are Action (N), Reset (R), and Set (S).
- LD where you program an LD diagram in the level 2 window. Possible qualifiers are Action (N), Pulse on Deactivation Action (P0), and Pulse On Activation Action (P1).
- SFC where the action block name is automatically associated to the SFC child. Possible qualifiers are Action (N), Reset (R), and Set (S).
- ST where you define ST code in the level 2 window. Possible qualifiers are Action (N), Pulse on Deactivation Action (P0), and Pulse On Activation Action (P1).

Individual SFC steps are executed in the following order:

- 1. Step activation beginning when the previous transition is cleared. During this period, defined action blocks are executed in the order of appearance.
- 2. Step cycle beginning when the step becomes active and ending when the step completes deactivation. During this period, defined action blocks are executed in the order of appearance.
- **3.** Step deactivation ending when the following transition becomes active. During this period, defined action blocks other than Boolean (Boo) action blocks having the N qualifier are executed in the order of appearance. Boolean (Boo) action blocks are executed after all other action blocks.

To add action blocks to steps

- 1. Select the step for which to define operations.
- 2. Right-click the step, point to Add, and then click the required action block type.

- **3.** Specify the required properties for the action block from the Properties window by clicking the action block definition on the step.
 - a) To rename the action block, type the required text in the Name field.

Note: The names for Boo and SFC action blocks are automatically associated to their respective assignation (Boolean variable or SFC child).

- **b)** To specify the qualifier for the action block, choose the required type in the Qualifier field.
- c) To include a comment, type the required text in the Comment field.
- **4.** For a Boo action block, double-click the action block name, then from the Variable Selector, select the variable for use in the block.
- 5. For an ST or LD action block, access the level 2 for the block by double-clicking the action block name on the step, then program the required level 2 operations in the level 2 window displayed to the right of the POU.

To rearrange the order of action blocks for a step

- 1. On the step, select the action block to displace.
- 2. Right-click the action block, and then click Move Up or Move Down.

To delete an action block

- 1. On the step, select the action block to remove.
- 2. Right-click the action block, and then click **Delete**.

Boolean Actions

Boolean (Boo) actions assign a Boolean variable to the activity of the Step. The Boolean variable can be a VarInput or VarOutput variable. The variable is assigned each time the step activity starts or stops. The operation for Boolean actions differs for the different qualifiers:

N on a Boolean Variable	assigns the step activity signal to the variable
S on a Boolean Variable	sets the variable to TRUE when the step activity signal becomes TRUE
R on a Boolean Variable	resets the variable to FALSE when the step activity signal becomes TRUE

The Boolean variable must be VarInput or VarOutput. The following SFC programming leads to the indicated behavior:

Pulse Actions

A pulse action is a list of instructions which are executed only once at the activation of the step: P1 qualifier, or executed only once at deactivation of the step: P0 qualifier. Instructions are written using the ST or LD syntax. The following shows the results of a pulse action with the P1 qualifier:

Step Activity	
Execution	

Example

In the following SFC program, step S1 is assigned an ST action named EdgeInit having the P1 qualifier and S2 is assigned an ST action named EdgeCount having the P1 qualifier. The code for these actions is programmed in their respective level 2 window.

Non-Stored Actions

A non-stored (normal) action is a list of ST or LD instructions which are executed at each cycle during the whole active period of the step. Instructions are written according to the language syntax in use. Non-stored actions have the "N" qualifier. The following is the results of a non-stored action:

Step Activity	
Execution	

Example

In the following program, step S1 is assigned an ST action named EdgeInit having the P1 qualifier and S2 is assigned an ST action named EdgeCount having the N qualifier. The code for these actions is programmed in their respective level 2 window.

SFC Actions

An SFC action is a child SFC sequence, started or terminated according to the change of the step activity signal. An SFC action can have the N (Non stored), S (Set), and R (Reset) qualifiers. This is the meaning of the action on an SFC child:

N on a child	starts the child sequence when the step becomes active and terminates the child sequence when the step becomes inactive
S on a child	starts the child sequence when the step becomes active
R on a child	stops the child sequence when the step becomes active

The SFC sequence specified as an action must be a child SFC program of the program currently being edited.

Example

(* SFC Program using SFC Action *)

The main SFC program is named Parent having one SFC child, called SeqMlx. The SFC programming of the parent SFC program is the following:

Coding Conditions for Transitions

You code conditions for the clearing of transitions by programming these in the level 2 window. When defining the properties of conditions, you indicate a name, a comment (optional), and the programming language (type). The available programming languages for transitions are LD and ST.

When no expression is attached to the Transition, the default condition is TRUE.

To code conditions for transitions

- 1. Select the transition for which to code a condition.
- 2. Right-click the transition, and then click **Properties**.
- 3. Specify the required properties for the transition from the Properties window.
 - a) To rename the transition, type the required text in the Name field.
 - **b)** To specify the type (programming language) for the transition condition, choose the required type in the Type field.
 - c) To include a comment, type the required text in the Comment field.
- 4. In the Level 2 window, program the required condition.

Conditions Programmed in ST

The ST language can be used to describe the condition for a transition. The complete expression must have Boolean type and may be terminated by a semi colon, according to the following syntax:

< boolean_expression > ;

The expression may be a TRUE or FALSE constant expression, a single input or an internal Boolean variable, or a combination of variables that leads to a Boolean value.

Example

(* SFC Program with ST programming for Transitions *)

Conditions Programmed in LD

The Ladder Diagram (LD) language can be used to describe the condition attached to a transition. The initial diagram is composed of a rung.

Example

(* SFC Program with LD programming for transitions *)

Calling Functions from Transitions

Any function (written in ST, LD, or FBD), or a "C" function can be called to evaluate the condition attached to a transition, according to the following syntax in ST:

< function >();

The value returned by the function must be Boolean and yield the resulting condition:

return value = FALSE -> condition is FALSE return value = TRUE -> condition is TRUE

Example

(* SFC program with function call for transitions *)

Calling Function Blocks from Transitions

It is not recommended to call a function block in an SFC condition for the following reasons:

- A function block should be called at each cycle, typically in a cyclic program.
- An SFC condition is evaluated only when all of its preceding steps are active (not at each cycle)

SFC Keyboard Shortcuts

The following keyboard shortcuts are available for use with the SFC language. Some shortcuts do not apply or may differ while debugging.

Ctrl+A	Selects all elements (not available while debugging)
Ctrl+C	Copies the selected elements to the clipboard (not available while debugging)
Ctrl+V	Pastes elements saved on the clipboard to the insertion point (not available while debugging)
Ctrl+X	Cuts the selected elements to the clipboard (not available while debugging)
Ctrl+Y	Redoes the previous command (not available while debugging)
Ctrl+Z	Undoes the previous command (not available while debugging)
Ctrl+S	Saves the selected elements (not available while debugging)
Ctrl+Shift+S	Saves all files making up a solution (not available while debugging)
Shift+Alt+Enter	Toggles between full-screen and windowed modes
Ctrl+0	Inserts an initial step (not available while debugging)
Ctrl+1	Inserts a step (not available while debugging)
Ctrl+2	Inserts a transition (not available while debugging)
Ctrl+3	Inserts a sequence control (not available while debugging)
Ctrl+4	Inserts a jump (not available while debugging)
Ctrl+Shift+R	Renumbers the steps and transitions using the default naming convention $(Sn \text{ and } Tn)$
Ctrl+Page Up	Jumps to the top edge of the visible language container
Ctrl+Page Down	Jumps to the bottom edge of the visible language container
Alt+Up Arrow	Scrolls up
Alt+Down Arrow	Scrolls down
Alt+Left Arrow	Scrolls left
Alt+Right Arrow	Scrolls right
Ctrl+Up Arrow	Slowly scrolls up

Ctrl+Down Arrow	Slowly scrolls down
Ctrl+Left Arrow	Slowly scrolls left
Ctrl+Right Arrow	Slowly scrolls right
Up Arrow	Moves up the grid or from one selected element to the next
Down Arrow	Moves down the grid or from one selected element to the next
Left Arrow	Moves to the left across the grid or from one selected element to the next
Right Arrow	Moves to the right across the grid or from one selected element to the next
Delete	Removes the selected elements (not available while debugging)

SAMA Language

You can development Scientific Apparatus Makers Association (SAMA) diagrams using the IEC 61131-3 Function Block Diagram (FBD) language. You can build, edit, simulate and debug SAMA diagrams.

See Also

Debugging SAMA Programs

SAMA Diagram Main Format

SAMA language diagrams are composed of symbols linked together using the continuously variable signal type to define complex programs. SAMA diagrams are built using the FBD editor and follow the IEC 61131-3 standard. The combination of symbols or auxiliary operations is not supported by the IEC 61131-3 standard. Therefore, the following example is not supported:

In SAMA diagrams, functions are placed from right to left as follows:

- Measuring functions are placed on the left
- Signal processing and manual functions are placed in the center
- Final control functions are placed at the right

In SAMA POUs, the main signal enters each symbol enclosure from the left (input) and exits from the right (output). For auxiliary functions, the signal enters the symbol enclosure from either the top or bottom.

You connect the logical points of a diagram using connection lines. When connecting elements, arrows indicate signal direction. From the connection properties, you can choose to modify the line style and line type. You can also choose whether arrows are displayed.

When programming a SAMA POU, the Toolbox offers the available SAMA Elements.

See Also

Execution Order of SAMA Programs

Execution Order of SAMA Programs

SAMA programs are executed horizontally, from left to right and then from the top downward. For the execution order of a program, a block is any element in the diagram, a network is a group of blocks linked together. The position of a block is based on its top-left corner. The following rules apply to the execution order of the program:

- Networks are executed from left to right and top to bottom only.
- All inputs must be resolved before executing the block. When the inputs of two or more blocks are resolved at the same time, the decision for the execution is based on the position of the block (left to right, then top to bottom).
- The outputs of a block are executed recursively from left to right, then from top to bottom.

The following is an example of SAMA diagram in horizontal format:

Debugging SAMA Programs

When debugging SAMA programs, you can monitor the output values of elements. These values are displayed using color, numeric, or textual values according to their data type:

• Output values of boolean type are displayed using color. The output value color continues to the next input. When the output value is unavailable, boolean elements remain black. The colors are red when True and blue when False.

• Output values of SINT, USINT, BYTE, INT, UINT, WORD, DINT, UDINT, DWORD, LINT, ULINT, LWORD, REAL, LREAL, TIME, DATE, and STRING type are displayed as a numeric or textual value in the element. When the output is a structure type, the displayed value is the selected member.

When the output value for a numeric or textual value is unavailable, the *WAIT* text is displayed in the output label. Values are also displayed in the corresponding dictionary instance.

See Also

SAMA Diagram Main Format

SAMA Elements

When programming a SAMA POU using the FBD editor, you can drag SAMA elements and FBD elements into FBD language containers. You can also use Ladder (LD) elements in FBD containers.

- Alarm Signal
- Averaging
- Bias
- Derivative
- Difference
- Dividing
- Equal To
- Exponential
- Greater Than
- High Selecting
- Integral
- IPID
- Lesser Than
- Logical AND

See Also

SAMA Diagram Main Format Execution Order of SAMA Programs

- Logical OR
- Logical Signal
- Low Selecting
- Measuring or Readout
- Multiplying
- NOT
- Root Extraction
- SAMA Variable
- Server Monitored Variable
- Signal Monitor
- Summing
- Transfer
- Variable Signal Generator

Alarm Signal

SAMA Representation:

FBD Representation:

Description:

The alarm signal is a variable signal generator representing alarms. The alarm signal is only a graphical representation and is still considered a standard ISaGRAF variable.

To insert an Alarm Signal element

1. From the Toolbox, drag the Alarm Signal element into the language container.

The Variable Selector is displayed.

2. In the Variable Selector, select the required variable, then click **OK**.

The Alarm Signal variable is displayed in the language container in SAMA format.

To insert an FBD variable

1. From the Toolbox, drag the variable element into the language container.

The Variable Selector is displayed.

2. In the Variable Selector, select the required variable, then click **OK**.

The variable is displayed in the language container in FBD format.

See Also

FBD Variables

Averaging

Arguments:

RUN	BOOL	TRUE=run / FALSE=reset
XIN	REAL	Any REAL variable
N	DINT	Application defined number of samples
XOUT	REAL	Running average of XIN value

Description:

The output value is the algebraic sum of the input values divided by the number of inputs.

The Averaging element is mapped to the IEC 61131-3 AVERAGE function block.

To insert an Averaging element

• From the Toolbox, drag the Averaging element into the language container.

The Averaging element is displayed in the language container in SAMA format.

To insert an AVERAGE function block

1. From the Toolbox, drag the block element into the language container.

The Block Selector is displayed.

2. In the Block Selector, select AVERAGE, then click OK.

The Averaging element is displayed in the language container in SAMA format.

Bias

Arguments:

INA	REAL	Input signal A
INE	REAL	Input signal E
BIAS	REAL	Bias value
OUT	REAL	Output value. Output = (BIAS) + InputA + InputE

Description:

The output value is equal to the input value plus or minus the bias value.

The Bias element is mapped to the BIAS function block.

To insert a Bias element

• From the Toolbox, drag the **Bias** element into the language container.

The Bias element is displayed in the language container in SAMA format.

To insert a BIAS function block

1. From the Toolbox, drag the block element into the language container.

The Block Selector is displayed.

2. In the Block Selector, select **BIAS**, then click **OK**.

The Bias element is displayed in the language container in SAMA format.

Derivative

Arguments:

RUN	BOOL	Mode: TRUE=normal / FALSE=reset
XIN	REAL	Input: any real value
CYCLE	TIME	Sampling period. Possible values range from 0ms to 23h59m59s999ms.
XOUT	REAL	Differentiated output

Description:

The output value is proportional to the rate of change of the input value.

The Derivative element is mapped to the IEC 61131-3 DERIVATE function block.

To insert a Derivative element

• From the Toolbox, drag the **Derivative** element into the language container.

The Derivative element is displayed in the language container in SAMA format.

To insert a DERIVATE function block

1. From the Toolbox, drag the block element into the language container.

The Block Selector is displayed.

2. In the Block Selector, select **DERIVATE**, then click **OK**.

The Derivative element is displayed in the language container in SAMA format.

Difference

FBD Representation:

Arguments:

i1	DINT	can be any DINT
i2	DINT	can be any DINT
01	DINT	subtraction (first minus second)

Description:

The output value is the algebraic difference between the input values.

The Difference element is mapped to the IEC 61131-3 Subtraction operator.

To insert a Difference element

• From the Toolbox, drag the **Difference** element into the language container.

The Difference element is displayed in the language container in SAMA format.

To insert a Subtraction operator

1. From the Toolbox, drag the block element into the language container.

The Block Selector is displayed.

2. In the Block Selector, select Subtraction (-), then click OK.

The Difference element is displayed in the language container in SAMA format.

Dividing

SAMA Representation:

FBD Representation:

Arguments:

i1	DINT	can be a DINT (operand)
i2	DINT	can be a DINT (divisor)
01	DINT	division of i1 by i2

Description:

The output value is proportional to the quotient of the input values.

The Dividing element is mapped to the IEC 61131-3 Division operator.

To insert a Dividing element

• From the Toolbox, drag the **Dividing** element into the language container.

The Dividing element is displayed in the language container in SAMA format.

To insert a Division operator

1. From the Toolbox, drag the block element into the language container.

The Block Selector is displayed.

2. In the Block Selector, select **Division** (/), then click **OK**.

The Dividing element is displayed in the language container in SAMA format

Equal To

SAMA Representation:

FBD Representation:

= 01--12 = = BOOL

Arguments:

i1	DINT	Both inputs must have the same DINT type
i2	DINT	
01	BOOL	TRUE if $i1 = i2$

Description:

Compares the first input to the second to determine equality.

The Equal To element is mapped to the IEC 61131-3 Equal operator.

To insert an Equal To element

• From the Toolbox, drag the **Equal To** element into the language container.

The Equal To element is displayed in the language container in SAMA format.

To insert an Equal operator

1. From the Toolbox, drag the block element into the language container.

The Block Selector is displayed.

2. In the Block Selector, select Equal (=), then click OK.

The Equal To element is displayed in the language container in SAMA format.

Exponential

Arguments:

IN	REAL	Any signed real value
EXP	DINT	Integer exponent
EXPT	REAL	(IN ^{EXP})

Description:

The output value is the input value raised to a defined power.

The Exponential element is mapped to the IEC 61131-3 EXPT function.

To insert an Exponential element

• From the Toolbox, drag the **Exponential** element into the language container.

The Exponential element is displayed in the language container in SAMA format.

To insert an EXPT function

1. From the Toolbox, drag the block element into the language container.

The Block Selector is displayed.

2. In the Block Selector, select **EXPT**, then click **OK**.

The Exponential element is displayed in the language container in SAMA format.

Greater Than

SAMA Representation:

FBD Representation:

Arguments:

i1	DINT	Both inputs must have DINT type
i2	DINT	
01	BOOL	TRUE if $i1 > i2$

Description:

Compares input variables to determine whether the first is greater than the second.

The Greater Than element is mapped to the IEC 61131-3 Greater Than operator.

To insert a Greater Than element

• From the Toolbox, drag the Greater Than element into the language container.

The Greater Than element is displayed in the language container in SAMA format.

To insert a Greater Than operator

1. From the Toolbox, drag the block element into the language container.

The Block Selector is displayed.

2. From the Block Selector, select Greater Than (>), then click OK.

The Greater Than element is displayed in the language container in SAMA format.

High Selecting

Arguments:

IN1	DINT	Any signed integer value
IN2	DINT	(cannot be REAL)
MAX	DINT	Maximum of both input values

Description:

The output value is equal to the largest input value.

The High Selecting element is mapped to the IEC 61131-3 MAX function.

To insert a High Selecting element

• From the Toolbox, drag the **High Selection** element into the language container.

The High Selecting element is displayed in the language container in SAMA format.

To insert a MAX function

1. From the Toolbox, drag the block element into the language container.

The Block Selector is displayed.

2. In the Block Selector, select MAX, then click OK.

The High Selecting element is displayed in the language container in SAMA format.

Integral

Arguments:

RUN	BOOL	Mode: TRUE=integrate / FALSE=hold
R1	BOOL	Overriding reset
XIN	REAL	Input: any REAL value
X0	REAL	Initial value
CYCLE	TIME	Sampling period. Possible values range from 0ms to 23h59m59s999ms.
Q	BOOL	Not R1
XOUT	REAL	Integrated output

Description:

The output value varies according to the magnitude and duration of the input value. The output value is proportional to the time integral of the input value.

The Integral element is mapped to the IEC 61131-3 INTEGRAL function block.

To insert an Integral element

• From the Toolbox, drag the **Integral** element into the language container.

The Integral element is displayed in the language container in SAMA format.

To insert an INTEGRAL function block

- From the Toolbox, drag the block element into the language container. The Block Selector is displayed.
- 2. In the Block Selector, select INTEGRAL, then click OK.

The Integral element is displayed in the language container in SAMA format.

IPID

SAMA Representation:

FBD Representation

Arguments:

Process	Р	REAL	Process value
SetPoint	SP	REAL	Set point
Feedback	FB	REAL	Feed Back signal
Auto	AUTO	BOOL	The operation mode of the PID controller:TRUEcontroller runs in normal modeFALSEcontroller causes reset R to track(F-GE)
Initialize	INIT	BOOL	A change in value (TRUE to FALSE or FALSE to TRUE) causes the controller to eliminate any proportional gain during that cycle. Also initializes AutoTune sequences.

Gains	GNS	GAIN_	PID	Gains PID for IPIDCONTROLLER (see GAIN_PID structure)
AutoTune	ATUN	BOOL		When set to TRUE and Auto and Initialize are FALSE, the AutoTune sequence is started
ATParameters	ATPA	GAIN_	PID	Auto Tune Parameters (see AT_Param structure)
ErrorMode	ERR	DINT		Mode used to handle errors. Possible values are:0no error messages ErrLog file1prints error messages level 1 in ErrLog file2prints error messages level 1 and level 2 in ErrLog file
Output	OUT	REAL		Output value from controller
AbsoluteError	AERR	REAL		Absolute Error (Process – SETPOINT) from controller
ATWarning	ATW	DINT		Warning for Auto Tune sequence. Possible valuesare:0no auto tune done1in auto tune mode2auto tune done-1ERROR 1 input Auto set to TRUE, no auto tune possible-2ERROR 2 auto tune error, ATDynaSet expired
OutGains	OGNS	GAIN_	PID	Gains calculated after AutoTune sequences (see GAIN_PID structure)
GAIN_PID structure:				
DirectActing	BO	OL	The ty TRUE FALSI	pe of acting: direct acting E reverse acting
ProportionalGain REAL		Proportional gain for PID (>= 0.0001)		
TimeIntegral REAL		Time integral value for PID (≥ 0.0001)		
TimeDerivative REAL		Time derivative value for PID (> 0.0)		
DerivativeGain REAL		Derivative gain for PID (> 0.0)		

AT_Param structure:

Load	REAL	Load parameter for auto tuning. This is the output value when starting AutoTune.
Deviation	REAL	Deviation for auto tuning. This is the standard deviation used to evaluate the noise band needed for AutoTune.
Step	REAL	Step value for AutoTune. Must be greater than noise band and less than $\frac{1}{2}$ Load.
ATDynamSet	REAL	Waiting time before abandoning auto tune
ATReset	BOOL	The indication of whether the Output value is reset to zeroafter an AutoTune sequence:TRUEresets Output to zeroFALSEleaves Output at Load value

Description:

The IPID element is mapped to the IPIDCONTROLLER function block.

The IPID controller (IPIDCONTROLLER) is based on the following function block:

with A: Acting (+/-1)PG: Proportional Gain DG: Derivative Gain \tilde{a}_D : Time Derivative \tilde{a}_I : Time Integral

In the HMI, the IPID faceplate is available for use with the IPIDCONTROLLER function block.

The IPID element enables tracking When Input Auto is Logic One (TRUE), the IPID runs in normal auto mode. When Input Auto is Logic Zero (FALSE), this causes reset R to track (F-GE). This forces the IPID Output to track the Feedback within the IPID limits and allows the controller to switch back to auto without bumping the Output.

When Input Auto is Logic One (TRUE), the IPID element runs in normal auto mode. When Input Auto is Logic Zero (FALSE), this causes reset R to track (F-GE). This forces the IPID Output to track the Feedback within the IPID element limits and allows the controller to switch back to auto without bumping the Output.

For Input Initialize, changing from Logic Zero (FALSE) to Logic One (TRUE) or Logic One (TRUE) to Logic Zero (FALSE) when AutoTune is Logic Zero (FALSE) causes the IPID element to eliminate any proportional gain action during that cycle (i.e Initialize). This can be used to prevent bumping the Output when changes are made to the SETPOINT using a switch function block.

To run an AutoTune sequence, the input ATParameters must be completed. The input Gain and DirectActing must be set according to the process and DerivativeGain set, typically, to 0.1. The AutoTune sequence is started with this sequence:

- Put input Initialize to (Logic One) TRUE
- Put input Autotune to (Logic One) TRUE
- Put back Initialize to (Logic Zero) FALSE
- Wait output ATWarning going to 2
- Transfer values for output OutGains to input Gains

To finalize the tuning, some fine tuning may be needed depending on the processes and needs. When setting TimeDerivative to 0.0, the IPID element forces DerivativeGain to 1.0 then works as a PI controller.

To insert an IPID element

• From the Toolbox, drag the **IPID** element into the language container.

The IPID element is displayed in the language container.

To insert an IPIDCONTROLLER function block

1. From the Toolbox, drag the block element into the language container.

The Block Selector is displayed.

2. In the Block Selector, select IPIDCONTROLLER, then click OK.

The IPID element is displayed in the language container.

Lesser Than

SAMA Representation:

FBD Representation:

Arguments:

i1	DINT	Both inputs must have the DINT type
i2	DINT	
01	BOOL	TRUE if i1i2 < i2

Description:

Compares input variables to determine whether the first is less than the second.

The Lesser Than element is mapped to the IEC 61131-3 Less Than operator.

To insert a Lesser Than element

• From the Toolbox, drag the Lesser Than element into the language container.

The Lesser Than element is displayed in the language container in SAMA format.

To insert a Less Than operator

- From the Toolbox, drag the block element into the language container. The Block Selector is displayed.
- In the Block Selector, select Less Than (<), then click OK.

The Lesser Than element is displayed in the language container in SAMA format.

Logical AND

SAMA Representation:

FBD Representation:

	1	
i1 -	AND	
	AND	01
		-
12 -		

	AND	
i1 BOOL i2 BOOL	1 AND-+0 0	o1- BOOL

Arguments:

i1	BOOL
----	------

i2 BOOL

o1 BOOL Boolean AND of the input terms

Description:

The output is a Logic One only if all of the input signals are Logic Ones.

The Logical AND element is mapped to the IEC 61131-3 AND operator.

Mathematical equation:

Graphic representation:

To insert a Logical AND element

• From the Toolbox, drag the Logical AND element into the language container.

The Logical AND element is displayed in the language container in SAMA format.

To insert an AND operator

1. From the Toolbox, drag the block element into the language container.

The Block Selector is displayed.

2. In the Block Selector, select AND, then click OK.

The Logical AND element is displayed in the language container in SAMA format.

Logical OR

SAMA Representation:

FBD Representation:

	OR	
i1 BOOL i2 BOOL	1 0 ₽₽→1	o1- BOOL

Arguments:

- il BOOL
- i2 BOOL
- o1 BOOL Boolean **OR** of the input terms

Description:

When there is one or more Logic One inputs, the output of Logical OR is Logic One.

The Logical OR element is mapped to the IEC 61131-3 OR operator.

Mathematical equation:

Graphic representation:

To insert a Logical OR element

• From the Toolbox, drag the Logical OR element into the language container.

The Logical OR element is displayed in the language container in SAMA format.

To insert an OR operator

1. From the Toolbox, drag the block element into the language container.

The Block Selector is displayed.

2. In the Block Selector, select **OR**, then click **OK**.

The Logical OR element is displayed in the language container in SAMA format.

Logical Signal

SAMA Representation:

Description:

The logical signal generates logical signals for manual processing.

The Logical Signal element is mapped to the IEC 61131-3 variable element.

To insert a Logical Signal element

You can also insert variables using the variable element available in the FBD toolbox.

- From the Toolbox, drag the Logical Signal element into the language container. The Variable Selector is displayed.
- 2. In the Variable Selector, select the required variable, then click **OK**.

The Logical Signal element is displayed in the language container in SAMA format.

To insert an FBD variable

- From the Toolbox, drag the variable element into the language container. The Variable Selector is displayed.
- 2. In the Variable Selector, select the required variable, then click OK.

The variable is displayed in the language container in FBD format.

Low Selecting

Arguments:

IN1	DINT	Any signed integer value
IN2	DINT	(cannot be REAL)
MIN	DINT	Minimum of both input values

Description:

The output value is equal to the smallest input value.

The Low Selecting element is mapped to the IEC 61131-3 MIN function.

To insert a Low Selecting element

• From the Toolbox, drag the Low Selecting element into the language container.

The Low Selecting element is displayed in the language container in SAMA format.

To insert a MIN function

1. From the Toolbox, drag the block element into the language container.

The Block Selector is displayed.

2. In the Block Selector, select MIN, then click OK.

The Low Selecting element is displayed in the language container in SAMA format.
Measuring or Readout

SAMA Representation: FBD Representation:

Description:

A literal value or a defined word. On the SAMA representation, you can add text on the element.

Measuring or Readout element is mapped to the IEC 61131-3 variable element.

To insert a Measuring or Readout element

You can also insert variables using the variable element available in the FBD toolbox.

1. From the Toolbox, drag the Measuring or Readout element into the language container.

The Variable Selector is displayed.

- 2. In the Variable Selector, select the required variable, then click **OK**.
- **3.** To add text to the element, click the element then type the required text.

The Measuring or Readout element is displayed in the language container in SAMA format.

To insert an FBD variable

- From the Toolbox, drag the variable element into the language container. The Variable Selector is displayed.
- 2. In the Variable Selector, select the required variable, then click **OK**.

The variable is displayed in the language container in FBD format.

Multiplying

SAMA Representation:

FBD Representation:

Arguments:

i1	DINT	can be a DINT
11		

- i2 DINT can be a DINT
- o1 DINT multiplication of the input terms

Description:

The output value is proportional to the product of the input values.

The Multiplying element is mapped to the IEC 61131-3 Multiplication operator.

To insert a Multiplying element

• From the Toolbox, drag the **Multiplying** element into the language container.

The Multiplying element is displayed in the language container in SAMA format.

To insert a Multiplication operator

1. From the Toolbox, drag the block element into the language container.

The Block Selector is displayed.

2. In the Block Selector, select Multiplication (*), then click OK.

The Multiplying element is displayed in the language container in SAMA format.

NOT

FBD Representation:

i1 🚽	NOT	• 01

SAMA Representation:

500L 0 - 1 500L

Arguments:

i1	BOOL	Any Boolean variable
01	BOOL	TRUE when i1 is FALSE
		FALSE when i1 is TRUE

Description:

For Boolean expressions, converts variables to negated variables.

The NOT element is mapped to the IEC 61131-3 NOT operator.

To insert a NOT element

• From the Toolbox, drag the **NOT** element into the language container.

The NOT element is displayed in the language container in SAMA format.

To insert a NOT operator

- From the Toolbox, drag the block element into the language container. The Block Selector is displayed.
- 2. In the Block Selector, select **NOT**, then click **OK**.

The NOT element is displayed in the language container in SAMA format.

Root Extraction

SAMA Representation:

FBD Representation:

Arguments:

IN	REAL	Must be greater than or equal to zero
SQRT	REAL	Square root of the input value

Description:

The output value is equal to the root of the input value.

The Root Extraction element is mapped to the IEC 61131-3 SQRT function.

To insert a Root Extraction element

• From the Toolbox, drag the **Root Extraction** element into the language container.

The Root Extraction element is displayed in the language container in SAMA format.

To insert a SQRT function

1. From the Toolbox, drag the block element into the language container.

The Block Selector is displayed.

2. In the Block Selector, select SQRT, then click OK.

The Root Extraction element is displayed in the language container in SAMA format.

SAMA Variable

SAMA Representation:

FBD Representation:

Description:

The SAMA variable is a standard ISaGRAF variable representing elementary data used in SAMA programs.

To insert a SAMA Variable element

1. From the Toolbox, drag the SAMA Variable element into the language container.

The Variable Selector is displayed.

2. In the Variable Selector, select the required variable, then click **OK**.

The SAMA variable is displayed in the language container in SAMA format.

To insert an FBD variable

1. From the Toolbox, drag the variable element into the language container.

The Variable Selector is displayed.

2. In the Variable Selector, select the required variable, then click **OK**.

The variable is displayed in the language container in FBD format.

See Also

FBD Variables

Server Monitored Variable

SAMA Representation:

FBD Representation:

Description:

The server monitored variable monitors logical values. The server monitored variable is only a graphical representation and is still considered a standard ISaGRAF variable.

To insert a Server Monitored Variable element

1. From the Toolbox, drag the Server Monitored Variable element into the language container.

The Variable Selector is displayed.

2. In the Variable Selector, select the required variable, then click OK.

The Server Monitored Variable is displayed in the language container in SAMA format.

To insert an FBD variable

1. From the Toolbox, drag the variable element into the language container.

The Variable Selector is displayed.

2. In the Variable Selector, select the required variable, then click OK.

The variable is displayed in the language container in FBD format.

See Also

FBD Variables

Signal Monitor

Arguments:

Н	REAL	High limit value
Х	REAL	Input: any real value
L	REAL	Low limit value
EPS	REAL	Hysteresis value (must be greater than zero)
QH	BOOL	"high" alarm: TRUE if X above high limit H
Q	BOOL	Alarm output: TRUE if X out of limits
QL	BOOL	"low" alarm: TRUE if X below low limit L

Description:

The output value has discrete states that depend on the value of the input. When the input exceeds (or becomes less than) the limit value, the output changes state. Each of these limit values may have deadband.

The Signal Monitor element is mapped to the IEC 61131-3 LIM_ALRM function block.

Mathematical equations:

State 1x < L(First output m_1 is energized or in alarm state) $L \le x \le H$ State 2 $L \le x \le H$ (Both outputs are inactive or de-energized)x > HState 3x > H(Second output m_2 is energized or in alarm state)

Graphic representation:

To insert a Signal Monitor element

• From the Toolbox, drag the Signal Monitor element into the language container.

The Signal Monitor element is displayed in the language container in SAMA format.

To insert a LIM_ALRM function block

1. From the Toolbox, drag the block element into the language container.

The Block Selector is displayed.

• In the Block Selector, select LIM_ALRM, then click OK.

The Signal Monitor element is displayed in the language container in SAMA format.

Summing

FBD Representation:

Arguments:

i1	DINT	can be of any DINT
i2	DINT	can be of any DINT
01	DINT	addition of the input terms

Description:

The output value is the algebraic sum of the input values.

The Summing element is mapped to the IEC 61131-3 Addition operator.

To insert a Summing element

• From the Toolbox, drag the **Summing** element into the language container.

The Summing element is displayed in the language container in SAMA format.

To insert an Addition operator

1. From the Toolbox, drag the block element into the language container.

The Block Selector is displayed.

2. In the Block Selector, select Addition (+), then click OK.

The Summing element is displayed in the language container in SAMA format.

Transfer

FBD Representation:

Arguments:

InputA	INA	REAL	Input signal A
InputB	INB	REAL	Input signal B
Command	CMD	BOOL	(Command) Indication of which signal to select:FALSEselects InputATRUEselects InputB
Output	OUT	REAL	Output signal

Description:

The output value is equal to the input selected by the transfer and is either *on* or *off*. The transfer state is determined by external means.

The Transfer element is mapped to the TRANSFERSWITCH function block.

To insert a Transfer element

• From the Toolbox, drag the **Transfer** element into the language container.

The Transfer element is displayed in the language container in SAMA format.

To insert a TRANSFERSWITCH function block

- From the Toolbox, drag the block element into the language container. The Block Selector is displayed.
- 2. In the Block Selector, select **TRANSFERSWITCH**, then click **OK**.

The Transfer element is displayed in the language container in SAMA format.

Variable Signal Generator

SAMA Representation:

FBD Representation:

Description:

The output value is an analog signal from the generator.

The Variable Signal Generator element is mapped to the IEC 61131-3 variable element.

To insert a Variable Signal Generator element

You can also insert variables using the variable element.

1. From the Toolbox, drag the Variable Signal Generator element into the language container.

The Variable Selector is displayed.

2. In the Variable Selector, select the required variable, then click OK.

The Variable Signal Generator element is displayed in the language container in SAMA format.

To insert an FBD variable

1. From the Toolbox, drag the variable element into the language container.

The Variable Selector is displayed.

2. In the Variable Selector, select the required variable, then click **OK**.

The variable is displayed in the language container in FBD format.

Mapping Chart of SAMA Elements with IEC 61131-3 Elements

The following SAMA elements are mapped to IEC 61131-3 elements:

SAMA Element	IEC 61131-3 Element
∑ SAMA Variable	Variable
Server Monitored Variable	Variable
➢ Alarm Signal	Variable
Σ Summing	Addition
Etn Averaging	AVERAGE
△ Difference	Subtraction
⊠ Multiplying	Multiplication
÷ Dividing	Division
Root Extraction	SQRT
X ⁿ Exponential	EXPT
O Measuring or Readout	Variable
High Selecting	MAX
< Low Selecting	MIN
Triable Signal Generator	Variable
H ^r Signal Monitor	LIM_ALRM
🕸 Logical Signal	Variable
Logical AND	AND
↓ Logical OR	OR
🕞 Greater Than	Greater Than
🕞 Lesser Than	Less Than
🙆 Equal To	Equal

SAMA Keyboard Shortcuts

The following keyboard shortcuts are available for use with the SAMA language. Some shortcuts do not apply or may differ while debugging.

Ctrl+A	Selects all elements (not available while debugging)
Ctrl+C	Copies the selected elements to the clipboard (not available while debugging)
Ctrl+V	Pastes elements saved on the clipboard to the insertion point (not available while debugging)
Ctrl+X	Cuts the selected elements to the clipboard (not available while debugging)
Ctrl+Y	Redoes the previous command (not available while debugging)
Ctrl+Z	Undoes the previous command (not available while debugging)
Shift+Ctrl+Alt+G	Enables/disables the grid in the language container
Shift+Alt+Enter	Toggles between full-screen and windowed modes
Ctrl+R	Toggles between Auto-Input and Manual-Input. Auto-Input automatically opens the Block Selector and Variable Selector (not available while debugging).
Ctrl+B	Bolds selected comment text (not available while debugging)
Ctrl+I	Italicizes selected comment text (not available while debugging)
Ctrl+U	Underlines selected comment text (not available while debugging)
Ctrl+Page Up	Jumps to the top edge of the language container
Ctrl+Page Down	Jumps to the bottom edge of the language container
Up Arrow	Scrolls up
Down Arrow	Scrolls down
Left Arrow	Scrolls left
Right Arrow	Scrolls right
Alt+Up Arrow	Scrolls up
Alt+Down Arrow	Scrolls down
Alt+Left Arrow	Scrolls left
Alt+Right Arrow	Scrolls right

Ctrl+Up Arrow	Aligns the selected elements with the highest element. While debugging, slowly scrolls up.
Ctrl+Down Arrow	Aligns the selected elements with the lowest element. While debugging, slowly scrolls down.
Ctrl+Left Arrow	Aligns the selected elements with the leftmost element. While debugging, slowly scrolls left.
Ctrl+Right Arrow	Aligns the selected elements with the rightmost element. While debugging, slowly scrolls right.
Delete	Removes the selected elements (not available while debugging)
Ctrl+D	Only available in debug mode for the date data type. When the Write Logical Value dialog box is open, enters the current date.

Language Reference

The language reference includes information about the usage and limitations of various project elements and other aspects:

- Programs
- Functions
- Function Blocks
- Execution Rules
- Reserved Keywords
- Variables
- Directly Represented Variables
- Defined Words
- Data Types
- Literal Values

Programs

Programs, also known as POUs, are logical programming units describing operations between variables of a process. Programs describe either sequential or cyclic operations. Cyclic programs are executed at each target system cycle. Sequential programs, representing sequential operations, are grouped together. The execution of sequential programs has a dynamic behavior.

Programs before and after sequential programs describe cyclic operations. Cyclic programs are not time-dependent. Cyclic programs are systematically executed at the beginning of each run time cycle. Main sequential programs (at the top of the hierarchy) are executed according to their respective dynamic behavior.

Begin	Cyclic operations (FDB, LD, ST, SAMA, IEC 61499)
Sequential	Sequential operations (SFC, SFC child)
End	Cyclic operations (FDB, LD, ST, SAMA, IEC 61499)

Programs located at the beginning of a cycle (before sequential programs) typically describe preliminary operations on input devices to build high level filtered variables. Sequential programs frequently use these variables. Programs located at the end of the cycle (after sequential programs) typically describe security operations on the variables operated on by sequential programs, before sending values to output devices.

Programs are described using the available graphic or literal languages. You specify the programming language when creating a program; you cannot change the programming language for an existing program.

POUs defined as programs are executed on the target system respecting the order shown in the Programs section.

Within resources, you need to respect the hierarchy of programs. Programs are linked together in a hierarchical tree. Those placed at the top of the hierarchy are activated by the system. Child-programs (lower level of the hierarchy) are activated by their parent.

POUs (programs, functions, and function blocks) within a project and dependency libraries must have unique names. These names can have up to 128 characters and must begin with a letter.

Projects can contain up to 65 536 programs.

See Also

Execution Rules

Functions

Functions are POUs having one or more input parameters and one output parameter. A function can be called by a program, a function or a function block. A function has no instance meaning that local data is not stored and is usually lost from one call to the other.

The execution of a function is driven by its parent program. Therefore, the execution of the parent program is suspended until the function ends:

Any POU of any section can call one or more functions. A function can have local variables.

ISaGRAF does not support recursivity during function calls. When a function of the *Functions* section is called by itself or one of its called functions, a build error occurs. Furthermore, functions do not store the local values of their local variables. Since functions are not instantiated, these cannot call function blocks.

The interface of a function must be explicitly defined with a type and a unique name for each of its calling (input) parameters or return (output) parameter. Functions can have up to 127 calling parameters and one return parameter. Return parameters can only have Elementary IEC 61131-3 Types.

POUs (programs, functions, and function blocks) within a project and dependency libraries must have unique names. Function names and function parameter names can have up to 128 characters. Function parameter names can begin with a letter followed by letters, digits, and single underscores.

When the *Function Internal State Enable* resource property is set to *True*, local variables having the *var* direction are initialized using their initial values only at run-time startup. When set to *False*, function calls initialize local variables, having the *var* direction, at every call.

Function Blocks

Function blocks are POUs having multiple input and output parameters. These are instantiated meaning local variables of a function block are copied for each instance. When calling a function block in a program, you actually call the instance of the block where the same code is called but the data used is that which has been allocated to the instance. The values of the variables of an instance are stored from one cycle to the other.

Function blocks can be called by any POU in the project. Function blocks can call functions or other function blocks.

The interface of a function block must be explicitly defined with a type and a unique name for each of its calling (input) parameters or return (output) parameters. Function blocks can have more than one output parameter. The value of a return parameter for a function block differs for the various programming languages.

POUs (programs, functions, and function blocks) within a project and dependency libraries must have unique names. Function block names and function block parameter names can have up to 128 characters. Function block parameter names can begin with a letter followed by letters, digits, and single underscores.

Execution Rules

The execution of a control application for a resource follows eight main steps within a loop. The duration of this loop is defined as the cycle timing for a resource.

- 1. Scan input variables
- 2. Consume bound variables
- **3.** Execute POUs
- 4. Produce bound variables
- **5.** Update output variables
- 6. Save retained values
- 7. Process IXL messages
- 8. Sleep until next cycle

In a case where bindings are defined, variables consumed by a resource are updated after the inputs are scanned and the variables produced for other resources are sent before updating outputs.

When a cycle time is specified, a resource waits until this time has elapsed before starting the execution of a new cycle. The POUs execution time varies depending on the size of the application. When a cycle exceeds the specified time, the loop continues to execute the cycle but sets an overrun flag. In such a case, the application no longer runs in real time.

When a cycle time is not specified, a resource performs all programs then restarts a new cycle without waiting.

Reserved Keywords

Reserved keywords are unavailable for use as names of POUs or variables.

AND, CALL, CALL IEC SFC FB, END, GOTO, IF, NOT, PUSH PAR, OR, POP CSTK, PUSH CSTK, RET, STEP, XOR A ABS, ACOS, ADD, AND, AND MASK, ANDN, ARRAY, ASIN, AT, ATAN, BCD TO BOOL, BCD TO INT, BCD TO REAL, BCD TO STRING, B BCD TO TIME, BINDING, BOOL, BOOL TO BCD, BOOL TO INT, BOOL TO REAL, BOOL TO STRING, BOOL TO TIME, BY, BYTE, С CAL, CALC, CALCN, CALN, CALNC, CASE, CONCAT, CONSTANT, COS, D DATE, DATE AND TIME, DELETE, DINT, DIV, DO, DT, DWORD, E ELSE, ELSIF, EN, END CASE, END FOR, END FUNCTION, END IF, END PROGRAM, END REPEAT, END RESOURCE, END STRUCT. END TYPE, END VAR, END WHILE, ENO, EQ, EXIT, EXP, EXPT, F FALSE, FIND, FOR, FUNCTION, G GE, GFREEZE, GKILL, GLOBALVARIABLE, GRST, GSTART, GSTATUS, GT, Н HEADER, I IF, INSERT, INT, INT TO BCD, INT TO BOOL, INT TO REAL, INT TO STRING, INT TO TIME, IO, J JMP, JMPC, JMPCN, JMPN, JMPNC, L LD, LDN, LE, LEFT, LEN, LIMIT, LINT, LN, LOG, LREAL, LT, LWORD, Μ MAX, MID, MIN, MOD, MOVE, MUL, MUX, Ν NE, NOT, 0 OF, ON, OR, OR MASK, ORN, Р PROGRAM R R, READ ONLY, READ WRITE, REAL, REAL TO BCD, REAL TO BOOL, REAL TO INT, REAL TO STRING, REAL TO TIME, REPEAT, REPLACE,

RESOURCE, RET. RETAIN, RETC, RETCN, RETN, RETNC, RETURN, RIGHT,

ROL, ROR,

- **S** S, SEL, SHL, SHR, SIN, SINT, SQRT, ST, STN, STRING, STRING_TO_BCD, STRING_TO_BOOL, STRING_TO_INT, STRING_TO_REAL, STRING_TO_TIME, STRUCT, SUB, SYS_SAVALL, SYS_SAVANA, SYS_SAVBOO, SYS_SAVTMR,
- T TAN, TASK, THEN, TIME, TIME_OF_DAY, TIME_TO_BCD, TIME_TO_BOOL, TIME_TO_INT, TIME_TO_REAL, TIME_TO_STRING, TO, TOD, TRUE, TYPE,
- U UDINT, UINT, ULINT, UNTIL, USINT,
- V VAR, VAR_ACCESS, VAR_EXTERNAL, VAR_GLOBAL, VAR_IN_OUT, VAR_INPUT, VAR_OUTPUT
- W WHILE, WITH, WORD
- X XOR, XOR_MASK, XORN

Variables

The scope of variables can be local to a POU or global to a resource. Local variables are available for use within one POU only. Global variables are available for use within any POU of the resource. Variables have the following properties:

- Name, limited to 128 characters beginning with a letter or underscore character followed by letters, digits, and single underscore characters. These cannot have two consecutive underscore characters.
- Logical Value, available when online. The displayed value differs depending on the direction of the variable: varInputs are locked values, varOutputs are updated by the running TIC code, and var values are locked.
- Physical Value, available when online. The displayed value differs depending on the direction of the variable: varInputs are updated by the field value, varOutputs are locked, and var values are updated by the running TIC code.
- Lock, available when online. The indication of whether the value of the variable is locked. Locking operates differently for simple variables, array and structure elements, and function block parameters. For simple variables, individual variables are locked directly. For structure and array elements, locking an element locks all the elements of the structure or array. Possible values are Yes or No.
- Data Type, possible values are BOOL, SINT, USINT, BYTE, INT, UINT, WORD, DINT, UDINT, DWORD, LINT, ULINT, LWORD, REAL, LREAL, TIME, DATE, STRING, Array types, Structure types, and Function blocks
- Dimension, the size (number of elements) of an array. For example: [1..3,1..10] represents a two-dimensional array containing a total of 30 elements.
- String Size, indicates the maximum length for string-type variables. String capacity is limited to 252 characters excluding the terminating null character (0), a byte for the current length of the string, and a byte for the maximum length of the string.
- Initial Value, value held by a variable when the virtual machine starts the execution of the resource. The initial value of a variable can be the default value, a value given by the user when the variable is defined or the value of the retain variable after the virtual machine has stopped. You can set initial values for POU variables and global variables. You can

set initial values for local variables of functions and instances of function blocks. The format is comma separated values (CSV).

- Direction, for I/O wiring, function or function block, indicates whether a variable is an input (varInput), output (varOutput), or internal (var). The direction of a variable affects the logical value and physical value.
- Attribute, property of a variable indicating its read and write access rights. Possible values are read-only, write-only, and read-write.
- Retained, the indication of whether the value of the variable is saved by the virtual machine at each cycle. Possible values are Yes or No.
- Comment, user-defined free-format text
- Alias, any name (for use in POUs) limited to 128 characters beginning with a letter or underscore character followed by letters, digits, and single underscore characters. These cannot have two consecutive underscore characters.
- Wiring, (read-only cell) generated by the I/O wiring tool indicating the I/O channel to which the variable is wired. You can only wire POU variables and global variables; you cannot wire functions and function blocks. Uses the syntax of Directly Represented Variables.
- Address, user-defined address of the variable. The format is hexadecimal and the value ranges from 1 to FFFF.
- Retained Flags, available when the Retained property is selected for a variable and supported by the target type. Enables retaining specific elements of a variable whereas the Retained property applies to the entire variable. Also indicates whether to use, at the beginning of the cycle, the initial value of the variable or the value previously retained on the target. The format is comma separated values (CSV), where True indicates retaining elements of the structure, array, or function block instance.
- Groups, variable groups containing the variable listed in alphabetical order.
- Comment Fields, user-defined free-format text available for array elements. Each array element of the same type can have a different comment. The format is comma separated values (CSV).

Although function block instances are declared using variables, these variables do not follow rules applying to elementary or derived type variables. These variables can only have the var direction and the read-write attribute.

Directly Represented Variables

The system enables the use of directly represented variables in the source of programs to represent a free channel. Free channels are those not linked to a declared I/O variable. The identifier of a directly represented variable always begins with the "%" character.

The naming conventions of a directly represented variable for a channel of a single I/O device. "s" is the slot number of the I/O device. "c" is the number of the Channel:

%IXs.c	free Channel of a Boolean input I/O device					
%IBs.c	free Channel of a Short integer, Unsigned short integer, or BYTE input I/O device					
%IWs.c	free Channel of an Integer, Unsigned integer, or WORD input I/O device					
%IDs.c	free Channel of a Double integer, Unsigned double integer, Double word, or DATE input I/O device					
%ILs.c	free Channel of a Long integer, Unsigned long integer, Long word, or Long real input I/O device					
%IRs.c	free Channel of a Real input I/O device					
%ITs.c	free Channel of a Time input I/O device					
%ISs.c	free Channel of a String input I/O device					
%QXs.c	free Channel of a Boolean output I/O device					
%QBs.c	free Channel of a Short Integer, Unsigned short integer, or BYTE output I/O device					
%QWs.c	free Channel of an Integer, Unsigned integer, or WORD output I/O device					
%QDs.c	free Channel of a Double integer, Unsigned double integer, Double word, or DATE output I/O device					
%QLs.c	free Channel of a Long integer, Unsigned long integer, Long word, or Long real output I/O device					
%QRs.c	free Channel of a Real output I/O device					
%QTs.c	free Channel of a Time output I/O device					
%QSs.c	free Channel of a String output I/O device					

The naming conventions of a directly represented variable for a Channel of a complex device. "s" is the slot number of the device. "b" is the index of the single I/O device within the complex device. "c" is the number of the Channel:

%IXs.b.c	free Channel of a Boolean input I/O device				
%IBs.b.c	free Channel of a Short Integer, Unsigned short integer, or BYTE input I/O device				
%IWs.b.c	free Channel of an Integer, Unsigned integer, or WORD input I/O device				
%IDs.b.c	free Channel of a Double integer, Unsigned double integer, Double word, o DATE input I/O device				
%ILs.b.c	free Channel of a Long integer, Unsigned long integer, Long word, or Long real input I/O device				
%IRs.b.c	free Channel of an Real input I/O device				
%ITs.b.c	free Channel of a Time input I/O device				
%ISs.b.c	free Channel of a String input I/O device				
%QXs.b.c	free Channel of a Boolean output I/O device				
%QBs.b.c	free Channel of a Short Integer, Unsigned short integer, or BYTE output I/O device				
%QWs.b.c	free Channel of an Integer, Unsigned integer, or WORD output I/O device				
%QDs.b.c	free Channel of a Double integer, Unsigned double integer, Double word, or DATE output I/O device				
%QLs.b.c	free Channel of a Long integer, Unsigned long integer, Long word, or Long real output I/O device				
%QRs.b.c	free Channel of a Real output I/O device				
%QTs.b.c	free Channel of a Time output I/O device				
%QSs.b.c	free Channel of a String output I/O device				

Example

%QX1.6 6th channel of the I/O device #1 (boolean output) %ID2.1.7 7th channel of the I/O device #1 in the device #2 (integer input)

Defined Words

ISaGRAF supports the use of identifier names, called defined words. When building, defined words are replaced by the variables and expressions these represent. Defined words have a global scope, i.e., these are available for use in any POU of any resource of a project.

For POUs, a defined word can replace literal expressions, boolean expressions, reserved keywords, or complex ST expressions

The following are examples of defined words:

Arrays Struc		ctures	Defined Words		
	Word	Equivalent		Comment	
	- A*			- A*	* A*
	ОК	(auto	_mode AND NOT		
	PI	3.141	.59		
	YES	TRUE			

When such an equivalence is defined, its identifier is available anywhere in the project to replace the attached expression. The following ST programming example uses defined words:

```
If OK Then
angle := PI / 2.0;
isdone := YES;
End if;
```

The naming of defined words must conform to the following rules:

- contain up to 128 characters
- the first character must be a letter and subsequent characters can be letters, digits, and single underscore ('_') characters. The last character can be either a letter or a digit.

The definition of a defined word cannot contain a defined word. Note the invalid definition (with strikethrough mark) in the following defined word examples:

PI is 3.14159 PI2 is 6.28318 PI2 is PI*2

Data Types

Any literal, expression, or variable used in a POU (written in any language) must be characterized by a data type. Data type coherence must be followed in graphic operations and literal statements. Data types are one of the following types:

- Elementary IEC 61131-3 Types
- Derived Types: Arrays
- Derived Types: Structures

Elementary IEC 61131-3 Types

You can program objects using the following elementary IEC 61131-3 types:

- ANY: user-defined type enabling overloading "C" function block inputs to support specified IEC 61131-3 data types as well as specified complex types such as arrays and structures
- ANY_ELEMENTARY: overloads "C" function block inputs to support all of the IEC 61131-3 elementary data types
- BOOL: logic (true or false) value
- SINT: short integer value (8 bit)
- USINT: unsigned short integer value (8 bit)
- BYTE: byte value (8 bit)
- INT: single integer value (16 bit)
- UINT: unsigned single integer value (16 bit)
- WORD: word value (16 bit)
- DINT: double integer value (32 bit)
- UDINT: unsigned double integer value (32 bit)
- DWORD: double word value (32 bit)
- LINT: long integer value (64 bit)
- ULINT: unsigned long integer value (64 bit)
- LWORD: long word value (64 bit)
- REAL: real (floating) value (32 bit)
- LREAL: long real (floating) value (64 bit)

- TIME: time values less than 49d17h2m47s295ms; these value types cannot store dates (32 bit)
- DATE: date values (32 bit)
- STRING: character string having a defined *size*, representing the maximum number of characters the string can contain.

Based on the above elementary IEC 61131-3 types, you can define new user types. Furthermore, you can define arrays or structures using elementary IEC 61131-3 types, arrays, or other user types.

When creating a variable, a dimension can be given to define an array. The following example shows the MyVar variable of type BOOL having a dimension defined as follows:

[1..10]

```
FOR i = 1 TO 10 DO
MyVar[i] := FALSE;
END_FOR;
```

ANY Data Type

Note: For use, your target must support the ANY data type.

The ANY data type is a user-defined type enabling overloading "C" function block inputs to support specified IEC 61131-3 data types (BOOL, BYTE, DATE, DINT, DWORD, INT, LINT, LREAL, LWORD, REAL, SAFEBOOL, SINT, TIME, UDINT, UINT, ULINT, USINT, and WORD) as well as specified complex types such as arrays and structures.

Warning: You can only pass user-defined arrays to "C" function block inputs having defined array dimensions.

ANY_ELEMENTARY Data Type

Note: For use, your target must support the ANY_ELEMENTARY data type.

The ANY_ELEMENTARY data type enables overloading "C" function block inputs to support all of the following IEC 61131-3 elementary data types: BOOL, BYTE, DATE, DINT, DWORD, INT, LINT, LREAL, LWORD, REAL, SAFEBOOL, SINT, TIME, UDINT, UINT, ULINT, USINT, and WORD.

Warning: You can only pass user-defined arrays to "C" function block inputs having defined array dimensions.

Boolean Data Type

Boolean variables (BOOL) can take one of the Boolean values: **TRUE** or **FALSE**. Boolean variables are typically used in Boolean expressions.

For Boolean literal expressions, **ISaGRAF** targets evaluate all parts of such expressions. Whereas, the IEC 61131-3 standard states that Boolean expressions may be evaluated only to the extent necessary to determine the resultant value. In the following example according to the IEC 61131-3 standard, if B is zero then the first expression (B <> 0) is false and the second expression (A/B > 0) is not performed.

```
if ((B <> 0) and (A/B > 0)) then
GREATER := true;
else
GREATER := false;
end_if;
```

Boolean literal values are the following:

- TRUE is equivalent to the integer value 1
- FALSE is equivalent to the integer value 0
Short Integer Data Type

Short Integer (SINT) variables are 8-bit signed integers from -128 to +127.

A bit of a short integer variable, array, structure, or the output of a function block instance can be accessed using the following syntax:

MyVar.i

If MyVar is a short Integer. MyVar.i is a Boolean. "i" must be a constant value from 0 to 7.

Short integer literal values represent signed integer (8 bit) values:

from -128 to +127

Short integer constants may be expressed with one of the following Bases. Short integer constants must begin with a Prefix that identifies the Bases used:

Base	Prefix	Example
DECIMAL	(none)	19
HEXADECIMAL	"16#"	16#A1
OCTAL	"8#"	8#27
BINARY	"2#"	2#0101_0101

Unsigned Short Integer or BYTE Data Type

Unsigned Short Integer (USINT) or BYTE variables are 8-bit unsigned integers from 0 to 255.

A bit of an unsigned short integer or BYTE variable, array, structure, or the output of a function block instance can be accessed using the following syntax:

MyVar.i

If MyVar is an unsigned short integer or BYTE. MyVar.i is a Boolean. "i" must be a constant value from 0 to 7

Unsigned short integer and BYTE literal values represent unsigned integer (8 bit) values:

from 0 to 255

Short integer and BYTE constants may be expressed with one of the following **Bases**. These constants must begin with a **Prefix** that identifies the Bases used:

Base	Prefix	Example
DECIMAL	(none)	19
HEXADECIMAL	"16#"	16#A1
OCTAL	"8#"	8#27
BINARY	"2#"	2#0101 0101

Integer Data Type

Integer (INT) variables are 16-bit signed integers from -32768 to 32767.

A bit of an integer variable, array, structure, or the output of a function block instance can be accessed using the following syntax:

MyVar.i

If MyVar is an Integer. MyVar.i is a Boolean. "i" must be a constant value from 0 to 15.

Integer literal values represent signed integer (16 bit) values:

from -32768 to 32767

Integer constants may be expressed with one of the following Bases. Integer constants must begin with a Prefix that identifies the Bases used:

Base	Prefix	Example
DECIMAL	(none)	-260
HEXADECIMAL	"16#"	16#FEFC
OCTAL	"8#"	8#177374
BINARY	"2#"	2#0101 0101 0101 0101

Unsigned Integer or Word Data Type

Unsigned Integer (UINT) or WORD variables are 16-bit unsigned integers from 0 to 65535.

A bit of an unsigned integer or WORD variable, array, structure, or the output of a function block instance can be accessed using the following syntax:

MyVar.i

If MyVar is an unsigned integer or WORD. MyVar.i is a Boolean. "i" must be a constant value from 0 to 15.

Unsigned integer and WORD literal values represent unsigned integer (16 bit) values:

from 0 to 65535

Unsigned integer and WORD constants may be expressed with one of the following Bases. These constants must begin with a Prefix that identifies the Bases used:

Base	Prefix	Example
DECIMAL	(none)	+33000
HEXADECIMAL	"16#"	16#80E8
OCTAL	"8#"	8#100350
BINARY	"2#"	2#0101 0101 0101 0101

Double Integer Data Type

Double Integer (DINT) variables are 32-bit signed integers from -2147483648 to +2147483647.

A bit of a double integer variable, array, structure, or the output of a function block instance can be accessed using the following syntax:

MyVar.i

If MyVar is an Integer. MyVar.i is a Boolean. "i" must be a constant value from 0 to 31.

Double integer literal values represent signed double integer (32 bit) values:

from -2147483648 to +2147483647

Double integer constants may be expressed with one of the following Bases. Double integer constants must begin with a Prefix that identifies the Bases used:

Base	Prefix	Example
DECIMAL	(none)	-908
HEXADECIMAL	"16#"	16#1A2B3C4D
OCTAL	"8#"	8#1756402
BINARY	"2#"	2#1101_0001_0101_1101_0001_0010_1011_1001

Unsigned Double Integer or Double Word Data Type

Unsigned Double Integer (UDINT) or Double Word (DWORD) variables are 32-bit unsigned integers from 0 to 4294967295.

A bit of an unsigned double integer or double word variable, array, structure, or the output of a function block instance can be accessed using the following syntax:

MyVar.i

If MyVar is an unsigned double integer or double word. MyVar.i is a Boolean. "i" must be a constant value from 0 to 31.

Unsigned double integer and Double Word literal values represent unsigned double integer (32 bit) values:

from 0 to 4294967295

Double integer and double word constants may be expressed with one of the following Bases. Double integer and double word constants must begin with a Prefix that identifies the Bases used:

Base	Prefix	Example
DECIMAL	(none)	+908
HEXADECIMAL	"16#"	16#1A2B3C4D
OCTAL	"8#"	8#1756402
BINARY	"2#"	2#1101_0001_0101_1101_0001_0010_1011_1001

Long Integer Data Type

Long Integer (LINT) variables are 64-bit signed integers from -9223372036854775808 to 9223372036854775807.

A bit of a long integer variable, array, structure, or the output of a function block instance can be accessed using the following syntax:

MyVar.i

If MyVar is a long integer. MyVar.i is a Boolean. "i" must be a constant value from 0 to 63.

Long integer literal values represent signed long integer (64 bit) values:

from -9223372036854775808 to 9223372036854775807

Long integer constants may be expressed with one of the following Bases. Long integer constants must begin with a Prefix that identifies the Bases used:

Base	Prefix	Example
DECIMAL	(none)	-908
HEXADECIMAL	"16#"	16#1A2B3C4D
OCTAL	"8#"	8#1756402
BINARY	"2#"	2#1101_0001_0101_1101_0001_0010_1011_1001_ 1101_0001_0101_1101_0001_0010_1011_1001

Unsigned Long Integer or Long Word Data Type

Unsigned Long Integer (ULINT) or Long Word (LWORD) variables are 64-bit unsigned integers from 0 to 18446744073709551615.

A bit of an unsigned long integer or long word variable, array, structure, or the output of a function block instance can be accessed using the following syntax:

MyVar.i

If MyVar is an unsigned long integer or long word. MyVar.i is a Boolean. "i" must be a constant value from 0 to 63.

Unsigned long integer and long word literal values represent unsigned long integer (64 bit) values:

from 0 to 18446744073709551615

Unsigned long integer and long word constants may be expressed with one of the following Bases. Long integer and long word constants must begin with a Prefix that identifies the Bases used:

Base	Prefix	Example
DECIMAL	(none)	+908
HEXADECIMAL	"16#"	16#1A2B3C4D
OCTAL	"8#"	8#1756402
BINARY	"2#"	2#1101_0001_0101_1101_0001_0010_1011_1001_ 1101_0001_0101_1101_0001_0010_1011_1001

Real Data Type

Real variables are standard IEEE 32-bit floating values (single precision).

1 sign bit + 23 mantissa bits + 8 exponent bits

A real variable has six significant digits. For larger values, the maximum possible value is $\pm 3.402823466E+38$ while for smaller values, the minimum possible value is $\pm 1.175494351E-38$. Therefore, values greater than $\pm 3.402823466E+38$ and greater than 0.0 but less than $\pm 1.175494351E-38$ are not supported. The following example shows the value ranges including 0.0 that are supported for real variables:

Real literal values can be written with either Decimal or Scientific representation. The decimal point ('.') separates the Integer and Decimal parts. The decimal point must be used to differentiate a Real literal value from an Integer one. The scientific representation uses the letter 'E' to separate the mantissa part and the exponent. The exponent part of a real scientific value must be a signed integer value from -37 to +37. A real variable has six significant digits.

Example

3.14159	-1.0E+12
+1.0	1.0E-15
-789.56	+1.0E-37

The value "123" does not represent a Real literal value. Its correct real representation is "123.0".

Long Real Data Type

Long Real (LREAL) variables are standard IEEE 64-bit floating values (double precision).

1 sign bit + 52 mantissa bits + 11 exponent bits

A long real variable has 15 significant digits. For larger values, the maximum possible value is $\pm 1.7976931348623158e+308$ while for smaller values, the minimum possible value is $\pm 2.22507385850721E-308$. Therefore, values greater than $\pm 1.7976931348623158e+308$ and greater than 0.0 but less than $\pm 2.22507385850721E-308$ are not supported. The following example shows the value ranges including 0.0 that are supported for long real variables:

Long real literal values can be written with either Decimal or Scientific representation. The decimal point ('.') separates the Integer and Decimal parts. The decimal point must be used to differentiate a Real literal value from an Integer one. The scientific representation uses the letter 'E' to separate the mantissa part and the exponent. The range of a real scientific expression must be a signed integer value from 1.7E -308 to 1.7E +308. A long real variable has 15 significant digits.

Example

3.14159	-1.0E+12	
+1.0	1.0E-15	

-789.56 +1.0E-37

The value "123" does not represent a long real literal value. Its correct real representation is "123.0".

Time Data Type

Time variables are typically used in Time expressions. A Time value represents values from 0 to 49d17h2m47s294ms. Time variables are stored in 32 bit words. The internal representation is a positive number of milliseconds. Time variables can be used with timer function blocks such as TOF and TON.

Time literal values represent time values from 0 to 49d17h2m47s294ms. The lowest allowed unit is a millisecond. Standard time units used in literal values are:

Days	The "d" letter must follow the number of days
Hours	The "h" letter must follow the number of hours
Minutes	The "m" letter must follow the number of minutes
Seconds	The "s" letter must follow the number of seconds
Milliseconds	The "ms" letters must follow the number of milliseconds

The time literal value must begin with "T#" or "TIME#" prefix. Prefixes and unit letters are not case sensitive. Some units may not appear.

When the TIME value is equal to -1 (as a DINT value), the value is considered as overflow and invalid. For example:

IF ANY_TO_DINT(TIME1) = -1 then (* Handle overflow *) END_IF;

Example

T#1D1H450MS 1 day, 1 hour, 450 milliseconds time#1H3M 1 hour, 3 minutes

The following ST code gets the current time for use in the clock portion of a date variable:

```
NOW_1(); (* Instance of the NOW function block *)
date1 := any_to_date(NOW_1.sec); (* Casts the seconds of NOW into a
date *)
```

clock := any_to_time(MOD(NOW_1.sec,86400)*1000+NOW_1.nsec/100000); (*
Gets the current time *)

Date Data Type

Date variables have date values and are typically used in Date expressions. A Date value ranges from 1970-01-01 to 2038-01-18. Date variables are stored using the 32 bit ISO 'C' time_t data type. The internal representation is a positive number of seconds since 1970-01-01 at midnight GMT.

Date literal expressions represent date values in the year-month-day format, separated by hyphens. Possible date literal expressions range from DATE#1970-01-01 to DATE#2038-01-18 GMT.

The date literal expression must begin with "D#" or "DATE#" prefix. Prefixes and unit letters are not case sensitive.

Example

D#2005-02-20 date#2005-02-20

String Data Type

String variables contain character strings. The length of the string can change during process operations. The length of a string variable cannot exceed the capacity (maximum length) specified when the variable is declared. String capacity is limited to 252 characters excluding the terminating null character (0), a byte for the current length of the string, and a byte for the maximum length of the string. When declaring string variables, the maximum number of characters is defined in the String Size column of the Dictionary or Variable Selector.

String variables can contain any character of the standard ASCII table (ASCII code from 0 to 255). The null character (0) can exist in a character string, however, it indicates the end of the string.

String literal values represent character strings. Characters must be preceded and followed by single quote (') characters. For example:

'THIS IS A MESSAGE'

Warning: A string literal expression must be expressed on one line of the program source code. When placing single quote (') characters within a string literal, these characters must be preceded by the dollar (\$) character. In the following string literal, note the dollar character preceding the single quote character.

'THIS IS \$' A MESSAGE'

A string literal value must be expressed on one line of the program source code. Its length cannot exceed 252 characters, including spaces.

Empty string literal values are represented by two single quote (') characters, with no space or tab character between them:

" (* this is an empty string *)

The dollar ('\$') special character, followed by other special characters, can be used in a string literal values to represent a non-printable character:

Sequence	Meaning	ASCII (hex)	Example
\$\$	'\$' character	16#24	'I paid \$\$5 for this'
\$'	apostrophe	16#27	'Enter \$'Y\$' for YES'

\$L	line feed	16#0a	'next \$L line'
\$R	carriage return	16#0d	' llo \$R He'
\$N	new line	16#0d0a	'This is a line\$N'
\$P	new page	16#0c	'lastline \$P first line'
\$T	tabulation	16#09	'name\$Tsize\$Tdate'
\$hh (*)	any character	16#hh	'ABCD = \$41\$42\$43\$44'

(*) "hh" is the hexadecimal value of the ASCII code for the expressed character.

Safety Type

You can program objects using a SAFE data type:

• SAFEBOOL: logic (true or false) value for binary safety signals only

Safety Boolean Data Type

Safety Boolean (SAFEBOOL) variables behave the same way as Boolean variables and are typically used for binary safety Boolean signals. Safety Boolean variables can have one of two values: TRUE or FALSE. The false value indicates a safe value.

The safety data type recognizes that the signals are safety-relevant and must be treated with special care. You can connect safety Boolean variables to other safety Boolean variables only. You can apply safety Boolean variables to the inputs and outputs of functions, function blocks, and operators.

The workbench targets evaluate all parts of safety Boolean (SAFEBOOL) expressions in the same manner as Boolean expressions.

There are two safety Boolean constant expressions:

- TRUE is equivalent to the integer value 1
- FALSE is equivalent to the integer value 0

"True" and "False" keywords are not case-sensitive. For safety Boolean expressions, false is the default value and indicates a safe value.

See Also Boolean Data Type

Derived Types: Arrays

You can define arrays of standard IEC 61131-3 types or derived types. An array has one or more dimensions. When an array is defined, a variable can be created with this type and a structure can have a field with this type. Array dimensions are positive DINT literal values and array indexes are DINT literal values or variables.

Array names can have up to 128 characters and can begin with letters or single underscores followed by letters, digits, and single underscores.

Example

1. One-dimensional array:

MyArrayType is an array of 10 BOOL. Its dimension is defined as follows: [1..10]. MyVar is of type MyArrayType. Ok := MyVar[4];

2. Two-dimensional array:

MyArrayType2 is an array of DINT. It has two dimensions defined as follows: [1..10,1..3] MyVar2 is of type MyArrayType2 MyVar2[1,2] := 100;

3. Array of an array:

MyVar3 is an array of MyArrayType; Its dimension is defined as follows [1..3] FOR I := 1 TO 3 DO FOR J := 1 TO 10 DO MyVar3[I][J] := FALSE; END_FOR; END_FOR;

Derived Types: Structures

Users can define structures using elementary IEC 61131-3 types or derived types. A structure is composed of sub-entries called **Fields**. When a structure is defined, a variable can be created with this type.

Example

MyStruct1 is composed of:

Field1 which is BOOL Field2 which is DINT

MyStruct2 is composed of:

Field1 which is DINT Field2 which is BOOL Field3 which is an array of 10 DINT Field4 which is of type MyStruct1

MyVar of type MyStruct2 can be used as follows:

Value1 := MyVar.Field1; (* Value1 is of type DINT *) Ok1 := MyVar.Field2; (* Ok1 is of type BOOL *) Tab[2] := MyVar.Field3[5]; (* Tab is an array of DINT *) Value2 := MyVar.Field3[8]; (* Value2 is of type DINT *) Ok2 := MyVar.Field4.Field1; (* Ok2 is of type BOOL *)

Literal Values

You can type literal values in POUs written in textual and graphical languages, including ST, LD, and FBD. For literal values, the **ISaGRAF** compiler assigns appropriate data types. When the literal value exceeds the size of a specified data type, the compiler assigns a larger data type and generates an error. You can force the compiler to use a specific data type for a literal value.

For the following data types, the compiler evaluates the literal value and assigns the appropriate data type:

- For integer values, the default data type assigned is DINT. However, when the integer value exceeds the DINT data type, the compiler assigns a larger data type such as LINT.
- For floating point values, the default data type assigned is REAL. However, when the floating point value exceeds the REAL data type, the compiler assigns the larger LREAL data type.

When assigning larger data types for these literal values, the compiler may generate errors. To resolve such errors, you can specify, i.e force, the data type for compilation by using the following syntax:

- ANY_TO_*DataType(LiteralValue)*, available for use with all data types. For example, any_to_time(78)
- *DataType#LiteralValue*, for use with LREAL, TIME, and DATE. For example, LREAL#1.23456

Operators

The following are standard operators of the IEC 61131-3 languages:

Arithmetic Operations	Addition	Adds two or more variables			
	Division	Divides two variables			
	Multiplication	Multiplies two or more variables			
	Subtraction	Subtracts a variable from another			
	1 GAIN	Assigns one variable into another			
	NEG	Integer negation			
Boolean Operations	AND	Boolean AND			
	OR	Boolean OR			
	XOR	Boolean exclusive OR			
	NOT	Boolean negation			
Comparator	Less Than	Tests if one value is less than another			
Operations	Less Than or Equal	Tests if one value is less than or equal to another			
	Greater Than	Tests if one value is greater than another			
	Greater Than or Equal	Tests if one value is greater than or equal to another			
	Equal	Tests if one value is equal to another			
	Not Equal	Tests if one value is not equal to another			

Data Conversion	ANY_TO_BOOL	Converts to Boolean
	ANY_TO_SINT	Converts to Short integer
	ANY_TO_USINT	Converts to Unsigned short integer
	ANY_TO_BYTE	Converts to BYTE
	ANY_TO_INT	Converts to Integer
	ANY_TO_UINT	Converts to Unsigned integer
	ANY_TO_WORD	Converts to WORD
	ANY_TO_DINT	Converts to Double integer
	ANY_TO_UDINT	Converts to Unsigned double integer
	ANY_TO_DWORD	Converts to Double WORD
	ANY_TO_LINT	Converts to Long integer
	ANY_TO_ULINT	Converts to Unsigned long integer
	ANY_TO_LWORD	Converts to Long WORD
	ANY_TO_REAL	Converts to Real
	ANY_TO_LREAL	Converts to Long real
	ANY_TO_TIME	Converts to Time
	ANY_TO_DATE	Converts to Date
	ANY_TO_STRING	Converts to String

Multiplication

Note: The creation of additional inputs is supported.

Arguments:

(inputs)	SINT - USINT - BYTE - INT -	can be INTEGER or REAL
	UINT - WORD - DINT - UDINT -	(all inputs must have the same format)
	DWORD - LINT - ULINT -	
	LWORD - REAL - LREAL	
output	SINT - USINT - BYTE - INT - UINT - WORD - DINT - UDINT -	multiplication of the input terms
	DWORD - LINT - ULINT -	
	IWODD DEAL IDEAL	

Description:

Multiplication of two or more integer or real variables.

Example

(* FBD example with Multiplication Operators *)

- (* ST equivalence *)
- ao10 := ai101 * ai102;
- ao5 := (ai51 * ai52) * ai53;

Addition

Note: The creation of additional inputs is supported.

Arguments:

(inputs)	SINT - USINT - BYTE - INT - can be of any integer, real, TIME, or	
	UINT - WORD - DINT - UDINT - STRING format(all inputs must have	the
	DWORD - LINT - ULINT - same format)	
	LWORD - REAL - LREAL -	
	TIME - STRING	
01	SINT - USINT - BYTE - INT - addition of the input terms	
	UINT - WORD - DINT - UDINT -	
	DWORD - LINT - ULINT -	
	LWORD - REAL - LREAL -	
	TIME - STRING	

Description:

Addition of two or more integer, real, TIME, or STRING variables.

Example

(* FBD example with Addition Operators *)

(* ST equivalence: *)

ao10 := ai101 + ai102;

ao5 := (ai51 + ai52) + ai53;

Subtraction

Arguments:

- SINT USINT BYTE INT UINT WORD can be of any integer, real or long
 DINT UDINT DWORD LINT ULINT real, or TIME format
 LWORD REAL LREAL TIME
- i2 SINT USINT BYTE INT UINT WORD (i1 and i2 must have the same - DINT - UDINT - DWORD - LINT - ULINT - format) LWORD - REAL - LREAL - TIME
- o1 SINT USINT BYTE INT UINT WORD subtraction (first minus second) - DINT - UDINT - DWORD - LINT - ULINT -LWORD - REAL - LREAL - TIME

Description:

Subtraction of two integer, real, or TIME variables.

Example

(* FBD example with Subtraction Operators *)

- (* ST equivalence: *)
- ao10 := ai101 ai102;
- ao5 := (ai51 1) ai53;

Division

Arguments:

- il SINT USINT BYTE INT UINT WORD can be of any integer or real format - DINT - UDINT - DWORD - LINT - ULINT - (operand) LWORD - REAL - LREAL
- i2 SINT USINT BYTE INT UINT WORD non-zero integer or real value - DINT - UDINT - DWORD - LINT - ULINT - (divisor) LWORD - REAL - LREAL (i1 and i2 must have the same format)
- o1 SINT USINT BYTE INT UINT WORD integer or real division of i1 by i2 - DINT - UDINT - DWORD - LINT - ULINT -LWORD - REAL - LREAL

Description:

Division of two integer or real variables (the first divided by the second).

Example

(* FBD example with Division Operators *)

- (* ST Equivalence: *)
- ao10 := ai101 / ai102;
- ao5 := (ai5 / 2) / ai53;

1 GAIN

Arguments:

i1 BOOL - SINT - USINT - BYTE - INT -UINT - WORD - DINT - UDINT -DWORD - LINT - ULINT - LWORD -REAL - LREAL - TIME - DATE - STRING
o1 BOOL - SINT - USINT - BYTE - INT - i1 and o1 must have the same format UINT - WORD - DINT - UDINT -DWORD - LINT - ULINT - LWORD -

Description:

Directly links the input to output. When used with a Boolean negation, inverts the state of the line connected to the output.

Example

(* FBD example with assignment Operators *)

REAL - LREAL - TIME - DATE - STRING

AND

Note: The creation of additional inputs is supported.

Arguments:

(inputs)	BOOL	
01	BOOL	Boolean AND of the input terms

Description:

Boolean AND between two or more terms.

In the text editor, the '&' character can be used as well as typing AND.

Example

(* FBD example with "AND" Operators *)

(* ST equivalence 1: *)

bol0 := bil01 AND NOT (bil02); bo5 := (bi51 AND bi52) AND bi53; (* ST equivalence 2: *) bol0 := bil01 & NOT (bil02); bo5 := (bi51 & bi52) & bi53;

Automation Collaborative Platform

ANY_TO_BOOL

Arguments:

- il BOOL SINT USINT BYTE INT Any value UINT - WORD - DINT - UDINT -DWORD - LINT - ULINT - LWORD -REAL - LREAL - TIME - DATE - STRING
- ol BOOL

TRUE for non-zero numerical value FALSE for zero numerical value TRUE for 'TRUE' string FALSE for 'FALSE' string

Description:

Converts variables to Boolean variables

Example

(* FBD example with "Convert to Boolean" Operators *)

(* ST Equivalence: *)

ares	:=	ANY_T	D_BOOL	(10);	(*	ares	is	TRUE	*)
tres	:=	ANY_T	D_BOOL	(t#0s);	(*	tres	is	FALSE	*)
mres	:=	ANY_T	_BOOL	('FALSE');	(*	mres	is	FALSE	*)

ANY_TO_SINT

Arguments:

 i1 BOOL - SINT - USINT - BYTE - INT - Any value UINT - WORD - DINT - UDINT -DWORD - LINT - ULINT - LWORD -REAL - LREAL - TIME - DATE - STRING
 o1 SINT 0 if i1 is FALSE / 1 if i1 is TRUE

0 if i1 is FALSE / 1 if i1 is TRUE number of milliseconds for a timer integer part for real decimal number represented by a string

Description:

Converts variables to 8-bit short integer variables

Example

(* FBD example with "Convert to Short Integer" Operators *)

(* ST Equivalence: *)
bres	:= ANY_TO_SINT	(true);	(*	bres	is	1 *)
tres	:= ANY_TO_SINT	(t#0s46ms);	(*	tres	is	46 *)
mres	:= ANY TO SINT	('0198');	(*	mres	is	198 *)

ANY_TO_USINT

Arguments:

- i1 BOOL SINT USINT BYTE INT Any value UINT - WORD - DINT - UDINT -DWORD - LINT - ULINT - LWORD -REAL - LREAL - TIME - DATE - STRING
 o1 USINT 0 if i1 is FALSE / 1 if i1 is TRUE
 - 0 if i1 is FALSE / 1 if i1 is TRUE number of milliseconds for a timer integer part for real decimal number represented by a string

Description:

Converts variables to 8-bit unsigned short integer variables

Example

(* FBD example with "Convert to Unsigned Short Integer" Operators *)

bres	:=	ANY_TO_USINT	(true);	(*	bres	is	1 *)	
tres	:=	ANY_TO_USINT	(t#0s46ms);	(*	tres	is	46 *)
mres	:=	ANY_TO_USINT	('0198');	(*	mres	is	198	*)

ANY_TO_BYTE

Arguments:

- i1 BOOL SINT USINT BYTE INT Any value UINT - WORD - DINT - UDINT -DWORD - LINT - ULINT - LWORD -REAL - LREAL - TIME - DATE - STRING
 o1 BYTE 0 if i1 is FALSE / 1 if i1 is TRUE
 - 0 if i1 is FALSE / 1 if i1 is TRUE number of milliseconds for a timer integer part for real decimal number represented by a string

Description:

Converts variables to 8-bit BYTE variables

Example

(* FBD example with "Convert to BYTE" Operators *)

bres	:=	ANY_TO_BYTE	(true);	(*	bres	is	1 *)
tres	:=	ANY_TO_BYTE	(t#0s46ms);	(*	tres	is	46 *)
mres	:=	ANY_TO_BYTE	('0198');	(*	mres	is	198 *)

ANY_TO_INT

Arguments:

 i1 BOOL - SINT - USINT - BYTE - INT - Any value UINT - WORD - DINT - UDINT -DWORD - LINT - ULINT - LWORD -REAL - LREAL - TIME - DATE - STRING
 o1 INT 0 if i1 is FALSE / 1 if i1 is TRUE

0 if i1 is FALSE / 1 if i1 is TRUE number of milliseconds for a timer integer part for real decimal number represented by a string

Description:

Converts variables to 16-bit integer variables

Example

(* FBD example with "Convert to Integer" Operators *)

bres	:=	ANY_TO_	INT	(true);	(*	bres	is	1 *)	
tres	:=	ANY_TO_	INT	(t#0s46ms);	(*	tres	is	46 *)
mres	:=	ANY_TO_	INT	('0198');	(*	mres	is	198	*)

ANY_TO_UINT

Arguments:

 i1 BOOL - SINT - USINT - BYTE - INT - Any value UINT - WORD - DINT - UDINT -DWORD - LINT - ULINT - LWORD -REAL - LREAL - TIME - DATE - STRING
 o1 UINT 0 if i1 is FALSE / 1 if i1 is TRUE

0 if i1 is FALSE / 1 if i1 is TRUE number of milliseconds for a timer integer part for real decimal number represented by a string

Description:

Converts variables to 16-bit unsigned integer variables

Example

(* FBD example with "Convert to Unsigned Integer" Operators *)

bres := ANY_TO_UINT (true); (* bres is 1 *)
tres := ANY_TO_UINT (t#0s46ms); (* tres is 46 *)
mres := ANY_TO_UINT ('0198'); (* mres is 198 *)

ANY_TO_WORD

Arguments:

- BOOL SINT USINT BYTE INT -UINT - WORD - DINT - UDINT -DWORD - LINT - ULINT - LWORD -REAL - LREAL - TIME - DATE - STRING
 Any value
 if i1 is FALSE / 1 if i1 is TRUE number of milliseconds for a timer integer part for real decimal number represented by a string
- ol WORD

Description:

Converts variables to 16-bit WORD variables

Example

(* FBD example with "Convert to WORD" Operators *)

bres	:=	ANY_TO_WORD	(true);	(*	bres	is	1 *)
tres	:=	ANY_TO_WORD	(t#0s46ms);	(*	tres	is	46 *)
mres	:=	ANY_TO_WORD	('0198');	(*	mres	is	198 *)

ANY_TO_DINT

Arguments:

 i1 BOOL - SINT - USINT - BYTE - INT - Any value UINT - WORD - DINT - UDINT -DWORD - LINT - ULINT - LWORD -REAL - LREAL - TIME - DATE - STRING
 o1 DINT 0 if i1 is FALSE / 1 if i1 is TRUE

0 if i1 is FALSE / 1 if i1 is TRUE number of milliseconds for a timer integer part for real decimal number represented by a string

Description:

Converts variables to 32-bit double integer variables

Example

(* FBD example with "Convert to Double Integer" Operators *)

bres := ANY_TO_DINT (true); (* bres is 1 *)
tres := ANY_TO_DINT (t#1s46ms); (* tres is 1046 *)
mres := ANY_TO_DINT ('0198'); (* mres is 198 *)

ANY_TO_UDINT

Arguments:

 i1 BOOL - SINT - USINT - BYTE - INT - Any value UINT - WORD - DINT - UDINT -DWORD - LINT - ULINT - LWORD -REAL - LREAL - TIME - DATE - STRING
 o1 UDINT 0 if i1 is FALSE / 1 if i1 is TRUE

0 if i1 is FALSE / 1 if i1 is TRUE number of milliseconds for a timer integer part for real decimal number represented by a string

Description:

Converts variables to 32-bit unsigned double integer variables

Example

(* FBD example with "Convert to Unsigned Double Integer" Operators *)

bres := ANY_TO_UDINT (true); (* bres is 1 *)
tres := ANY_TO_UDINT (t#1s46ms); (* tres is 1046 *)
mres := ANY_TO_UDINT ('0198'); (* mres is 198 *)

ANY_TO_DWORD

Arguments:

 i1 BOOL - SINT - USINT - BYTE - INT - Any value UINT - WORD - DINT - UDINT -DWORD - LINT - ULINT - LWORD -REAL - LREAL - TIME - DATE - STRING
 o1 DWORD 0 if i1 is FALSE / 1 if i1 is TRUE

0 if i1 is FALSE / 1 if i1 is TRUE number of milliseconds for a timer integer part for real decimal number represented by a string

Description:

Convert variables to 32-bit double WORD variables

Example

(* FBD example with "Convert to Double WORD" Operators *)

bres := ANY_TO_DWORD (true); (* bres is 1 *)
tres := ANY_TO_DWORD (t#1s46ms); (* tres is 1046 *)
mres := ANY_TO_DWORD ('0198'); (* mres is 198 *)

ANY_TO_LINT

Arguments:

BOOL - SINT - USINT - BYTE - INT - Any value
 UINT - WORD - DINT - UDINT DWORD - LINT - ULINT - LWORD REAL - LREAL - TIME - DATE - STRING
 L DIT

ol LINT

0 if i1 is FALSE / 1 if i1 is TRUE number of milliseconds for a timer integer part for real decimal number represented by a string

Description:

Converts variables to 64-bit long integer variables.

Note: The maximum value for a REAL or LREAL input must be less than 9.2233720e+18. For input values greater than this maximum, the output value is determined by the target type. For Windows and Linux targets, the output value will be reset to zero when the input value is greater than 9.2233720e+18. While for QNX targets, the output value will go into overflow.

Example

(* FBD example with "Convert to Long Integer" Operators *)

bres	:= ANY_TO_LINT	(true);	(*	bres	is	1 *)
tres	:= ANY_TO_LINT	(t#0s46ms);	(*	tres	is	46 *)
mres	:= ANY_TO_LINT	('0198');	(*	mres	is	198 *)

ANY_TO_ULINT

Arguments:

il BOOL - SINT - USINT - BYTE - INT - Any value UINT - WORD - DINT - UDINT -DWORD - LINT - ULINT - LWORD -REAL - LREAL - TIME - DATE - STRING

o1 ULINT

0 if i1 is FALSE / 1 if i1 is TRUE number of milliseconds for a timer integer part for real decimal number represented by a string

Description:

Converts variables to 64-bit unsigned long integer variable.

Note: The maximum value for a REAL or LREAL input must be less than 1.8446744e+19. For input values greater than this maximum, the output value is determined by the target type. For Windows and Linux targets, the output value will be reset to zero when the input value is greater than 1.8446744e+19. While for QNX targets, the output value will go into overflow.

Example

(* FBD example with "Convert to Unsigned Long Integer" Operators *)

bres	:= ANY_TO_ULIN	NT (true);	(* bres is	1 *)
tres	:= ANY_TO_ULIN	JT (t#0s46ms);	(* tres is	46 *)
mres	:= ANY_TO_ULIN	NT ('0198');	(* mres is	198 *)

ANY_TO_LWORD

Arguments:

i1 BOOL - SINT - USINT - BYTE - INT - Any value UINT - WORD - DINT - UDINT -DWORD - LINT - ULINT - LWORD -REAL - LREAL - TIME - DATE - STRING

o1 LWORD

0 if i1 is FALSE / 1 if i1 is TRUE number of milliseconds for a timer integer part for a real decimal number represented by a string

Description:

Converts variables to 64-bit long WORD variables.

Note: The maximum value for a REAL or LREAL input must be less than 1.8446744e+19. For input values greater than this maximum, the output value is determined by the target type. For Windows and Linux targets, the output value will be reset to zero when the input value is greater than 1.8446744e+19. While for QNX targets, the output value will go into overflow.

Example

(* FBD example with "Convert to Long Word" Operators *)

bres	:= ANY_TO_LWORD	(true);	(*	bres	is	1 *)
tres	:= ANY_TO_LWORD	(t#0s46ms);	(*	tres	is	46 *)
mres	:= ANY_TO_LWORD	('0198');	(*	mres	is	198 *)

ANY_TO_REAL

Arguments:

BOOL - SINT - USINT - BYTE - INT - Any value
 UINT - WORD - DINT - UDINT DWORD - LINT - ULINT - LWORD REAL - LREAL - TIME - DATE - STRING

ol REAL

0.0 if i1 is FALSE / 1.0 if i1 is TRUE number of milliseconds for a timer equivalent number for integer

Description:

Converts variables to REAL variables

Example

(* FBD example with "Convert to Real" Operators *)

bres := ANY_TO_REAL (true); (* bres is 1.0 *)
tres := ANY_TO_REAL (t#1s46ms); (* tres is 1046.0 *)
ares := ANY_TO_REAL (198); (* ares is 198.0 *)

ANY_TO_LREAL

Arguments:

 i1 BOOL - SINT - USINT - BYTE - INT - Any value UINT - WORD - DINT - UDINT -DWORD - LINT - ULINT - LWORD -REAL - LREAL - TIME - DATE - STRING
 o1 LREAL 0.0 if i1 is FALSE / 1.0 if i1 is TRUE

0.0 if it is FALSE / 1.0 if it is TRUE number of milliseconds for a timer equivalent number for integer

Description:

Converts any variable to a long REAL variable

Example

(* FBD example with "Convert to Long REAL" Operators *)

bres := ANY_TO_LREAL (true); (* bres is 1.0 *)
tres := ANY_TO_LREAL (t#1s46ms); (* tres is 1046.0 *)
ares := ANY_TO_LREAL (198); (* ares is 198.0 *)

ANY_TO_TIME

Arguments:

i1	BOOL - SINT - USINT - BYTE	Any value
	- INT - UINT - WORD - DINT -	i1 (or integer part of i1 if it is real) is the number of
	UDINT - DWORD - LINT -	milliseconds
	ULINT - LWORD - REAL -	STRING (number of milliseconds, for example, a
	LREAL - TIME - DATE -	value of 300032 represents 5 minutes and 32
	STRING	milliseconds)
01	TIME	time value represented by i1. A value of 1193h2m47s295ms indicates an invalid time.

Description:

Converts variables to TIME variables, except for TIME and DATE variables. The SUB_DATE_DATE function enables the conversion of a DATE to TIME format.

Example

(* FBD example with "Convert to Timer" Operators *)

ANY_TO_DATE

Arguments:

 i1 BOOL - SINT - USINT - BYTE - INT - Any value UINT - WORD - DINT - UDINT -DWORD - LINT - ULINT - LWORD -REAL - LREAL - TIME - DATE -STRING
 o1 DATE date represented by i1. A value of -1

indicates an invalid date.

Description:

Converts variables to DATE variables. A 32-bit variable, providing the number of seconds since Jan 1, 1970, based on the time_t data type.

Example

(* FBD example with "Convert to DATE" Operators *)

ANY_TO_STRING

ANY_TO, STRING

Arguments:

- il BOOL SINT USINT BYTE Any value INT - UINT - WORD - DINT -UDINT - DWORD - LINT -ULINT - LWORD - REAL -LREAL - TIME - DATE -STRING
- o1 STRING

If i1 is a Boolean, 'FALSE' or 'TRUE' If i1 is an integer or a real, decimal representation If i1 is a TIME: TIME time1 STRING s1 time1 :=13 ms; s1 :=ANY_TO_STRING(time1); (* s1 = '0s13' *)

Description:

Converts variables to STRING variables

Example

(* FBD example with "Convert to STRING" Operators *)

(* ST Equivalence: *)								
bres	:= ANY_TO_STRING	(TRUE);	(*	bres	is	'TRUE' *)		
ares	:= ANY_TO_STRING	(125);	(*	ares	is	'125' *)		

Equal

Arguments:

- BOOL SINT USINT BYTE INT Both inputs must have the same format.
 UINT WORD DINT UDINT DWORD LINT ULINT LWORD REAL LREAL TIME DATE STRING
- i2 BOOL SINT USINT BYTE INT -UINT - WORD - DINT - UDINT -DWORD - LINT - ULINT - LWORD -REAL - LREAL - TIME - DATE - STRING
- ol BOOL

TRUE if i1 = i2

Description

For integer, REAL, TIME, DATE, and STRING variables, compares the first input to the second to determine equality.

For TON, TP, TOF, BLINK, and StepName.t in SFC chart, equality testing of TIME variables is not recommended.

Example

(* FBD example with "Is Equal to" Operators *)

(* ST Equivalence: *)

aresult := (10 = 25); (* aresult is FALSE *)
mresult := ('ab' = 'ab'); (* mresult is TRUE *)

Greater Than or Equal

Arguments:

- il SINT USINT BYTE INT UINT Both inputs must have the same type. WORD - DINT - UDINT - DWORD - LINT - ULINT - LWORD - REAL - LREAL -TIME - DATE - STRING
- i2 SINT USINT BYTE INT UINT -WORD - DINT - UDINT - DWORD - LINT - ULINT - LWORD - REAL - LREAL -TIME - DATE - STRING

ol BOOL

TRUE if $i1 \ge i2$

Description:

For integer, REAL, TIME, DATE, and STRING variables, compares input variables to determine whether the first is greater than or equal to the second.

For TON, TP, TOF, BLINK, and StepName.t in SFC chart, equality testing of TIME variables is not recommended.

Example

(* FBD example with "Greater or Equal to" Operators *)

(* ST Equivalence: *)

aresult := (10 >= 25); (* aresult is FALSE *)
mresult := ('ab' >= 'ab'); (* mresult is TRUE *)

Greater Than

Arguments:

- i1 SINT USINT BYTE INT UINT Both inputs must have the same type
 WORD DINT UDINT DWORD LINT
 ULINT LWORD REAL LREAL TIME DATE STRING
- i2 SINT USINT BYTE INT UINT -WORD - DINT - UDINT - DWORD - LINT - ULINT - LWORD - REAL - LREAL -TIME - DATE - STRING

ol BOOL

TRUE if i1 > i2

Description:

For integer, REAL, TIME, DATE, and STRING variables, compares input variables to determine whether the first is greater than the second.

Example

(* FBD example with "Greater than" Operators *)

(* ST Equivalence: *)

aresult := (10 > 25); (* aresult is FALSE *)
mresult := ('ab' > 'a'); (* mresult is TRUE *)

Less Than or Equal

Arguments:

- SINT USINT BYTE INT UINT Both inputs must have the same type.
 WORD DINT UDINT DWORD LINT
 ULINT LWORD REAL LREAL TIME DATE STRING
- i2 SINT USINT BYTE INT UINT -WORD - DINT - UDINT - DWORD - LINT - ULINT - LWORD - REAL - LREAL -TIME - DATE - STRING

ol BOOL

TRUE if $i1 \le i2$

Description:

For integer, REAL, TIME, DATE, and STRING variables, compares input variables to determine whether the first is less than or equal to the second.

For TON, TP, TOF, BLINK, and StepName.t in SFC chart, equality testing of TIME variables is not recommended.

Example

(* FBD example with "Less or Equal to" Operators *)

(* ST Equivalence: *)

aresult := (10 <= 25); (* aresult is TRUE *)
mresult := ('ab' <= 'ab'); (* mresult is TRUE *)</pre>

Less Than

Arguments:

- i1 SINT USINT BYTE INT UINT Both inputs must have the same type
 WORD DINT UDINT DWORD LINT
 ULINT LWORD REAL LREAL TIME DATE STRING
- i2 SINT USINT BYTE INT UINT -WORD - DINT - UDINT - DWORD - LINT - ULINT - LWORD - REAL - LREAL -TIME - DATE - STRING

ol BOOL

TRUE if i1i2 < i2

Description:

For integer, REAL, TIME, DATE, and STRING variables, compares input variables to determine whether the first is less than the second.

Example

(* FBD example with "Less than" Operators *)

(* ST Equivalence: *)

aresult := (10 < 25); (* aresult is TRUE *)
mresult := ('z' < 'B'); (* mresult is FALSE *)</pre>

NEG

Arguments:

- i1 SINT INT DINT LINT REAL -LREAL
- o1 SINT INT DINT LINT REAL -LREAL

Input and output must have the same format

Description:

Converts variables to negated variables

Example

(* FBD example with Negation Operators *)

ao23 := - (ai10);

ro100 := - (ri1 + ri2);

ΝΟΤ

Arguments:

i1 Any Boolean variable or complex expression

o1 TRUE when i1 is FALSE FALSE when i1 is TRUE

Description:

For Boolean expressions, converts variables to negated variables.

Example

(* FBD example with "NOT" Operator *)

(* ST equivalence: *)

bol0 := NOT bil01;

Not Equal

Arguments:

- i1 BOOL SINT USINT BYTE INT both inputs must have the same type UINT - WORD - DINT - UDINT -DWORD - LINT - ULINT - LWORD -REAL - LREAL - TIME - DATE - STRING
 i2 BOOL - SINT - USINT - BYTE - INT -UINT - WORD - DINT - UDINT -
- DWORD LINT ULINT LWORD -REAL - LREAL - TIME - DATE - STRING
- ol BOOL

TRUE if first <> second

Description:

For integer, REAL, TIME, DATE, and STRING variables, compares input variables to determine whether the first is not equal to the second.

Example

(* FBD example with "Is Not Equal to" Operators *)

(* ST Equivalence: *)

aresult := (10 <> 25); (* aresult is TRUE *)
mresult := ('ab' <> 'ab'); (* mresult is FALSE *)

OR

Note: The creation of additional inputs is supported.

Arguments:

(inputs)	BOOL	
output	BOOL	Boolean OR of the input terms

Description:

Boolean OR of two or more variables

Example

(* FBD example with "OR" Operators *)

(* ST equivalence: *)

bol0 := bil01 OR NOT (bil02);

bo5 := (bi51 OR bi52) OR bi53;

XOR

	XOR	
i1 BOOL i2 BOOL	¶ ¶ ⁺ →0	o1- BOOL

Arguments:

- il BOOL
- i2 BOOL
- o1 BOOL Boolean exclusive OR of the two input terms

Description:

Boolean exclusive OR of two variables

Example

(* FBD example with "XOR" operators *)

(* ST equivalence: *)

bol0 := bil01 XOR NOT (bil02);

bo5 := (bi51 XOR bi52) XOR bi53;

Functions

The following are the functions supported by the system:

Arithmetic Operations	ABS	Absolute value of a REAL value
	EXPT, POW	Exponent, power calculation of REAL values
	LOG	Logarithm of a REAL value
	MOD	Modulo
	SQRT	Square root of a REAL value
	RAND	Random value
	TRUNC	Truncate decimal part of a REAL value
	ACOS, ASIN, ATAN	Arc cosine, Arc sine, Arc tangent of a REAL value
	COS, SIN, TAN	Cosine, Sine, Tangent of a REAL value
Binary Operations	AND_MASK	Integer bit-to-bit AND mask
	OR_MASK	Integer bit-to-bit OR mask
	XOR_MASK	Integer bit-to-bit Exclusive OR mask
	NOT_MASK	Integer bit-to-bit negation
	ROL, ROR	Rotate Left, Rotate Right an integer value
	SHL, SHR	Shift Left, Shift Right an integer value
Boolean Operations	ODD	Odd parity
Process Control	MIN, MAX, LIMIT	Minimum, Maximum, Limit
	MUX4, MUX8	Multiplexer (4 or 8 entries)
	SEL	Binary selector

String Manipulation	ASCII	Character -> ASCII code		
	CHAR	ASCII code -> Character		
	MLEN	Get string length		
	DELETE, INSERT	Delete sub-string, Insert string		
	FIND, REPLACE	Find sub-string, Replace sub-string		
	LEFT, MID, RIGHT	Extract left, middle or right of a string		
System Operations	LOCK_CPU, UNLOCK_CPU	Lock data space, unlock data space		
Time Operations	CURRENT_ISA_DATE	Gets the current date		
	SUB_DATE_DATE	Compares two dates and provides the difference in TIME format		

ABS

Arguments:

IN	IN	REAL	Any signed real value
ABS	Q	REAL	Absolute value (always positive)

Description:

Yields the absolute (positive) value of a REAL value.

Example

(* FBD Program using "ABS" Function *)

(* ST Equivalence: *)

over := (ABS (delta) > range);

ACOS

Arguments:

IN	IN	REAL	Must be in set [-1.0 +1.0]
ACOS	Q	REAL	Arc-cosine of the input value (in set [0.0 PI])
			= 0.0 for invalid input

Description:

Yields the Arc Cosine of a REAL value. Input and output values are in radians.

Example

(* FBD Program using "COS" and "ACOS" Functions *)


```
cosine := COS (angle);
result := ACOS (cosine); (* result is equal to angle *)
```

AND_MASK

Arguments:

IN	IN	DINT	Must have integer format
MSK	MSK	DINT	Must have integer format
AND_MASK	Q	DINT	Bit-to-bit logical AND between IN and MSK

Description:

Integer AND bit-to-bit mask.

Example

(* FBD example with AND_MASK Operators *)

parity	:=	AND_	MASK	(xvalue,	1);	(*	1	if	xvalue	is odd	*)
result	:=	AND	MASK	(16#abc,	16#f	Of)	;	(*	equals	16#a0c	*)

ASCII

ASCII	
IN	Code
STRING $[x] \rightarrow A$	DINT
Pos	
DINT	

Arguments:

IN	IN	STRING	Any non-empty string
Pos	Pos	DINT	Position of the selected character in set [1 len] (len is the length of the IN string)
ASCII	Code	DINT	Code of the selected character (in set [0 255]) yields 0 is Pos is out of the string

Description:

Yields the ASCII code for characters in strings.

Example

(* FBD Program using "ASCII" Function *)

(* ST Equivalence: *)

```
FirstChr := ASCII (message, 1);
```

(* FirstChr is the ASCII code of the first character of the string *)

ASIN

Arguments:

IN	IN	REAL	Must be in set [-1.0 +1.0]
ASIN	Q	REAL	Arc-sine of the input value (in set [-PI/2 +PI/2])
			= 0.0 for invalid input

Description:

Yields the Arc Sine of a REAL value.

Example

(* FBD Program using "SIN" and "ASIN" Functions *)


```
sine := SIN (angle);
result := ASIN (sine); (* result is equal to angle *)
```

ATAN

Arguments:

IN	IN	REAL	Any real value
ATAN	Q	REAL	Arc-tangent of the input value (in set $[-PI/2 +PI/2]$) = 0.0 for invalid input

Description:

Yields the Arc Tangent of a REAL value.

Example

(* FBD Program using "TAN" and "ATAN" Function *)

result := ATAN (tangent); (* result is equal to angle*)

CHAR

Arguments:

Code	Code	DINT	Code in set [0 255]
CHAR	Q	STRING	One character string the character has the ASCII code given in input Code (ASCII code is used modulo 256)

Description:

For a given ASCII code, provides a string containing one character.

Example

(* FBD Program using "CHAR" Function *)

COS

Arguments:

IN	IN	REAL	Any REAL value
COS	Q	REAL	Cosine of the input value (in set [-1.0 +1.0])

Description:

Yields the Cosine of a REAL value.

Example

(* FBD Program using "COS" and "ACOS" Functions *)

(* ST Equivalence: *)

cosine := COS (angle); result := ACOS (cosine); (* result is equal to angle *)

CURRENT_ISA_DATE

Arguments:

CURRENT_ISA_DATE DATE DATE The current date

Description:

Retrieves the current date.

Example

(* FBD Program using "CURRENT_ISA_DATE" Function *)


```
datResult := CURRENT_ISA_DATE();
```

DELETE

	DELETE	1.111
IN STRING NbC DINT Pos DINT	S ond L+ec	Q- STRING

Arguments:

IN	IN	STRING	Any non-empty string
NbC	NbC	DINT	Number of characters to be deleted
Pos	Pos	DINT	Position of the first deleted character (first character of the string has position 1)
DELETE	Q	STRING	modified string empty string if Pos < 1 initial string if Pos > IN string length initial string if NbC <= 0

Description:

Deletes part of a string.

Example

(* FBD Program using "DELETE" Function *)

complete_string := INSERT ('ABCD ', 'EFGH', 5); (* complete_string is 'ABCDEFGH ' *) sub_string := DELETE (complete_string, 4, 3); (* sub_string is 'ABGH '*)

EXPT

	EXPT	
IN REAL EXP DINT	12 ^{EXP}	Q- REAL

Arguments:

IN	IN	REAL	Any signed real value
EXP	EXP	DINT	Integer exponent
EXPT	Q	REAL	(IN EXP)

Description:

Where 'base' is the first argument and 'exponent' is the second argument, yields the REAL result of the following operation: (base ^{exponent}).

Example

(* FBD Program using "EXPT" Function *)

(* ST Equivalence: *)

tb_size := ANY_TO_DINT (EXPT (2.0, range));

FIND

Arguments:

In	In	STRING	Any string
Pat	Pat	STRING	Any non-empty string (Pattern)
FIND	Pos	DINT	 = 0 if sub string Pat not found = position of the first character of the first occurrence of the sub-string Pat (first position is 1) this function is case sensitive

Description:

Locates and provides the position of sub-strings within strings.

Example

(* FBD Program using "FIND" Function *)


```
complete_string := 'ABCD' + 'EFGH'; (* complete_string is 'ABCDEFGH '
*)
```

```
found := FIND (complete_string, 'CDEF'); (* found is 3 *)
```

INSERT

Arguments:

IN	IN	STRING	Initial string
Str	Str	STRING	String to be inserted
Pos	Pos	DINT	Position of the insertion the insertion is done before the position (first valid position is 1)
INSERT	Q	STRING	Modified string empty string if Pos <= 0 concatenation of both strings if Pos is greater than the length of the IN string

Description:

Inserts sub-strings at user-defined positions within strings.

Example

(* FBD Program using "INSERT" Function*)


```
(* ST Equivalence: *)
MyName := INSERT ('Mr JONES', 'Frank ', 4);
(* MyName is 'Mr Frank JONES' *)
```

LEFT

	LEFT	
IN STRING NbC DINT	Second Sec 4 ^J	Q- STRING

Arguments:

IN	IN	STRING	Any non-empty string
NbC	NbC	DINT	Number of characters to be extracted. This number cannot be greater than the length of the IN string.
LEFT	Q	STRING	Left part of the IN string (its length = NbC) empty string if NbC <= 0 complete IN string if NbC >= IN string length

Description:

From the left end of strings, yields the number of characters defined.

Example

(* FBD Program using "LEFT" and "RIGHT" Functions *)

(* ST Equivalence: *)

```
complete_string := INSERT (RIGHT ('12345678', 4), LEFT ('12345678', 4),
5);
```

(* complete_string is '56781234'

the value issued from RIGHT call is '5678' the value issued from LEFT call is '1234' *)

LIMIT

Arguments:

MIN	MIN	DINT	Minimum value allowed
IN	IN	DINT	Any signed integer value
MAX	MAX	DINT	Maximum value allowed
LIMIT	Q	DINT	Input value restricted to the allowed range

Description:

Restricts integer values to a given interval. Integer values between the minimum and maximum are unchanged. Integer values greater than the maximum are replaced with the maximum value. Integer values less than the minimum are replaced with the minimum value.

Example

(* FBD Program using "LIMIT" Function *)

(* ST Equivalence: *)

new_value := LIMIT (min_value, value, max_value);

(* bounds the value to the [min_value..max_value] set *)

LOCK_CPU

Arguments:

ТМОТ	ТМОТ	TIME	Maximum time delay to lock the data space, in milliseconds. If the data space is unavailable, i.e. locked, during this time period, the lock operation fails.
OK	ОК	BOOL	Status of the thread lock operation TRUE=Successful lock operation FALSE=Unsuccessful lock operation

Description:

When using run-time supporting interrupts, each interrupt and main loop should use the LOCK_CPU to access variables shared between different execution paths. LOCK_CPU grants a POU exclusive access to the variables accessed after a call. The exclusive access is disabled once UNLOCK_CPU is called. If multiple POUs on distinct interrupts call LOCK_CPU at the same time, only one POU will run until UNLOCK_CPU is called. Afterwards, the next POU in the execution stack will run LOCK_CPU.

Note: Ensure LOCK_CPU is called once in a given thread before calling UNLOCK_CPU.

Example

(* FBD Program using "LOCK_CPU" Function *)


```
status1:=LOCK_CPU(T#8ms);
```

LOG

Arguments:

IN	IN	REAL	Must be greater than zero
LOG	Q	REAL	Logarithm (base 10) of the input value

Description:

Yields the logarithm (base 10) of a REAL value.

Example

(* FBD Program using "LOG" Function *)

(* ST Equivalence: *)

xpos := ABS (xval); xlog := LOG (xpos);
MAX

Arguments:

IN1	IN1	DINT	Any signed integer value
IN2	IN2	DINT	(cannot be REAL)
MAX	Q	DINT	Maximum of both input values

Description:

Yields the maximum of two integer values.

Example

(* FBD Program using "MIN" and "MAX" Function *)

(* ST Equivalence: *)

new_value := MAX (MIN (max_value, value), min_value);

(* bounds the value to the [min_value..max_value] set *)

MID

Arguments:

IN	IN	STRING	Any non-empty string
NbC	NbC	DINT	Number of characters to extract (must be less than or equal to the length of the IN string)
Pos	Pos	DINT	Position of the sub-string the sub-string first character is the one pointed to by Pos (the first valid position is 1)
MID	Q	STRING	Middle part of the string (its length = NbC). When the number of characters to extract exceeds the length of the IN string, NbC is automatically recalculated to get the remainder of the string only. When NbC or Pos are zero or negative numbers, an empty string is returned.

Description:

Using the position and number of characters provided, yields required parts of strings.

Example

(* FBD Program using "MID" Function *)


```
(* ST Equivalence: *)
sub_string := MID ('abcdefgh', 2, 4);
(* sub_string is 'de' *)
```

MIN

	MIN	
IN1 DINT IN2		Q- DINT
DINT		

Arguments:

IN1	IN1	DINT	Any signed integer value
IN2	IN2	DINT	(cannot be REAL)
MIN	Q	DINT	Minimum of both input values

Description:

Yields the minimum of two integer values.

Example

(* FBD Program using "MIN" and "MAX" Function *)

(* ST Equivalence: *)

new_value := MAX (MIN (max_value, value), min_value);

(* bounds the value to the [min_value..max_value] set *)

MLEN

	MLEN	
IN	BLOCK	NbC
STRING	₩5	DINT

Arguments:

IN	IN	STRING	Any string
MLEN	NbC	DINT	Number of characters in the IN string

Description:

Yields the length of strings.

Example

(* FBD Program using "MLEN" Function *)

(* ST Equivalence: *)

nbchar := MLEN (complete_string); If (nbchar < 3) Then Return; End_if; prefix := LEFT (complete_string, 3); (* this program extracts the 3 characters on the left of the string and put the result in the prefix string variable nothing is done if the string length is less than three characters *)

MOD

	MOD	
IN DINT Base DINT	248 <u>3</u> 08 82 →2	Q- DINT

Arguments:

IN	IN	DINT	Any signed INTEGER value
Base	Base	DINT	Must be greater than zero
MOD	Q	DINT	Modulo calculation (input MOD base) yields -1 if Base <= 0

Description:

Yields the modulo of an integer value.

Example

(* FBD Program using "MOD" Function *)

(* ST Equivalence: *)

```
division_result := (value / divider); (* integer division *)
rest_of_division := MOD (value, divider); (* rest of the division *)
```

MUX4

	MUX4	
SEL		a-
DINT		DINT
DINT		
IN2	Hur	
DINT		
IN3		
DINT		
IN4		
DIN I		

Arguments:

SEL	SEL	DINT	Selector integer value (must be in set [03])
IN1IN4	IN1IN4	DINT	Any integer values
MUX4	Q	DINT	= value1 if SEL = 0 = value2 if SEL = 1 = value3 if SEL = 2 = value4 if SEL = 3 = 0 for all other values of the selector

Description:

Yields a value between four integer values.

Example

(* FBD Program using "MUX4" Function *)

- (* ST Equivalence: *)
- range := MUX4 (choice, 1, 10, 100, 1000);
- (* select from 4 predefined ranges, for example, if choice is 1, range will be 10 *)

MUX8

	MUX8	
SEL		
DINT		DINT
IN1		
DINT		
IN2		
DINT		
IN3		
DINT	-	
IN4	MUX -	
DINT		
IN5		
DINT		
IN6		
DINT		
IN7		
DINT		
1N8		
DINT		

Arguments:

SEL	SEL	DINT	Selector integer value (must be in set [07])
IN1IN8	IN1IN8	DINT	Any integer values
MUX8	Q	DINT	= value1 if selector = 0 = value2 if selector = 1
			 = value8 if selector = 7 = 0 for all other values of the selector

Description:

Yields a value between eight integer values.

Example

(* FBD Program using "MUX8" Function *)

(* ST Equivalence: *)

range := MUX8 (choice, 1, 5, 10, 50, 100, 500, 1000, 5000);

(* select from 8 predefined ranges, for example, if choice is 3, range will be 50 *)

NOT_MASK

Arguments:

IN	IN	DINT	Must have integer format
NOT MASK	Q	DINT	Bit-to-bit negation on 32 bits of IN

Description:

Integer bit-to-bit negation mask.

Example

(* FBD example with NOT_MASK Operators *)

(*ST equivalence: *)

result := NOT_MASK (16#1234);

(* result is 16#FFFF_EDCB *)

ODD

Arguments:

IN	IN	DINT	Any signed integer value
Odd	Q	BOOL	TRUE if input value is odd
			FALSE if input value is even

Description:

Determines the parity of an integer, yielding an odd or even result.

Example

(* FBD Program using "ODD" Function *)

(* ST Equivalence: *)

If Not (ODD (value)) Then Return; End_if;

value := value + 1;

(* makes value always even *)

OR_MASK

Arguments:

IN	IN	DINT	Must have integer format
MSK	MSK	DINT	Must have integer format
OR_MASK	Q	DINT	Bit-to-bit logical OR between IN and MSK

Description:

Integer OR bit-to-bit mask.

Example

(* FBD example with OR_MASK Operators *)

(* ST Equivalence: *)
parity := OR_MASK (xvalue, 1); (* makes value always odd *)
result := OR MASK (16#abc, 16#f0f); (* equals 16#fbf *)

POW

	POW	
IN REAL EXP REAL	66 ^{PDW}	Q- REAL

Arguments:

IN	IN	REAL	REAL number to be raised
EXP	EXP	REAL	Power (exponent)
POW	Q	REAL	 (IN ^{EXP}) 1.0 if IN is not 0.0 and EXP is 0.0 0.0 if IN is 0.0 and EXP is negative 0.0 if both IN and EXP are 0.0 0.0 if IN is negative and EXP does not correspond to an integer

Description:

When the first argument is 'base' and the second argument is 'exponent', yields the REAL result of the following: (base ^{exponent}). 'Exponent' is a REAL value.

Example

(* FBD Program using "POW" Function *)

RAND

Arguments:

base	base	DINT	Defines the allowed set of number
RAND	Q	DINT	Random value in set [0base-1]

Description:

From a defined range, yields random integer values.

Example

(* FBD Program using "RAND" function *)

(* ST Equivalence: *)

```
selected := MUX4 ( RAND (4), 1, 4, 8, 16 );
```

(* random selection of 1 of 4 pre-defined values. The value issued of RAND call is in set [0..3], so 'selected' issued from MUX4, will get 'randomly' the value 1 if 0 is issued from RAND,or 4 if 1 is issued from RAND,or 8 if 2 is issued from RAND,or 16 if 3 is issued from RAND,

*)

REPLACE

Arguments:

IN	IN	STRING	Any string
Str	Str	STRING	String to be inserted (to replace NbC chars)
NbC	NbC	DINT	Number of characters to be deleted
Pos	Pos	DINT	Position of the first modified character (first valid position is 1)
REPLACE	Q	STRING	Modified string: - NbC characters are deleted at position Pos - then substring Str is inserted at this position yields empty string if Pos <= 0 yields strings concatenation (IN+Str) if Pos is greater than the length of the IN string yields initial string IN if NbC <= 0

Description:

Replaces parts of a strings with new sets of characters.

Example

(* FBD Program using "REPLACE" function *)

STRING Mr_X_Jones		STRING MyName
STRING Frank	STRING STRING	()
1	NEC A	
4	Pos	

- (* ST Equivalence: *)
- MyName := REPLACE ('Mr X JONES, 'Frank', 1, 4);
- (* MyName is 'Mr Frank JONES' *)

RIGHT

	RIGHT	
-IN STRING NbC DINT	Sec 4ond	Q. STRING

Arguments:

IN	IN	STRING	Any non-empty string
NbC	NbC	DINT	Number of characters to be extracted. This number cannot be greater than the length of the IN string.
RIGHT	Q	STRING	Right part of the string (length = NbC) empty string if NbC <= 0 complete string if NbC >= string length

Description:

From the right ends of strings, yields the number of characters defined.

Example

(* FBD Program using "LEFT" and "RIGHT" Functions *)

(* ST Equivalence: *)

```
complete_string := INSERT (RIGHT ('12345678', 4), LEFT ('12345678',
4),5);
```

(* complete_string is '56781234' the value issued from RIGHT call is '5678' the value issued from LEFT call is '1234' *)

ROL

ROL	
TOTIC	Q- DINT
	ROL

Arguments:

IN	IN	DINT	Integer value
NbR	NbR	DINT	Number of 1-bit rotations (in set [131])
ROL	Q	DINT	Left rotated value When NbR <= 0, no change occurs.

Description:

For 32-bit integers, rotates integer bits to the left.

Example

(* FBD Program using "ROL" Function *)

(* ST Equivalence: *)

result := ROL (register, 1);

```
(* register = 2#0100_1101_0011_0101*)
```

```
(* result = 2#1001_1010_0110_1010*)
```

ROR

	ROR	
IN DINT NBR DINT	heinite	Q- DINT

Arguments:

IN	IN	DINT	Any integer value
NbR	NbR	DINT	Number of 1 bit rotations (in set [131])
ROR	Q	DINT	Right rotated value no effect if NbR <= 0

Description:

For 32-bit integers, rotates integer bits to the right.

Example

(* FBD Program using "ROR" Function *)

SEL

Arguments:

SEL1	SEL1	BOOL	Indicates the chosen value
IN1, IN2	IN1, IN2	DINT	Any integer values
SEL	Q	DINT	= IN1 if SEL is FALSE
			= IN2 if SEL is TRUE

Description:

Specifies the input to use between two integer values.

Example

(* FBD Program using "SEL" Function *)

(* ST Equivalence: *)

ProCmd := SEL (AutoMode, ManuCmd, InpCmd);

(* process command selection *)

SHL

	SHL	
IN DINT NbS DINT		Q. DINT

Arguments:

IN	IN	DINT	Any integer value
NbS	NbS	DINT	Number of 1 bit shifts (in set [131])
SHL	Q	DINT	Left shifted value no effect if NbS <= 0 0 replaces the least significant bit

Description:

For 32-bit integers, moves integers to the left and places 0 in the least significant bit.

Example

(* FBD Program using "SHL" Function *)

SHR

Arguments:

IN	IN	DINT	Any integer value
NbS	NbS	DINT	Number of 1 bit shifts (in set [131])
SHR	Q	DINT	Right shifted value no effect if NbS <= 0 the leftmost bit is replicated if NbS >=1

Description:

Shifts the 32 bits of an integer to the right and replicates the leftmost bit (significant bit) to fill the vacant bits.

Example

(* FBD Program using "SHR" Function *)

(* ST Equivalence: *)

result := SHR (register,1);

(* register = 2#1100_1101_0011_0101 *)

```
(* result = 2#1110_0110_1001_1010 *)
```

SIN

Arguments:

ININREALAny REAL valueSINQREALSine of the input value (in set [-1.0 .. +1.0])

Description:

Yields the Sine of a REAL value.

Example

(* FBD Program using "SIN" and "ASIN" Functions *)

(* ST Equivalence: *)
sine := SIN (angle);
result := ASIN (sine); (* result is equal to angle *)

SQRT

Arguments:

IN	IN	REAL	Must be greater than or equal to zero
SQRT	Q	REAL	Square root of the input value

Description:

Yields the square root of a REAL value.

Example

(* FBD Program using "SQRT" Function *)

(* ST Equivalence: *)

xpos := ABS (xval); xroot := SQRT (xpos);

SUB_DATE_DATE

DAT1	TIME
DATE	TIME
DAT2	
DATE	

Arguments:

DAT1	DAT1	DATE	First date in a comparison
DAT2	DAT2	DATE	Second date in a comparison
SUB_DATE_DATE	TIME	TIME	Difference in TIME format between DAT1 and DAT2. The possible date difference values range from t#0h to t#1193h2m47s294ms inclusively. A value of 1193h2m47s295ms indicates an error for either of the following conditions: - DAT1 is less than DAT2 - The difference between DAT1 and DAT2 is greater than 1193h2m47s294ms

Description:

Compares two dates and yields the difference in TIME format.

Example

(* FBD Program using "SUB_DATE_DATE" Function *)

TAN

Arguments:

IN	IN	REAL	Cannot be equal to PI/2 modulo PI
TAN	Q	REAL	Tangent of the input value $= 1E+38$ for invalid input

Description:

Yields the Tangent of a REAL value.

Example

(* FBD Program using "TAN" and "ATAN" Functions *)

(* ST Equivalence: *)
tangent := TAN (angle);
result := ATAN (tangent); (* result is equal to angle*)

TRUNC

	TRUNC	
IN	544.	Q.
REAL		REAL

Arguments:

IN	IN	REAL	Any REAL value
TRUNC	Q	REAL	If IN>0, biggest integer less or equal to the input If IN<0 least integer greater or equal to the input

Description:

Truncates REAL values, leaving just the integer.

Example

(* FBD Program using "TRUNC" Function *)

(* ST Equivalence: *)

result := TRUNC (+2.67) + TRUNC (-2.0891);

(* means: result := 2.0 + (-2.0) := 0.0; *)

UNLOCK_CPU

Arguments:

OK	OK	BOOL	Status of the thread unlock operation
			TRUE=Successful unlock operation
			FALSE=Unsuccessful unlock operation

Description:

When using interrupts, releases the lock on the data space, granting other interrupt POUs access.

Note: Ensure UNLOCK_CPU is called once in a given thread before calling LOCK_CPU.

Example

(* FBD Program using "UNLOCK_CPU" Function *)

(* ST Equivalence: *)

status2:=UNLOCK_CPU();

XOR_MASK

Arguments:

IN	IN	DINT	Must have integer format
MSK	MSK	DINT	Must have integer format
XOR_MASK	Q	DINT	Bit-to-bit logical Exclusive OR between IN and MSK

Description:

Integer exclusive OR bit-to-bit mask

Example

(* FBD example with **XOR_MASK** Operators *)

(* ST Equivalence: *)

crc32 := XOR_MASK (prevcrc, nextc);
result := XOR_MASK (16#012, 16#011); (* equals 16#003 *)

Function Blocks

The workbench supports the following function blocks:

Alarms Management	LIM_ALRM	High/low limit alarm with hysteresis
Boolean Operations	SR	Set dominant bistable
	RS	Reset dominant bistable
	R_TRIG	Rising edge detection
	F_TRIG	Falling edge detection
Comparator Operations	CMP	Full comparison function block
Counters	CTU	Up counter
	CTD	Down counter
	CTUD	Up-down counter
Process Control	AVERAGE	Running average over N samples
	BLINK	Blinking Boolean signal
	DERIVATE	Differentiation of a real value according to time
	HYSTER	Boolean hysteresis on difference of reals
	INTEGRAL	Integration over time
	SIG_GEN	Signal generator
	STACKINT	Stack of integer
Remote Device	CONNECT	Connection to a resource
Communications	USEND_S	Sending of a message to a resource
	URCV_S	Reception of a message from a resource
Time Operations	TON	On-delay timing
	TOF	Off-delay timing
	ТР	Pulse timing

Note: When new function blocks are created, these can be called from any language.

AVERAGE

Arguments:

RUN	BOOL	TRUE=run / FALSE=reset
XIN	REAL	Any real Variable
N	DINT	Application defined number of samples
XOUT	REAL	Running average of XIN value

Note: When setting or changing the value for N, you need to set RUN to FALSE, then set it back to TRUE.

Description:

Stores a value at each cycle and calculates the average value of all stored values. Only the latest N values are stored.

The maximum number of samples N is 128. When N exceeds 128, the number of samples is truncated to 128.

When the "RUN" command is FALSE (reset mode), the output value is equal to the input value.

Upon reaching the maximum N of stored values, the first stored value is overwritten with the latest value.

Example

(* FBD program using the AVERAGE block: *)

(* ST Equivalence: AVERAGE1 instance of AVERAGE block *)
AVERAGE1((auto_mode & store_cmd), sensor_value, 100);
ave_value := AVERAGE1.XOUT;

BLINK

Arguments:

RUN	BOOL	Mode: TRUE=blinking / FALSE=reset the output to false
CYCL	TIME	Blinking period. Possible values range from 0ms to 1193h2m47s294ms.
Q	BOOL	Output blinking signal

Description:

Generates a blinking signal.

Timing diagram:

СМР

Arguments:

VAL1	DINT	Any signed integer value
VAL2	DINT	Any signed integer value
LT	BOOL	TRUE if val1 is Less Than val2
EQ	BOOL	TRUE if val1 is Equal to val2
GT	BOOL	TRUE if val1 is Greater Than val2

Description:

Compare two values: tell if they are equal, or if the first is less or greater than the second one.

Example

(* FBD program using the CMP block *)

(* ST Equivalence: We suppose CMP1 is an instance of CMP block *)

CMP1(level, max_level);

pump_cmd := CMP1.LT OR CMP1.EQ;

alarm := CMP1.GT AND NOT(manual_mode);

CONNECT

Note: This function is only available for use with multi-task runtimes.

Arguments:

EN_C	BOOL	Enable connection.
PART	STRING	Name of the remote communication partner.
VAL	BOOL	If TRUE, connection ID is valid.
ERR	BOOL	If TRUE, new non-zero status received.
STAT	DINT	Last detected status.
ID	DINT	Identification of the communication Channel.

Description:

Creates a connection with a remote or local virtual machine (of current Project or another Project) and manages the exchanges (for blocks USEND_S and URCV_S).

It creates a communication channel identifier (ID).

This identifier is required in all others communication function blocks (URCV_S or USEND_S).

PARTNER parameter is a string with the following format:

'ResourceNumber@Address'

Example

'1@123.45.67.89'

Connection with the ETCP driver to Resource 1 at address 123.45.67.89.

If the resource is on the same device, its number is enough to identify it (e.g. '1').

On a rising edge of EN_C parameter, the CONNECT block establishes the communication with the remote partner.

The VALID parameter is set to TRUE until the communication is available.

Every time the status changes, the output parameter ERROR is set to TRUE during one cycle and the new status is set in the STATUS parameter.

STATUS can take following values:

STATUS	Description
0	Connection successfully completed.
1	Waiting for reply
2	Too many CFB connect
3	Not ready for a new connection
4	Connect failed
5	Bad partner

If the connection failed, a new connection is not automatically done, a rising edge must be detected on EN_C parameter.

Example

The following shows a program from Resource 3 sending a string to Resource 4 on the same device:

BOOL EN_C4	CONNECT EN_C VAL BOOL BOOL PART ERR STRING STAT DINT ID DINT	BOOL VAL4 BOOL ERR4 DINT STAT4 DINT ID4
BOOL REQ	USEND_S REQ DONE- BOOL BOOL	BOOL DONE
STRING R3toR4	DINT BOOL R_ID STAT- STRING DINT SD STRING	

The following shows the corresponding program in Resource 4 receiving the string:

See Also USEND_S URCV_S

CTD

Arguments:

CD	BOOL	Counting input (down-counting when CD is a rising edge)
LOAD	BOOL	Load command (dominant) (CV = PV when LOAD is TRUE)
PV	DINT	Programmed initial value
Q	BOOL	Underflow: TRUE when CV <= 0
CV	DINT	Counter result

Description:

Counts (integer) from a given value down to 0 1 by 1

Example

(* FBD program using the CTD block *)

result := CTD1.CV;

СТИ

Arguments:

CU BOOL Counting input (counting when CU is a	rising edge)
RESE BOOL Reset command (dominant)	
PV DINT Programmed maximum value	
Q BOOL Overflow: TRUE when CV >= PV	
CV DINT Counter result	

Description:

Counts (integer) from 0 up to a given value 1 by 1

Example

(* FBD program using the CTU block *)

CTUD

Arguments:

CU	BOOL	Up-counting (when CU is a rising edge)
CD	BOOL	Down-counting (when CD is a rising edge)
RESE	BOOL	Reset command (dominant) (CV = 0 when RESET is TRUE)
LOAD	BOOL	Load command (CV = PV when LOAD is TRUE)
PV	DINT	Programmed maximum value
QU	BOOL	Overflow: TRUE when CV >= PV
QD	BOOL	Underflow: TRUE when CV <= 0
CV	DINT	Counter result

Description:

Counts (integer) from 0 up to a given value 1 by 1 or from a given value down to 0 1 by 1

Example

(* FBD program using the CTUD block *)

(* ST Equivalence: We suppose CTUD1 is an instance of block*)
CTUD1(trigger1, trigger2, reset_cmd, load_cmd,100);
full := CTUD1.QU;
empty := CTUD1.QD;
nb_elt := CTUD1.CV;

DERIVATE

Arguments:

RUN	BOOL	Mode: TRUE=normal / FALSE=reset
XIN	REAL	Input: any real value
CYCL	TIME	Sampling period. Possible values range from 0ms to 23h59m59s999ms.
XOUT	REAL	Differentiated output

Description:

Differentiation of a real value.

If the "CYCLE" parameter value is less than the real duration of the cycle time in the virtual machine, the sampling period will use the real duration of the cycle time.

Example

(* FBD program using the DERIVATE block: *)

(* ST Equivalence: DERIVATE1 instance of DERIVATE block *)

DERIVATE1(manual_mode, sensor_value, t#100ms);

derivated_value := DERIVATE1.XOUT;

F_TRIG

Arguments:

CLK	BOOL	Any Boolean Variable
Q	BOOL	TRUE when CLK changes from TRUE to FALSE
		FALSE if all other cases

Description:

Detects a falling edge of a Boolean variable

Example

(* FBD program using the F_TRIG block *)

(* ST Equivalence: We suppose F_TRIG1 is an instance of F_TRIG block *)

F_TRIG1(cmd);

nb_edge := ANY_TO_DINT(F_TRIG1.Q) + nb_edge;

HYSTER

Arguments:

XIN1	REAL	Any real value
XIN2	REAL	To test if XIN1 has overpassed XIN2+EPS
EPS	REAL	Hysteresis value (must be greater than zero)
Q	BOOL	TRUE if XIN1 has overpassed XIN2+EPS and is not yet below XIN2-EPS

Description:

Hysteresis on a real value for a high limit.

Example

Example of a timing diagram:

INTEGRAL

INTE	GRAL
RUN	Q.
BOOL	BOOL
R1	XOUT
BOOL	-co REAL
XIN /	
REAL J.o	•
xo	
REAL	
CYCL	
TIME	

Arguments:

RUN	BOOL	Mode: TRUE=integrate / FALSE=hold
R1	BOOL	Overriding reset
XIN	REAL	Input: any real value
X0	REAL	Initial value
CYCL	TIME	Sampling period. Possible values range from 0ms to 23h59m59s999ms.
Q	BOOL	Not R1
XOUT	REAL	Integrated output

Description:

Integration of a real value.

If the "CYCLE" parameter value is less than the real duration of the cycle time in the virtual machine, the sampling period will use the real duration of the cycle time.

When using the Enable EN/ENO option for INTEGRAL blocks in LD POUs, you must reinitialize the internal variables for the R1 input. To reinitialize the R1 input, toggle the value from False to True then back to False.

Example

(* FBD Program using "INTEGRAL" Block: *)

(* ST Equivalence: INTEGRAL1 instance of INTEGRAL block *)

INTEGRAL1(manual_mode, NOT(manual_mode), sensor_value, init_value, t#100ms);

```
controlled value := INTEGRAL1.XOUT;
```

LIM_ALRM

Arguments:

Н	REAL	High limit value
Х	REAL	Input: any real value
L	REAL	Low limit value
EPS	REAL	Hysteresis value (must be greater than zero)
QH	BOOL	"high" alarm: TRUE if X above high limit H
Q	BOOL	Alarm output: TRUE if X out of limits
QL	BOOL	"low" alarm: TRUE if X below low limit L

Description:

Hysteresis on a real value for high and low limits.

A hysteresis is applied on high and low limits. The hysteresis delta used for either the high or low limit is equal to the EPS parameter.

Example

Example of timing diagram:

R_TRIG

Arguments:

CLK	BOOL	Any Boolean Variable
Q	BOOL	TRUE when CLK rises from FALSE to TRUE FALSE in all other cases

Description:

Detects a rising edge of a Boolean variable

Example

(* FBD program using the R_TRIG block *)

- (* ST Equivalence: We suppose R_TRIG1 is an instance of the R_TRIG block *)
- R_TRIG1(cmd);

nb_edge := ANY_TO_DINT(R_TRIG1.Q) + nb_edge;

RS

Arguments:

SET	BOOL	If TRUE, sets Q1 to TRUE
RESE	BOOL	If TRUE, resets Q1 to FALSE (dominant)
Q1	BOOL	Boolean memory state

Description:

Reset dominant bistable:

Set	Reset1	Q1	Result Q1
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	0

Example

(* FBD Program using the RS block *)

(* ST Equivalence: We suppose RS1 is an instance of RS block *)

RS1(start_cmd, (stop_cmd OR alarm));

command := RS1.Q1;

SR

Arguments:

SET1	BOOL	If TRUE, sets Q1 to TRUE (dominant)
RESE	BOOL	If TRUE, resets Q1 to FALSE
Q1	BOOL	Boolean memory state

Description:

Set dominant bistable:

Set1	Reset	Q1	Result Q1
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

Example

(* FBD Program using the SR block *)

(* ST Equivalence: We suppose SR1 is an instance of SR block *)
SR1((auto_mode & start_cmd), stop_cmd);

command := SR1.Q1;

SIG_GEN

	SIG_GEN	1
RUN		PULS
BOOL		BOOL
PERI		UP
TIME		DINT
MAXI	~~~	END
DINT		BOOL
		SINE
		REAL

Arguments:

RUN	BOOL	Mode: TRUE=running / FALSE=reset to false
PERI	TIME	Duration of one sample. Possible values range from 0ms to 1193h2m47s294ms.
MAXI	DINT	Maximum counting value
PULS	BOOL	Inverted after each sample
UP	DINT	Up-counter, increased on each sample
END	BOOL	TRUE when up-counting ends
SINE	REAL	Sine signal (period = counting duration)

Description:

Generates various signal: blink on a boolean, a integer counter-up, and real sine wave.

When counting reaches maximum value, it restarts from 0 (zero). So END keeps the TRUE value only during 1 PERIOD.

Timing diagram:

STACKINT

STACKINT				
PUSH	EMPT			
BOOL	BOOL			
POP	OFLO			
BOOL	BOOL			
R1	OUT			
BOOL	DINT			
IN				
DINT				
N				
DINT				

Arguments:

PUSH	BOOL	Push command (on rising edge only) add the IN value on the top of the stack
POP	BOOL	Pop command (on rising edge only) delete in the stack the last value pushed (top of the stack)
R1	BOOL	Resets the stack to its empty state
IN	DINT	Pushed value
Ν	DINT	Application defined stack size
EMPT	BOOL	TRUE if the stack is empty
OFLO	BOOL	Overflow: TRUE if the stack is full
OUT	DINT	Value at the top of the stack OUT equals 0 when OFLO is TRUE

Description:

Manages a stack of integer values. The STACKINT function block includes a rising edge detection for both PUSH and POP commands. The maximum size of the stack is 128. The application defined stack size N cannot be less than 1 or greater than 128. This function manages invalid values as follows:

- if N<1, STACKINT assumes a size of 1
- if N>128, STACKINT assumes a size of 128

Note: The OFLO value is valid only after a reset (R1 has been set to TRUE at least once and back to FALSE).

Example

(* FBD program using the STACKINT block: error management *)

(* ST Equivalence: We suppose STACKINT1 is an instance of STACKINT block *)

STACKINT1(err_detect, acknowledge, manual_mode, err_code, max_err);

appli_alarm := auto_mode AND NOT(STACKINT1.EMPTY);

err_alarm := STACKINT1.OFLO;

last_error := STACKINT1.OUT;

TOF

	TOF	
IN		Q-
BOOL	' Δ Τ	BOOL
TIME		TREE
T THE		1 MALE

Arguments:

IN	BOOL	If falling edge, starts increasing internal timer If rising edge, stops and resets internal timer
РТ	TIME	Maximum programmed time
Q	BOOL	If TRUE: total time is not elapsed
ΕT	TIME	Current elapsed time. Possible values range from 0ms to 1193h2m47s294ms.

Description:

Increase an internal timer up to a given value.

While using the Enable EN/ENO option for LD POUs, execution disregards the TOF function block when EN is FALSE. When EN toggles from FALSE to TRUE, the function block is not reinitialized if IN is TRUE. To reinitialize the TOF function block, make sure IN is FALSE before setting EN to TRUE.

Timing diagram:

TON

Arguments:

IN	BOOL	If rising edge, starts increasing internal timer If falling edge, stops and resets internal timer
РТ	TIME	Maximum programmed time
Q	BOOL	If TRUE, programmed time is elapsed
ΕT	TIME	Current elapsed time. Possible values range from 0ms to 1193h2m47s294ms.

Description:

Increase an internal timer up to a given value.

While using the Enable EN/ENO option for LD POUs, execution disregards the TON function block when EN is FALSE. When EN toggles from FALSE to TRUE, the function block is not reinitialized if IN is TRUE. To reinitialize the TON function block, make sure IN is FALSE before setting EN to TRUE.

Timing diagram:

TP

	TP	
IN		
BOOL	ΔT	BOOL
PT		ET
TIME		TIME

Arguments:

IN	BOOL	If rising edge, starts increasing internal timer (if not already increasing) If FALSE and only if timer is elapsed, resets the internal timer Any change on IN during counting has no effect.
РТ	TIME	Maximum programmed time
Q	BOOL	If TRUE: timer is counting
ET	TIME	Current elapsed time. Possible values range from 0ms to

1193h2m47s294ms.

Description:

Increase an internal timer up to a given value.

While using the Enable EN/ENO option for LD POUs, execution disregards the TP function block when EN is FALSE. When EN toggles from FALSE to TRUE, the function block is not reinitialized if IN is TRUE. To reinitialize the TP function block, make sure IN is FALSE before setting EN to TRUE.

Timing diagram:

URCV_S

Note: This function is only available for use with multi-task runtimes.

Arguments:

EN_R	BOOL	Enable to receive data
ID	DINT	Identification of the communication Channel
R_ID	STRING	Identification of the remote SFB inside the Channel
NDR	BOOL	If TRUE, new string received in RD
ERR	BOOL	If TRUE, new non-zero STATUS received
STAT	DINT	Last detected status
RD	STRING	Received string

Description:

Receives a string from a remote or local virtual machine (of current Project or another Project).

Warning: Connect block must have been called in current cycle before the URCV_S call. This CFB receives a string from one URCV_S instance. Previously received string is overwritten. If string is successfully received then NDR is set to TRUE during one cycle. If an error occurs, the ERROR output parameter is set to TRUE and the status is set in the STATUS parameter.

STATUS can have the following values:
 Receive successfully completed Waiting for message Invalid identifier Not ready for receive Waiting for message Dialog has failed 	STATUS	Description
 Waiting for message Invalid identifier Not ready for receive Waiting for message Dialog has failed 	0	Receive successfully completed
 Invalid identifier Not ready for receive Waiting for message Dialog has failed 	1	Waiting for message
 3 Not ready for receive 6 Waiting for message 7 Dialog has failed 	2	Invalid identifier
6 Waiting for message7 Dialog has failed	3	Not ready for receive
7 Dialog has failed	6	Waiting for message
	7	Dialog has failed

See example in the description of the CONNECT block.

See Also USEND_S CONNECT

USEND_S

Note: This function is only available for use with multi-task runtimes.

Arguments:

REQ	BOOL	Send request on rising edge
ID	DINT	Identification of the communication channel
R_ID	STRING	Identification of the remote CFB inside the channel
SD	STRING	String to send
DONE	BOOL	If TRUE, function performed successfully
ERR	BOOL	If TRUE, new non-zero STATUS received
STAT	DINT	Last detected status

Description:

Sends a string to a remote or local virtual machine (of current Project or another Project).

Warning: Connect block must have been called in current cycle before the USEND_S call. This CFB sends a string to one URCV_S instance on rising edge of REQ. If string is successfully sent then DONE is set. If an error occurs, the output parameter ERROR is set to TRUE and the status is set in the STATUS parameter.

STATUS can have the following values:

STATUS Description

- 0 Send successfully completed
- 1 Send in progress

2	Invalid identifier
3	Not ready to send

- 6 Dialog has failed
- 7 Send has failed

If the send failed, a new send is not automatically done, a rising edge must be detected on REQ parameter.

See example in the description of the CONNECT block.

See Also URCV_S CONNECT

Normative Function Blocks

The IEC 61499 language enables the distribution of individual normative function blocks belonging to an IEC 61499 program across multiple resources.

The IEC 61499 implementation is based on the *Function blocks - Part 1: Architecture* and *Function blocks - Part 2: Software Tools Requirements* documents available from the ANSI webstore.

ISaGRAF supports the following normative function blocks:

E_CTU	Event-driven up counter
E_CYCLE	Periodic (cyclic) generation of an event
E_D_FF	D (Data latch) bistable
E_DELAY	Delayed propagation of an event
E_DEMUX	Generation of a finite train of separate events (table driven)
E_F_TRIG	Boolean falling edge detection
E_MERGE	Merge (OR) of multiple events
E_N_TABLE	Generation of a finite train of separate events (table driven)
E_PERMIT	Permissive propagation of an event
E_R_TRIG	Boolean rising edge detection
E_REND	Rendez-vous of two events
E_RESTART	Generation of restart events
E_RS	Event-driven bistable (Reset dominant)
E_SELECT	Selection between two events
E_SPLIT	Split an event
E_SR	Event-driven bistable (Set dominant)
E_SWITCH	Switching (demultiplexing) an event

E_TABLE	Generation of a finite train of events (table driven)
E_TABLE_CTRL	Generation of a finite train of events (table driven)
E_TRAIN	Generation of a finite train of events
LocalEventInput	Automatically assigned to normative function block arguments having the event input direction

Note: When new function blocks are created, these can be called from any language.

E_CTU

Event-driven up counter

When an event triggers the E_CTU counter function block, CV (Current Value) begins incrementing from 0 to the maximum value, defined by PV (Programmed Value). When CV reaches the maximum value, Q passes to TRUE and the counter stops incrementing. An E_CTU counter cycle restarts when R (Reset) becomes TRUE.

E_CYCLE

Periodic (cyclic) generation of an event

ECC/Algorithms/Service sequences Interface START EO -EVENT DLY STOP EVENT START EO START -EO STOP STOP E_CYCLE TIME-DT E_DELAY рт-Ют

An event occurs at EO at an interval DT after the occurrence of an event at START, and at intervals of DT thereafter until the occurrence of an event at STOP.

IEC 61499 FBD Definition

Related Topics E_DELAY

E_D_FF

D (Data latch) bistable

ALGORITHM LATCH IN ST :

Q := D ;

END_ALGORITHM

E_DELAY

Delayed propagation of an event

An event at EO is generated at a time interval DT after the occurrence of an event at the START input. The event delay is cancelled by an occurrence of an event at the STOP input. If multiple events occur at the START input before the occurrence of an event at EO, only a single event occurs at EO, at a time DT after the first event occurrence at the START input.

E_DEMUX

Generation of a finite train of separate events (table driven)

Implementation using the E_DEMUX function block type as shown is not a normative requirement. Equivalent functionality may be implemented by various means.

Related Topics E_N_TABLE

E_F_TRIG

Boolean falling edge detection

IEC 61499 FBD Definition

Related Topics

E_R_TRIG E_D_FF E_SWITCH

E_MERGE

Merge (OR) of multiple events

The occurrence of an event at any of the inputs EI1, EI2,...,EIn causes the occurrence of an event at EO (n=2 in the above example).

Related Topics

E_R_TRIG

E_N_TABLE

Generation of a finite train of separate events (table driven)

An event occurs at EOO at an interval DT[0] after the occurrence of an event at EI. An event occurs at EO2 an interval DT[1] after the occurrence of the event at EO1, etc., until N occurrences have been generated or an event occurs at the STOP input.

NOTE - In this example implementation, $N \leq 4$.

IEC 61499 FBD Definition

Related Topics E_TABLE E_DEMUX

E_PERMIT

Permissive propagation of an event

Interface

ECC/Algorithms/Service sequences

E_R_TRIG

Boolean rising edge detection

Interface

ECC/Algorithms/Service sequences

IEC 61499 FBD Definition

Related Topics E_F_TRIG

E_REND

Rendezvous of two events

E_RESTART

Generation of restart events

- 1. An event is issued at the COLD output upon "cold restart" of the associated resource.
- 2. An event is issued at the WARM output upon "warm restart" of the associated resource.
- **3.** An event is issued at the STOP output (if possible) prior to "stopping" of the associated resource.

E_RS

Event-driven bistable (Reset dominant)

The output Q is set to 1 (TRUE) upon the occurrence of an event at the s input, and is reset to 0 (FALSE) upon the occurrence of an event at the R input. If simultaneous s and R events occur, the R input is dominant. An event is issued at the EO output when the value of Q changes.

Interface

ECC/Algorithms/Service sequences

NOTE - Algorithms SET and RESET are the same as for E_SR.

E_SELECT

Selection between two events

E_SPLIT

Split an event

ISaGRAF automatically performs the E_SPLIT operation during compilation for all event and data outputs. Therefore, the diagram on the left, without the E_SPLIT function block, is equivalent to the diagram on the right.

E_SR

Event-driven bistable (Set dominant)

The output Q is set to 1 (TRUE) upon the occurrence of an event at the S input, and is reset to 0 (FALSE) upon the occurrence of an event at the R input. If simultaneous S and R events occur, the S input is dominant. An event is issued at the EO output when the value of Q changes.

Interface

ECC/Algorithms/Service sequences

GORITHM SET IN ST : (* SEC Q *) ALGORITHM RESET IN ;

Q := TRUE ;

END ALGORITHM

Q := FALSE ; END ALGORITHM

E_SWITCH

Switching (demultiplexing) an event

Interface

ECC/Algorithms/Service sequences

E_TABLE

Generation of a finite train of events (table driven)

An event occurs at EO at an interval DT[0] after the occurrence of an event at EI. A second event occurs at an interval DT[1] after the first, etc., until N occurrences have been generated or an event occurs at the STOP input. The current event count is maintained at the CV output.

In this example implementation, $N \le 4$.

IEC 61499 FBD Definition

Related Topics E_TABLE_CTRL

E_TABLE_CTRL

Generation of a finite train of events (table driven)

This implementation using the E_TABLE_CTRL function block type is not a normative requirement. Equivalent functionality may be implemented by various means.

Related Topics E_TABLE

E_TRAIN

Generation of a finite train of events

An event occurs at EO at an interval DT after the occurrence of an event at EI, and at intervals of DT thereafter, until N occurrences have been generated or an event occurs at the STOP input.

IEC 61499 FBD Definition

Related Topics E_CTU E_SWITCH E_DELAY

LocalEventInput

Normative function block arguments having the event input direction are automatically assigned an instance of the LocalEventInput function block. The LocalEventInput function block is defined as an IEC function block in the standard 61499 library.

```
LocalEventInput
{
    input SINT counter
    local SINT LocalCounter;
    output BOOL Trigger;
If counter <> LocalCounter then
    LocalCounter = counter;
    Trigger = true;
Else
    Trigger = false;
End_if;
}
```

Glossary

The glossary contains terms used in ISaGRAF and their definitions.

To optimize a search for a definition, click one of the following letter groups in which you want to search.

A - C	D - H	I - N	0 - R	S - Z
A - C				
AAM	Abstrac access 0 61131 a Device	t Automation Mo Concrete Automat nd IEC 61499 ele Management	del. Common inter- tion Model data rep ements and concept	faces used to resented by IEC s, as well as
Access Control	The use devices resource read mo	of password-prot , resources, POUs es, and POUs, acc ode.	ection to control ac , and targets. For p less control can also	ccess to projects, rojects, devices, b limit access to
ACP	Automa compon commu	tion Collaborative ents and services nicate.	e Platform. A set of through which plug	f software g-ins
Action	A collect for each	ction of operation	s to perform whose nguage.	execution differs
Add-in	Also kn added to Develop Automa the IDE	own as a plug-in, o a primary applic oment Environme tion-based applic	it is a utility, driver, ation. In the Visual nt (IDE), an add-in ation that extends t	, or other software Studio Integrated is an he capabilities of
Address	Optiona This add the valu Target.	I hexadecimal add dress can be used the of the variable v	dress freely defined by an external appl when the resource i	for each variable. lication to access s executed by the

Alias	The property of a variable indicating a short name for a variable. For graphical programs, aliases indicate the parameters in functions and function blocks.
ANY	Overloaded data type. Enables overloading "C" function block inputs to support specified IEC 61131-3 data types as well as specified complex types such as arrays and structures.
ANY_ELEMENTARY	Overloaded data type enabling "C" function block inputs to support all of the IEC 61131-3 elementary data types.
Application	Built project using the Application Builder.
Application Builder	An integrated development environment used to build control applications, i.e. the workbench.
Array	Set of elements of the same type referenced by one or more indexes enclosed in square brackets and separated by commas. The index is an integer. Examples: tabi[2] or tabij[2,4].
Attribute	The property of a variable indicating whether a variable is read, write, or read/write.
Basic Function Block	An IEC 61499 function block type using SFC execution control chart (ECC) elements to control the execution of steps/code.
	An IEC 61499 function block type using SFC elements to develop an execution control chart (ECC).
Binding	Bindings are directional links, i.e., access paths, between variables located in different resources. One variable is referred to as the producing variable and the other as the consuming variable. ISaGRAF enables external bindings between resources belonging to different projects.
Binding Error Variable	Variables that enable the management of binding errors at the consumer resource level.
Boolean (BOOL)	Basic type that can be used to define a variable, a Parameter (POU) or an I/O simple device. A Boolean can be TRUE (1) or FALSE (0).

Boo Action	A Boolean variable where the value corresponds to Step activity (0=inactive and 1=active). Possible qualifiers are Action (N), Reset (R), and Set (S). See also Action
Breakpoint	A mark placed by the user at particular sections of the code. In Debug mode, the application stops when it encounters a breakpoint. Breakpoint implementation varies for each programming language.
BYTE	Unsigned integer 8-bit format. Basic type that can be used to define a variable, a Parameter (POU) or an I/O Device.
САМ	(Concrete Automation Model) Concrete project model allowing the usage of a device inside the ACF. Moreover, it may include AAM implementation for IEC 61131 concepts (Project data and POU body), AAM implementation for device management interfaces, compiler, wizard data and templates, deployment representation, and plug-ins specific to the CAM.
C Function	Function written with the "C" language, called from POUs, in a synchronous manner.
C Language	High level literal language used to access particularities of the target system. C language can be used to program C functions, function blocks and conversion functions.
Call Stack	Information which tracks stepping between POUs and called functions. Debug information includes call stack. You can only generate debug information for TIC POUs.
Cell	Elementary area of the graphic matrix for graphic languages or for the Dictionary.
CFB	Indicates a C function block
CFU	Indicates a C function
Channel	A channel of an I/O simple device represents a hardware I/O point. A channel is either an input or output. To enable use in POUs, variables including directly represented variables are connected to channels.

Check In	Sending the contents of ISaGRAF elements including projects, I/O devices, resources, and POUs for storage in a version source control database. Checked-in elements can be recovered at a later time.
Child	A program which is activated by its parent. The child program has only one parent. Only the parent can start or stop child program. A parent can have more than one child.
Clearing a Transition	The forcing of the clearing of a transition whether the latter is valid or not (i.e all previous steps are active or not). Tokens are moved and actions are executed as for a usual transition clearing. All tokens existing in the preceding steps are removed. A token is created in each of the following steps.
CMG	Short name for the Configuration Manager
Coil	A graphic component representing the assignment of an output or an internal variable.
Common Scope	Scope of a declaration applying to all POUs within a Project. (Only defined words and types can have common scope).
Complex Equipment	See I/O Complex Device
Configuration	See Device
Configuration Manager	(ConfigurationManager.exe) The executable file providing communication services between ISaGRAF and target. Responsible for launching, killing, and giving the status of running virtual machines.
Connection	The link between networks and devices.
Constant Expression	Literal expression used to describe a constant value.
Contact	Depending on the type of contact, a graphic component representing the value or function of an input or an internal variable.
Contextual Menu	Menu that is displayed under the mouse cursor by right-clicking the mouse.
Conversion	Filter attached to an input or output variable. The conversion is automatically applied each time the input variable is read or the output variable is refreshed.
Conversion Function	"C" written Function which describes a conversion. Such a conversion can be attached to any input or output, integer or real variable.
-------------------------	---
CRC	Cyclic redundancy checking
Cross Reference Browser	A tool that finds all references to variables, i.e., cross references, defined in the POUs of a project. The browser provides a total view of the declared variables in the programs of the project and where these are used.
CSV File Format	(Comma Separated Values) A delimited data format having each piece of information separated by commas and each line ending with a carriage return. The CSV file format can be used for importing or exporting variables data.
Cycle	The virtual machine executes the programs of a resource as a cycle. All programs of the resource are executed following the order defined by the user, from the first program to the last and again and again. Before the execution of the first program, inputs are read. After the execution of the last program, the outputs are refreshed.
Cycle Timing	The amount of time given to each resource cycle. If a cycle is completed within the cycle timing period, the system waits until this period has elapsed before starting a new cycle. The cycle consists of scanning the physical inputs of the process to drive, executing the POUs of the resource, then updating physical outputs. The cycle time can differ for each cycle when no cycle timing is specified. When the cycle timing is shorter, the virtual machine waits until this time has elapsed. When the cycle time is longer, the virtual machine immediately scans the inputs but signals with the "overflow" that the programmed time has been exceeded. When the trigger cycles property is false or the cycle time is 0, the virtual machine does not wait to start a new cycle.
Cycle-to-cycle Mode	Execution mode of a resource where cycles are executed one by one, according to the orders given by the user during debugging. Another execution mode for resources is real-time mode.

Cyclic Program	A time independent program that is executed during each cycle.
D - H	
Database	The collection of definitions making up a ISaGRAF project. The version source control feature stores checked-in information in a separate database.
DATE	The format of a date is year-month-day, separated by hyphens. Basic type that can be used to define a Variable, a Parameter (POU) or a Device.
Debug Information	For use when debugging using the step-by-step mode. Debug information includes call stack information which tracks stepping between POUs and called functions. You can only generate debug information for TIC POUs.
Debugging	The process of detecting defects in a project that includes setting and clearing breakpoints, step-by-step debugging, and cycle-to-cycle debugging.
Declared Array	A user-defined array defined as a data type. See also Undeclared Array
Declared Instance (of a function block)	A function block having assigned instances, i.e., declared in the dictionary.
Defined Word	Word that is an expression. This word can be used in POUs. At compiling time the word is replaced by the expression. A defined word can not use a defined word.
Dependency (on a library)	The state where a project uses, i.e., depends, on functions or function blocks defined in a library.
Design (mode)	An editing mode during which the Application Builder is not connected to the runtime module.
Device	A representation of the equipment, i.e., programmable logic controller, running the virtual machines. See also Target
Device Management	Provides the communication infrastructure with the Run-time Engine.

Dictionary	The view displaying the variables, function and function block parameters, types, and defined words used in the programs of a Project.
Dimension	The size (number of elements) of an array. For example: [13,110] - represents a two-dimensional array containing a total of 30 elements.
Direction	Variables and I/O devices have a direction. For the property of a variable, direction indicates whether a variable is an input, output, or internal. The direction of an I/O device can be input or output.
Directly Represented Variable	A variable is generally declared before its use in one POU. Inputs and outputs can be used without any declaration respecting a defined syntax. It corresponds to direct represented variables. Example: %QX1.6, %ID8.2
Double Integer (DINT)	Signed double integer 32-bit format. Basic type that can be used to define a variable, a Parameter (POU) or a Device.
Double Word (DWORD)	Unsigned double word 32-bit format. Basic type that can be used to define a variable, a Parameter (POU) or a Device.
Driver	See I/O Driver, Network Driver
Dynamic Behavior	Continuous and sequential execution of the steps and operations of a program during an execution cycle.
Edge	See Falling Edge, Rising Edge
ЕТСР	(ETCP.exe) ISaGRAF network driver that uses the TCP / IP stack.
Execution Control Initial State (EC initial state)	The execution control state that is active upon initialization of an execution control chart.
Execution Control State (EC state)	The situation in which the behavior of a basic function block with respect to its variables is determined by the algorithms associated with a specified set of execution control actions.
Execution Control Transition (EC transition)	The means by which control passes from a predecessor execution control state to a successor execution control state.

Execution Mode	The mode in which a resource is executed: real-time, cycle-to-cycle, and step-by-step.
Expression	Set of operators and identifiers.
Failover Mechanism	A redundant operational mode where a secondary hardware and software takes over when the primary system becomes unavailable.
Falling Edge	A falling edge of a boolean variable corresponds to a change from TRUE (1) to FALSE (0).
FBD	Function Block Diagram. Programming language.
File Mode	The mode where you save version source control information to a repository located on a local or remote computer. See also Server Mode
Function	POU which has input parameters and one output parameter. A function can be called by a program, a function or a function block. A function has no instance. It means that local data are not stored, and are generally lost from one call to the other.
Function Block	POU which has input and output parameters and works on internal data (parameters). A program can call an instance of a function block. A function block instance cannot be called by a function (no internal data for a function). A function block can call another function block (instantiation mechanism is extended to the function blocks called).
Global Scope	Scope of a declaration applying to all POUs of one resource.
Global Variable	A variable whose scope is global.
Hidden Parameter	Input parameters of a function block that are not displayed in programs.
Hierarchy	Architecture of a Project, divided into several POUs. The hierarchy tree represents the links between parent programs and children programs. See also Parent Program
I - N	
Identifier	Unique word used to represent a variable or a literal expression in the programming.

IFB	Indicates an IEC 61131 function block
IFU	Indicates an IEC 61131 function
Initial Situation	Set of the initial steps which represents the context of the program when it is started.
Initial Step	A Step that is activated when the program starts.
Initial Value	Value which has a variable when the virtual machine starts the execution of the resource. The initial value of a variable can be the default value, a value given by the user when the variable is defined or the value of the retain variable after the virtual machine has stopped.
Input	Direction of a variable or an I/O device. An input variable is connected to an input channel of an input device.
Input Parameter	Input argument of a function or a function block. These parameters can only be read by function or function block. A parameter is characterized by a type.
Instance (of a Function Block)	Copy of the internal data of a function block which persists from one call to the other. This word is used, by extension, to say that a program calls a function block instance and not the function block itself.
Instruction	An elementary operation of a program, entered on one line of text.
Integer (INT)	Signed integer 16-bit format. Basic type that can be used to define a variable, a Parameter (POU) or a Device.
Internal	Attribute of a variable, which is not linked to an I/O device. Such a variable is called an internal variable.
I/O Channel	See Channel

I/O Complex Device	Element grouping several simple I/O devices. This provides the means for manufacturers to mix types and directions. The implementation of the I/O driver of an I/O complex device corresponds to the implementation of the drivers of all contained I/O simple devices. OEM parameters enable providing parameters to I/O complex devices.
I/O Device	Element grouping several channels of the same type and direction. These can be either an I/O Simple Device or an I/O Complex Device.
I/O Driver	"C" code which makes the interface between a virtual machine and the devices. The driver can be statically linked to the virtual machine or in a separate DLL (such as for the Windows NT target). Two types of drivers are available for use in ISaGRAF : generic and advanced.
I/O Simple Device	An I/O simple device corresponds to a piece of equipment having inputs or outputs, such as an I/O board. OEM parameters enable providing parameters to I/O simple devices. Integrators define I/O simple devices.
I/O Variable	Variable connected to a channel of an I/O device. An array can be connected to an I/O device if all elements are connected to contiguous channels, the type of the array must be the same type as the I/O device.
I/O Wiring	Definition of the links between the variables of the Project and the channels of the I/O devices existing on the Target system.
ISaRSI	(IsaRSI.exe) Enhanced serial port driver. The network driver that provides communication with ISaGRAF on a serial port. Similar to ETCP.
ITA	Indicates an array
ITS	Indicates a structure
IXLSma Server	(IxlSmaServer.exe) Provides service for performing IXL read operations, using the HSD driver with the SMA method. This method is independent from the virtual machine cycle and is thus faster.
Keyword	Reserved identifier of the language.

Label	The identifier for an instruction within a program. Labels can also be used for jump operations.
Language Container	A workspace enabling the development of graphic or textual POUs programmed using one of the available programming languages. Individual language containers can only use one programming language. When editing a container, the toolbox displays the corresponding elements for the specific programming language. The multi-language editor (MLGE) enables the creation of language containers.
LD	Ladder Diagram. Programming language.
LD Action	An action where you program an LD diagram in the level 2 window of and SFC program or basic IEC 61499 function block. Possible qualifiers are Action (N), Reset (R), Set (S), Pulse on Deactivation, and Pulse on Activation. See also Action
Library	Special projects made up of devices and resources in which you define functions and function blocks for reuse throughout ISaGRAF projects. Libraries also enable you to modularize projects and to isolate functions and function blocks so that these can be validated separately.
Link	A graphic component connecting elements in a diagram.
Literal	A lexical unit that directly represents a value.
Local Scope	Scope of a declaration applying to only one POU.
Locked I/O	Input or output variable, disconnected logically from the corresponding I/O device, by a "lock" command sent by the user from the debugger.
Long Integer (LINT)	Signed integer 64-bit format. Basic type that can be used to define a variable, a Parameter (POU) or a Device.
Long Real (LREAL)	Type of a variable, stored in a floating IEEE double precision 64-bit format. Basic type that can be used to define a variable, a Parameter (POU) or a Device.
Long Word (LWORD)	Unsigned long word 64-bit format. Basic type that can be used to define a variable, a Parameter (POU) or a Device.

Maximum time	Time of the longest cycle since the virtual machine has started the execution of the programs of a resource.
Memory for Retain	Run-time setting for a resource indicating the location where retained values are stored (the required syntax depends on the implementation).
Message	See STRING
MLGE	Multi-language Editor.
Monitoring	A process by which the user views virtual machine running states, system events, target capability, network card status and various online statistics in a read format.
MSI	Windows installers (.msi) used to install applications and files typically used by the end user of the application.
Network	The term network is used in different contexts:The means of communication between the target platform and their clients.For the execution order of graphic programs, a sequence of connected blocks.
	See also Sub-network
Network Driver	"C" code which makes the interface between the Target network layer and the network.
Non-stored Action	A list of statements, executed at each Target cycle, when the corresponding step is active.
0 - R	
OEM	Original Equipment Manufacturer
OEM Parameter	Parameters attached to an IO device. A parameter is characterized by a type. An OEM parameter is defined by the designer of the device. It can be a constant, or a variable parameter entered by the user during the I/O connection.
Online Mode	Mode in which the Application Builder is connected to a target enabling target management, monitoring and debugging.
Operator	Basic logical operation such as arithmetic, boolean, comparator, and data conversion.

Output	Direction of a variable or an I/O device. An output variable is connected to an output channel of an output device.
Output Parameter	Output argument of a function or function block. These parameters can only be written by a function or function block. A function has only one output parameter. A parameter is characterized by a type.
Overflow	Integer value which corresponds to the number of times the cycle time has been exceeded. Always 0, if cycle time is 0.
Overloading	Overloading a "C" function block input enables a function block call to perform various tasks depending on the context. The ANY and ANY_ELEMENTARY data types enable overloading.
Package	The Target Definition Builder enables OEMs to provide packages containing the drivers of several I/O devices and/or "C" functions and function blocks available for a specific target.
Parameter (POU)	See Input Parameter, Output Parameter, OEM Parameter, and Hidden Parameter
Parent Program	A program which controls other programs, called its children. See also Child
Platform Builder	Defines, configures and generates the source code making of the runtime engine. The target will have the proper source code, the PLC definition will be use by the application builder to limit or add features, and to generate a report containing a description of the final product contents. Custom functions, function blocks, extended data types, field bus drivers, and comments can be added with the platform builder.
PLC	Programmable Logic Controller
Plug-in	A module or package integrated into a bigger platform that enables the extension of the application.
POU	Program Organization Unit: set of instructions that are programs, a functions or function blocks.
Power Rail	Main left and right vertical rails at the extremities of a ladder diagram.

Primary Device	For failover mechanisms, the device having the previously downloaded application. By default, this device remains active until a failure when the standby secondary device takes over.
Program	See POU. A program belongs to a resource. It is executed by the virtual machine, depending on its location (order) in the resource.
Project	Set of devices and links between their resources.
Project Updater	A program allowing to convert projects developed using previous versions for use within the latest version. Each time you upgrade to a newer version, you need to update projects.
PROPI	PROPI is an interface enabling you to send commands directly to ISaGRAF via a custom application. For instance, you could use the PROPI interface when using ISaGRAF in the background.
Pulse Action	A list of statements executed only once when the corresponding step is activated.
Qualifier	Determines the way the action of a step is executed. The qualifier can be N, S, R, P0 or P1.
Real	Type of a variable, stored in a floating IEEE single precision 32-bit format. Basic type that can be used to define a variable, a Parameter (POU) or a Device.
Real Device	I/O device physically connected to an I/O driver on the target. See also Virtual Device
Real-time Mode	The run time normal execution mode of a resource where target cycles are triggered by the cycle timing. Another execution mode for resources is cycle-to-cycle mode.
Resource	The POUs and definitions making up a virtual machine.
Resource Name	The unique identifier of a resource within a device.
Retain	Attribute of a variable. The value of a retain variable is saved by the virtual machine at each cycle. The value stored is restored if the virtual machine stops and restarts.

Return	Graphic component of a program representing the conditional end of a program.
Return Parameter	See Output Parameter
Rising Edge	A rising edge of a Boolean variable corresponds to a change from FALSE (0) to TRUE (1).
Rung	Graphic component of a program representing a group of circuit elements leading to the activation of a coil in an LD diagram.
Run-time Engine	Solves application logic and drive I/O points. This portable engine features modular architecture.
Run-time Error	Application error detected by the Target system at run time.
S - Z	
Scope	See Global Scope, Common Scope, Local Scope
Secondary Device	For failover mechanisms, the device having the duplicated application. By default, this device remains on standby until the primary active device fails.
Section	Program, function and function block sections are where are localized POU of a resource. POUs located in the Program section are executed by the virtual machine.
Security State	The indication of the level of access control that is applied to a resource, a POU, or a target.
Selection List	Also known as a 'combo-box'.
	When a selection list is provided for a particular cell, clicking on its right part (down arrow), displays the available choices. To make a selection, perform one of the following operations: - click on the item (use the scroll bar first if the required choice is not visible) - move in the list using the cursor keys and press Enter
	- type the first letter (if more than one item starts with this letter, press the letter again to select the next occurrence).
Separator	Special character (or group of characters) used to separate the identifiers in a literal language.

Sequential Program	A program that is executed according to the dynamic behavior of the programming language and where the time variable explicitly synchronizes operations.
Server	Part of the target that receives requests from IXL to retrieve information about the resource run by the virtual machine.
Server Mode	(Client/server mode) The mode where you save version source control information in a server repository. Before using this mode, you need to set up the repository server and connect with the server. See also File Mode
SFB	Indicates a function block
SFC	Sequential Function Chart. Programming language.
SFC Action	An action with an associated SFC child program. Possible qualifiers are Action (N), Reset (R), and Set (S). See also Action
SFU	Indicates a function
Shape	The spatial form or appearance of an object.
Short Integer (SINT)	Signed integer 8-bit format. Basic type that can be used to define a Variable, a Parameter (POU) or a Device.
Simulation Mode	Mode in which virtual machines execute the code of individual resources and the Windows platform performs aspects such as POU execution.
SIT	Indicates a Standard IEC 61131 type.
Solution Explorer	A view with a tree-like structure enabling the management of items such as devices, programs, functions, function blocks and dictionaries.
ST	Structured Text. Programming language.
ST Action	An action where you define ST code in the level 2 window of and SFC program or basic IEC 61499 function block. Possible qualifiers are Action (N), Reset (R), Set (S), Pulse on Deactivation, and Pulse on Activation. See also Action

Standard IEC 61131 Types	Boolean (Bool), Short Integer (SINT), Unsigned Short Integer (USINT), BYTE, Integer (INT), Unsigned Integer (UINT), WORD, Double Integer (DINT), Unsigned Double Integer (UDINT), Double Word (DWORD), Long Integer (LINT), Unsigned Long Integer (ULINT), Long Word (LWORD), Real, Long Real (LREAL), TIME, DATE, STRING. See also Type
Statement	Basic ST complete operation.
Step	A basic graphic component representing a steady situation of the process. A step is referenced by a name. The activity of a step is used to control the execution of the corresponding actions. See also Action
Step-by-step Mode	A mode used while debugging POUs where you set breakpoints at specific lines of code or rungs causing the application to stop when reached.
STRING	Character string. Basic type that can be used to define a Variable, a Parameter (POU) or a Device.
Structure	Corresponds to a type which has previously been specified to be a data structure, i.e. a type consisting of a collection of named elements (or fields). Each field can be a basic type, a basic structured type, a structure or an array. A field of a variable with a structure type is accessible using the following syntax: VarName.a, VarName.b[3], VarName.c.d
Sub-network	For the execution order, a sequence of blocks encapsulated by a region element.
	See also Network
Sub-program	A program called by a Parent Program. A sub-program is also called a Child program. To call sub-programs written in another language, use a function. A function can be called by any POU.

Symbol Table	The file corresponding to the variables and function blocks defined for a resource. This file is downloaded onto the target. The symbol table is set to one of two formats: complete table or reduced table. The complete table contains all defined variables, whereas, the reduced symbol table only contains the names of variables having a defined Address cell.
Symbols Monitoring Information	When debugging or simulating, code required to enable graphically displaying the output values of functions and operators in graphical programs.
System Events	Log of execution events occuring on the target platform.
System Variable	System variables hold the current values of all system variables for a resource. You can read from or write to system variables. These variables are defined in the dsys0def.h file. For example, the current cycle time is a system variable that can only be read by a program.
Target	The hardware platform onto which you download an application. See also Device
Target Definition Builder	The Target Definition Builder enables the description of targets (main definition and options of the embedded software), complex data types (such as defined in IEC languages), "C" functions, function blocks and conversion functions, and I/O devices or network drivers for IXL communication.
Target Management	Operations that control the application of a target including downloading, uploading, starting and stopping resources, and performing online changes.
TIC Code	Target Independent Code produced by the ISaGRAF compiler for execution on virtual machines.
Timer (TIME)	Unit of a timer is the millisecond. Basic type that can be used to define a Variable, a Parameter (POU) or a Device.
Token (SFC)	Graphical marker used to show the active steps of an SFC program.

Toolbox	The utility containing the elements and shapes available for language and ISaVIEW containers. For language containers, the available elements differ for the individual programming languages.
Tool Window	A standard Microsoft Windows control that enables application creation and editing.
Top Level Program	Program put at the top of the hierarchy tree. A top level program is activated by the system. See also Parent Program
Transition	A basic graphic component representing the condition between different steps. A transition is referenced by a name. A Boolean condition is attached to each transition.
Trigger Cycles	Resource property indicating whether a resource cycle executes according to a defined cycle timing.
Туре	Data types are defined for many items in ISaGRAF projects: - variables - function or function block parameters - I/O simple devices See also Standard IEC 61131 Types, User Types
Undeclared Array	An undeclared array is defined as a variable in a dictionary instance. See also Declared Array
Unsigned Double Integer (UDINT)	Unsigned double integer 32-bit format. Basic type that can be used to define a variable, a Parameter (POU) or a Device.
Unsigned Integer (UINT)	Unsigned integer 16-bit format. Basic type that can be used to define a variable, a Parameter (POU) or a Device.
Unsigned Long Integer (ULINT)	Unsigned integer 64-bit format. Basic type that can be used to define a variable, a Parameter (POU) or a Device.
Unsigned Short Integer (USINT)	Unsigned integer 8-bit format. Basic type that can be used to define a Variable, a Parameter (POU) or a Device.
User Data	User Data are any data of any format (file, list of values) which have to be merged with the generated code of the resource in order to download them into the target PLC. Such data are not directly operated by the virtual machine and is commonly dedicated to other software installed on the target PLC.

User Types	Types that the user can define using basic types or other user types. User types can be arrays or structures.
User-Defined Function Block	A custom function block. You create user-defined function blocks in the Function Blocks section for a resource.
Validity of a Transition	Attribute of a Transition. A transition is validated (or enabled) when all the preceding steps are active.
Variable	Unique identifier of elementary data which is used in the programs of a Project.
Variable Group	Grouping of variables enabling managing and logically sorting these within a resource. Variable groups are displayed in the dictionary's variables tree.
Variable Name	A unique identifier, defined in ISaGRAF , for a storage location containing information used in exchanges between resources.
Version Source Control	A tool that manages the changing versions of ISaGRAF elements including projects, I/O devices, resources, and POUs by saving them to a version source control database. Saving these elements to a control database enables you to retrieve older versions of the elements at a later time.
Virtual Device	I/O device which is not physically connected to an I/O driver on the target. See also Real Device
Virtual Machine	(IsaVM.exe) The operating system process or thread that executes the previously downloaded application.
VS2008	Microsoft Visual Studio 2008.
Wiring	The property of a variable indicating the I/O channel to which the variable is wired.
WORD	Unsigned word 16-bit format. Basic type that can be used to define a variable, a Parameter (POU) or a Device.

Workstation	A communication pathway to external systems and third party tools connected across the field bus.
Zip Source	An exchange file of 7-Zip (.7z) compressed format containing XML files for exported ISaGRAF elements. From the compilation options for a resource, you can choose to embed a zip source file on the target. This source file can be uploaded from the target at a later time.
	from the target at a later time.

Licensing

ISaGRAF enables the creation of virtual machines running on hardware components, called targets.

There are three types of software licenses available for ISaGRAF:

- Free version, delivered with the product and available for testing the product. This version enables using only the ISaFREE_TPL project template with the ISAFREE-TGT target and projects can have a maximum size of 3200 bytes.
- Integrated license, included in the installation of the **ISaGRAF** software. The product is licensed upon installation. The Integrated license is available as a Full license or a Limited license. A Full license is a fully operational version of the product while a Limited license can only have one device.
- Engineering license, obtained by manually activating an unlicensed version of the product. The Engineering license is available as a Full license or a Limited license. A Full license is a fully operational version of the product while a Limited license can only have one device.

The Integrated and Engineering licenses are available for the following activation periods:

- Lifetime (does not expire)
- 1 month
- 6 months
- 12 months

To access Licensing

1. From the Help menu, click Licensing CAM 5.

The Licensing for the ISaGRAF 5 Concrete Automation Model is displayed.

To obtain an authorized Engineering license

1. From the Help menu, click Licensing CAM 5.

The Licensing for the **ISaGRAF 5** Concrete Automation Model is displayed along with three User Codes.

- Send an e-mail containing the desired activation period and the three User Codes to the support team: support@ISaGRAF.com
- 3. The support team will email you back Registration Keys 1 and 2.
- 4. Insert the Registration Keys in their appropriate regions and click Validate.

ISaGRAF is now licensed.

To remove an authorized license

1. From the Help menu, click Licensing CAM 5.

The Licensing for the **ISaGRAF 5** Concrete Automation Model is displayed along with three User Codes.

- 2. Send an email containing the three User Codes to the support team: support@ISaGRAF.com
- **3.** The support team will email you back Registration Keys 1 and 2.
- 4. Insert the Registration Keys in their appropriate regions and click Validate.

A confirmation code appears.

5. Send an email containing the confirmation code to the support team: support@ISaGRAF.com

ISaGRAF is no longer licensed.

Windows Runtime Modules

Windows run-time modules enable your control applications, developed with **ISaGRAF** on the development platform, to execute on Windows® 7 or Windows® 8 target platforms. For these operating systems, both the development platform and target platform can be the same. The run-time modules form the containers into which the applications you build are deployed. The Windows runtime modules for **ISaGRAF 5.5x** support the following additional features:

The IEC 61850 standard for electrical substation automation

For basic and composite IEC 61499 function blocks, enable performing the following online changes:

- Add, delete, rename, and reorder programs

- Add, delete, and rename steps and transitions, as well as modify initial steps or flow between elements

- Add, delete, and move actions blocks within steps of SFC programs. You can also change the qualifier for action blocks.

- Add, delete, and move function blocks
- Add and delete function block instances
- Modify and rename user-defined functions and function blocks

- Add, delete, and modify the parameters of user-defined functions and function blocks

A Failover mechanism enabling the duplication of all resources belonging to a device where these are attached to a second device running on a mirror target, completely independent of the other.

The definition of the resource cycle time in microseconds, using a decimal point, for the QNX 6, Linux, VXWorks, OS Mono, and OS Multi targets.

Virtual machines consider possible cycle time drift when calculating hard real-time.

Searches on targets for C functions and functions blocks, I/O drivers, and conversion functions

The Windows runtime module is available in the following format:

• ISAFREE_TGT, a multitask implementation where the virtual address is coded on 32 bits but the code will then increase 50 percent

ISAFREE-TGT

The ISAFREE_TGT target uses the following files on the Windows® 7 or Windows® 8 platforms:

File	Description
ISaGRAF.exe	Configuration Manager. This is the file to be launched (manually or during start-up) on your system in order to communicate with the workbench. This task is responsible for launching, killing and giving the state of the Kernels running on your system.
	ISaGRAF will automatically launch ETCP.
IsaVM.exe	Kernel or Virtual Machine. This is the "task" that executes the resource code.
IsaRSI.exe	The network driver used when developing an IXL client using serial communication with the workbench. IsaRSI also manages the communication between local Kernels and other remote Kernels . In this case, The IsaRSI driver emulates the behavior of a field-bus. We can speak of IsaRSI as a virtual field-bus.
ETCP.exe	Enhanced TCP/IP protocol. Optional. The network driver used for the communication with the workbench on Ethernet. In this case, The ETCP driver emulates the behavior of a field-bus. We can speak of ETCP as a virtual field-bus.
ISaIXL.dll	This *.dll file appears only for the Windows and RTX targets. On other systems (VxWorks, QNX, and Linux), this is statically linked to the above components and does not appear in this directory. This corresponds to the services used to communicate with Kernels.
ISaSys.dll	This *.dll file appears only for the Windows and RTX targets. On other systems (VxWorks, QNX, and Linux), this is statically linked to the above components. This corresponds to the system layer. It is this software layer that is ported by integrators to port the Kernel on other systems.
IsaAFB.dll	This *.dll file appears only for the Windows target. On other systems (VxWorks, QNX, Linux, and RTX), this *.dll is statically linked to the above components. Contains the advanced control functions and function blocks, including C functions and C function blocks

File	Description
IsaSER.dll	This *.dll file appears only for the Windows target. On other systems (VxWorks, QNX, Linux, and RTX), this *.dll is statically linked to the above components. contains serial communication (TCP or RS232) C functions.
IsaNDT.dll	This *.dll file appears only for the Windows target. On other systems (VxWorks, QNX, Linux, and RTX), this *.dll is statically linked to the above components. Contains arithmetic and bit operation C functions used with data types such as BYTE, WORD, DWORD, LWORD, and LREAL.
ModbusTcpClient.dll	This *.dll file appears only for the Windows target. On other systems (QNX, Linux), this *.dll file is statically linked to the above components. Contains a Modbus TCP/IP IO driver (client).
ModbusTcoServer.dll	This *.dll file appears only for the Windows target. On other systems (QNX, Linux), this *.dll file is statically linked to the above components. Contains a Modbus TCP/IP IO driver (server)
isamsg.fcr	Text file describing messages of errors that may occur in the Kernel during the execution of resource code.
isamsg.wng	Text file describing messages of warnings that may occur in the Kernel during the execution of resource code.
isawnt.fcr	Text file describing messages of errors that may occur in the standard Kernel during the execution of resource code specific to the OS.
isawnt.wng	Text file describing messages of warnings that may occur in the standard Kernel during the execution of resource code specific to the OS.

Target Features

The following target features are available for the **ISaGRAF 5.5x** ISAFREE-TGT target:

Feature	Description
Memory Size	The memory size of the target.
Enhanced Target	Enables the use of ISaGRAF 5.30 enhanced features. Possible values are True or False.
Password	Enables supporting passwords on a target. This prevents any user from connecting to the target without the proper password. Possible values are True or False.
Ladder Diagram Optimized Code	Enables optimizing the code generated in the LD language to improve performance. Possible values are True or False.
Binding	Enables communication between targets through bindings. Possible values are True or False.
Multiple Resources	Enables setting the maximum number of resources supported by the target. Only available for multi-task porting. Possible values are True or False.
Online Change	Enables online modifications during the execution of a user application. Possible values are True or False.
Retain	Enables retaining variable values so that each retained variable persists through time. Possible values are True or False.
Micro Cycle Time	Enables microsecond precision for cycle time on the target instead of millisecond precision. Possible values are True or False.
Interrupts	Enables the support of time-based or hardware-based user interrupts. Possible values are True or False.
Flexible array and FB parameters by reference	Enables passing input parameters and flexible array parameters by reference to "C" function blocks. Possible values are True or False.
POU TIC greater than 64 KB	Removes the limitation of 64 KB per POU and is only available for large memory targets. Possible values are True or False.

Feature	Description
Binding Network Instances	Enables the capacity to instantiate multiple networks (for example enables using and configuring multiple ETCP networks). Possible values are True or False.
SFC transition priority	Enables supporting user-defined priorities for the parallel branches of transitions. Possible values are True or False.
Wiring on complex variable members	Enables connecting a member of a complex variable to an I/O board channel. Possible values are True or False.
IO Device channel OEM parameters	Enables defining OEM parameters on I/O channels. Possible values are True or False.
Online change support for initialization of C FB instances	Enables the target to support the addition or removal of "C" function block instances having initialization or exit functionality when performing online changes. Adding or removing such function blocks while performing online changes may impact cycle time or RAM consumption. Possible values are True or False.
Partial access of ANY_BIT variables	Enables read and write access on integer-type variables and sub-variables using specific TICs. Possible values are True or False.

Note: Existing projects may contain older target versions not supporting all of these target features.

To view the target features

You cannot modify the ISAFREE-TGT target features.

- 1. In the Solution Explorer, right-click the device, and then click **Open**.
- 2. From the Device View, in the breadcrumbs trail, click × and select Target Features.

The target features are displayed in the Device View.

Installing Windows Run-time Modules

You install Windows runtime modules by copying them, then pasting them onto the target computer running either the Windows® 7 or Windows® 8 operating systems.

Note: When installing a run-time module, make sure that the complete path for the directory contains no dashes.

Startup Parameters

You can specify startup parameters as entries in an initialization file (.ini) or in a command line. When defining parameters, the initialization file name must match the executable file name. For example, for the executable ISaGRAF.exe, you name the initialization file "ISaGRAF.ini".

Component Name	Parameter	Description
[ETCP]	CruCnxTimeOut	Timeout for connection. The default value is 1.5s (1500 ms).
	SockCruPortId	CRU server TCP/IP port. The default value is 1131.
	ChNbr	CRU server Number of channels. The default value is 72.
	SockVruPortId	VRU server TCP/IP port. The default value is 1113.
	RctNb	VRU Resource connection table size, the number of remote producing resources for local ETCP task, i.e., the number of binding links pointing to the configuration. The default value is 100, meaning that an ETCP task can manage up to 100 remote producing resources.

IsctNb	 VRU Exported socket connection table size, the number of remote producing resources. However, each producing resource must only be counted once if it produces to several local resources. The default value is 100, meaning that an ETCP task can manage up to 100 remote producers for all of its local consumers.
EsctNb	 VRU Resource binding information table, the number of local producing resources (resources producing to distant platforms only) plus the number of distant consuming resources: if both R1 and R2 on C1 consume data from R3 on C2, there will only be one connection between C1 and C2 if R1 on C1 consumes data from R2 and R3 on C2, there will be two connections between C1 and C2
	EsctNb is also the number of binding links pointing out of the configuration plus the number of local producing resources (resource producing to distant platforms only). The default value is 100 meaning that an ETCP task can manage 100 remote connections minus the number of local producing resources.
RBitNb	VRU Resource binding information table, host data concerning each remote producer This parameter value should be the same as IsctNb value because an ISCT entry is used jointly with a RBIT entry. The default value is 100.

NCRBSize	VRU None Converted reception buffer size, the total amount of bound bytes the ETCP task has to buffer for all remote producers Each producer has a 12-byte header. The default value is 512 meaning that the ETCP task can handle 500 bound bytes for each remote producer.
NbrSend	VRU Number of emission. The default value is 1.
Cycle	ETCP server cycle The value of this parameter is in milliseconds. The default value is 1 ms.
PingTimeOut	ETCP Ping time-out The value of this parameter is in milliseconds The default value is 60000 ms.
NbIxlClt	ETCP Number of IXL Client The default value is 3.
KVBETCP	Mutex time out for management of shared memory The default value is 1000 ms.
SockMaxNbPendingCnx	Max nb of pending cnx The default is system dependant.
SockTcpNoDelay	Naggle algorithm The default is disabled to provide better lattency times. The default is Yes.
SockGenKeepAlive	Generation of keep alive packet By default, parameter does not generate keep alives.
SockSendBuffSize	Socket send buffer size The default is 0.
SockRecvBuffSize	Socket receive buffer size The default is 0.
ConsNb	Remote configuration consumer number The default is 100.

	BindingPort	The port number. The default is 1113.
[HSD]	MaxMsgConnect	Maximum msg. in the cnx msg queue The default value is 3.
	RcvMaxMsg	Maximum number of message in message queue The default value is 3.
	SendMaxMsg	Maximum number of message in message queue The default value is 3.
	SndSz	Size of exchanged messages The default value is 16416 bytes (.ISA_IXL_BUFCTSSZ + 2*ISA_IXL_MSGPROC_HDRSZ).
	RcvSz	Size of exchanged messages The default value is 32800 bytes (ISA_IXL_BUFSTCSZ + 2*ISA_IXL_MSGPROC_HDRSZ).
	TimeOut	The value of this parameter is in milliseconds. The default value is 5000 ms.
	NtfSignal	Startup parameter for notification management (signal) The default value is 256.
	Priority	Priority of the cnx (0 High - 255 Low) The default value is 10.
	SemTimeOut	Mutex time out for management of shared memory The value of this parameter is in milliseconds. The default value is 11 ms.
[APP]	stgMode	Configuration manager starting mode The default value is 1. /* Automatic restoration */
	CycleTimeMin	Minimum cycle time for this task The value of this parameter is in milliseconds. The default value is 10 ms.

CycleTimeMax	Maximum cycle time for this task The value of this parameter is in milliseconds. The default value is 50 ms.
ResNbr	Number of resource on one config The default value is 8.
MisNbr	Maximum number of miscellaneous tasks The default value is 8.
S	Get number of resource to start
ETCP	Extra startup parameters No default value defined.
SyncTime	Wait synchronization The value of this parameter is in milliseconds. The default value is 5000 ms.
RSI	IsaRSI startup parameters. No default value defined.
PrjPath	Set project path The default value is the path to the folder containing the ISaGRAF.exe.
WngPeriod	Get the warning period The value of this parameter is in milliseconds. The default value is 60000 ms.
NOETCP	Disables ETCP The default is ETCP active.
SndSz	Size of exchanged messages The default value is 16416 bytes (ISA_IXL_BUFCTSSZ + 2*ISA_IXL_MSGPROC_HDRSZ).
RcvSz	Size of exchanged messages The default value is 32800 bytes (ISA_IXL_BUFSTCSZ + 2*ISA_IXL_MSGPROC_HDRSZ).
NtfSignal	Startup parameter for notification management (signal) The default value is 256.

[IXL]

	DrvNbr	Maximum number of drivers The default value is 5.
	CnxNbr	Maximum number of connections This is the number of connections between the IXD (exchange dispatcher) to the resource and the configuration manager. It opens 2 connection per resource + 1 for the CMG. The default value is 24.
[IXS]	DrvNbr	Maximum number of drivers The default value is 5.
	CnxNbr	Maximum number of connections The default value is 24.
[ISXLETCP]	IpcMsgLength	Message size in IPC queues The default value is 1024.
	IpcMsgNbr	Number of messages in IPC queues The default value is 5.
	SidMessageLength	ISXL notified method emission & reception message buffer The default value is 2048.
	NtfSignal	Startup parameter for notification management (signal) The default value is 256.
	NtfMessageLength	ISXL notified method reception message buffer The default value is 2048.
	SignalCode	Max message queue size in-between ETCP client-server The default value is 0.
[ISXLRSI]	IpcMsgLength	Message size in IPC queues The default value is 1024.
	IpcMsgNbr	Number of messages in IPC queues The default value is 5.

	SidMessageLength	ISXL notified method emission & reception message buffer The default value is 2048.
	NtfSignal	Startup parameter for notification management (signal) The default value is 256.
	NtfMessageLength	ISXL notified method reception message buffer The default value is 2048.
	SignalCode	Max message queue size in-between ETCP client-server The default value is 0.
[IXD]	ChNbr	Maximum number of connections The default value is 24.
	DataMsgSize	Size of buffer for message processing The default value is default is 32800 bytes (ISA_GETMAX(ISA_IXL_MSGPROC_BU FRCVSZ, ISA_IXL_MSGPROC_BUFSNDSZ)).
	VarDescNbr	Number of variables description The default value is default is 3283 ((ISA_GETMIN(ISA_IXL_MSGPROC_BU FRCVSZ, ISA_IXL_MSGPROC_BUFSNDSZ)) / 5).
	MsgByChannel	Pending message number per connection The default value is 4.
	IxlTimeout	Ixl Timeout The value of this parameter is in milliseconds. The default value is 11000 ms.
	IxsTimeout	Ixs Timeout The value of this parameter is in milliseconds The default value is 11000 ms.
	CnxTimeLoop	Connection time loop The value of this parameter is in milliseconds. The default value is 1000 ms.

[KERNEL]	RtnRead	Reads retain when start The default value is 1. /* true */
	bkupType	Resource backup location type for restoration The default value is 1. /* Load from hard support (disk,) */
[RSI]	RSIAddress	Slave RSI The default value is 1.
	Port	Slave Port. The default value is 0 /* Null */
	CycleTime	Cycle time. The value of this parameter is in milliseconds The default value is 1ms.
	ChNbr	Maximum number of channels The default value is 50.
	NbIxlClt	RSI Number of IXL Client The default value is 3.

Example of initialization file (ISaGRAF.ini)

[ETCP] ChNbr=256 IsctNb=256 EsctNb=256 RBitNb=256 NCRBSize=16384

[APP]

ResNbr=100

RSI=COM1

[RSI]

PORT=COM1:19200:N:1:OFF

RSIAddress=1

To install a Windows runtime module

- **1.** Copy the entire target directory.
- 2. On the target platform, paste the directory.

The Windows runtime module is ready.

See Also

Setting Networks and Connections

Setting Networks and Connections

The ISAFREE_TGT target supports three types of networks:

- ETCP
- HSD
- ISaRSI
ETCP

The Enhanced TCP/IP protocol (ETCP) is the network driver used for communication with **ISaGRAF** on Ethernet. In this case, the ETCP driver emulates the behavior of a field-bus. You can consider ETCP as a virtual field-bus.

ETCP automatically starts with the target. However, you can choose to disable the ETCP when installing a runtime module.

Startup Parameters

You can specify startup parameters as entries in the APP section of the driver initialization file (ETCP.ini) or in a command line:

ChNbr	CRU server Number of channels. The default value is 72.
IsctNb	The number of remote producing resources. However, each producing resource must only be counted once if it produces to several local resources. The default value is 100, meaning that an ETCP task can manage up to 100 remote producers for all of its local consumers.
EsctNb	The number of local producing resources (producing to remote platforms only) plus the number of distant consuming resources:
	- If both R1 and R2 on C1 consume data from R3 on C2, there will only be one connection between C1 and C2
	- If R1 on C1 consumes data from R2 and R3 on C2, there will be two connections between C1 and C2
RBitNb	Host data concerning each remote producer. It should be the same as IsctNb value because an ISCT entry is used jointly with a RBIT entry. The default value is 100.
NCRBSize	VRU Non-converted reception buffer size, the total amount of bound bytes the ETCP task has to buffer for all remote producers. Each producer has a 12-byte header. The default value is 512 meaning that the ETCP task can handle 500 bound bytes for each remote producer.
NbIxlClt	ETCP Number of IXL Client. The default value is 3.

Cycle ETCP server cycle time, in milliseconds. The default value is 1.

NbrSend VRU Number of emissions. The default value is 1.

Network Properties

The ETCP network driver has no network properties.

Connection Properties

You specify connection properties by selecting the connection in the Deployment View and entering the required values in the Properties window. The ETCP network driver has one connection property:

IP Address The IP address or name of the computer.

HSD

The Host System Driver (HSD) is the IXL driver used for communication between local processes with **ISaGRAF**. HSD network connections are used when defining bindings between resources on the same device.

The ISaGRAF target automatically launches the HSD driver.

Startup Parameters

You can specify startup parameters as entries in the HSD section of the ISaGRAF target initialization file (isagraf.ini) or in a command line:

MaxMsgConnect	The maximum number of messages in the connection message queue. The default value is 3.
RcvMaxMsg	The maximum number of messages in the message queue. The default value is 3.
SendMaxMsg	The maximum number of messages in the message queue. The default value is 3.
SndSz	The size of the exchanged messages, in bytes. The default value is 544.
RcvSz	The size of the exchanged messages, in bytes. The default value is 544.
TimeOut	The time period before a timeout occurs, in milliseconds; the default value is 5000 ms.

Network Properties

The HSD driver has no network properties.

Connection Properties

The HSD driver has no connection properties.

ISaRSI

The network driver used when developing an IXL client using serial communication with ISaGRAF.

Startup Parameters

You can specify startup parameters as entries in the driver initialization file (ISaRSI.ini), the ISaGRAF initialization file (ISaGRAF.ini), or in a driver command line:

CycleTime Polling of the ISaRSI task, in milliseconds. The default value is 1.

Network Properties

You specify network properties by selecting the network in the Deployment View and entering the required values in the Properties window.

Port	The ISaGRAF communication port. The default value is COM1.
Baud Rate	The baud data transfer rate. The default value is 19200.
Parity	The type of parity used. Possible values are N for none, E for even, and O for odd; The default value is N.
Stop Bit	The number of stop bits used to indicate the end of a transmission. Possible values are 1 or 2; The default value is 1.
HardwareFlowControl	The control of the flow of data transmission between the network hardware. Possible values are True or False; The default value is False.

Connection Properties

The ISaRSI network driver has no connection properties.

To start the ISaRSI network driver

• Double-click the executable file (ISaRSI.exe) located:

% PROGRAMFILES(X86)% ISaGRAF
(6.x)CAM ISaGRAF 5\5.3 ISaGRAF Free RunTime

Configuring I/O Devices

When configuring I/O devices, you connect I/O variables to I/O channels. You connect these variables and channels in the I/O wiring view. The hierarchical structure displayed in the I/O wiring view appears the same with differences depending on the driver:

		Simple	e device		
			Param	eters	(Only displayed if the I/O device has defined parameters)
				Parameter_n	
	Ξ	٢	Wired	Channel	
			-	Direct	Alternatively: — Reverse (for Boolean values)
			t₄	Gain	=1/1 (* for Numeric Values *)
			t₄	Offset	=0 (* for Numeric Values *)
			⁷ .	Conversion	=None
+		Compl	ex Dev	ice	

The following drivers are available for use with the Windows-TGT_L target:

- Modbus/TCP Client Implementation
- Modbus/TCP Server Implementation

Modbus/TCP Client Implementation

The Modbus/TCP client driver includes twenty-six devices each dedicated to a particular data type and using a particular Modbus message. A twenty-seventh device, called a status device is not associated with a data variable but to a data structure describing the state of communication.

A project has a maximum of 256 device instances. For each device, you need to specify properties.

The data type must match the data sent by the Modbus server since the driver simply fills the variable with the returned data. For example, the FLOAT type is used when the server sends 32-bit floating point data.

The Modbus/TCP protocol is Big-Endian, that is a number larger than one byte is sequenced from highest to lowest byte. However, in the case of bad server implementation, the Endian type of the data can be selected, big or little in the user parameters, except for BOOL type devices.

When more than one channel is linked to a device, the driver simply writes the data received sequentially from the Modbus server to the variable values.

The following table shows these devices, their name, data type and direction and their associated Modbus message. The maximum channels indicates the greatest number of variables that can be handled by the device (information extracted from the Schneider Electric specification for the message).

Device	Data Type	Direction	Modbus message	Max Chan.
Client_RC	BOOL	input	Read Coils (fct 1)	2000
Client_RID	BOOL	input	Read Input Discretes (fct 2)	2000
Client_RMR_INT	INT	input	Read Multiple Registers (fct 3)	125
Client_RMR_UINT	UINT	input	Read Multiple Registers (fct 3)	125
Client_RMR_DINT	DINT	input	Read Multiple Registers (fct 3)	62

Client_RMR_UDINT	UDINT	input	Read Multiple Registers (fct 3)	62
Client_RMR_REAL	REAL	input	Read Multiple Registers (fct 3)	62
Client_RIR_INT	INT	input	Read Input Registers (fct 4)	125
Client_RIR_UINT	UINT	input	Read Input Registers (fct 4)	125
Client_RIR_DINT	DINT	input	Read Input Registers (fct 4)	62
Client_RIR_UDINT	UDINT	input	Read Input Registers (fct 4)	62
Client_RIR_REAL	REAL	input	Read Input Registers (fct 4)	62
Client_WC	BOOL	output	Write Coil (fct 5)	1
Client_WSR_INT	INT	output	Write Single Register (fct 6)	1
Client_WSR_UINT	UINT	output	Write Single Register (fct 6)	1
Client_FMC	BOOL	output	Force Multiple Coils (fct 15)	800
Client_WMR_INT	INT	output	Write Multiple Registers (fct 16)	100
Client_WMR_UINT	UINT	output	Write Multiple Registers (fct 16)	100
Client_WMR_DINT	DINT	output	Write Multiple Registers (fct 16)	50
Client_WMR_UDINT	UDINT	output	Write Multiple Registers (fct 16)	50
Client_WMR_REAL	REAL	output	Write Multiple Registers (fct 16)	50
Client_RW_M_INT	INT	output	Fct 3 normally – Fct 16 if value change	100

Client_RW_M_UINT	UINT	output	Fct 3 normally – Fct 16 if value change	100
Client_RW_M_DINT	DINT	output	Fct 3 normally – Fct 16 if value change	50
Client_RW_M_UDINT	UDINT	output	Fct 3 normally – Fct 16 if value change	50
Client_RW_M_REAL	REAL	output	Fct 3 normally – Fct 16 if value change	50
ClientStatus	CLIENT_STAT	input	n/a	256

The Read/Write (RW) drivers are bidirectional meaning that these behave as an output driver when the data channel has changed, otherwise, these behave as an input driver. These driver properties are the same as an output device except that they do not have the SendOnChange property.

The ClientStatus device updates its values during each cycle of the **ISaGRAF** target. This device completes the CLIENT_STAT structure shown below:

struct CLIENT_STAT

{

uchar Connected;// Connected to a server or not

uint32 MessageTxCount;// Client requests sent

uint32 MessageRxCount;// Server response message received

uint32 ExceptionRxCount;// Server sent back an Exception response

uint32 TxErrorCount;// Transmit failures

uint32 RxErrorCount;// Read failures

int16 LastError;// Socket last error code

}

A project can have one of these structures per device.

Target Preparation

The ModbusTCP_Driver.DLL file must be copied in the directory where the executable file for the target is located.

You start the target by executing the **ISaGRAF** process, located in the Cmds sub-directory for the target.

The isagraf.ini initialization file can be used to specify some target parameters. Refer to the *Startup Parameters Configuration* section in the **ISaGRAF** Development Kit Guide documentation.

Importation of Drivers in the Workbench

To enable access to the Modbus/TCP client driver, you need to import the definitions of the Modbus devices into **ISaGRAF**, defined in the following file:

Windows_ModbusTcpClient.txt

Enter your project functionality and variables. Follow the instructions as described in the manual to instantiate a driver. Then, connect the desired variables to the corresponding Modbus device. **ISaGRAF** only allows connecting a variable whose type matches the data type of the device.

To import the Plc definition file for Modbus devices

- 1. From the Solution Explorer, right-click the project, point to Import, and then click Import Target Definitions.
- 2. In the Open dialog box, browse to locate the *Windows_ModbusTcpClient.txt* Plc Definition file, then click **Open**.

Properties of Modbus/TCP Client Devices

You can change the properties of the device in the I/O Device tool of the workbench. You access them by selecting the device in the browser located on the left side of the module window. The following properties apply to devices depending on their type:

IPaddress	The IP address of the Modbus server (slave) to communicate with. The format of this property is String; its value ranges from 0.0.0.0 to 255.255.255.255; its default value is 127.0.0.1.
UnitIdentifier	Formerly the slave address, sent on each message in the prefix. The format of this property is Char; its value ranges from 0 to 255; its default value is 1.
StartAddress	The register offset of the data in the server. The format of this property is WordHexa; its value ranges from 0 to 65535; its default value is 0.
TimeOut	The time period in which to wait for a response, in milliseconds. The format of this property is Word; its value ranges from 1 to 65535; its default value is 2000.
SendOnChange	Applies only to output devices. The indication that the message is sent only when channel's data has changed. The format of this property is BOOL; possible values are TRUE or FALSE. FALSE indicates that the message is sent at each cycle. The default value is TRUE.
DataIsBigEndian	Applies only to input and output devices other than BOOL type as well as read/write devices. The indication that the data read from the server is interpreted as Big-endian. Possible values are TRUE or FALSE. FALSE indicates that the data read is interpreted as Little-endian. The default value is TRUE.
UseTCP	The indication that the communication method for the transport layer is TCP. The format of this property is BOOL; possible values are TRUE or FALSE. FALSE indicates that the communication method for the transport layer is UDP (not currently implemented). The default value is TRUE.
PortNumber	The transport layer port number to use. The format of this property is WordHexa; its value ranges from 0 to 65535; its default value is 502.
RequestPeriod	The time interval between sent Modbus requests, in milliseconds. The format of this property is Word; its value ranges from 1 to 65535; its default value is 1000.

The ClientStatus device has no properties. A project has only one instance of this driver and you need to hook as many CLIENT_STAT type channels as the largest ModbusTCP device index in your project. For example, when a project has five ModbusTCP devices along with other driver devices where the largest ModbusTCP device index is twenty-five, you need to hook twenty-five CLIENT_STAT channels to a ClientStatus device in order to monitor all five ModbusTCP devices.

Modbus/TCP Prefixes

Each Modbus/TCP message contains a seven-byte prefix:

Byte 0: transaction identifier - copied by server - usually 0

Byte 1: transaction identifier - copied by server - usually 0

Byte 2: protocol identifier = 0

Byte 3: protocol identifier = 0

Byte 4: length field (upper byte) = 0 (since all messages are smaller than 256)

Byte 5: length field (lower byte) = number of bytes following

Byte 6: unit identifier (previously 'slave address')

The following example shows the 'read 1 register at offset 4 from UI 9' transaction returning a value of 5:

request: 00 00 00 00 00 06 09 03 00 04 00 01

response: 00 00 00 00 00 05 09 03 02 00 05

The MODBUS 'slave address' field is replaced by a single byte 'Unit Identifier' which may be used to communicate via devices such as bridges and gateways which use a single IP address to support multiple independent end units.

The transaction identifier will be a word variable that increments at each message sent. The server shall respond with it in it's response prefix.

Modbus/TCP Message Descriptions

Read coils (FC 1)

Request

Byte 0: FC = 01

Byte 1-2: Reference number

Byte 3-4: Bit count (1-2000)

Response

Byte 0: FC = 01

Byte 1: Byte count of response (B=(bit count+7)/8)

Byte 2-(B+1): Bit values (least significant bit is first coil!)

Exceptions

Byte 0: FC = 81 (hex)

Byte 1: exception code = 01 or 02

Example

Read 1 coil at reference 0 (00001 in Modicon 984) resulting in value 1

 $01 \ 00 \ 00 \ 00 \ 01 \implies 01 \ 01 \ 01$

The format of the return data is not consistent with a Big-Endian architecture. Also, this request can be quite computation-intensive on the slave if the request calls for multiple words where these are not aligned on 16-bit boundaries.

Read input discretes (FC 2)

Request

Byte 0: FC = 02

Byte 1-2: Reference number

Byte 3-4: Bit count (1-2000)

Response

Byte 0: FC = 02

Byte 1: Byte count of response (B=(bit count+7)/8)

Byte 2-(B+1): Bit values (least significant bit is first coil!)

Exceptions

Byte 0: FC = 82 (hex)

Byte 1: exception code = 01 or 02

Example

Read 1 discrete input at reference 0 (10001 in Modicon 984) resulting in value 1

 $02\ 00\ 00\ 00\ 01 \implies 02\ 01\ 01$

The format of the return data is not consistent with a Big-Endian architecture. Also, this request can be quite computation-intensive on the slave if the request calls for multiple words where these are not aligned on 16-bit boundaries.

Read multiple registers (FC 3)

Request

Byte 0: FC = 03

Byte 1-2: Reference number

Byte 3-4: Word count (1-125)

Response

Byte 0: FC = 03

Byte 1: Byte count of response (B=2 x word count)

Byte 2-(B+1): Register values

Exceptions

Byte 0: FC = 83 (hex)

Byte 1: exception code = 01 or 02

Example

Read 1 register at reference 0 (40001 in Modicon 984) resulting in value 1234 hex

 $03 \ 00 \ 00 \ 00 \ 01 \implies 03 \ 02 \ 12 \ 34$

Read input registers (FC 4)

Request

Byte 0: FC = 04

Byte 1-2: Reference number

Byte 3-4: Word count (1-125)

Response

Byte 0: FC = 04

Byte 1: Byte count of response (B=2 x word count)

Byte 2-(B+1): Register values

Exceptions

Byte 0: FC = 84 (hex)

Byte 1: exception code = 01 or 02

Example

Read 1 input register at reference 0 (30001 in Modicon 984) resulting in value 1234 hex

 $04\ 00\ 00\ 00\ 01 \implies 04\ 02\ 12\ 34$

Write coil (FC 5)

Request

Byte 0: FC = 05

Byte 1-2: Reference number

Byte 3: = FF to turn coil ON, =00 to turn coil OFF

Byte 4: = 00

Response

Byte 0: FC = 05

Byte 1-2: Reference number

Byte 3: = FF to turn coil ON, =00 to turn coil OFF (echoed)

Byte 4: = 00

Exceptions

Byte 0: FC = 85 (hex)

Byte 1: exception code = 01 or 02

Example

Write 1 coil at reference 0 (00001 in Modicon 984) to the value 1

 $05\ 00\ 00\ FF\ 00 \implies 05\ 00\ 00\ FF\ 00$

Write single register (FC 6)

Request

Byte 0: FC = 06

Byte 1-2: Reference number

Byte 3-4: Register value

Response

Byte 0: FC = 06

Byte 1-2: Reference number

Byte 3-4: Register value

Exceptions

Byte 0: FC = 86 (hex)

Byte 1: exception code = 01 or 02

Example

Write 1 register at reference 0 (40001 in Modicon 984) of value 1234 hex

 $06\ 00\ 00\ 12\ 34 \implies 06\ 00\ 00\ 12\ 34$

Force multiple coils (FC 15)

Request

Byte 0: FC = 0F (hex)

Byte 1-2: Reference number

Byte 3-4: Bit count (1-800)

Byte 5: Byte count (B = (bit count + 7)/8)

Byte 6-(B+5): Data to be written (least significant bit = first coil)

Response

Byte 0: FC = 0F (hex)

Byte 1-2: Reference number

Byte 3-4: Bit count

Exceptions

Byte 0: FC = 8F (hex)

Byte 1: exception code = 01 or 02

Example

Write 3 coils at reference 0 (00001 in Modicon 984) to values 0,0,1

 $0F 00 00 00 03 01 04 \implies 0F 00 00 00 03$

The format of the input data is not consistent with a Big-Endian architecture. Also, that this request can be quite computation-intensive on the slave if the request calls for multiple words where these are not aligned on 16-bit boundaries.

Write multiple registers (FC 16)

Request

Byte 0: FC = 10 (hex)

Byte 1-2: Reference number

Byte 3-4: Word count (1-100)

Byte 5: Byte count (B=2 x word count)

Byte 6-(B+5): Register values

Response

Byte 0: FC = 10 (hex)

Byte 1-2: Reference number

Byte 3-4: Word count

Exceptions

Byte 0: FC = 90 (hex)

Byte 1: exception code = 01 or 02

Example

Write 1 register at reference 0 (40001 in Modicon 984) of value 1234 hex

 $10\ 00\ 00\ 00\ 01\ 02\ 12\ 34\ =>\ 10\ 00\ 00\ 00\ 01$

Modbus/TCP Server Implementation

The Modbus/TCP server has twenty-one devices each dedicated to a particular data type and using a particular Modbus message. A twenty-second device, called a status device is not associated with a data variable but to a data structure describing the state of the communication for each device in the project.

A project has a maximum of 256 device instances. For each device, you need to specify properties. A maximum of 256 responded Modbus requests per cycle are possible.

On a write, the data type must match the data sent by the Modbus client since the driver simply fills the variable with the received data. For example, the FLOAT type is used when the server sends 32-bit floating point data.

The Modbus/TCP protocol is Big-Endian, that is a number larger than one byte is sequenced from highest to lowest byte. However, in the case of bad server implementation, the Endian type of the data can be selected, big or little in the user parameters, except for BOOL type devices.

When more than one channel is linked to a device, the driver simply writes the data received sequentially from the Modbus server to the variable values.

The following table shows these devices, their name, data type and direction and their associated Modbus message. The maximum channels indicates the greatest number of variables that can be handled by the device (information extracted from the Schneider Electric specification for the message).

Device	Data Type	Direction	Modbus message	Max Chan.
Server_RC	BOOL	output	Read Coils (fct 1)	2000
Server_RID	BOOL	output	Read Input Discretes (fct 2)	2000
Server_R_INT	INT	output	Respond to RMR (Fct 3) or RIR (Fct 4)	125
Server_R_UINT	UINT	output	Respond to RMR (Fct 3) or RIR (Fct 4)	125
Server_R_DINT	DINT	output	Respond to RMR (Fct 3) or RIR (Fct 4)	62

Server_R_UDINT	UDINT	output	Respond to RMR (Fct 3) or RIR (Fct 4)	62
Server_R_REAL	REAL	output	Respond to RMR (Fct 3) or RIR (Fct 4)	62
Server_WC	BOOL	input	Write Coil (fct 5)	1
Server_WSR_INT	INT	input	Write Single Register (fct 6)	1
Server_WSR_UINT	UINT	input	Write Single Register (fet 6)	1
Server_FMC	BOOL	input	Force Multiple Coils (fct 15)	800
Server_WMR_INT	INT	input	Write Multiple Registers (fct 16)	100
Server_WMR_UINT	UINT	input	Write Multiple Registers (fct 16)	100
Server_WMR_DINT	DINT	input	Write Multiple Registers (fct 16)	50
Server_WMR_UDINT	UDINT	input	Write Multiple Registers (fct 16)	50
Server_WMR_REAL	REAL	input	Write Multiple Registers (fct 16)	50
Server_RW_INT	INT	output	Respond to Fct 3 or Fct 4 or Fct 16	100
Server_RW_UINT	UINT	output	Respond to Fct 3 or Fct 4 or Fct 16	100
Server_RW_DINT	DINT	output	Respond to Fct 3 or Fct 4 or Fct 16	50
Server_RW_UDINT	UDINT	output	Respond to Fct 3 or Fct 4 or Fct 16	50
Server_RW_REAL	REAL	output	Respond to Fct 3 or Fct 4 or Fct 16	50
ServerStatus	SERVER_STAT	input	n/a	256

The Read/Write (RW) drivers are bidirectional meaning that these are assigned to output free variables and can respond to a read request (message function 3 or 4) or to a write request (message function 16). Their parameters are the same as an output device.

The ServerStatus device has no parameters and update it's values at each **ISaGRAF** target's cycle.

Because many different devices can respond to the same Modbus message, use different addresses to differentiate them. For example, you can have a Server_R_INT device responding to address 100 and a Server_RUINT device responding to address 500. Failing to do this produces erroneous results, a Server_WMR_REAL device could respond to a Client_WMR_DINT device.

If a request has an invalid range, for example, asking more registers than there are channels hooked on a device or asking for an address outside the range of the server, a Modbus exception is returned.

If two devices have an address overlap, only the first device instance responds to the requests. For example, a Server_R_INT covering the address range 20000-20100 and a Server_R_INT covering the address range 20050-20200, the requests in the overlap range 20050-20100 are responded to by Server_R-INT if the device index is less (instanced before) than Server_R-INT.

Two devices of different data types can have an address overlap. In the above example, if the first device is a Server_R_INT and the second is a Server_R_UINT, both devices respond.

More than one client can send requests to a single server while there can be a maximum of 256 connected clients.

The ServerStatus device updates the values of the SERVER_STAT structure. One of these structures exists for each device currently instantiated in your project.

struct SERVER_STAT

{

char ClientCount;// Current number of client(s) connected

uint32 MessageRxCount;// Client requests received

uint32 ExceptionTxCount;// Exception message sent

uint32 TxErrorCount;// Transmit failures

uint32 RxErrorCount;// Read failures

int16 LastError;// Socket last error code

Target Preparation

The ModbusTcpServer.DLL file must be copied in the directory where the executable file for the target is located.

You start the target by executing the **ISaGRAF** process, located in the Cmds sub-directory for the target.

The isagraf.ini initialization file can be used to specify some target parameters. Refer to the *Startup Parameters Configuration* section in the **ISaGRAF** Development Kit Guide documentation.

Importation of Drivers in the Workbench

To enable access to the Modbus/TCP server driver, you need to import the definitions of the Modbus devices into **ISaGRAF**, defined in the following file:

Windows_ModbusTcpServer.txt

Enter your project functionality and variables. Follow the instructions as described in the manual to instantiate a driver. Then, connect the desired variables to the corresponding Modbus device. The workbench only allows connecting a variable whose type matches the data type of the device.

To import the Plc definition file for Modbus devices

- 1. From the Solution Explorer, right-click the project, point to Import, and then click Import Target Definitions.
- 2. In the Open dialog box, browse to locate the *Windows_ModbusTcpServer.txt* Plc Definition file, then click **Open**.

Properties of Modbus/TCP Server Devices

When performing I/O Wiring, you can define the device properties. You access device properties by selecting a device from the list of available devices. You modify the properties for the selected device using the Properties window. The following properties apply to devices depending on their type:

StartAddress	The register offset of the data in the server. The format of this property is WordHexa; its value ranges from 0 to 65535; its default value is 0.
TimeOut	The time period in which to wait for a response, in milliseconds. The format of this property is Word; its value ranges from 1 to 65535; its default value is 2000.
DataIsBigEndian	Applies only to devices other than BOOL type. The indication that the data read from the server is interpreted as Big-endian. Possible values are TRUE or FALSE. FALSE indicates that the data read is interpreted as Little-endian. The default value is TRUE.
UseTCP	The indication that the communication method for the transport layer is TCP. The format of this property is BOOL; possible values are TRUE or FALSE. FALSE indicates that the communication method for the transport layer is UDP (not currently implemented). The default value is TRUE.
PortNumber	The transport layer port number to use. The format of this property is WordHexa; its value ranges from 0 to 65535; its default value is 502.

The ServerStatus device has no properties. A project has only one instance of this driver and you need to hook as many SERVER_STAT type channels as the largest ModbusTCP device index in your project. For example, when a project has five ModbusTCP devices along with other driver devices where the largest ModbusTCP device index is twenty-five, you need to hook twenty-five SERVER_STAT channels to a ServerStatus device in order to monitor all five ModbusTCP devices. Those twenty-five SERVER_STAT channels can be made of discrete variables or an array.

Modbus/TCP Prefixes

Each Modbus/TCP message contains a seven-byte prefix:

Byte 0: transaction identifier - copied by server - usually 0

Byte 1: transaction identifier - copied by server - usually 0

Byte 2: protocol identifier = 0

Byte 3: protocol identifier = 0

Byte 4: length field (upper byte) = 0 (since all messages are smaller than 256)

Byte 5: length field (lower byte) = number of bytes following

Byte 6: unit identifier (previously 'slave address')

An example transaction 'read 1 register at offset 4 from UI 9' returning a value of 5 is

request: 00 00 00 00 00 06 09 03 00 04 00 01

response: 00 00 00 00 00 05 09 03 02 00 05

The MODBUS 'slave address' field is replaced by a single byte 'Unit Identifier' which may be used to communicate via devices such as bridges and gateways which use a single IP address to support multiple independent end units.

The transaction identifier will be a word variable that increments at each message sent. The server shall respond with it in it's response prefix.

Modbus/TCP Message Descriptions

Read coils (FC 1)

Request

Byte 0: FC = 01

Byte 1-2: Reference number

Byte 3-4: Bit count (1-2000)

Response

Byte 0: FC = 01

Byte 1: Byte count of response (B=(bit count+7)/8)

Byte 2-(B+1): Bit values (least significant bit is first coil!)

Exceptions

Byte 0: FC = 81 (hex)

Byte 1: exception code = 01 or 02

Example

Read 1 coil at reference 0 (00001 in Modicon 984) resulting in value 1

 $01 \ 00 \ 00 \ 00 \ 01 \ => \ 01 \ 01 \ 01$

The format of the return data is not consistent with a Big-Endian architecture. Also, this request can be very computation-intensive on the slave if the request calls for multiple words and these are not aligned on 16-bit boundaries.

Read input discretes (FC 2)

Request

Byte 0: FC = 02

Byte 1-2: Reference number

Byte 3-4: Bit count (1-2000)

Response

Byte 0: FC = 02

Byte 1: Byte count of response (B=(bit count+7)/8)

Byte 2-(B+1): Bit values (least significant bit is first coil!)

Exceptions

Byte 0: FC = 82 (hex)

Byte 1: exception code = 01 or 02

Example

Read 1 discrete input at reference 0 (10001 in Modicon 984) resulting in value 1

 $02\ 00\ 00\ 00\ 01 \implies 02\ 01\ 01$

The format of the return data is not consistent with a big-endian architecture. Also, this request can be very computation-intensive on the slave if the request calls for multiple words and these are not aligned on 16-bit boundaries.

Read multiple registers (FC 3)

Request

Byte 0: FC = 03

Byte 1-2: Reference number

Byte 3-4: Word count (1-125)

Response

Byte 0: FC = 03

Byte 1: Byte count of response (B=2 x word count)

Byte 2-(B+1): Register values

Exceptions

Byte 0: FC = 83 (hex)

Byte 1: exception code = 01 or 02

Example

Read 1 register at reference 0 (40001 in Modicon 984) resulting in value 1234 hex

 $03 \ 00 \ 00 \ 00 \ 01 \implies 03 \ 02 \ 12 \ 34$

Read input registers (FC 4)

Request

Byte 0: FC = 04

Byte 1-2: Reference number

Byte 3-4: Word count (1-125)

Response

Byte 0: FC = 04

Byte 1: Byte count of response (B=2 x word count)

Byte 2-(B+1): Register values

Exceptions

Byte 0: FC = 84 (hex)

Byte 1: exception code = 01 or 02

Example

Read one input register at reference 0 (30001 in Modicon 984) resulting in value 1234 hex

 $04\ 00\ 00\ 00\ 01 \implies 04\ 02\ 12\ 34$

Write coil (FC 5)

Request

Byte 0: FC = 05

Byte 1-2: Reference number

Byte 3: = FF to turn coil ON, =00 to turn coil OFF

Byte 4: = 00

Response

Byte 0: FC = 05

Byte 1-2: Reference number

Byte 3: = FF to turn coil ON, =00 to turn coil OFF (echoed)

Byte 4: = 00

Exceptions

Byte 0: FC = 85 (hex)

Byte 1: exception code = 01 or 02

Example

Write one coil at reference 0 (00001 in Modicon 984) to the value 1

 $05\ 00\ 00\ FF\ 00 \implies 05\ 00\ 00\ FF\ 00$

Write single register (FC 6)

Request

Byte 0: FC = 06

Byte 1-2: Reference number

Byte 3-4: Register value

Response

Byte 0: FC = 06

Byte 1-2: Reference number

Byte 3-4: Register value

Exceptions

Byte 0: FC = 86 (hex)

Byte 1: exception code = 01 or 0

Example

Write one register at reference 0 (40001 in Modicon 984) of value 1234 hex

 $06\ 00\ 00\ 12\ 34 \implies 06\ 00\ 00\ 12\ 34$

Force multiple coils (FC 15)

Request

Byte 0: FC = 0F (hex)

Byte 1-2: Reference number

Byte 3-4: Bit count (1-800)

Byte 5: Byte count (B = (bit count + 7)/8)

Byte 6-(B+5):Data to be written (least significant bit = first coil)

Response

Byte 0: FC = 0F (hex)

Byte 1-2: Reference number

Byte 3-4: Bit count

Exceptions

Byte 0: FC = 8F (hex)

Byte 1: exception code = 01 or 02

Example

Write 3 coils at reference 0 (00001 in Modicon 984) to values 0,0,1

 $0F 00 00 00 03 01 04 \implies 0F 00 00 00 03$

The format of the input data is not consistent with a Big-Endian architecture. Also, this request can be very computation-intensive on the slave if the request calls for multiple words and these are not aligned on 16-bit boundaries.

Write multiple registers (FC 16)

Request

Byte 0: FC = 10 (hex)

Byte 1-2: Reference number

Byte 3-4: Word count (1-100)

Byte 5: Byte count (B=2 x word count)

Byte 6-(B+5): Register values

Response

Byte 0: FC = 10 (hex)

Byte 1-2: Reference number

Byte 3-4: Word count

Exceptions

Byte 0: FC = 90 (hex)

Byte 1: exception code = 01 or 02

Example

Write one register at reference 0 (40001 in Modicon 984) of value 1234 hex

 $10\ 00\ 00\ 00\ 01\ 02\ 12\ 34 \implies 10\ 00\ 00\ 00\ 01$

Modbus/TCP Exception Codes

Slaves return a defined set of exception codes in the event of problems. Masters may send out commands 'speculatively' and use the success or exception codes received to determine which MODBUS commands the device is willing to respond to and to determine the size of the various data regions available on the slave.

This is the description of the exceptions that **ISaGRAF**'s Modbus/TCP server driver can send. For a description of the other exceptions, please refer to the Schneider Electric V1.0 specification document.

All exceptions are signaled by adding 0x80 to the function code of the request and following this byte by a single reason byte for example as follows:

03 12 34 00 01 => 83 02

request read one register at index 0x1234 response exception type 2 - 'illegal data address'

The list of exceptions follows:

01 ILLEGAL FUNCTION

The function code received in the query is not an allowable action for the slave. This may be because the function code is only applicable to newer controllers, and was not implemented in the unit selected. It could also indicate that the slave is in the wrong state to process a request of this type, for example because it is not configured and is being asked to return register values.

02 ILLEGAL DATA ADDRESS

The data address received in the query is not an allowable address for the slave. More specifically, the combination of reference number and transfer length is invalid. For a controller having 100 registers, a request with offset 96 and length 4 would succeed, a request with offset 96 and length 5 generates exception 02.

03 ILLEGAL DATA VALUE
A value contained in the query data field is not an allowable value for the slave. This indicates a fault in the structure of the remainder of a complex request, such as that the implied length is incorrect. It specifically does NOT mean that a data item submitted for storage in a register has a value outside the expectation of the application program, since the MODBUS protocol is unaware of the significance of any particular value of any particular register.

Defining Ports Usage

When using ISaGRAF, you may need to define ports for various usage.

Ports usage specific to ISaGRAF

ETCP: 1131(CRU - Channel Replacement Unit) and 1113 (VRU - Variable Replacement Unit)

HabDts: 5005 and 6001

General ports usage

RPC (Remote Procedure Call) : 111

Telnet: 23, 24

FTP (File Transfer Protocol): 20, 21

Error Messages

You can search for error messages relating to the following modules:

- Events Logger
- ISaGRAF Target

For the **ISaGRAF** target, you can also refine your search to the sub-module level:

Configuration Manager	Kernel
Kernel Warning	System Layer
I/Os	Host System Driver Binding
eXchange Dispatcher (IXD)	eXchange Layer (IXL)
ETCP Task	ETCP Binding
ISaRSI Task	Common Errors
ISaGRAF 3 Communication	

Events Logger

Code	Description	Probable Cause	Diagnostic	#define
0x00100001	Cannot read network parameters of the device	Project not compiled	Build project	ISA_ER_EL_NOCONFIG
0x00100002	Not implemented on the target	Old target	Use ISaGRAF 4.20 Target	ISA_ER_EL_NOTIMPLEMENTED
0x00100003	Disk full, logging interrupted	Not enough space on disk	Clear space on disk	ISA_ER_EL_DISKFULL

Code	Description	Probable Cause	Diagnostic	#define
0x00100004	Cannot connect to the target	Cannot connect to the target	Verify target and network parameters	ISA_ER_EL_CONNECTION
0x00100005	Cannot communicate with the target	Cannot communicate with the target	Verify target	ISA_ER_EL_COMMUNICATION
0x00100006	Cannot retrieve events from the target	Error while retrieving events	Verify target and communication	ISA_ER_EL_GETEVENTS
0x00100007	Device has an invalid password	Password for the device is invalid	Verify password	ISA_ER_EL_PASSWDINVALID

ISaGRAF Target

Configuration	Configuration Manager				
Code	Description	Probable Cause	Diagnostic	#define	
0x20000300	CMG: Cannot start new kernel	The configuration manager is requesting to start more resources than supported	Increase the value of the "Multi Resources Max Quantity" property (found in TDBuild) and regenerate the dsys0tgt.h file	ISA_ER_CMG_KER_START	
0x20000301	CMG: Kernel is already running	A request has been made to start an already existing resource or there is a problem in the task management	Review the implementation	ISA_ER_CMG_KER_ALREADYRUN NING	

Configuration Manager				
Code	Description	Probable Cause	Diagnostic	#define
0x20000302	CMG: Kernel is not running	A request has been made to access a task that does not exist or there is problem in the task management	Review the implementation	ISA_ER_CMG_KER_NOTRUNNING
0x20000310	CMG: Cannot start task	The configuration manager is requesting to start more miscellaneous tasks than supported	Increase the value of ISA_CMG_MISN BR	ISA_ER_CMG_MIS_START

Kernel				
Code	Description	Probable Cause	Diagnostic	#define
0x1201000AUL	Driver for the consumer is in error state	Error during data consumption in the binding mechanism	Verify if the producer is disconnected or review the driver implementation	ISA_RC_DKER_KVB_CONSUME
0x22010001UL	Private resources not found or not initialized	Memory Data block corrupted	Compare with workbench files	ISA_RC_DKER_INIT_PRIV_BLOCK
0x22010002UL	Kernel data allocation failed	Kernel Resource Data Loading error	Verify the system layer implementation	ISA_RC_DKER_INIT_ALLOC

Kernel				
Code	Description	Probable Cause	Diagnostic	#define
0x22010003UL	Standard 'C function not initialized	Changes made outside the system layer	Compare with the original PRDK	ISA_RC_DKER_INIT_STD_C
0x22010004UL	User 'C' function not initialized	Incorrect implementation	Review the implementation	ISA_RC_DKER_INIT_USR_C
0x22010005UL	Standard function block not initialized	Changes made outside the system layer	Compare with the original PRDK	ISA_RC_DKER_INIT_STD_FBL
0x22010006UL	User function block not initialized	Incorrect implementation	Review the implementation	ISA_RC_DKER_INIT_USR_FBL
0x22010007UL	'C' conversions functions not initialized	Incorrect implementation	Review the implementation	ISA_RC_DKER_INIT_CONV_C
0x22010008UL	IOs not initialized	Incorrect implementation	Review the implementation	ISA_RC_DKER_INIT_IOS
0x22010009UL	Driver for the bindings failed to initialize	Creation of the binding memory space or initialization of the binding mechanism failed	Review the implementation	ISA_RC_DKER_INIT_KVB
0x2201000BUL	Initialize Step by step debugging management	File corrupted	Compare with workbench files	ISA_RC_DKER_INIT_DBG

Kernel	Kernel				
Code	Description	Probable Cause	Diagnostic	#define	
0x20000100	RDCC: Target name mismatch.	Incorrect target type selected in the workbench	Compare workbench target type and real target type	ISA_ER_RDCC_BADTGTNAME	
0x20000101	RDCC: Version of generated code & conf mismatch	Version mismatch between the application downloaded on the run-time and the run-time itself	Determine if the proper workbench has been used to develop the application (an old workbench cannot download an application on a newer run-time)	ISA_ER_RDCC_BADRDCCVERS	
0x20000102	RDCC: Data base CRC mismatch.	File corrupted	Compare with workbench files	ISA_ER_RDCC_BADRDBCRC	
0x20000103	RDCC: Module name mismatch.	File corrupted	Compare with workbench files	ISA_ER_RDCC_BADMODNAME	
0x20000104	RDCC: Resource name mismatch.	File corrupted	Compare with workbench files	ISA_ER_RDCC_BADRESNAME	
0x20000105	RDCC: Corrupted module.	File corrupted	Compare with workbench files	ISA_ER_RDCC_CORRUPTMODULE	
0x20000110	K_LDG: Target segmentation mismatch.	Application too large	Reduce the application resource	ISA_ER_LDG_TGTNONSGMTD	

Kernel					
Code	Description	Probable Cause	Diagnostic	#define	
0x20000111	K_LDG: Too many blocks of memory to allocate.	File corrupted	Compare with workbench files	ISA_ER_LDG_TOOMANYBLK	
0x20000112	K_LDG: System variables overlap	File corrupted	Compare with workbench files	ISA_ER_LDG_SYSVAOVERLAP	
0x20000120	KVB: Memory allocated is too short	File corrupted	Compare with workbench files	ISA_ER_KVB_MEMTOOSHORT	
0x20000121	KVB: Cannot load driver	Communication driver error	Review the implementation	ISA_ER_KVB_DRIVERLOAD	
0x20000122	KVB: Driver is not loaded	Not in use	Not applicable	ISA_ER_KVB_DRVNOTLOADED	
0x20000123	KVB: Invalid driver	Communication driver error	Review the implementation	ISA_ER_KVB_DRVINVALID	
0x20000130	K_MDF: Online modification not initialized	Changes made outside the system layer	Compare with the original PRDK	ISA_ER_MDF_NOTINIT	
0x20000131	K_MDF: The "C" function that allocates new data space memory has received from it's input parameter a size equal to zero.	File corrupted	Compare with workbench files	ISA_ER_MDF_ZERODATA	

Kernel				
Code	Description	Probable Cause	Diagnostic	#define
0x20000132	K_MDF: Not enough memory for online modifications	Space reserved for on-line modification is not enough	Increase the Space reserved for on-line modification in the workbench application	ISA_ER_MDF_MEMTOOSHORT
0x20000133	K_MDF: No new modifications to update	File corrupted	Compare with workbench files	ISA_ER_MDF_NOMODIF
0x20000134	K_MDF: Cannot update POU (new objects within it)	File corrupted	Compare with workbench files	ISA_ER_MDF_CHKPOUOBJ
0x20000135	K_MDF: Cannot save modifications, code is not saved	File corrupted	Compare with workbench files	ISA_ER_MDF_SAVENOCODE
0x20000136	SFCFBL: Changes are not allowed	Required function not implemented (example: accepting IO on-line change)	Review the implementation	ISA_ER_MDF_NOTALLOWED
0x20000140	SFCFBL: Error when initializing SFC function block, space is present	Incorrect implementation	Review the implementation	ISA_ER_SFCFBL_SPC_PRESENT
0x20000141	SFCFBL: Error when initializing SFC function block, space allocation failed	Unable to create memory space	Verify the system layer implementation	ISA_ER_SFCFBL_SPC_ALLOC

Kernel	Kernel				
Code	Description	Probable Cause	Diagnostic	#define	
0x20000142	SFCFBL: Table is corrupted	File corrupted	Compare with workbench files	ISA_ER_SFCFBL_TBL_CORRUPTE D	
0x20000180	KER: Slave number not allowed	Incorrect resource number	Change the resource number in the workbench application	ISA_ER_KER_BADSLAVENUM	
0x20000181	KER: Kernel is not in appropriate state	No conf module available	Compare with workbench files	ISA_ER_KER_BADSTATE	
0x20000182	KER: Bad parameters in request	Changes made outside the system layer	Compare with the original PRDK	ISA_ER_KMP_BADPARAM	
0x20000200	SRV: Cannot allocate memory for server.	Unable to create memory space	Verify the system layer implementation	ISA_ER_SRV_MEMORY	
0x20000201	SRV: Cannot create message queue for connection to server	Unable to create message queue	Verify the system layer implementation	ISA_ER_SRV_MSGQ	
0x20000202	SRV: Size of server buffer is smaller than connection message	Changes made outside the system layer	Compare with the original PRDK	ISA_ER_SRV_LENGTHBUFFER	
0x20000203	SRV: Cannot remove connection from server	Changes made outside the system layer	Compare with the original PRDK	ISA_ER_SRV_DELCNX	
0x20000204	SRV: No more connections available	CnxNbr value not enough	Change CnxNbr parameter value	ISA_ER_SRV_FULLCONNECT	

Kernel	Kernel				
Code	Description	Probable Cause	Diagnostic	#define	
0x20000205	SRV: Cannot link with client's message queue	Unable to open message queue	Verify the system layer implementation	ISA_ER_SRV_LINKMSGQ	
0x20000206	SRV: Invalid connection identifier, attempted to read a message from an invalid connection	Changes made outside the system layer	Compare with the original PRDK	ISA_ER_SRV_BADCNX	
0x20000207	SRV: The question that the server read is larger than its buffer. The question is discarded	Message queue corrupted	Verify the system layer implementation	ISA_ER_SRV_MSGDISCARDED	
0x20000208	SRV: Time out in received message	Not in use	Not applicable	ISA_ER_SRV_RCVTIMEOUT	
0x20000209	SRV: Server replied with a bad TRC	Not in use	Not applicable	ISA_ER_SRV_TRCERROR	

Kernel Warning				
Code	Description	Probable Cause	Diagnostic	#define
0x0001	Startup error	Initialize Kernel core System error	Verify the system layer implementation	ISA_KWNG_STARTUP
0x0002	Server communication exchange: Accept error	Not in use	Not applicable	ISA_KWNG_SRVACC

Kernel W	Kernel Warning					
Code	Description	Probable Cause	Diagnostic	#define		
0x0003	Resource Restore error	Unable to restore saved resource	Verify the system layer implementation	ISA_KWNG_RESTORE		
0x0004	Kernel Retain: Init error.	Unable to initialize retain	Verify the system layer implementation	ISA_KWNG_RTNINIT		
0x0005	Kernel Retain: Bad memory description	Memory description too long	Change memory description in the workbench application	ISA_KWNG_RTNMEM		
0x0006	Kernel Retain: CRC error	File corrupted	Verify the system layer implementation	ISA_KWNG_RTNCRC		
0x0007	Kernel Retain: Read error	Unable to read	Verify the system layer implementation	ISA_KWNG_RTNREAD		
0x0008	Kernel Retain: Write error	Unable to write	Verify the system layer implementation	ISA_KWNG_RTNWRITE		
0x0009	Resource Data Allocation error	File corrupted	Compare with workbench files	ISA_KWNG_DATAALLOC		
0x000A	Resource Start Report	Resource started workbench	Verify the workbench state	ISA_KWNG_RSTART		
0x000B	Resource Stop Report	Resource stopped by the workbench	Verify the workbench state	ISA_KWNG_RSTOP		
0x000C	Standard function not implemented	Changes made outside the system layer	Compare with the original PRDK	ISA_KWNG_USFSTDCALL_NOTIMP LEM		

Kernel W	Kernel Warning				
Code	Description	Probable Cause	Diagnostic	#define	
0x000D	Standard function block instance init not implemented	Changes made outside the system layer	Compare with the original PRDK	ISA_KWNG_FBLSTDIINIT_NOTIMPL EM	
0x000E	Standard function block instance exit not implemented	Changes made outside the system layer	Compare with the original PRDK	ISA_KWNG_FBLSTDIEXIT_NOTIMP LEM	
0x000F	Standard function block call not implemented	Changes made outside the system layer	Compare with the original PRDK	ISA_KWNG_FBLSTDCALL_NOTIMP LEM	
0x0010	Function not implemented	Declared in the workbench but not exist in the target	Review the implementation	ISA_KWNG_USF_FCTNOTFOUND	
0x0011	Function block instance init required but not implemented	Declared in the workbench but not exist in the target	Review the implementation	ISA_KWNG_FBLIINIT_NOTIMPLEM	
0x0012	Function block instance exit required but not implemented	Declared in the workbench but not exist in the target	Review the implementation	ISA_KWNG_FBLIEXIT_NOTIMPLEM	
0x0013	Function block call not implemented	Declared in the workbench but not exist in the target	Review the implementation	ISA_KWNG_FBLCALL_NOTIMPLEM	
0x0014	Function not implemented	Declared in the workbench but not exist in the target	Review the implementation	ISA_KWNG_CNV_FCTNOTFOUND	

Kernel W	Kernel Warning				
Code	Description	Probable Cause	Diagnostic	#define	
0x0015	Initialize IO management error	Declared in the workbench but not exist in the target	Review the implementation	ISA_KWNG_IOSINIT	
0x0016	Kernel IOs: Device Open/Close fct(s) not found	Declared in the workbench but not exist in the target	Review the implementation	ISA_KWNG_IOSDRV_FCTNOTFOUN D	
0x0017	Kernel IOs: Device Open/Close fct(s) not found	Declared in the workbench but not exist in the target	Review the implementation	ISA_KWNG_IOSDVC_FCTNOTFOUN D	
0x0018	Kernel IOs: Device read Function not found	Declared in the workbench but not exist in the target	Review the implementation	ISA_KWNG_IOSDVCR_FCTNOTFOU ND	
0x0019	Device write Function no found	Declared in the workbench but not exist in the target	Review the implementation	ISA_KWNG_IOSDVCW_FCTNOTFO UND	
0x001A	Kernel IOs: Device Control fct not found	Declared in the workbench but not exist in the target	Review the implementation	ISA_KWNG_IOSDVCCTL_FCTNOTF OUND	
0x001B	Kernel IOs: Driver Init fct failure	Incorrect implementation	Review the implementation	ISA_KWNG_IOSDRV_INITFAIL	
0x001C	Kernel IOs: Device Open function failure	Incorrect implementation	Review the implementation	ISA_KWNG_IOSDVC_OPENFAIL	

Kernel W	Kernel Warning				
Code	Description	Probable Cause	Diagnostic	#define	
0x001D	Kernel Binding: Driver not found	A binding driver configured in an application cannot be found on the run-time	Review the implementation. Due to a mistmach between the TDB file used by the workbench and the definition of the run-time.	ISA_KWNG_KVBDRVNOTFOUND	
0x001E	Kernel Binding: Init error	Creation of the binding memory space or initialization of the binding mechanism failed	Review the implementation	ISA_KWNG_KVBINIT	
0x001F	Kernel TIC: Unknown tic code	File corrupted	Compare with workbench files	ISA_KWNG_TICDEC	
0x0020	Unknown data type on conversion	File corrupted	Compare with workbench files	ISA_KWNG_TICCNV	
0x0021	TIC Boundary check check error	Access out of range in the variable array	Review the workbench application	ISA_KWNG_TICBNDCHK	
0x0022	Kernel TIC: SINT divided by zero	Divided by zero	Review the workbench application	ISA_KWNG_TICSINTDIVZ	

Kernel W	Kernel Warning				
Code	Description	Probable Cause	Diagnostic	#define	
0x0023	Kernel TIC: DINT divided by zero	Divided by zero	Review the workbench application	ISA_KWNG_TICDINTDIVZ	
0x0024	Kernel TIC: REAL divided by zero	Divided by zero	Review the workbench application	ISA_KWNG_TICREALDIVZ	
0x0025	Dynamic SFC behaviour: Behaviour processing error	Incorrect implementation	Review the workbench application	ISA_KWNG_SFCEVO	
0x0026	Dynamic SFC behaviour: Action Execution error	Changes made outside the system layer	Compare with the original PRDK	ISA_KWNG_SFCACT	
0x0027	Cycle Time Overflow	Cycle time too low	Increase the cycle time in the workbench application	ISA_KWNG_TCYOVERFLOW	
0x0028	Dynamic SFC behaviour: Initialisation error	Declared in the workbench but not exist in the target	Review the implementation	ISA_KWNG_SFCINIT	
0x0029	Kernel TIC: INT divided by zero	Divided by zero	Review the workbench application	ISA_KWNG_TICINTDIVZ	
0x0030	Kernel TIC: LINT divided by zero	Divided by zero	Review the workbench application	ISA_KWNG_TICLINTDIVZ	

Kernel W	Kernel Warning				
Code	Description	Probable Cause	Diagnostic	#define	
0x0031	Kernel TIC: USINT divided by zero	Divided by zero	Review the workbench application	ISA_KWNG_TICUSINTDIVZ	
0x0032	Kernel TIC: UINT divided by zero	Divided by zero	Review the workbench application	ISA_KWNG_TICUINTDIVZ	
0x0033	Kernel TIC: UDINT divided by zero	Divided by zero	Review the workbench application	ISA_KWNG_TICUDINTDIVZ	
0x0034	Kernel TIC: ULINT divided by zero	Divided by zero	Review the workbench application	ISA_KWNG_TICULINTDIVZ	
0x0035	Kernel TIC: LREAL divided by zero	Divided by zero	Review the workbench application	ISA_KWNG_TICLREALDIVZ	
0x0036	Kernel TIC: Call stack overflow	The running application requires a call stack depth higher than what is supported by the run-time	Review the application	ISA_KWNG_TICCALLSTKOVERFLO W	
0x0037	Kernel TIC: Soft watch dog called	The execution cycle is higher than the limit defined in the run-time	Review run-time implementation or application	ISA_KWNG_TICSOFTWDOG	

System Layer	System Layer				
Code	Description	Probable Cause	Diagnostic	#define	
0x20000001	SYS: Too many inits have been done	Changes made outside the system layer	Compare with the original PRDK	ISA_ER_SYS_TOOMANYINIT	
0x20000002	SYS: Bad owner number (generaly to high)	Incorrect implementation	Review the implementation	ISA_ER_SYS_OWNERNUM	
0x20000003	SYS: Bad user number (generaly to high)	Incorrect implementation	Review the implementation	ISA_ER_SYS_USERNUM	
0x20000004	SYS: Bad object number (generaly to high)	Incorrect implementation	Review the implementation	ISA_ER_SYS_OBJNUM	
0x20000010	SPC: Invalid space identifier	Incorrect implementation	Review the implementation	ISA_ER_SPC_ID	
0x20000011	SPC: Owner number is not available	Incorrect implementation	Review the implementation	ISA_ER_0x0011	
0x20000012	SPC: Cannot create memory block	Incorrect implementation	Review the implementation	ISA_ER_SPC_CREATE	
0x20000013	SPC: Cannot create memory block when already exists	Incorrect implementation	Review the implementation	ISA_ER_SPC_CREATE_ALREADYEXIST	
0x20000014	SPC: Cannot delete memory block	Incorrect implementation	Review the implementation	ISA_ER_SPC_DELETE	

System Layer	System Layer				
Code	Description	Probable Cause	Diagnostic	#define	
0x20000015	SPC: Cannot link with memory block. The memory block has been deleted or does not exist.	Incorrect implementation	Review the implementation	ISA_ER_SPC_LINK	
0x20000016	SPC: Cannot unlink with memory block	Incorrect implementation	Review the implementation	ISA_ER_SPC_UNLINK	
0x20000017	SPC: Cannot save space	Incorrect implementation	Review the implementation	ISA_ER_SPC_SAVE	
0x20000018	SPC: Cannot load space into memory block	Incorrect implementation	Review the implementation	ISA_ER_SPC_LOAD	
0x20000019	SPC: Cannot load space, space does not exist	Incorrect implementation	Review the implementation	ISA_ER_SPC_LOAD_NOTEXIST	
0x2000001A	SPC: Cannot remove saved space	Incorrect implementation	Review the implementation	ISA_ER_SPC_BKUP_REMOVE	
0x20000020	SEM: Invalid semaphore identifier	Incorrect implementation	Review the implementation	ISA_ER_SEM_ID	
0x20000021	SEM: Owner number is not available	Incorrect implementation	Review the implementation	ISA_ER_SEM_0x0021	

System Layer	System Layer				
Code	Description	Probable Cause	Diagnostic	#define	
0x20000022	SEM: Cannot create semaphore	Incorrect implementation	Review the implementation	ISA_ER_SEM_CREATE	
0x20000023	SEM: Semaphore already exists, semaphore already exists	Incorrect implementation	Review the implementation	ISA_ER_SEM_CREATE_ALREADYEXIST	
0x20000024	SEM: Cannot delete semaphore	Incorrect implementation	Review the implementation	ISA_ER_SEM_DELETE	
0x20000025	SEM: Cannot link with semaphore. The sempahore has been deleted or does not exist.	Incorrect implementation	Review the implementation	ISA_ER_SEM_OPEN	
0x20000026	SEM: Cannot close semaphore	Incorrect implementation	Review the implementation	ISA_ER_SEM_CLOSE	
0x20000027	SEM: Cannot take semaphore	Incorrect implementation	Review the implementation	ISA_ER_SEM_TAKE	
0x20000028	SEM: Time out is reached taking semaphore	Incorrect implementation	Review the implementation	ISA_ER_SEM_TAKETIMEOUT	
0x20000029	SEM: Error releasing semaphore	Incorrect implementation	Review the implementation	ISA_ER_SEM_GIVE	

System Layer	System Layer				
Code	Description	Probable Cause	Diagnostic	#define	
0x20000030	MSGQ: Invalid message queue identifier	Incorrect implementation	Review the implementation	ISA_ER_MSGQ_ID	
0x20000031	MSGQ: Cannot create message queue	Incorrect implementation	Review the implementation	ISA_ER_MSGQ_CREATE	
0x20000032	MSGQ: Cannot create message queue, message queue already exists	Incorrect implementation	Review the implementation	ISA_ER_MSGQ_CREATE_ALREADYEXIST	
0x20000033	MSGQ: Cannot create message queue, the size of message queue is too large	Incorrect implementation	Review the implementation	ISA_ER_MSGQ_CREATE_SIZE	
0x20000034	MSGQ: Cannot create message queue, the length of messages is too large	Incorrect implementation	Review the implementation	ISA_ER_MSGQ_CREATE_MSGTOOLONG	
0x20000035	MSGQ: Cannot delete message queue	Incorrect implementation	Review the implementation	ISA_ER_MSGQ_DEL	

System Layer	System Layer				
Code	Description	Probable Cause	Diagnostic	#define	
0x20000036	MSGQ: Cannot link with message queue. The message queue has been deleted or does not exist	Incorrect implementation	Review the implementation	ISA_ER_MSGQ_OPEN	
0x20000037	MSGQ: Cannot close message queue	Incorrect implementation	Review the implementation	ISA_ER_MSGQ_CLOSE	
0x20000038	MSGQ: Cannot send message to message queue	Incorrect implementation	Review the implementation	ISA_ER_MSGQ_SEND	
0x20000039	MSGQ: Cannot send message, time out reached	Incorrect implementation	Review the implementation	ISA_ER_MSGQ_SEND_TIMEOUT	
0x2000003A	MSGQ: Cannot send message, message is too large	Incorrect implementation	Review the implementation	ISA_ER_MSGQ_SEND_TOOLONG	
0x2000003B	MSGQ: Priority parameter is incorrect, message priority is unknown	Incorrect implementation	Review the implementation	ISA_ER_MSGQ_SEND_PRIORITY	

System Layer	System Layer					
Code	Description	Probable Cause	Diagnostic	#define		
0x2000003C	MSGQ: Cannot read message from message queue	Incorrect implementation	Review the implementation	ISA_ER_MSGQ_RCV		
0x2000003D	MSGQ: Time out is reached receiving message	Incorrect implementation	Review the implementation	ISA_ER_MSGQ_RCV_TIMEOUT		
0x2000003E	MSGQ: The message is discarded. The buffer is too small.	Incorrect implementation	Review the implementation	ISA_ER_MSGQ_DISCARDED		
0x2000003F	MSGQ: Cannot send message, no message available from pool	Incorrect implementation	Review the implementation	ISA_ER_MSGQ_SEND_OVERFLOW		
0x20000050	NTF: Cannot install handler routine	Incorrect implementation	Review the implementation	ISA_ER_NTF_INSTALL		
0x20000051	NTF: Cannot open notification	Incorrect implementation	Review the implementation	ISA_ER_NTF_OPEN		
0x20000052	NTF: Cannot send notification, invalid notif signal identifier	Incorrect implementation	Review the implementation	ISA_ER_NTF_SIGNAL		
0x20000060	DSA: Invalid name	Incorrect implementation	Review the implementation	ISA_ER_DSA_NAME		

System Layer	System Layer					
Code	Description	Probable Cause	Diagnostic	#define		
0x02030061	DSA: Cannot open DSA	Incorrect implementation	Review the implementation	ISA_ER_DSA_OPEN		
0x20000062	DSA: Cannot remove DSA	Incorrect implementation	Review the implementation	ISA_ER_DSA_REMOVE		
0x20000063	DSA: Cannot create DSA	Incorrect implementation	Review the implementation	ISA_ER_DSA_CREATE		
0x20000064	DSA: Cannot write DSA	Incorrect implementation	Review the implementation	ISA_ER_DSA_WRITE		
0x20000065	DSA: Cannot read DSA	Incorrect implementation	Review the implementation	ISA_ER_DSA_READ		
0x20000066	DSA: DSA does not exist	Incorrect implementation	Review the implementation	ISA_ER_DSA_NOTEXIST		
0x20000067	DSA: DSA does not exist	Incorrect implementation	Review the implementation	ISA_ER_DSA_INIT		
0x20000068	DSA: Error in reading DSA	Incorrect implementation	Review the implementation	ISA_ER_DSA_SEEK		
0x20000070	TSK: Task is not running	Incorrect implementation	Review the implementation	ISA_ER_TSK_NOTRUNNING		
0x20000071	TSK: Cannot create task.	Incorrect implementation	Review the implementation	ISA_ER_TSK_CREATE		
0x20000072	TSK: Cannot terminate task.	Incorrect implementation	Review the implementation	ISA_ER_TSK_TERMINATE		
0x20000073	TSK: Cannot create thread	Incorrect implementation	Review the implementation	ISA_ER_THR_CREATE		

System Layer	System Layer					
Code	Description	Probable Cause	Diagnostic	#define		
0x20000074	TSK: Cannot terminate thread	Incorrect implementation	Review the implementation	ISA_ER_THR_TERMINATE		
0x20000075	TSK: Cannot restart a task	Incorrect implementation	Review the implementation	ISA_ER_TSK_RESTART		
0x20000080	SOC: Socket initialization failed	Incorrect implementation	Review the implementation	ISA_ER_SOC_INIT		
0x20000081	SOC: Cannot create socket	Incorrect implementation	Review the implementation	ISA_ER_SOC_CREATE		
0x20000082	SOC: Cannot bind socket	Incorrect implementation	Review the implementation	ISA_ER_SOC_BIND		
0x20000083	SOC: Cannot listen to socket	Incorrect implementation	Review the implementation	ISA_ER_SOC_LISTEN		
0x20000084	SOC: Cannot accept a socket, connection failed	Incorrect implementation	Review the implementation	ISA_ER_SOC_ACCEPT		
0x20000085	SOC: Invalid address	Incorrect implementation	Review the implementation	ISA_ER_SOC_ADDRESS		
0x20000086	SOC: Cannot connect a socket	Incorrect implementation	Review the implementation	ISA_ER_SOC_CONNECT		
0x20000087	SOC: Connection is broken	Incorrect implementation	Review the implementation	ISA_ER_SOC_BROKEN		
0x20000088	SOC: Error receiving data from socket	Incorrect implementation	Review the implementation	ISA_ER_SOC_RECEIVE		

System Layer					
Code	Description	Probable Cause	Diagnostic	#define	
0x20000089	SOC: Error sending data on socket	Incorrect implementation	Review the implementation	ISA_ER_SOC_SEND	
0x2000008A	SOC: Change option has failed	Incorrect implementation	Review the implementation	ISA_ER_SOC_OPTION	
0x2000008B	SOC: Command not implemented	Incorrect implementation	Review the implementation	ISA_ER_SOC_NOTIMPLEMENTED	

I/Os	I/Os					
Code	Description	Probable Cause	Diagnostic	#define		
0x02050001UL	Invalid number of errors	Changes made outside the system layer	Compare with the original PRDK	ISA_RC_DSYS_NBROFERR		
0x02050002UL	Semaphore can't be created	Incorrect implementation	Review the implementation	ISA_RC_DSYS_SEMCREATE		
0x02050003UL	Open semaphore failed	Incorrect implementation	Review the implementation	ISA_RC_DSYS_SEMOPEN		
0x02050004UL	Take semaphore failed	Incorrect implementation	Review the implementation	ISA_RC_DSYS_SEMTAKE		
0x02050005UL	Space can be created	Incorrect implementation	Review the implementation	ISA_RC_DSYS_SPCCREATE		
0x02050006UL	Space cannot be deleted	Incorrect implementation	Review the implementation	ISA_RC_DSYS_SPCDELETE		

/Os					
Code	Description	Probable Cause	Diagnostic	#define	
0x02050007UL	Link to space failed	Incorrect implementation	Review the implementation	ISA_RC_DSYS_SPCLINK	
0x02050008UL	Unlink to space failed	Incorrect implementation	Review the implementation	ISA_RC_DSYS_SPCUNLINK	
0x02050009UL	Error if the space failed	Incorrect implementation	Review the implementation	ISA_RC_DSYS_WNGSET	
0x0205000AUL	Warning stack is empty	Incorrect implementation	Review the implementation	ISA_RC_DSYS_SPCEMPTY	

Host System Driver Binding						
Code	Description	Probable Cause	Diagnostic	#define		
0x20000630	Host System Driver Binding: Incompatible version of binding table (Bad CRC)	CRC mismatch in the data exchanged through the binding	Review the implementation	ISA_ER_HSD_KVB_CRC		
0x20000631	Host System Driver Binding: Produced variables are not refresh since the maximum time allowed	Timeout occured during binding communication over the HSD	Producer has been switched off	ISA_ER_HSD_KVB_TIMEOUT		

Host System Driver Binding					
Code	Description	Probable Cause	Diagnostic	#define	
0x20000632	Host System Driver Binding: There is no producer	The producing resource has been stopped or the connection properties are incorrect	Restart the producing resource or review the connection properties	ISA_ER_HSD_KVB_KERNELSTOP	
0x20000633	Host System Driver Binding: Service not implemented	Service not implemented	Review the implementation	ISA_ER_HSD_KVB_SERVICE	

eXchange Dispatcher (IXD)					
Code	Description	Probable Cause	Diagnostic	#define	
0x22070001	IXD: Initialization of IXL failed	Changes made outside the system layer	Compare with the original PRDK	ISA_RC_DIXD_IXLINIT	
0x22070002	IXD: Initialization of IXS failed	Changes made outside the system layer	Compare with the original PRDK	ISA_RC_DIXD_IXSINIT	
0x20000400	IXD: Allocation error.	Incorrect implementation	Review the implementation	ISA_ER_IXD_ALLOC	
0x20000401	IXD: Trying to connect to unknown resource	Not in use	Not applicable	ISA_ER_IXD_RES_NOT_FOUND	

eXchange Dispatcher (IXD)					
Code	Description	Probable Cause	Diagnostic	#define	
0x20000402	IXD: Network configuration not loaded	Not in use	Not applicable	ISA_ER_IXD_CFG_NOT_LOAD	
0x20000403	IXD: Network configuration not found	Not in use	Not applicable	ISA_ER_IXD_CFG_NOT_FOUND	
0x20000404	IXD: Operation fails due to system error	Dialog not yet established	Call StartDialog before sending requests over IXL	ISA_ER_IXD_SYSTEM	
0x20000405	IXD: Received data for a closed connection	Not in use	Not applicable	ISA_ER_IXD_DATA_TO_CLOSED_CX	
0x20000406	IXD: No more connections are available	No connection available	Increase the value of the IXD_DEFAULT_C HANNELNBR or ISA_CNXNBR define	ISA_ER_IXD_NO_CNX_AVAILABLE	
0x20000407	IXD: Bad connection identifier	Bad connection identifier used over the communication	Disconnect and reconnect to the run-time	ISA_ER_IXD_BAD_CNX_ID	

eXchange Dispa	eXchange Dispatcher (IXD)					
Code	Description	Probable Cause	Diagnostic	#define		
0x20000408	IXD: Too many pending message at a time	Received too many messages at once	Increase the value of the IXD_DEFAULT_ MSGBYCHANNE L define	ISA_ER_IXD_TOOMANY_MSG_ATATI ME		
0x20000409	IXD: IXD buffer is too short.	Communication buffer is too small	Increase the value of the IXD_DEFAULT_ MSGPROCSZ define	ISA_ER_IXD_MSGOVERFLOW		
0x2000040A	IXD: Connection timeout	Communication timeout	Disconnect and reconnect to the run-time	ISA_ER_IXD_CNXTIMEOUT		
0x2000040B	IXD: Request timeout	Communication timeout	Disconnect and reconnect to the run-time	ISA_ER_IXD_NIDTIMEOUT		
0x02070408	IXD: Too many pending message at a time.	Changes made outside the system layer	Compare with the original PRDK	ISA_ER_IXD_TOOMANY_MSG_ATATI ME		

eXchange Layer (IXL)					
Code	Description	Probable Cause	Diagnostic	#define	
0x20000500	ISXL: Memory block allocated for device is too short	File corrupted	Compare with workbench files	ISA_ER_ISXL_CONFIG	
0x20000501	ISXL: Cannot establish connection	Changes made outside the system layer	Compare with the original PRDK	ISA_ER_ISXL_CONNECT	
0x20000502	ISXL: Cannot remove connection	Changes made outside the system layer	Compare with the original PRDK	ISA_ER_ISXL_DISCONNECT	
0x20000503	ISXL: Cannot read variables	Changes made outside the system layer	Compare with the original PRDK	ISA_ER_ISXL_READ	
0x20000504	ISXL: Too late too change device (connection maybe already established)	Changes made outside the system layer	Compare with the original PRDK	ISA_ER_ISXL_CFG_TOOLATE	
0x20000505	ISXL: Cannot set device parameters	File corrupted	Compare with workbench files	ISA_ER_ISXL_CONFIGPARAM	
0x20000506	ISXL: The memory block allocated for connection is too short	Changes made outside the system layer	Compare with the original PRDK	ISA_ER_ISXL_CONNECTMEM	
0x20000507	ISXL: Time out	Incorrect implementation	Review the implementation	ISA_ER_ISXL_TIMEOUT	

eXchange Layer (IXL)				
Code	Description	Probable Cause	Diagnostic	#define
0x20000508	ISXL: An error occurs during the transport of message.	Incorrect implementation	Review the implementation	ISA_ER_ISXL_TRANSPORTFAILED
0x20000509	ISXL: The RQ code not corresponding	Changes made outside the system layer	Compare with the original PRDK	ISA_ER_ISXL_RQ
0x2000050A	ISXL: The maximum capacity of the buffer is reached.	Changes made outside the system layer	Compare with the original PRDK	ISA_ER_ISXL_OVERFLOW
0x2000050B	ISXL: The notification identifier is wrong	Changes made outside the system layer	Compare with the original PRDK	ISA_ER_ISXL_NOTIFID
0x2000050C	ISXL: Bad return check or error during the transport	Changes made outside the system layer	Compare with the original PRDK	ISA_ER_ISXL_RC
0x2000050D	ISXL: Cannot remove connection	Changes made outside the system layer	Compare with the original PRDK	ISA_ER_ISXL_DELCNX
0x2000050E	ISXL: This function required a header for the buffer.	Changes made outside the system layer	Compare with the original PRDK	ISA_ER_ISXL_HEADERTOOSMALL
0x2000050F	ISXL: Unknown type	Changes made outside the system layer	Compare with the original PRDK	ISA_ER_ISXL_UNKNOWNTYPE

eXchange Layer (IXL)				
Code	Description	Probable Cause	Diagnostic	#define
0x20000510	ISXL: Bad index number	Changes made outside the system layer	Compare with the original PRDK	ISA_ER_ISXL_BADVANUMBER
0x20000511	ISXL: Start dialog is not allowed (maybe dialog is already established)	Changes made outside the system layer	Compare with the original PRDK	ISA_ER_ISXL_STRTDLG
0x20000512	ISXL: Stop dialog is not allowed	Changes made outside the system layer	Compare with the original PRDK	ISA_ER_ISXL_STPDLG
0x20000513	ISXL: Start dialog has failed	Changes made outside the system layer	Compare with the original PRDK	ISA_ER_ISXL_STRTDLGFAILED
0x20000514	ISXL: An error has occurred during the stop dialog procedure.	Changes made outside the system layer	Compare with the original PRDK	ISA_ER_ISXL_STPDLGFAILED
0x20000515	ISXL: Start not in progress	Changes made outside the system layer	Compare with the original PRDK	ISA_ER_ISXL_STRTINPROG
0x20000516	ISXL: Stop not in progress	Changes made outside the system layer	Compare with the original PRDK	ISA_ER_ISXL_STPINPROG
0x20000518	ISXL: Dialog is not established	Changes made outside the system layer	Compare with the original PRDK	ISA_ER_ISXL_DLG_NOT_STARTED

eXchange Layer (IXL)				
Code	Description	Probable Cause	Diagnostic	#define
0x20000519	ISXL: Error in variable description	Changes made outside the system layer	Compare with the original PRDK	ISA_ER_ISXL_VARDESC
0x2000051A	ISXL: Method not provided by the driver or invalid method	Changes made outside the system layer	Compare with the original PRDK	ISA_ER_ISXL_MTH_NO_AVBLE
0x2000051B	ISXL: Service not provided by the driver or invalid service	Changes made outside the system layer	Compare with the original PRDK	ISA_ER_ISXL_SERVICE
0x2000051C	ISXL: Size allowed for this variable is too short	Changes made outside the system layer	Compare with the original PRDK	ISA_ER_ISXL_DATAOVERFLOW
0x2000051D	ISXL: Only one connection by resource and by method allowed	Changes made outside the system layer	Compare with the original PRDK	ISA_ER_ISXL_CNX_1BYRESOURCE
0x2000051F	ISXL: Bad extra parameters for connection	Incorrect implementation	Review the implementation	ISA_ER_ISXL_CNX_EXTRAPARAM
0x20000520	ISXL: Request cannot be proceeded, retry later	Incorrect implementation	Review the implementation	ISA_ER_ISXL_NEEDWAIT
0x20000521	ISXS: Cannot establish connection, no more free IXS connections available	Incorrect implementation	Review the implementation	ISA_ER_ISXS_NO_FREE_CNX

eXchange Layer (IXL)				
Code	Description	Probable Cause	Diagnostic	#define
0x20000522	ISXL: Routing feature is not implemented	Changes made outside the system layer	Compare with the original PRDK	ISA_ER_ISXL_RTG_NOTIMPLEM
0x20000523	ISXL: Cannot write variables	Changes made outside the system layer	Compare with the original PRDK	ISA_ER_ISXL_WRITE
0x20000530	IXL: Invalid IXL identifier	Changes made outside the system layer	Compare with the original PRDK	ISA_ER_IXL_ID
0x20000531	IXL: Too many calls to IXL init.	Changes made outside the system layer	Compare with the original PRDK	ISA_ER_IXL_TOOMANYINIT
0x20000532	IXL: Clients cannot have the same number	Incorrect implementation	Review the implementation	ISA_ER_IXL_INITCLIENTNUM
0x20000533	IXL: The configuration completed successfully.	All IXL drivers have been initialized properly		ISA_ER_IXL_REGISTRATIONOK
0x20000534	IXL: Cannot register the driver, its name is invalid	Incorrect implementation	Review the implementation	ISA_ER_IXL_REGISTERNAME
0x20000535	IXL: Cannot register the driver, a parameter is NULL	Incorrect implementation	Review the implementation	ISA_ER_IXL_REGISTER

eXchange Layer (IXL)				
Code	Description	Probable Cause	Diagnostic	#define
0x20000536	IXL: Cannot register driver, maximum driver is reached	Incorrect implementation	Review the implementation	ISA_ER_IXL_MAXDRV
0x20000537	IXL: Cannot configure all drivers	Incorrect implementation. The RSI driver in the target may not be configured. The RSI driver (serial driver) is not mandatory for an target.	Review the implementation	ISA_ER_IXL_CONFIGDRIVER
0x20000538	IXL: Invalid connection identifier	Incorrect implementation	Review the implementation	ISA_ER_IXL_BADCNXID
0x20000539	IXL: Cannot establish connection, maximum connection is reached	Incorrect implementation	Review the implementation	ISA_ER_IXL_MAXCNX
0x2000053A	IXL: Cannot establish connection, driver is unknown	Incorrect implementation	Review the implementation	ISA_ER_IXL_UNKNOWNDRV
0x2000053B	IXL: IXL buffer is too short	Incorrect implementation	Review the implementation	ISA_ER_IXL_MSGOVERFLOW
0x2000053C	IXL: This capability is not implemented.	Incorrect implementation	Review the implementation	ISA_ER_IXL_BADCAPS
eXchange Layer (IXL)				
----------------------	--	---	--------------------------------	-----------------------------
Code	Description	Probable Cause	Diagnostic	#define
0x2000053D	IXL: Parameters are bad	Incorrect implementation	Review the implementation	ISA_ER_IXL_PARAM
0x2000053E	IXL: Bad RQ	Incorrect implementation	Review the implementation	ISA_ER_IXL_RQ
0x2000053F	IXL: Kernel problem in executing request	Incorrect implementation	Review the implementation	ISA_ER_IXL_RC
0x20000540	IXL: Symbol table is not loaded	Incorrect implementation	Review the implementation	ISA_ER_IXL_SYM_NOTLOADED
0x20000541	IXL: Maximum iteration is reached in symbol management	Changes made outside the system layer	Compare with the original PRDK	ISA_ER_IXL_SYM_ITERATIONMAX
0x20000542	IXL: Variable is unknown	Changes made outside the system layer	Compare with the original PRDK	ISA_ER_IXL_SYM_VAR_UNKNOWN
0x20000543	IXL: Type or Sub-type is unknown	Changes made outside the system layer	Compare with the original PRDK	ISA_ER_IXL_SYM_TYP_UNKNOWN
0x20000544	IXL: Symbols mismatch	Changes made outside the system layer	Compare with the original PRDK	ISA_ER_IXL_SYM_MISMATCH
0x20000545	IXL: Symbols mismatch, bad CRC	Changes made outside the system layer	Compare with the original PRDK	ISA_ER_IXL_SYM_CRC

eXchange Layer (IXL)				
Code	Description	Probable Cause	Diagnostic	#define
0x20000546	IXL: Symbols mismatch, bad resource name	Changes made outside the system layer	Compare with the original PRDK	ISA_ER_IXL_SYM_RESNAME
0x20000547	IXL: End of symbols is reached or stop is required	Changes made outside the system layer	Compare with the original PRDK	ISA_ER_IXL_SYM_END
0x20000548	IXL: Symbols are corrupted	Changes made outside the system layer	Compare with the original PRDK	ISA_ER_IXL_SYM_CORRUPTED
0x20000549	IXL: Symbols are already loaded	Changes made outside the system layer	Compare with the original PRDK	ISA_ER_IXL_SYM_ALREADYLOADE D
0x2000054A	IXL: Symbols are currently loading	Changes made outside the system layer	Compare with the original PRDK	ISA_ER_IXL_SYM_LOADING
0x2000054B	IXL: Both IXL versions cannot coexist	Changes made outside the system layer	Compare with the original PRDK	ISA_ER_IXL_SYM_BADVERSION
0x2000054C	IXL: Device is unknown.	Changes made outside the system layer	Compare with the original PRDK	ISA_ER_IXL_SYM_DEV_UNKNOWN

eXchange Layer (IXL)				
Code	Description	Probable Cause	Diagnostic	#define
0x2000054D	IXL: Syntax error.	File corrupted	Compare with workbench files	ISA_ER_IXL_SYM_BADSYNTAX
0x2000054E	IXL: Symbols table is incomplete, it is reduced one	File corrupted	Compare with workbench files	ISA_ER_IXL_SYM_NOTCOMPLETE

ETCP Binding				
Code	Description	Probable Cause	Diagnostic	#define
0x20000730	ETCP-KVB: Host address not resolved	Cannot resolve the IP address provided in the binding configuration	Verify the device connection to the network and review the state of the IP stack	ISA_ER_ETCP_KVB_ADDRESS
0x20000731	ETCP-KVB: No remote resource found	The resource to be connected is local on the device	Review the application to use the HSD driver for local resources. The ETCP driver is for use with remote resources.	ISA_ER_ETCP_KVB_RES_LOCAL
0x20000732	ETCP-KVB: ETCP Server is not running	Cannot connect to the ETCP task	Verify that the ETCP task is running	ISA_ER_ETCP_KVB_NO_SERVER

ETCP Bindi	ETCP Binding				
Code	Description	Probable Cause	Diagnostic	#define	
0x20000733	ETCP-KVB: This resource has no variables to bind.	No variables to consume or produce	Review the application	ISA_ER_ETCP_KVB_NO_VARIABLES	
0x20000734	ETCP-KVB: Service not implemented	Service not implemented	Review the implementation	ISA_ER_ETCP_KVB_SERVICE	
0x20000735	ETCP-KVB: This variable is not bound by the ETCP driver.	The variable address cannot be found	Review the application, then rebuild and redownload it	ISA_ER_ETCP_KVB_VA_NOT_FOUND	
0x20000736	ETCP-KVB: This resource is not bound by the ETCP driver.	The resource to bind with cannot be found	Review the application, then rebuild and redownload it	ISA_ER_ETCP_KVB_RES_NOT_FOUN D	

ETCP Task				
Code	Description	Probable Cause	Diagnostic	#define
0x20000410	CRU: Bad channel identifier	Changes made outside the system layer	Compare with the original PRDK	ISA_ER_CRU_BAD_CH_ID
0x20000411	CRU: Channel table full	Changes made outside the system layer	Compare with the original PRDK	ISA_ER_CRU_CH_TABLE_FULL

ETCP Task				
Code	Description	Probable Cause	Diagnostic	#define
0x20000412	CRU: Connection refused	Changes made outside the system layer	Compare with the original PRDK	ISA_ER_CRU_CX_REFUSED
0x20000413	CRU: Operation has no effect	Changes made outside the system layer	Compare with the original PRDK	ISA_ER_CRU_NO_EFFECT
0x20000414	CRU: Attempt to access closed socket	Changes made outside the system layer	Compare with the original PRDK	ISA_ER_CRU_CLOSED_CX
0x20000415	CRU: No IXD to accept connection	Changes made outside the system layer	Compare with the original PRDK	ISA_ER_CRU_NO_IXD
0x20000416	CRU: Connection refused (out of space)	Changes made outside the system layer	Compare with the original PRDK	ISA_ER_CRU_OUT_OF_SPACE
0x20000417	CRU: Bad parameters related to channel operation	Incorrect implementation	Review the implementation	ISA_ER_CRU_BAD_PARAM
0x20000418	CRU: Server is overloaded: Retry later	Incorrect implementation	Review the implementation	ISA_ER_CRU_OVERLOADED

ETCP Task				
Code	Description	Probable Cause	Diagnostic	#define
0x20000420	VRU: Error during binding: common Data eXchange Space full	Not enough memory to manage connections	Increase either of the following defines: ETCP_DEF_ESCT _NB_ENTRIES, ETCP_DEF_ISCT _NB_ENTRIES, ETCP_DEF_RBIT _NB_ENTRIES, or ETCP_DEF_RCT_ NB_ENTRIES	ISA_ER_VRU_DXS_FULL
0x20000421	VRU: Cannot link to producer	Incorrect implementation	Review the implementation	ISA_ER_VRU_BIND_FAIL
0x20000422	VRU: Bad binding parameter	Not in use	Not applicable	ISA_ER_VRU_BAD_PARAM
0x20000701	TAL: Fail to close socket.	Incorrect implementation	Review the implementation	ISA_ER_TAL_CLOSE
0x20000702	TAL: Fails to launch ISaGRAF server	Incorrect implementation	Review the implementation	ISA_ER_TAL_MAKESERVER
0x20000703	TAL: Fail to connect to remote node	Incorrect implementation	Review the implementation	ISA_ER_TAL_CONNECT
0x20000704	TAL: Can't read in socket	Incorrect implementation	Review the implementation	ISA_ER_TAL_READ
0x20000705	TAL: Error during remote client connection	Incorrect implementation	Review the implementation	ISA_ER_TAL_ACCEPT

ETCP Task				
Code	Description	Probable Cause	Diagnostic	#define
0x20000706	TAL: FAIL TO INITIALIZE THE TCP/IP STACK	Incorrect implementation	Review the implementation	ISA_ER_TAL_INITFAIL
0x20000707	TAL: Fail to change socket status	Incorrect implementation	Review the implementation	ISA_ER_TAL_CHGBLOCKING
0x20000708	TAL: Broken connection	Incorrect implementation	Review the implementation	ISA_ER_TAL_BROKEN_CX
0x20000709	TAL: Error during socket write	Incorrect implementation	Review the implementation	ISA_ER_TAL_WRITE
0x2000070A	TAL: Received data are not coherent	Incorrect implementation	Review the implementation	ISA_ER_TAL_BAD_ADR
0x2000070B	TAL: Remote ETCP connection fails	Incorrect implementation	Review the implementation	ISA_ER_TAL_REP_CNX_ERR
0x20000710	ETCP: ETCP is in Timeout mode	Incorrect implementation	Review the implementation	ISA_ER_ETCP_TIMEOUT
0x20000711	ETCP: The ETCP server is already connected to a default queue.	Incorrect implementation	Review the implementation	ISA_ER_ETCP_DQ_ALREADY_CONN ECTED
0x20000712	ETCP: The ETCP server is full.	Incorrect implementation	Review the implementation	ISA_ER_ETCP_NO_CNX_AVALAIBLE

ISaRSI Task	ISaRSI Task				
Code	Description	Probable Cause	Diagnostic	#define	
0x20000640	RSI: Cannot initialize serial device	Incorrect implementation	Review the implementation	ISA_ER_RSI_INIT	
0x20000641	RSI: Cannot open serial device	Incorrect implementation	Review the implementation	ISA_ER_RSI_OPEN	
0x20000642	RSI: Cannot read serial device	Incorrect implementation	Review the implementation	ISA_ER_RSI_READ	
0x20000643	RSI: Cannot write serial device	Incorrect implementation	Review the implementation	ISA_ER_RSI_WRITE	
0x20000644	RSI: Bad parameters	Incorrect implementation	Review the implementation	ISA_ER_RSI_BADPARAM	

Common Errors				
Code	Description	Probable Cause	Diagnostic	#define
0x20000430	NET-CFG: There is no network device table.	Incorrect implementation	Review the implementation	ISA_ER_NET_CFG_NOT_LOADED
0x20000431	NET: Resource not found	Incorrect implementation	Review the implementation	ISA_ER_NET_RES_NOT_FOUND
0x20000432	NET: Variable conversion failed.	Incorrect implementation	Review the implementation	ISA_ER_NET_CONVFAILED
0x20000440	IPC: IPC is in Timeout mode.	Incorrect implementation	Review the implementation	ISA_ER_IPC_TIMEOUT

Common Eri	Common Errors				
Code	Description	Probable Cause	Diagnostic	#define	
0x20000441	IPC: The IPC server is already connected to a default queue.	Incorrect implementation	Review the implementation	ISA_ER_IPC_DQ_ALREADY_CONNEC TED	
0x20000442	IPC: The IPC server is full.	Incorrect implementation	Review the implementation	ISA_ER_IPC_NO_CNX_AVALAIBLE	
0x20008000	NT IOs: Call to device for direct port access failed	Incorrect implementation	Review the implementation	ISA_WNGWNT_IOSPORTACC	
0x20008001	NT IPL: Package not up to date, it may have hazardous behavior	Incorrect implementation	Review the implementation	ISA_WNGWNT_IPL_GETTGTNM_NOT FOUND	
0x20008002	NT IPL: Package ignored, memory model mismatch	Incorrect implementation	Review the implementation	ISA_WNGWNT_IPL_MODELMISMATC H	
0x20008003	NT IPL: Package ignored, version not compatible	Windows specific version mismatch between the run-time and the loading .dll	Verify the .dll was compiled with the state of the ITGTDEF_NEW_ ARRAY_AND_FB define as the run-time loading the .dll	ISA_WNGWNT_IPL_GETTGTVERSIO N	
0x20008004	NT IPL: Package ignored, Windows cannot load the dll	Could not load DLL	Internal error returned by Windows	ISA_WNGWNT_IPL_DLL_NOTLOADE D	

ISaGRAF 3 Communication							
Code	Description	Probable Cause	Diagnostic	#define			
0x20000740	ISA3: No application or application inactive	Not in use	Not applicable	ISA_ER_ISA3_NO_APPL			
0x20000741	ISA3: Media is busy, retry later	Not in use	Not applicable	ISA_ER_ISA3_MEDIA_BUSY			

Back to top

Functions

The workbench supports the following functions and function blocks:

Arithmetic Operations	ABS_LREAL	Absolute value of a long real value
	EXPT_LREAL, POW_LREAL	Exponent, power calculation of long real values
	LOG_LREAL	Logarithm of a long real value
	SQRT_LREAL	Square root of a long real value
	TRUNC_LREAL	Truncate decimal part of a long real value
	ACOS_LREAL, ASIN_LREAL, ATAN_LREAL	Arc cosine, Arc sine, Arc tangent of a long real value
	COS_LREAL, SIN_LREAL, TAN_LREAL	Cosine, Sine, Tangent of a long real value
Binary Operations	AND_MASK_BYTE	BYTE bit-to-bit AND mask
	AND_MASK_WORD	WORD bit-to-bit AND mask
	AND_MASK_DWORD	DWORD bit-to-bit AND mask
	AND_MASK_LWORD	LWORD bit-to-bit AND mask
	OR_MASK_BYTE	BYTE bit-to-bit OR mask
	OR_MASK_WORD	WORD bit-to-bit OR mask
	OR_MASK_DWORD	DWORD bit-to-bit OR mask
	OR_MASK_LWORD	LWORD bit-to-bit OR mask
	XOR_MASK_BYTE	BYTE bit-to-bit Exclusive OR mask
	XOR_MASK_WORD	WORD bit-to-bit Exclusive OR mask
	XOR_MASK_DWORD	DWORD bit-to-bit Exclusive OR mask
	XOR_MASK_LWORD	LWORD bit-to-bit Exclusive OR mask
	NOT_MASK_BYTE	BYTE bit-to-bit negation
	NOT_MASK_WORD	WORD bit-to-bit negation

	NOT_MASK_DWORD	DWORD bit-to-bit negation
	NOT_MASK_LWORD	LWORD bit-to-bit negation
	ROL_BYTE, ROR_BYTE	Rotate Left, Rotate Right a BYTE value
	ROL_WORD, ROR_WORD	Rotate Left, Rotate Right a WORD value
	ROL_DWORD, ROR_DWORD	Rotate Left, Rotate Right a DWORD value
	ROL_LWORD, ROR_LWORD	Rotate Left, Rotate Right an LWORD value
	SHL_BYTE, SHR_BYTE	Shift Left, Shift Right a BYTE value
	SHL_WORD, SHR_WORD	Shift Left, Shift Right a WORD value
	SHL_DWORD, SHR_DWORD	Shift Left, Shift Right a DWORD value
	SHL_LWORD, SHR_LWORD	Shift Left, Shift Right an LWORD value
Process Control	SET_PRIORITY	Set virtual machine priority
Serial Communications	ISA_SERIAL_CLOSE	Closes the communication port
	ISA_SERIAL_CONNECT	Performs a serial connection with an RS-232 or TCP-IP link
	ISA_SERIAL_DISCONN ECT	Disconnects the communication link
	ISA_SERIAL_OPEN	Opens a communication link
	ISA_SERIAL_RECEIVE	Receives data from the communication link
	ISA_SERIAL_SEND	Sends data on the communication link
	ISA_SERIAL_SET	Sets the parameters of an open communication link
	ISA_SERIAL_STATUS	Returns a series of communication statuses
String	CET THE STRIC	String representing the surrent time

Arguments:

IN	IN	LREAL	Any signed long real value
ABS_LREAL	Q	LREAL	Absolute long real value (always positive)

Description:

Gives the absolute (positive) value of a long real value.

Example

(* FBD Program using "ABS_LREAL" Function *)

(* ST Equivalence: *)

over := (ABS_LREAL (delta) > range);

ACOS_LREAL

Arguments:

IN IN LREAL Must be in set [-1.0..+1.0] ACOS_LREAL Q LREAL Arc-cosine of the input value (in set [0.0..PI]) = 0.0 for invalid input

Description:

Calculates the Arc cosine of a long real value.

Example

(* FBD Program using "COS_LREAL" and "ACOS_LREAL" Functions *)

(* ST Equivalence: *)

cosine := COS_LREAL (angle);

result := ACOS_LREAL (cosine); (* result is equal to angle *)

AND_MASK_BYTE

Arguments:

IN	IN	BYTE	Must have BYTE format
MSK	MSK	BYTE	Must have BYTE format
AND_MASK_BYTE	Q	BYTE	Bit-to-bit logical AND between IN and MSK

Description:

BYTE AND bit-to-bit mask.

Example

(* FBD example with AND_MASK_BYTE Operators *)

(* ST Equivalence: *)

parity	:=	AND	MASK	BYTE	(xvalue,	1);	(*	1	if	xvalue	is	odd	*)
result	:=	AND	MASK	BYTE	(16#abc,	16#f	0f)	;	(*	equals	16‡	‡a0c	*)

AND_MASK_DWORD

AND_N	ASK_D	WORD
		Q- DWORD
DWORD	[1]0[0[1]0]	

Arguments:

IN	IN	DWORD	Must have DWORD format
MSK	MSK	DWORD	Must have DWORD format
AND_MASK_DWORD	Q	DWORD	Bit-to-bit logical \boldsymbol{AND} between IN and MSK

Description:

DWORD AND bit-to-bit mask.

Example

(* FBD example with AND_MASK_DWORD Operators *)

(* ST Equivalence: *)

parity	:=	AND	MASK	DWORD	(xvalue,	1);	(*	1	if	xvalue	is	odd	*)
result	:=	AND	MASK	DWORD	(16#abc,	16#f	Of)	;	(*	equals	16‡	‡a0c	*)

AND_MASK_LWORD

AND_	MASK_LV	VORD
	10010	Q-
LWORD	[1]0]0[1]0]	

Arguments:

IN	IN	LWORD	Must have LWORD format
MSK	MSK	LWORD	Must have LWORD format
AND_MASK_LWORD	Q	LWORD	Bit-to-bit logical \boldsymbol{AND} between IN and MSK

Description:

LWORD AND bit-to-bit mask.

Example

(* FBD example with AND_MASK_LWORD Operators *)

(* ST Equivalence: *)

parity := AND_MASK_LWORD (xvalue, 1); (* 1 if xvalue is odd *)
result := AND_MASK_LWORD (16#abc, 16#f0f); (* equals 16#a0c *)

AND_MASK_WORD

Arguments:

IN	IN	WORD	Must have WORD format
MSK	MSK	WORD	Must have WORD format
AND_MASK_WORD	Q	WORD	Bit-to-bit logical \boldsymbol{AND} between IN and MSK

Description:

WORD AND bit-to-bit mask.

Example

(* FBD example with AND_MASK_WORD Operators *)

(* ST Equivalence: *)

parity := AND_MASK_WORD (xvalue, 1); (* 1 if xvalue is odd *)
result := AND_MASK_WORD (16#abc, 16#f0f); (* equals 16#a0c *)

ASIN_LREAL

Arguments:

IN IN LREAL Must be in set [-1.0 .. +1.0] ASIN_LREAL Q LREAL Arc-sine of the input value (in set [-PI/2 .. +PI/2]) = 0.0 for invalid input

Description:

Calculates the Arc sine of a long real value.

Example

(* FBD Program using "SIN_LREAL" and "ASIN_LREAL" Functions *)

(* ST Equivalence: *)

```
sine := SIN_LREAL (angle);
result := ASIN_LREAL (sine); (* result is equal to angle *)
```

ATAN_LREAL

Arguments:

IN IN LREAL Any LREAL value ATAN_LREAL Q LREAL Arc-tangent of the input value (in set [-PI/2 .. +PI/2]) = 0.0 for invalid input

Description:

Calculates the arc tangent of a long real value.

Example

(* FBD Program using "TAN_LREAL" and "ATAN_LREAL" Function *)

(* ST Equivalence: *)
tangent := TAN_LREAL (angle);
result := ATAN_LREAL (tangent); (* result is equal to angle*)

Arguments:

ININLREALAny LREAL valueCOS_LREALQLREALCosine of the input value (in set [-1.0 .. +1.0])

Description:

Calculates the cosine of a long real value.

Example

(* FBD Program using "COS_LREAL" and "ACOS_LREAL" Functions *)

(* ST Equivalence: *)
cosine := COS_LREAL (angle);
result := ACOS_LREAL (cosine); (* result is equal to angle *)

EXPT_LREAL

Arguments:

IN	IN	LREAL	Any signed long real value
EXP	EXP	DINT	Integer exponent
EXPT_LREAL	Q	LREAL	(IN EXP)

Description:

Gives the long real result of the operation: (base ^{exponent}) 'base' being the first argument and 'exponent' the second one.

Example

(* FBD Program using "EXPT_LREAL" Function *)

(* ST Equivalence: *)

tb_size := ANY_TO_DINT (EXPT_LREAL (2.0, range));

GET_TIME_STRING

٢	GET_TIM	E_STRING
łs	EC	OUT
D	INT	STRING
łN	ISEC	
	NNT	

Arguments:

SEC	SEC	DINT	Number of seconds since 1970/01/01 00:00:00:000
NSEC	NSEC	DINT	Number of nanoseconds from the beginning of the second indicated by SEC
GET_TIME_STRING	Q	STRING	Date, in the YYYY/MM/DD HH:MM:SS:MMM format

Description:

Transforms a date given in seconds to a text format and adjusts the time to match the time zone settings on your computer. The GET_TIME_STRUCT and NOW function blocks also perform time-related operations.

The date

Example

(* ST equivalence: NOW1 is an instance of the NOW block. *)

```
NOW1();
number_seconds := NOW1.SEC;
number_nanos := NOW1.NSEC;
cur_date := GET_TIME_STRING(number_seconds, number_nanos);
```

ISA_SERIAL_CLOSE

ISA_SERIAL_CLOSE HDLE ERR-DINT DINT

Note: The failover mechanism does not support the ISA_SERIAL functions.

Arguments:

HANDLE	HDLE	DINT	handle of the communication link
ISA_SERIAL_CLOSE	ERR	DINT	status of the operation: 0 = operation succeeded -1 = operation failed

Description:

Closes the communication port, causing the PCP_SER administrator to terminate or the PCP_IP administrator and data sockets to close.

The workbench simulator does not support this function.

Example

To close the communication port for the HDLE communication link:

```
ISA_SERIAL_CLOSE(HDLE);
```

ISA_SERIAL_CONNECT

ISA_SERIAL	CONNECT
HDLE	ERR
DINT	DINT
MODE	
STRING	
BUFF	
STRING	

Note: The failover mechanism does not support the ISA_SERIAL functions.

Arguments:

HANDLE	HDLE	DINT	handle of the communication link
MODE	MODE	STRING	connection mode: 'SERVER' or 'CLIENT'
		[6]	

- BUFF STRING information required for the connection. This [252] information varies depending on the protocol and connection mode. Four cases can occur:
 - PCP SER CLIENT RTS/DTR signals are asserted. To perform a connection by modem, enter the required commands and the self-dial telephone number in BUFF. To perform an immediate connection (NULL MODEM), put an empty string in BUFF. PCP_SER SERVER RTS/DTR signals are asserted. To indicate a valid connection, you can use either the CTS/DSR signal (by putting an empty string in BUFF) or the modem's DCD signal (by putting any string in BUFF). PCP IP CLIENT You have to insert the server's host name in BUFF. A connection is established with the server, using the host name (hosts). PCP IP SERVER You need to insert an empty string in BUFF. The host name for the server is defined in the

hosts file.

ISA_SERIAL_CONNECT ERR DINT status of the operation: 0 = operation succeeded -1 = operation failed

Description:

Performs a serial connection with an RS-232 or TCP-IP link.

The workbench simulator does not support this function.

Example

To make on a valid connection in the SERVER connection mode:

```
error := ISA_SERIAL_CONNECT(handle, 'SERVER', '');
errorBool := LOG_MSG('ErrLog', 'Connect: '+ ANY_TO_STRING (error));
IF error = 0 THEN
(* No error: Proceed with the next step*)
END_IF;
```

To make a valid connection in the CLIENT connection mode:

```
error := ISA_SERIAL_CONNECT(handle, 'CLIENT', 'hostname');
errorBool := LOG_MSG('ErrLog', 'Connect: '+ ANY_TO_STRING (error));
IF error = 0 THEN
(* No error: Proceed with the next step*)
ELSE
error := ISA_SERIAL_CLOSE(handle);
END_IF;
```

ISA_SERIAL_DISCONNECT

HDLE DINT	ERR
DINT	
	DINT
FLSH	
STRING	

Note: The failover mechanism does not support the ISA_SERIAL functions.

Arguments:

HANDLE	HDLE	DINT	handle of the communication link
FLUSH	FLSH	STRING[5]	indicates whether the data transmission must be completed before stopping the communication: 'FLUSH' complete the transmission ' disregard the completion of the transmission. Any value having a maximum of five characters.
ISA_SERIAL_DISCONNECT	ERR	DINT	status of the operation: 0 = operation succeeded -1 = operation failed

Description:

Disconnects the communication link.

The workbench simulator does not support this function.

Examples

To complete the transmission before stopping the HDLE communication link and place the status of the operation in the ERR variable: ERR:= ISA_SERIAL_DISCONNECT(HDLE, 'FLUSH');

To immediately disconnect the HDLE communication link disregarding the completion of the transmission: ISA_SERIAL_DISCONNECT(HDLE, ");

ISA_SERIAL_OPEN

ISA_SERIA	L_OPEN
SERV	RES
STRING	DINT
PORT	
STRING	

Note: The failover mechanism does not support the ISA_SERIAL functions.

Arguments:

SERVER	SERV	STRING[1]	administrator used: 'PCP_SER' or 'PCP_IP'
PORT	PORT	STRING[252]	varies depending on the administrator used in SERVER: PCP_SER, enter the name of the serial device PCP_IP, enter the IP port number of the server
ISA_SERIAL_OPEN	RES	DINT	handle of the communication link

Description:

Warning: This function uses the Malloc dynamic memory allocation at run time.

Opens a communication link. You can start an RS-232 (PCP_SER) or TCP/IP (PCP_IP) link. Each time a communication link is opened, a communication administrator is started.

The workbench simulator does not support this function.

Examples

To open a communication link using the PCP_SER protocol:

```
handle := ISA_SERIAL_OPEN('PCP_SER','/dev/ser1');
errorBool := LOG_MSG('ErrLog', 'Open: '+ ANY_TO_STRING (handle));
IF handle > 0 THEN
(* No error: Proceed with the next step*)
END_IF;
```

To open a communication link using the PCP_IP protocol:

```
handle := ISA_SERIAL_OPEN('PCP_IP', '7500');
errorBool := LOG_MSG('ErrLog', 'Open: ' + ANY_TO_STRING (error));
IF handle > 0 THEN
(* No error: Proceed with the next step*)
END_IF;
```

ISA_SERIAL_RECEIVE

HDLE ERF DINT DIN DATA STRING -LGTH DINT TIMO	١
DINT DIN DATA STRING -LGTH DINT TIMO	4
DATA STRING LGTH DINT	
STRING LGTH DINT TIMO	
LGTH DINT TIMO	
DINT	
TIMO	
TIMO	
DINT	

Note: The failover mechanism does not support the ISA_SERIAL functions.

Arguments:

HANDLE	HDLE	DINT	handle of the communication link
DATA	DATA	STRING[252]	received information
LENGTH	LGTH	DINT	length of the data, in bytes. The maximum length is 252 bytes.
TIMEOUT	TIMO	DINT	maximum number of seconds during which a receive block occurs
ISA_SERIAL_RECEIVE	ERR	DINT	status of the operation: 0 = operation succeeded -1 = operation failed

Description:

Warning: This function uses the Malloc dynamic memory allocation at run time.

Receives data from the communication link. Reception stops when either the specified number of bytes or the time-out is reached. If data contains a character string that will be used as such, you must make sure that it finishes with a null terminator.

The workbench simulator does not support this function.

Examples

To receive data using a communication link:

```
error := ISA_SERIAL_RECEIVE(handle, data, 11, 0);
errorBool := LOG_MSG('ErrLog', 'Received data: '+ data);
IF error = -1 THEN
error := ISA_SERIAL_STATUS(handle, SocketError, stat1, stat2, stat3);
errorBool := LOG_MSG('ErrLog', 'Received error: '+ ANY_TO_STRING
(SocketError));
END_IF;
```

ISA_SERIAL_SEND

ISA_SERIAL	_SEND
HDLE	ERR
DINT	DINT
DATA	
STRING	
LGTH	
DINT	

Note: The failover mechanism does not support the ISA_SERIAL functions.

Arguments:

HANDLE	HDLE	DINT	handle of the communication link
DATA	DATA	STRING[252]	information to be transmitted
LENGTH	LGTH	DINT	length of the data, in bytes. The maximum length is 252 bytes.
ISA_SERIAL_SEND	ERR	DINT	status of the operation: 0 = operation succeeded -1 = operation failed

Description:

Warning: This function uses the Malloc dynamic memory allocation at run time.

Sends data on the communication link.

The workbench simulator does not support this function.

Example

To send the string 'Hello world' on a communication link:

```
error := ISA_SERIAL_SEND(handle, 'Hello world', 11);
IF error = -1 THEN
error := ISA_SERIAL_STATUS(handle, SocketError, stat1, stat2, stat3);
errorBool := LOG_MSG('ErrLog', 'Sent error: '+
ANY_TO_STRING(SocketError));
ELSE
errorBool := LOG_MSG('ErrLog', 'Data Sent: Hello World');
END_IF;
```

ISA_SERIAL_SET

ISA_SERI/	AL_SET
HDLE	ERR
DINT	DINT
ARG1	
DINT	
ARG2	
DINT	
ARG3	
DINT	
ARG4	
STRING	

Note: The failover mechanism does not support the ISA_SERIAL functions.

Arguments:

HANDLE	HDLE	DINT	handle of the communication link
ARG1	ARG1	DINT	content varies depending on the protocol used: For PCP_SER, handshake, echo, and trace * For PCP_IP, trace OFF = 0 ON = 1
ARG2	ARG2	DINT	baud rate. Only used with PCP_SER protocol.
ARG3	ARG3	DINT	number of stop bits (1 or 2). Only used with PCP_SER protocol.
ARG4	ARG4	STRING[8]	parity: even, odd, none. Only used with PCP_SER protocol.
ISA_SERIAL_SET	ERR	DINT	status of the operation: 0 = operation succeeded -1 = operation failed

Description:

Sets the parameters of an open communication link. These parameters vary according to the protocol and the serial communication standard.

The workbench simulator does not support this function.

* For PCP_SER, the value of **ARG1** varies according to the serial communications standard. If RS-232 is used, **ARG1** holds the state of the trace: 1 = ON, 0 = OFF. On the other hand, with RS-485, **ARG1** holds the composite states of handshake, echo, and trace:

Handshake	Echo	Trace	ARG1	
0	0	0	0	
0	0	1	1	
0	1	0	2	
0	1	1	3	
1	0	0	4	
1	0	1	5	
1	1	0	6	
1	1	1	7	

Examples

To set the parameters of the HDLE communication link using the PCP_SER protocol and the RS-232 serial communication standard without trace, having a baud rate of 9600, 8 bits, and even parity:

ERR:= ISA SERIAL SET(HDLE, 0, 9600, 8, 'even');

To set the parameters of the HDLE communication link using the PCP_IP protocol with a trace:

ERR:= ISA_SERIAL_SET(HDLE, 1, 0, 0, '');
ISA_SERIAL_STATUS

HDLE ERR- DINT DINT ST1 DINT ST2 DINT ST3	ISA_SERI/	AL_STATUS
DINT DINT ST1 DINT ST2 DINT ST3	HDLE	ERR
ST1 DINT ST2 DINT ST3	DINT	DINT
DINT ST2 DINT ST3	ST1	
ST2 DINT ST3	DINT	
DINT ST3	ST2	
ST3	DINT	
	ST3	
DINT	DINT	
ST4	ST4	
STRING	STRING	

Note: The failover mechanism does not support the ISA_SERIAL functions.

Arguments:

HANDLE	HDLE	DINT	handle of the communication link
STA1	STA1	DINT	error number. Refer to the target operating system's errno.h file.
STA2	STA2	DINT	varies depending on the protocol used:
			For PCP_SER, number of received characters
			For PCP_IP, port number of the client if in server mode, or port number of the server if in client mode
STA3	STA3	DINT	CD control bit. Only used for the PCP_SER protocol.
STA4	STA4	STRING [252]	address of the client if in server mode, or address of the server if in client mode. Only used for the PCP_IP protocol.
ISA_SERIAL_STATUS	ERR	DINT	status of the operation: 0 = operation succeeded -1 = operation failed

Description:

Returns a series of communication statuses. These statuses vary depending on the protocol.

The workbench simulator does not support this function.

Examples

To get the communication statuses of the HDLE communication link using the PCP_SER protocol and place them in their respective variables:

ERR:= ISA_SERIAL_STATUS(HDLE, STA1, STA2, STA3, STA4);

To get the communication statuses of the HDLE communication link using the PCP_IP protocol and place them in their respective variables:

ERR:= ISA_SERIAL_STATUS(HDLE, STA1, STA2, STA3, STA4);

LOG_LREAL

Arguments:

ININLREALMust be greater than zeroLOG_LREALQLREALLogarithm (base 10) of the input value

Description:

Calculates the logarithm (base 10) of a long real value.

Example

(* FBD Program using "LOG_LREAL" Function *)

xlog := LOG_LREAL (xpos);

NOT_MASK_BYTE

Arguments:

IN	IN	BYTE	Must have BYTE format
NOT_MASK_BYTE	Q	BYTE	Bit-to-bit negation on 8 bits of IN

Description:

BYTE bit-to-bit negation mask.

Example

(* FBD example with NOT_MASK_BYTE Operators *)

(*ST equivalence: *)

result := NOT_MASK_BYTE (16#1234);

(* result is 16#FFFF_EDCB *)

NOT_MASK_DWORD

Arguments:

IN	IN	DWORD	Must have DWORD format
NOT_MASK_DWORD	Q	DWORD	Bit-to-bit negation on 32 bits of IN

Description:

DWORD bit-to-bit negation mask.

Example

(* FBD example with NOT_MASK_DWORD Operators *)

(*ST equivalence: *)

result := NOT_MASK_DWORD (16#1234); (* result is 16#FFFF_EDCB *)

NOT_MASK_LWORD

Arguments:

IN	IN	LWORD	Must have LWORD format
NOT_MASK_LWORD	Q	LWORD	Bit-to-bit negation on 64 bits of IN

Description:

LWORD bit-to-bit negation mask.

Example

(* FBD example with NOT_MASK_LWORD Operators *)

(*ST equivalence: *)

result := NOT_MASK_LWORD (16#1234);

(* result is 16#FFFF_EDCB *)

NOT_MASK_WORD

Arguments:

IN	IN	WORD	Must have WORD format
NOT_MASK_WORD	Q	WORD	Bit-to-bit negation on 16 bits of IN

Description:

WORD bit-to-bit negation mask.

Example

(* FBD example with NOT_MASK_WORD Operators *)

OR_MASK_BYTE

Arguments:

IN	IN	BYTE	Must have BYTE format
MSK	MSK	BYTE	Must have BYTE format
OR_MASK_BYTE	Q	BYTE	Bit-to-bit logical OR between IN and MSK

Description:

BYTE OR bit-to-bit mask.

Example

(* FBD example with OR_MASK_BYTE Operators *)

SYTE

(* ST Equivalence: *)

parity := OR_MASK_BYTE (xvalue, 1); (* makes value always odd *)
result := OR_MASK_BYTE (16#abc, 16#f0f); (* equals 16#fbf *)

OR_MASK_DWORD

OR_N	ASK_D	WORD
-IN DWORD MSK DWORD	10010	Q. DWORD

Arguments:

IN	IN	DWORD	Must have DWORD format
MSK	MSK	DWORD	Must have DWORD format
OR_MASK_DWORD	Q	DWORD	Bit-to-bit logical OR between IN and MSK

Description:

DWORD OR bit-to-bit mask.

Example

(* FBD example with OR_MASK_DWORD Operators *)

(* ST Equivalence: *)

parity := OR_MASK_DWORD (xvalue, 1); (* makes value always odd *)
result := OR_MASK_DWORD (16#abc, 16#f0f); (* equals 16#fbf *)

OR_MASK_LWORD

OR_N	ASK_LV	VORD
IN LWORD MSK LWORD	10010	Q. LWORD

Arguments:

IN	IN	LWORD	Must have LWORD format
MSK	MSK	LWORD	Must have LWORD format
OR_MASK_LWORD	Q	LWORD	Bit-to-bit logical $\boldsymbol{O}\boldsymbol{R}$ between IN and MSK

Description:

LWORD OR bit-to-bit mask.

Example

(* FBD example with OR_MASK_LWORD Operators *)

(* ST Equivalence: *)

parity := OR_MASK_LWORD (xvalue, 1); (* makes value always odd *)
result := OR_MASK_LWORD (16#abc, 16#f0f); (* equals 16#fbf *)

OR_MASK_WORD

Arguments:

IN	IN	WORD	Must have WORD format
MSK	MSK	WORD	Must have WORD format
OR_MASK_WORD	Q	WORD	Bit-to-bit logical OR between IN and MSK

Description:

WORD OR bit-to-bit mask.

Example

(* FBD example with OR_MASK_WORD Operators *)

(* ST Equivalence: *)

parity := OR_MASK_WORD (xvalue, 1); (* makes value always odd *)
result := OR_MASK_WORD (16#abc, 16#f0f); (* equals 16#fbf *)

POW_LREAL

Arguments:

IN	IN	LREAL	Long real number to be raised
EXP	EXP	LREAL	Power (exponent)
POW_LREAL	Q	LREAL	(IN ^{EXP}) 1.0 if IN is not 0.0 and EXP is 0.0 0.0 if IN is 0.0 and EXP is negative 0.0 if both IN and EXP are 0.0 0.0 if IN is negative and EXP does not correspond to an integer

Description:

Gives the long real result of the operation: (base ^{exponent}) 'base' being the first argument and 'exponent' the second one. The exponent is a long real value.

Example

(* FBD Program using "POW_LREAL" Function *)

(* ST Equivalence: *)

result := POW_LREAL (xval, power);

ROL_BYTE

Arguments:

IN	IN	BYTE	Any BYTE value
NbR	NbR	BYTE	Number of 1 bit rotations (in set [17])
ROL_BYTE	Q	BYTE	Left rotated value

Description:

Make the bits of an BYTE rotate to the left. Rotation is made on 8 bits:

Example

(* FBD Program using "ROL_BYTE" Function *)

(* ST Equivalence: *)

result := ROL_BYTE (register, 1);

- (* register = 2#1011_0101*)
- (* result = 2#0110_1011*)

ROL_DWORD

R	DL_DWO	RD
IN DWORD NBR BYTE	TOTT	Q- DWORD

Arguments:

IN	IN	DWORD	Any DWORD value
NbR	NbR	DWORD	Number of 1 bit rotations (in set [131])
ROL_DWORD	Q	DWORD	Left rotated value

Description:

Make the bits of a DWORD rotate to the left. Rotation is made on 32 bits:

Example

(* FBD Program using "ROL_DWORD" Function *)


```
result := ROL_DWORD (register, 1);
(* register = 2#1100_0110_0111_0100_1101_00011_0101_0000*)
(* result = 2#1000_1100_1110_1001_1010_0110_1010_0001*)
```

ROL_LWORD

Arguments:

IN	IN	LWORD	Any LWORD value
NbR	NbR	LWORD	Number of 1 bit rotations (in set [163])
ROL_LWORD	Q	LWORD	Left rotated value

Description:

Make the bits of a LWORD rotate to the left. Rotation is made on 64 bits:

Example

(* FBD Program using "ROL_LWORD" Function *)


```
result := ROL_LWORD (register, 1);
(* register = 2#1100_0110_0111_..._1101_0011_0101*)
(* result = 2#1000_1100_1110_..._1010_0110_1011*)
```

ROL_WORD

Arguments:

IN	IN	WORD	Any WORD value
NbR	NbR	WORD	Number of 1 bit rotations (in set [115])
ROL_WORD	Q	WORD	Left rotated value

Description:

Make the bits of a WORD rotate to the left. Rotation is made on 16 bits:

Example

(* FBD Program using "ROL_WORD" Function *)

(* ST Equivalence: *)

result := ROL_WORD (register, 1);
(* register = 2#0100_1101_0011_0101*)
(* result = 2#1001 1010 0110 1010*)

ROR_BYTE

Arguments:

IN	IN	BYTE	Any BYTE value
NbR	NbR	BYTE	Number of 1 bit rotations (in set [17])
ROR_BYTE	Q	BYTE	Right rotated value

Description:

Make the bits of a BYTE rotate to the right. Rotation is made on 8 bits:

Example

(* FBD Program using "ROR_BYTE" Function *)

(* ST Equivalence: *)

result := ROR_BYTE (register, 1);
(* register = 2#0011_0101 *)

(* result = 2#1001_1010 *)

ROR_DWORD

ROR_DWORD

Arguments:

IN	IN	DWORD Any DWORD value
NbR	NbR	DWORD Number of 1 bit rotations (in set [131])
ROR_DWORD	Q	DWORD Right rotated value

Description:

Make the bits of a DWORD rotate to the right. Rotation is made on 32 bits:

Example

(* FBD Program using "ROR_DWORD" Function *)


```
result := ROR_DWORD (register, 1);
(* register = 2#0111_0101_1100_0001_0100_1101_0011_0101 *)
(* result = 2#1011_1010_1110_0000_1010_0110_1001_1010 *)
```

ROR_LWORD

Arguments:

IN	IN	LWORD	Any LWORD value
NbR	NbR	LWORD	Number of 1 bit rotations (in set [163])
ROR_LWORD	Q	LWORD	Right rotated value

Description:

Make the bits of an LWORD rotate to the right. Rotation is made on 64 bits:

Example

(* FBD Program using "ROR_LWORD" Function *)

ROR_WORD

Arguments:

IN	IN	WORD	Any WORD value
NbR	NbR	WORD	Number of 1 bit rotations (in set [115])
ROR_WORD	Q	WORD	Right rotated value

Description:

Make the bits of a WORD rotate to the right. Rotation is made on 16 bits:

Example

(* FBD Program using "ROR_WORD" Function *)

(* ST Equivalence: *)

result := ROR_WORD (register, 1);

- (* register = 2#0100_1101_0011_0101 *)
- (* result = 2#1010_0110_1001_1010 *)

SET_PRIORITY

Arguments:

INPUT	IN	SINT	New priority for the virtual machine. Possible values are: 0: SET_PRIORITY() returns the current virtual machine priority (no change) 1-29: new priority for the virtual machine
SET_PRIORITY	Q	SINT	priority of the virtual machine before $\ensuremath{SET_PRIORITY}$ was called

Description:

Changes the priority of a virtual machine in the target operating system.

The workbench simulator does not support this function.

Example

(* ST *)
old_priority := SET_PRIORITY(26);

SHL_BYTE

Arguments:

IN	IN	BYTE	Any BYTE value
NbS	NbS	BYTE	Number of 1 bit shifts (in set [17])
SHL_BYTE	Q	BYTE	Left shifted value

Description:

Make the bits of a BYTE shift to the left. Shift is made on 8 bits:

Example

(* FBD Program using "SHL_BYTE" Function *)

SHL_DWORD

Arguments:

IN	IN	DWORD	Any DWORD value
NbS	NbS	DWORD	Number of 1 bit shifts (in set [131])
SHL_DWORD	Q	DWORD	Left shifted value

Description:

Make the bits of a DWORD shift to the left. Shift is made on 32 bits:

Example

(* FBD Program using "SHL_DWORD" Function *)


```
result := SHL_DWORD (register,1);
(* register = 2#1010_1100_0011_1010_0100_1101_0011_0101 *)
(* result = 2#0101_1000_0111_0100_1001_1010_0110_1010 *)
```

SHL_LWORD

SH	IL_LWOF	RD
IN LWORD NbS BYTE		Q- LWORD

Arguments:

IN	IN	LWORD	Any LWORD value
NbS	NbS	LWORD	Number of 1 bit shifts (in set [163])
SHL_LWORD	Q	LWORD	Left shifted value

Description:

Make the bits of an LWORD shift to the left. Shift is made on 64 bits:

Example

(* FBD Program using "SHL_LWORD" Function *)


```
result := SHL_LWORD (register,1);
(* register = 2#1010_1100_0011_1010_..._1101_0011_0101 *)
(* result = 2#0101_1000_0111_0100_..._1010_0110_1010 *)
```

SHL_WORD

Arguments:

IN	IN	WORD	Any WORD value
NbS	NbS	WORD	Number of 1 bit shifts (in set [115])
SHL_WORD	Q	WORD	Left shifted value

Description:

Make the bits of a WORD shift to the left. Shift is made on 16 bits:

Example

(* FBD Program using "SHL_WORD" Function *)

(* ST Equivalence: *)

result := SHL_WORD (register,1);

- (* register = 2#0100_1101_0011_0101 *)
- (* result = 2#1001_1010_0110_1010 *)

SHR_BYTE

Arguments:

IN	IN	BYTE	Any BYTE value
NbS	NbS	BYTE	Number of 1 bit shifts (in set [17])
SHR_BYTE	Q	BYTE	Right shifted value

Description:

Make the bits of a BYTE shift to the right. Shift is made on 8 bits:

Example

(* FBD Program using "SHR_BYTE"Function *)

SHR_DWORD

Arguments:

IN	IN	DWORD	Any DWORD value
NbS	NbS	DWORD	Number of 1 bit shifts (in set [131])
SHR_DWORD	Q	DWORD	Right shifted value

Description:

Make the bits of a DWORD shift to the right. Shift is made on 32 bits:

Example

(* FBD Program using "SHR_DWORD"Function *)


```
result := SHR_DWORD (register,1);
(* register = 2#1010_1100_0001_0101_1100_1101_0011_0101 *)
(* result = 2#0101_0110_0000_1010_1110_0110_1001_1010 *)
```

SHR_LWORD

SH	IR_LWOF	SD D
IN LWORD NbS BYTE	0000 110111 L	Q- LWORD

Arguments:

IN	IN	LWORD	Any LWORD value
NbS	NbS	LWORD	Number of 1 bit shifts (in set [163])
SHR_LWORD	Q	LWORD	Right shifted value

Description:

Make the bits of an LWORD shift to the right. Shift is made on 64 bits:

Example

(* FBD Program using "SHR_LWORD"Function *)


```
result := SHR_LWORD (register,1);
(* register = 2#1010_1100_0001_0101_..._1101_0011_0101 *)
(* result = 2#0101_0110_0000_1010_..._0110_1001_1010 *)
```

SHR_WORD

Arguments:

IN	IN	WORD	Any WORD value
NbS	NbS	WORD	Number of 1 bit shifts (in set [115])
SHR_WORD	Q	WORD	Right shifted value

Description:

Make the bits of a WORD shift to the right. Shift is made on 16 bits:

Example

(* FBD Program using "SHR_WORD"Function *)


```
(* ST Equivalence: *)
```

```
result := SHR_WORD (register,1);
(* register = 2#1100_1101_0011_0101 *)
```

SIN_LREAL

Arguments:

IN	IN	LREAL	Any LREAL value
SIN_LREAL	Q	LREAL	Sine of the input value (in set [-1.0 +1.0])

Description:

Calculates the Sine of a long real value.

Example

(* FBD Program using "SIN_LREAL" and "ASIN_LREAL" Functions *)

SQRT_LREAL

Arguments:

ININLREALMust be greater than or equal to zeroSQRT_LREALQLREALSquare root of the input value

Description:

Calculates the square root of a long real value.

Example

(* FBD Program using "SQRT_LREAL" Function *)

xpos := ABS_LREAL (xval); xroot := SQRT_LREAL (xpos);

TAN_LREAL

Arguments:

IN	IN	LREAL	Cannot be equal to $\ensuremath{\text{PI}/2}$ modulo $\ensuremath{\text{PI}}$
TAN_LREAL	Q	LREAL	Tangent of the input value
			= 1E+38 for invalid input

Description:

Calculates the Tangent of a long real value.

Example

(* FBD Program using "TAN_LREAL" and "ATAN_LREAL" Functions *)

(* ST Equivalence: *)

tangent := TAN_LREAL (angle);

result := ATAN_LREAL (tangent); (* result is equal to angle*)

TRUNC_LREAL

Arguments:

IN	IN	LREAL	Any LREAL value
TRUNC_LREAL	Q	LREAL	If IN>0, biggest integer less or equal to the input
			If IN<0, least integer greater or equal to the input

Description:

Truncates a long real value to have just the integer part.

Example

(* FBD Program using "TRUNC_LREAL" Function *)

(* ST Equivalence: *)

result := TRUNC_LREAL (+2.67) + TRUNC_LREAL (-2.0891);

(* means: result := 2.0 + (-2.0) := 0.0; *)

XOR_MASK_BYTE

Arguments:

IN	IN	BYTE	Must have BYTE format
MSK	MSK	BYTE	Must have BYTE format
XOR_MASK_BYTE	Q	BYTE	Bit-to-bit logical Exclusive OR between IN and MSK

Description:

BYTE exclusive OR bit-to-bit mask.

Example

(* FBD example with **XOR_MASK_BYTE** Operators *)

(* ST Equivalence: *)

crc32 := XOR_MASK_BYTE (prevcrc, nextc); result := XOR_MASK_BYTE (16#012, 16#011); (* equals 16#003 *)

XOR_MASK_DWORD

XOR_MASK_DWORD

Arguments:

IN	IN	DWORD Must have DWORD format
MSK	MSK	DWORD Must have DWORD format
XOR_MASK_DWORD	Q	DWORD Bit-to-bit logical Exclusive OR between IN and MSK

Description:

DWORD exclusive OR bit-to-bit mask.

Example

(* FBD example with **XOR_MASK_DWORD** Operators *)


```
crc32 := XOR_MASK_DWORD (prevcrc, nextc);
result := XOR_MASK_DWORD (16#012, 16#011); (* equals 16#003 *)
```

XOR_MASK_LWORD

XOR_	MASK_L	WORD
IN LWORD MSK LWORD	10010 11110 01100	Q. LWORD

Arguments:

IN	IN	LWORD	Must have LWORD format
MSK	MSK	LWORD	Must have LWORD format
XOR_MASK_LWORD	Q	LWORD	Bit-to-bit logical Exclusive OR between IN and MSK

Description:

LWORD exclusive OR bit-to-bit mask.

Example

(* FBD example with XOR_MASK_LWORD Operators *)

(* ST Equivalence: *)

crc32 := XOR_MASK_LWORD (prevcrc, nextc);
result := XOR_MASK_LWORD (16#012, 16#011); (* equals 16#003 *)
XOR_MASK_WORD

Arguments:

IN	IN	WORD	Must have WORD format
MSK	MSK	WORD	Must have WORD format
XOR_MASK_WORD	Q	WORD	Bit-to-bit logical Exclusive OR between IN and MSK

Description:

WORD exclusive OR bit-to-bit mask.

Example

(* FBD example with **XOR_MASK_WORD** Operators *)

(* ST Equivalence: *)

```
crc32 := XOR_MASK_WORD (prevcrc, nextc);
result := XOR_MASK_WORD (16#012, 16#011); (* equals 16#003 *)
```

Function Blocks

ISaGRAF supports many types of function blocks:

- Basic Operations
- Advanced Control
- Matrix2 Operations
- Matrix Operations

Basic Operations

Basic function blocks perform various basic operations:

Time Operations	GET_TIME_STRUCT	Current time, in the date's parts
	NOW	Current time, in seconds

Advanced Control

Advanced Control function blocks perform various process control operations:

Alarms Management	ANALOGALARM	Provides alarm conditions for an analog input
	DIGITALALARM	Provides alarm conditions for a digital input
Boolean Operations	FLIPFLOP	Provides a flip-flop function
Comparator Operations	COMPARATOR	Compares an input signal with a value and indicates when the value is exceeded
Process Control	BATCHSWITCH	Eliminates overshoot during startup conditions when using the IPIDCONTROLLER function block

BATCHTOTALIZER	Integrates an analog input with alarms on presets and provides a pulse output to drive a remote counter
BIAS	Provides a means to bias a signal, such as the setpoint in an external set application
BIASCALIBRATION	Calibrates a BIAS value while tracking an input signal
CHARACTERIZER	Provides segments that can characterize an input signal
IPIDCONTROLLER	An interacting PID controller
LEADLAGCONTROLLER	A lead/lag controller
LEADLAGBACONTROLL ER	A lead/lag bilinear approximation controller
LIMITER	Limits an input value to a range between a low and high limit
PID_AL	To be defined
RATELIMITER	Limits the rate of change for an input signal
RATIO	Provides a means of setting a ratio in an external setpoint application
RATIOCALIBRATION	Calibrates RATIO by tracking an input signal
RETENTIVEONTIMER	Performs an on-delay timing function with output states determined by input values used to start and enable a timer
SCALER	Scales an input value according to an output range

SETPOINT	Multi-action setpoint command having six different settings and adjustments of setpoint for controller
SIGNALSELECTOR	Selects either the highest or lowest signal value from three input signals
TRACKANDHOLD	Holds an initial value transferred to an output on first scan then either tracks the input signal or holds the last output value
TRANSFERSWITCH	Selects a signal between two input signals

GET_TIME_STRUCT

GET_TIME	_STRUCT
SEC	YEAR-
DINT	DINT
NSEC	MON.
DINT	DINT
	DAY
	DINT
	HOUR
	DINT
	MIN
	DINT
	SEC-
	DINT
	MSEC
	DINT

Arguments:

SEC	SEC	DINT	Number of seconds since 1970/01/01 00:00:00:000
NSEC	NSEC	DINT	Number of nanoseconds from the beginning of the second indicated by SEC
YEAR	YEAR	DINT	Year of the date, in a four-digit format
MONTH	MON.	DINT	Month of the date (1-12)
DAY	DAY	DINT	Day of the date (1-31)
HOUR	HOUR	DINT	Hour of the date (0-23)
MINUTE	MIN	DINT	Minute of the date (0-59)
SECOND	SEC	DINT	Second of the date (0-59)
MSEC	MSEC	DINT	Millisecond of the date, from the beginning of SECOND (0-999)

Description:

Converts a date into a series of DINT values representing the date's parts. GET_TIME_STRUCT adjusts the time to match the time zone settings on your computer. The GET_TIME_STRING function and NOW function block also perform time-related operations.

Example

(* ST equivalence: NOW1 is an instance of the NOW block; GET_TIME_STRUCT1 is an instance of the GET_TIME_STRUCT block. *)

NOW1();

number_seconds := NOW1.SEC;

number_nanos := NOW1.NSEC;

GET_TIME_STRUCT1(number_seconds, number_nanos);

cur_year := GET_TIME_STRUCT1.YEAR;

cur_month := GET_TIME_STRUCT1.MONTH;

cur_day := GET_TIME_STRUCT1.DAY;

cur_hour := GET_TIME_STRUCT1.HOUR;

cur_minute := GET_TIME_STRUCT1.MINUTE;

cur_second := GET_TIME_STRUCT1.SECOND;

cur_msec := GET_TIME_STRUCT1.MSEC;

NOW

Arguments:

SEC	SEC	DINT	Number of seconds since 1970/01/01 00:00:00:000
NSEC	NSEC	DINT	Number of nanoseconds from the beginning of the second indicated by SEC

Description:

Gets the current time since 1970/01/01 00:00:00:000, in seconds. The GET_TIME_STRING function and GET_TIME_STRUCT function block also perform time-related operations. The ANY_TO_DATE function enables the conversion of NSEC to a date format.

Example

(* ST equivalence: NOW1 is an instance of the NOW block. *)

NOW1(); number_seconds := NOW1.SEC; number nanos := NOW1.NSEC;

ANALOGALARM

ANALOGALARM	1
INA	OUTA
REAL	DINT
INB	OUTB
REAL	DINT
ENB	OUTC
	DINT
ACK	
SET	
ALARM_SETTING	
ERR	
DINT	

Arguments:

InputA	INA	REAL	Input signal A	A
InputB	INB	REAL	Input signal E calculation	3 for deviation alarms
OutputEnable	ENB	BOOL[02]	OutputEnable values are Tru	e. For each entry, possible ue or False:
			0 H 1 I 2 H	High/Low Limit, High/Low Alarm, High/Low Warning Deviation High and Deviation Low Rate of Change Up and Rate of Change Down
Acknowledge	ACK	BOOL[02]	Acknowledge values are Tru	e. For each entry, possible ue or False:
			0 H 1 I 2	High/Low Limit, High/Low Alarm, High/Low Warning Deviation High and Deviation Low
			2 H	Rate of Change Up and Rate of Change Down
AlarmSetting	SET	ALARMSETTING	AlarmSetting See ALARMS	s. SETTING structure

ErrorMode	ERR	DINT	ErrorMoo the differ	de. Mode used to handle errors of ent types:
			RateOfCl values are	hangePeriod <= 0.0. Possible e:
			1	prints message in ErrorLog and stops resource code execution
			0	sets RateOfChangeUpEnable and
				RateOfChangeDownEnable to FALSE
			RateOfC	hangeUp <= 0.0. Possible values
			are:	
			1	prints message in ErrorLog and
				stops resource code execution
		0	sets RateOfChangeUpEnable to	
				FALSE
			RateOfC	hangeDown <= 0.0. Possible values
			are:	
			1	prints message in ErrorLog and
				stops resource code execution
			0	sets
				RateOfChangeDownEnable to FALSE
			HighDev	iation < 0.0. Possible values are:
			1	prints message in ErrorLog and stops resource code execution
			0	sets HighDeviationEnable to
			L owDevi	ation < 0.0 Possible values are:
			1	prints message in ErrorLog and
			1	stops resource code execution
			0	sets LowDeviationEnable to FALSE

OutputA	OUTA DINT	(OutputA) Output for High/Low Limit, High/Low Alarm, High/Low Warning alarms
OutputB	OUTB DINT	(OutputB) Output for Deviation High and Deviation Low alarms
OutputC	OUTC DINT	(OutputC) Output for Rate of Change Up and Rate of Change Down alarms

Description:

Provides 10 alarm conditions for an analog input. There are three outputs, one for each alarm category: High/Low alarms, deviation alarms, and rate of change alarms.

ALARMSETTING structure:

HighLimit	REAL	Value for which InputA exceeds the maximum range
HighAlarm	REAL	Value above which InputA is in high alarm condition
HighWarning	REAL	Value above which InputA is in warning alarm condition
LowWarning	REAL	Value below which InputA is in warning alarm condition
LowAlarm	REAL	Value below which InputA is in high alarm condition
LowLimit	REAL	Value for which InputA exceed is out of minimum range
DeadBand	REAL	Value for which InputA must be changed to get out of alarm condition
HighDeviation	REAL	Maximum acceptable difference in value from InputA to InputB
LowDeviation	REAL	Maximum acceptable difference in value from InputB to InputA
RateOfChangePeriod	REAL	Time interval used to calculate RateOfChange alarms, in seconds
RateOfChangeUp	REAL	Maximum increase in value of InputA during the RateOfChangePeriod triggering a rate of change up alarm

RateOfChangeDown	REAL	Minimum decrease in value of InputA during the RateOfChangePeriod triggering a rate of change down alarm
DelayInTime	REAL	Minimum period of time, in seconds, during which a condition is present before activating alarms (High and Low Limit, Alarm, Warning, and Deviation)
DelayOutTime	REAL	Minimum period of time, in seconds, during which a condition is absent before deactivating alarms (High and Low Limit, Alarm, Warning and Deviation)
HighLimitEnable	BOOL	Bit enabling HighLimit alarm check
HighAlarmEnable	BOOL	Bit enabling HighAlarm alarm check
HighWarningEnable	BOOL	Bit enabling HighWarning alarm check
LowWarning Enable	BOOL	Bit enabling LowWarning alarm check
LowAlarmEnable	BOOL	Bit enabling LowAlarm alarm check
LowLimitEnable	BOOL	Bit enabling LowLimit alarm check
HighDeviationEnable	BOOL	Bit enabling HighDeviation alarm check
LowDeviationEnable	BOOL	Bit enabling LowDeviation alarm check
RateOfChangeUpEnable	BOOL	Bit enabling RateOfChangeUp alarm check
RateOfChangeDown Enable	BOOL	Bit enabling RateOfChangeDown alarm check
RingBack	BOOL	Bit enabling the Not-Present Not-Acknowledge state when a condition alarm goes out

High/Low Alarms

Conditions making high/low alarms switch from not present to present					
High Limit	HighLimitEnable is TRUE and InputA has been greater than HighLimit for a period of time greater than DelayInTime				
High Alarm	HighAlarmEnable is TRUE and InputA has been greater than HighAlarm and lower than HighLimit for a period of time greater than DelayInTime				
High Warning	HighWarningEnable is TRUE and InputA has been greater than HighWarning and lower than HighAlarm for a period of time greater than DelayInTime				

Low Warning	LowWarningEnable is TRUE and InputA has been lower than LowWarning and higher than LowAlarm for a period of time greater than DelayInTime
Low Alarm	LowAlarmEnable is TRUE and InputA has been lower than LowAlarm and higher than LowLimit for a period of time greater than DelayInTime
Low Limit	LowLimitEnable is TRUE and InputA has been lower than LowLimit for a period of time greater than DelayInTime
Conditions making hi	igh/low alarms switch from present to not present
High Limit	HighLimitEnable is TRUE and InputA has been lower than HighLimit minus DeadBand for a period of time greater than DelayOutTime
High Alarm	HighAlarmEnable is TRUE and InputA has been lower then HighAlarm minus DeadBand for a period of time greater than DelayOutTime
High Warning	HighWarningEnable is TRUE and InputA has been lower than HighWarning minus DeadBand for a period of time greater than DelayOutTime
Low Warning	LowWarningEnable is TRUE and InputA has been greater than LowWarning plus DeadBand for a period of time greater than DelayOutTime
Low Alarm	LowAlarmEnable is TRUE and InputA has been greater than LowAlarm plus DeadBand for a period of time greater than DelayOutTime
Low Limit	LowLimitEnable is TRUE and InputA has been greater than LowLimit plus DeadBand for a period of time greater than DelayOutTime

Conditions making high/low alarms switch from not present to present

OutputA Values:

State	Value		
No Alarm	0		
Present	yes	yes	no(1)

State	Value		
Acknowledged	no	yes	no(1)
HighLimit	1	11	21
HighAlarm	2	12	22
HighWarning	3	13	23
LowWarning	4	14	24
LowAlarm	5	15	25
LowLimit	6	16	26

When OutputEnable[0] is FALSE, then the value of OutputA equals 0 (no alarm). The alarm is still processed but the value is kept internally.

If RingBack is TRUE, when an alarm state is Present-Acknowledge, the next step is Not-Present-Not-Acknowledge instead of no alarm. This causes a previously acknowledged alarm to require acknowledgment when the alarms clears.

Alarm Priority

High Priority	High Limit – Low Limit
	High Alarm – Low Alarm
Low Priority	High Warning – Low Warning

If the condition of a higher priority alarm is met while the current alarm is not acknowledged, the value of Output will be changed to reflect the higher alarm state.

Conditions making deviation alarms switch from not present to presen	ıt
--	----

DeviationHigh	HighDeviationEnable is TRUE and InputA has been greater than InputB plus HighDeviation for a period of time greater than DelayInTime
DeviationLow	LowDeviationEnable is TRUE and InputA has been lower than InputB minus LowDeviation for a period of time greater than DelayInTime

DeviationHigh	HighDeviationEnable is TRUE and InputA has been lower than InputB plus HighDeviation minus DeadBand for a period of time greater than DelayOutTime
DeviationLow	LowDeviationEnable is TRUE and InputA has been greater than InputB minus LowDeviation plus DeadBand for a period of time greater than DelayOutTime

Conditions making deviation alarms switch from present to not present

OutputB values:

State	Value		
No Alarm	0		
Present	yes	yes	no(1)
Acknowledged	no	yes	no(1)
DeviationHigh	1	11	21
DeviationLow	2	12	22

When OutputEnable[0] is FALSE, then the value of OutputB equals 0 (no alarm). The alarm is still processed but the value is kept internally.

(1) If RingBack is TRUE, when an alarm state is Present-Acknowledge the next step is Not-Present-Not-Acknowledge instead of no alarm. This causes a previously acknowledged alarm to require acknowledgment when the alarms clears.

Rate of Change Alarms

Conditions	making	rate of a	hange :	alarms	switch	from	not	nresent t	0	nresent
Conunions	maxing .		mange	alaims	Switch	nom	not	present i	0	present

RateOfChangeUp	RateOfChangeUpEnable is TRUE and InputA increases more than the value of RateOfChangeUp during RateOfChangePeriod
RateOfChangeDown	RateOfChangeDownEnable is TRUE and InputA decreases more than the value of RateOfChangeDown during RateOfChangePeriod

Conditions making rate of change alarms switch from present to not present			
RateOfChangeUp	RateOfChangeUpEnable is TRUE and InputA up variation over a period of RateOfChangePeriod is lower then RateOfChangeUp		
RateOfChangeDown	RateOfChangeDownEnable is TRUE and InputA down variation over a period of RateOfChangePeriod is lower then RateOfChangeDown		

OutputC Values:

State	Value 0				
No Alarm					
Present	yes	yes	no(1)		
Acknowledged	no	yes	no(1)		
RateOfChangeUp	1	11	21		
RateOfChangeDown	2	12	22		

When OutputEnable[0] is FALSE, then the value of OutputC equals 0 (no alarm). The alarm is still processed but the value is kept internally.

(1) If RingBack is TRUE, when an alarm state is Present-Acknowledge, the next step is Not-Present-Not-Acknowledge instead of no alarm. This will causes a previously acknowledged alarm to require acknowledgment when the alarms clears.

Example

(* ST equivalence: ANALOGALARM1 is an instance of ANALOGALARM block *)

ANALOGALARM1 (Signal_InA, Signal_InB, Enable, Ack, AlarmSetting, 0);

CASE ANALOGALARM.OutputA OF

- 1: Message1 := 'Alarm High Limit for Signal_InA';
- 2: Message1 := 'Alarm High Alarm for Signal_InA';
- 3: Message1 := 'Alarm High Warning for Signal_InA';
- 4: Message1 := 'Alarm Low Warning for Signal_InA';
- 5: Message1 := 'Alarm Low Alarm for Signal_InA';

6: Message1 := 'Alarm Low Limit for Signal_InA';

```
11: Messagel := 'Alarm High Limit for Signal_InA Acknowledged';
12: Messagel := 'Alarm High Alarm for Signal_InA Acknowledged';
13: Messagel := 'Alarm High Warning for Signal_InA Acknowledged';
14: Messagel := 'Alarm Low Warning for Signal_InA Acknowledged';
15: Messagel := 'Alarm Low Alarm for Signal_InA Acknowledged';
16: Messagel := 'Alarm Low Limit for Signal_InA Acknowledged';
21: Messagel := 'Alarm High Limit for Signal_InA Done';
22: Messagel := 'Alarm High Alarm for Signal_InA Done';
23: Messagel := 'Alarm High Warning for Signal_InA Done';
24: Messagel := 'Alarm Low Warning for Signal_InA Done';
25: Messagel := 'Alarm Low Warning for Signal_InA Done';
26: Messagel := 'Alarm Low Limit for Signal_InA Done';
27: Messagel := 'Alarm Low Limit for Signal_InA Done';
28: Messagel := 'Alarm Low Warning for Signal_InA Done';
29: Messagel := 'Alarm Low Limit for Signal_InA Done';
20: Messagel := 'Alarm Low Limit for Signal_InA Done';
20: Messagel := 'Alarm Low Limit for Signal_InA Done';
20: Messagel := 'Alarm Low Limit for Signal_InA Done';
20: Messagel := 'Alarm Low Limit for Signal_InA Done';
20: Messagel := 'Alarm Low Limit for Signal_InA Done';
20: Messagel := 'Alarm Low Limit for Signal_InA Done';
20: Messagel := 'Alarm Low Limit for Signal_InA Done';
20: Messagel := 'Alarm Low Limit for Signal_InA Done';
20: Messagel := 'Alarm Low Limit for Signal_InA Done';
20: Messagel := 'Alarm Low Limit for Signal_InA Done';
20: Messagel := 'Alarm Low Limit for Signal_InA Done';
```

BATCHSWITCH

BATCHS	WITCH
IN	OUT
REAL	REAL
HLIM	
REAL	
LLIM	
REAL	
PREL	
REAL	
GAIN	
REAL	

Arguments:

Input	IN	REAL	Input signal
HighLimit	HLIM	REAL	High limit for input signal
LowLimit	LLIM	REAL	Low limit for input signal
PreLoad	PREL	REAL	(PreLoad) Limit on adjusting controller feedback signal
Gain	GAIN	REAL	Gain value
Output	OUT	REAL	Output signal

Description:

Eliminates overshoot during startup conditions when using the IPIDCONTROLLER function block. When placed in the feedback path of the controller it causes the reset component of the controller to be reduced (if controller action is Reverse). Without the use of batch switch during startup, the controller output will equal full output since the reset will wind up. This requires the process to overshoot the setpoint in order to bring the controller output back down. With a batch switch in the feedback path, a lower reset value will be present when crossover occurs, thus reducing or eliminating overshoot.

As input equals or exceeds the high or low limit setting, the output of the batch switch will either be decreased (HighLimit) or increased (LowLimit), changing the feedback signal and therefore the controller reset signal. This maintains controller output at the batch switch limit setting and eliminates reset windup.

If a controller has a large proportional gain setting, the reset can be modified too much, such that the process may undershoot the setpoint during a startup condition. The PreLoad is adjusted to optimize the controller for startup conditions by limiting how much the batch switch to add additional compensation, very similar to derivative action, only during start up.

Example

(* ST equivalence: BATCHSWITCH1 is an instance of BATCHSWITCH block *)

BATCHSWITCH1(Feedback_Out_Process, 250.0, 0.0, 50.0, 2.0);
Feedback_In_Pid := BATCHSWITCH1.Output;

BATCHTOTALIZER

BATCHTOTALIZ	ER
IN	TOT
REAL	REAL
INIT	ALM1
REAL	BOOL
PRE1	ALM2
REAL	BOOL
PRE2	PULS
REAL	BOOL
ZERO	1.1
REAL	
PSCL	
REAL	
TBAS	
DINT	
STOP	
BOOL	
RST	1.1
BOOL	
UA	
BOOL	
ERR	
DINT	

Arguments:

Input	IN	REAL	Input signal
InitialValue	INIT	REAL	Initial value
Preset1	PRE1	REAL	(Preset1) Value used to activate Alarm1 when Total equals Preset1
Preset2	PRE2	REAL	(Preset2) Value used to activate Alarm2 when Total equals Preset2
ZeroDropOut	ZERO	REAL	(ZeroDropOut) Small positive value used as zero point for Input to stop totalling
PulseScaling	PSCL	REAL	(PulseScaling) Value to scale Pulse output

TimeBase	TBAS	DINT	TimeBase. Possible values are:1second2minute3hour4day5week
Stop	STOP	BOOL	Stops totalling
Reset	RST	BOOL	(Reset) Reinitialize Total to InitialValue
DirectActing	DA	BOOL	(DirectActing) The indication of whether totalling isincremental or decremental:TRUEtotalling is incrementalFALSEtotalling is decremental
ErrorMode	ERR	DINT	<pre>(ErrorMode) Mode used to handle errors of type TimeBase < 1 or TimeBase > 5. Possible values are: 1 prints message in ErrorLog and stops resource code execution 0 sets Total to 0.0, Alarm1 to TRUE, and Alarm2 to TRUE</pre>
Total	TOT	REAL	(Total) Batch total value
Alarm1	ALM1	BOOL	(Alarm1) TRUE when Preset1 is reached
Alarm2	ALM2	BOOL	(Alarm2) TRUE when Preset2 is reached
Pulse	PULS	BOOL	Pulse output integrates the input signal using TimeBase and output pulse at the rate determined by PulseScaling. The Pulse output operates on the absolute value of Input.

Description:

Integrates an analog input with alarms on presets and provides a pulse output to drive a remote counter.

Example

```
(* ST equivalence: BATCHTOTALIZER1 is an instance of BATCHTOTALIZER block *)
```

BATCHTOTALIZER1(Signal_In,

- Init_Val, PreSet1, PreSet2, 0.0, 10.0, 1, Stop_Batch, Reset_Batch, TRUE, 0); Pulse_Out := BATCHTOTALIZER1.Pulse ; Batch_Tot := BATCHTOTALIZER1.Total ; Done_1 := BATCHTOTALIZER1.Alarm1 ;
- Done 2 := BATCHTOTALIZER1.Alarm2 ;

BIAS

BIAS	
INA	OUT
REAL	REAL
INE	
REAL	
BIAS	
REAL	

Arguments:

InputA	INA	REAL	Input signal A
InputE	INE	REAL	Input signal E
Bias	BIAS	REAL	BIAS value
Output	OUT	REAL	Output value. Output = (BIAS) + InputA + InputE.

Description:

Provides a means to bias a signal, such as the setpoint in an external set application. Input signal A and input signal E are summed and then added to the operator adjustable BIAS. The BIASCALIBRATION function block calibrates BIAS using a tracked input signal.

Example

```
(* ST equivalence: BIAS1 is an instance of BIAS block and BIASCALIBRATION1 is an instance of BIASCALIBRATION block *)
```

```
BIAS1(Signal_InA, Signal_InE, BIASCALIBRATION1.BIAS);
Out_Value := BIAS1.Output ;
```

BIASCALIBRATION

BIASCAL	IBRATION
INA	BIAS
REAL	REAL
INE	то-
REAL	REAL
INIT	
REAL	
HLIM	
REAL	
LLIM	
REAL	
TV	
REAL	
тс	
BOOL	

Arguments:

InputA	INA	REAL	Input signal A
InputE	INE	REAL	Input signal E
Initial	INIT	REAL	(Initial) BIAS value at first scan
High_Limit	HLIM	REAL	High Limit for RATIO
Low_Limit	LLIM	REAL	Low Limit for RATIO
TrackVariable	TV	REAL	(TrackVariable) Input Signal to track
TrackCommand	TC	BOOL	(TrackCommand) Indication of whether the value of TrackVariable is tracked:TRUETrackVariable's value is trackedFALSETrackVariable's value is not tracked
Bias	BIAS	REAL	BIAS value
TrackOutput	ТО	REAL	(TrackOutput) Value of TrackOutput dependent on whether TrackCommand is initiated. When TrackCommand is FALSE, TrackOutput equals 0.0. When TrackCommand is TRUE, TrackOutput equals (TrackVariable) - (InputA + BIAS)

Description:

Calibrates BIAS using TrackVariable. When TrackCommand is FALSE, BIAS equals the last BIAS value and TrackOutput is 0.0. When TrackCommand is TRUE, BIAS = (TrackVariable) - (InputA + InputE); TrackOutput = (TrackVariable) - (InputA + BIAS) also BIAS will be limited by HighLimit and LowLimit. The BIAS function block provides a means to bias a signal such as the setpoint in an external set application.

Example

(* ST equivalence: BIAS1 is an instance of BIAS block and BIASCALIBRATION1 is an instance of BIASCALIBRATION block *)

BIASCALIBRATION1 (Signal_InA,

Signal_InE, 0.2, 300.0, 10.0, Flow_Water, TK); BIAS1(Signal_InA, Signal_InE, BIASCALIBRATION1.BIAS); Out_Value := BIAS1.Output ;

CHARACTERIZER

CHARAC	TERIZER
IN	OUT
REAL	REAL
^	
Y	

Arguments:

Input	IN	REAL	Input X signal
X0_10	Х	REAL[010]	(X0_X10) Inputs coordinates segments
Y0_10	Y	REAL[010]	(Y0_Y10) Outputs coordinates segments
Output	OUT	REAL	Output Y signal

Description:

Provides 10 segments that can characterize the input signal. Segments are configured by entering the Xn, Yn, Xn+1, and Yn+1 points. All Xn+1 points must be greater than the Xn points.

Example

(* ST equivalence: CHARACTERIZER1 is an instance of CHARACTERIZER block, Table_X and Table_Y are defined as REAL with dimension [0..10] in dictionary *)

CHARACTERIZER1(Signal_In, Table_X, Table_Y) ; Characterized_Value := CHARACTERIZER1.Output ;

COMPARATOR

COMPA	RATOR
IN	OUT
REAL	BOOL
LIM	
REAL	
DB	
REAL	
DIR	
BOOL	

Arguments:

Input	IN	REAL	Input signal	
LimitValue	LIM	REAL	Limit value	
DeadBand	DB	REAL	Dead band value depending on setting of DirectActing. When DirectActing is TRUE, the Output switches from TRUE to FALSE when the input is lower than Limit – DeadBand. When DirectActing is FALSE, the Output switches from TRUE to FALSE when the input is more than Limit + DeadBand.	
DirectActing	DIR	BOOL	$\begin{array}{ll} (DirectActing) \ The \ indication \ of \ whether \ the \ function \\ block \ operates \ in \ direct \ acting \ or \ reverse \ acting \ mode: \\ TRUE \ block \ is \ in \ direct \ acting \ mode \ and \ Output \ is \\ TRUE \ when \ Input \geq Limit \\ FALSE \ block \ is \ in \ reverse \ acting \ mode \ and \ Output \ is \\ TRUE \ when \ Input \leq Limit \end{array}$	
Output	OUT	BOOL	Output signal	

Description:

Compares the input with a limit value and gives a TRUE output when the limit is exceeded.

Example

(* ST equivalence: COMPARATOR1 is an instance of COMPARATOR block *)
COMPARATOR1(Signal_In , Limit, 5.0 , TRUE) ;
Limit_Exceeded := COMPARATOR1.Output ;

DIGITALALARM

DIGITALA	LARM
INA	OUT
BOOL	DINT
ENB	
BOOL	
ACK	100
BOOL	
MODE	
DINT	100
RB	
BOOL	
PER	
REAL	
ERR	
DINT	

Arguments:

InputA	INA	BOOL	Input signal A
OutputEnable	ENB	BOOL	(OutputEnable) Enable alarm processing
Acknowledge	ACK	BOOL	Acknowledge signal when TRUE

Mode	MODE	DINT	The conditions triggering an alarm for Output. Possible values are:	
			0	Output goes in alarm when input signal A is TRUE (High state)
			1	Output goes in alarm when input signal A is FALSE (Low state)
			2	Output goes in alarm when input signal A changes from FALSE to TRUE (Rising edge)
			3	Output goes in alarm when input signal A changes from TRUE to FALSE (Falling edge)
			4	Output goes in alarm when input signal A changes from FALSE to TRUE or TRUE to FALSE (change of state)
			5	Output goes in alarm when input signal A changes from FALSE to TRUE more than once during Period (Paising Pate Of Change)
			6	Output go in alarm when input signal A changes from TRUE to FALSE more than once during Period (Falling Rate Of Change)
RingBack	RB	BOOL	(RingBack) Not-Acknow	Bit enabling the Not-Present vledge state when a condition alarm goes out
Period	PER	REAL	Period of time to calculate Rate Of Change alarms, in seconds	
ErrorMode	ERR	DINT	(ErrorMode Mode. Possi 1 0) Mode used to handle errors of type invalids ible values are: prints message in ErrorLog and stops resource code execution sets Output to zero
Output	OUT	DINT	(Output) Ala in alarm (see	arm value = 0 when no alarm and 1 or 11 or 21 e Output values below).

Description:

Provides six alarm conditions for a digital input. Alarm conditions are High state, Low state, Rising edge, Falling edge, Change of state, Rising Rate of change, and Falling Rate of change.

Output values:

State	Value			
No Alarm	0			
Present	yes	yes	no(1)	
Acknowledged	no	yes	no(1)	
DIGITALALARM Output	1	11	21	

When OutputEnable is FALSE, then Output equals 0 (no alarm). The alarm is still processed but the value is kept internally.

(1) If RingBack is TRUE, when an alarm state is Present-Acknowledge, the next step is Not-Present-Not-Acknowledge instead of no alarm. This causes a previously acknowledged alarm to require acknowledgment when the alarms clears.

Example

```
(* ST equivalence: DIGITALALARM1 is an instance of DIGITALALARM block*)
```

```
DIGITALALARM1(Digit_InA, Enable, Ack, Mode, RingBack, 10, 0);
```

```
CASE Mode OF
```

0:

```
CASE DIGITALALARM1.Output OF
```

1: Message2:= 'Alarm High State for Digit InA';

```
11:Message2:= 'Alarm High State for Digit InA Acknowledged';
```

```
21:Message2:= 'Alarm High State for Digit_InA Done';
```

```
END_CASE;
```

1:

CASE DIGITALALARM1.Output OF

1: Message2:= 'Alarm Low State for Digit_InA';

11:Message2:= 'Alarm Low State for Digit_InA Acknowledged';

21:Message2:= 'Alarm Low State for Digit_InA Done';

END_CASE;

```
2:
```

CASE DIGITALALARM1.Output OF

1: Message2:='Alarm Rising edge for Digit InA';

11:Message2:='Alarm Rising edge for Digit_InA Acknowledged';

21:Message2:='Alarm Rising edge for Digit_InA Done';

END CASE;

```
3:
```

```
CASE DIGITALALARM1.Output OF
  1:Message2:='Alarm Falling edge for Digit_InA';
  11:Message2:='Alarm Falling edge for Digit_InA Acknowledged';
  21:Message2:='Alarm Falling edge for Digit_InA Done';
END_CASE;
```

```
4:
```

CASE DIGITALALARM1.Output OF

1:Message2:='Alarm C.O.S. for Digit_InA';

11:Message2:='Alarm C.O.S. for Digit_InA Acknowledged';

```
21:Message2:='Alarm C.O.S. for Digit_InA Done';
```

END_CASE;

5:

CASE DIGITALALARM1.Output OF

1:Message2:='Alarm Rising ROC for Digit_InA';

11:Message2:='Alarm Rising ROC for Digit_InA Acknowledged';

21:Message2:='Alarm Rising ROC for Digit_InA Done';

END_CASE;

```
6:
```

CASE DIGITALALARM1.Output OF

1:Message2:='Alarm Falling ROC for Digit_InA';

11:Message2:='Alarm Falling ROC for Digit_InA Acknowledged';

21:Message2:='Alarm Falling ROC for Digit_InA Done';

END CASE;

END_CASE;

FLIPFLOP

FLIPFLOP		
SET	OUT	
BOOL	BOOL	
RES		
BOOL		

Arguments:

Set	SET	BOOL	Set input signal
Reset	RES	BOOL	Reset input signal
Output	OUT	BOOL	Output signal

Description:

Provides a flip-flop function as detailed in the truth table below:

R	S	LO	0	
1	Х	Х	0	
0	ۇ	1	0	
0	ۇ	0	1	
0	0	0	0	
0	0	1	1	
R = Reset input				
S = Set input				
X = any state				
, = rising edge				

Example

```
(* ST equivalence: FLIPFLOP1 is an instance of FLIPFLOP block *)
FLIPFLOP1(Reset, Set) ;
```

Out_Value := FLIPFLOP1.Output ;

IPIDCONTROLLER

IPIDCONTROLLER		
P	OUT	
REAL	REAL	
SP	AERR	
REAL	REAL	
FB	ATW	
REAL	DINT	
AUTO	OGNS	
BOOL	GAIN_PID	
INIT		
BOOL		
GNS		
GAIN_PID		
ATUN		
BOOL		
ATPA		
AT_PARAM		
ERR		
DINT		

Arguments:

Process	Р	REAL	Process value, measured from the output of the controller process
SetPoint	SP	REAL	Set point value
Feedback	FB	REAL	Feed Back signal, measured from control input to a process
Auto	AUTO	BOOL	The operation mode of the PID controller: TRUE controller runs in normal mode FALSE controller output value equals feedback value
Initialize	INIT	BOOL	A change in value (TRUE to FALSE or FALSE to TRUE) causes the controller to eliminate any proportional gain during that cycle. Also initializes autotune sequences.
Gains	GNS	GAIN_PID	Gains PID for IPIDCONTROLLER (see GAIN PID structure)
AutoTune	ATUN	BOOL	Starts the Autotune sequence. See To perform an AutoTune sequence. Autotune is available when using the IPID in direct acting systems. The current Autotune algorithm cannot calculate gains in reverse acting system. Autotune is unable to calculate gains on slow-reaction or unstable systems. In such cases, Autotune ends in timeout.
---------------	------	----------	---
ATParameters	ATPA	AT_Param	AutoTune Parameters (see AT_Param structure)
ErrorMode	ERR	DINT	Mode used to handle errors. Possible values are:0no error messages ErrLog file1prints error messages level 1 in ErrLog file2prints error messages level 1 and level 2 in ErrLog file
Output	OUT	REAL	Output value from controller
AbsoluteError	AERR	REAL	Absolute Error (Process – SETPOINT) from controller
ATWarning	ATW	DINT	Warning for Autotune sequence. Possible values are:0no autotune done1autotuning in progress2autotuning done-1ERROR 1 input Auto set to TRUE, no autotune possible-2ERROR 2 autotune error, ATDynaSet expired
OutGains	OGNS	GAIN_PID	Gains calculated after AutoTune sequences (see GAIN_PID structure)

GAIN_PID structure:

DirectActing	BOOL	The type of acting:TRUEdirect actingFALSEreverse acting	
ProportionalGain	REAL	Proportional gain for PID (>= 0.0001)	
TimeIntegral	REAL	Time integral value for PID (≥ 0.0001)	
TimeDerivative	REAL	Time derivative value for PID (> 0.0)	
		When setting TimeDerivative to 0.0, the IPIDCONTROLLER forces DerivativeGain to 1.0 then works as a PI controller.	
DerivativeGain	REAL	Derivative gain for PID (> 0.0)	
AT_Param structur	re:		
Load	REAL	Load parameter for auto tuning. This is the output value when starting AutoTune.	
Deviation	REAL	Deviation for auto tuning. This is the standard deviation used to evaluate the noise band needed for AutoTune (noise band = $3*$ Deviation) ⁽¹⁾ .	
Step	REAL	Step value for AutoTune. Must be greater than noise band and less than $\frac{1}{2}$ Load.	
ATDynamSet	REAL	Time to wait for stabilization after the step test, in seconds. The AutoTune process stops when ATDynamSet time expires.	
ATReset	BOOL	The indication of whether the Output value is reset to zero after an AutoTune sequence: TRUE resets Output to zero FALSE leaves Output at Load value	

⁽¹⁾The application engineer can estimate the value of *Deviation* by observing the value of Process input. For example, in a project involving the control of temperature, if the temperature stabilizes around 22 °C, and a fluctuation of 21.7...22.5 °C is observed, the value of *Deviation* will be (22.5-21.7)/2=0.4.

Description:

The Interacting PID controller (IPIDCONTROLLER) is based on the following function block:

with A: Acting (+/- 1)
 PG: Proportional Gain
 DG: Derivative Gain
 ã_D: Time Derivative
 ã_I: Time Integral

In the HMI, the IPID faceplate is available for use with the IPIDCONTROLLER function block.

When *Auto* is TRUE, the IPIDCONTROLLER enables tracking and runs in normal auto mode. When *Auto* is FALSE, the controller output value equals the feedback value. This forces the IPIDCONTROLLER Output to track the feedback within the IPIDCONTROLLER limits and allows the controller to switch back to auto without bumping the Output.

For *Initialize*, changing from FALSE to TRUE or TRUE to FALSE when AutoTune is FALSE causes the IPIDCONTROLLER to eliminate any proportional gain action during that cycle (i.e Initialize). This can be used to prevent bumping the Output when changes are made to the SETPOINT using a switch function block.

IPID Autotuning for First and Second Order Systems

The IPIDCONTROLLER autotune is only functional on first and second order systems.

A first order system is a single independent energy storage element. A first order system can be written in a standard form such as $f(t) = \tau dy/dt + y(t)$, where τ is the system time constant, f is the forcing function, and y is the system state variable.

The cooling of a fluid tank, mentioned below in the table of first order system examples, can be modeled by the thermal capacitance (C) of the fluid and thermal resistance (R) of the tank walls. In this case, the system time constant is RC, the forcing function is the ambient temperature, and the system state variable is the fluid temperature.

(* Examples of first order systems *)

First order system	Energy storage element
Cooling of a fluid tank	Heat energy
Flow of a fluid tank	Potential energy
Motor having constant torque driving a disk flywheel	Rotational kinetic energy
Electric RC lead network	Capacitive storage energy

A second order system consists of two independent energy storage elements exchanging stored energy.

(* Examples of second order systems *)

Second order system	Energy storage element
Motor driving a disk flywheel with the motor coupled to the flywheel via a shaft with torsional stiffness	Rotational kinetic energy and torsion spring energy
Electric circuit composed of a current source driving a series LR (inductor and resistor) with a shunt C (capacitor)	Inductive and capacitive storage energy

Motor drive systems and heating systems can be typically modeled by the LR and C electric circuit.

How Autotune Works

The autotune process begins when *Initialize* is set to FALSE (step 6). Once started, the control output increases by the *Step* value and the process waits until the *Process* value reaches or exceeds the "first peak".

The "first peak" is defined as:

For Direct Operation: First peak = PV1 - (12*Deviation)For Reverse Operation: First peak = PV1 + (12*Deviation)Where PV1 is the process value when *Initialize* is set to FALSE.

Once the process value reaches the first peak, the control output reduces by the *Step* value and waits for the process value to drop to the second peak.

The "second peak" is defined as:

For Direct Operation: Second peak = PVI - (3*Deviation)For Reverse Operation: Second peak = PVI + (3*Deviation)Once the process value reaches or falls below the second peak, calculations begin and a set of gains is generated to the *OutGains* parameter.

IMPORTANT

User program scan time is important. The autotuning method needs to cause the oscillation of the control loop output. To identify the oscillation period, the IPIDCONTROLLER must be called at frequent intervals enabling adequate sampling of the oscillation. The scan time of the user program must be less than half the oscillation period. You must adhere to the Nyquist-Shannon sampling theorem.

In addition, it is important to execute the function block at relatively constant time intervals.

Actions to Perform before Running AutoTune

Before running an Autotune sequence you need to perform the following:

• Verify the system is constant when there is no control. For example, the *Process* value should remain at room temperature for a temperature control system when there is no control output.

- Configure *SetPoint* to 0
- Set *Auto* to FALSE
- Set the *Gains* parameters to have the following values:

Gains Parameters	Value		
DirectActing	According to operation. For example, TRUE for cooling operations and FALSE for heating operations.		
DerivativeGain	Typically set to 0.1 or 0.0		
ProportionalGain	0.0001		
TimeIntegral	0.0001		
TimeDerivative	0.0		

• Set the *ATParameters* parameters to have the following values:

ATParameters Parameters Recommendation

Load	Every <i>Load</i> parameter provides a saturated process value over a period of time. Adjust <i>Load</i> to the value required for the saturated process value.
	IMPORTANT : If a load of 40 results in a process value of 30 °C over a period of time, to tune your system to 30 °C, set the load to 40.
Deviation	The <i>Deviation</i> parameter plays a significant role in the autotune process. You are not required to set the <i>Deviation</i> parameter prior to autotuning. However you can set the deviation if you know the required value.
Step	The <i>Step</i> parameter value ranges between $3*Deviation$ and $\frac{1}{2}$ <i>load</i> . The <i>Step</i> parameter provides an offset for the <i>Load</i> during autotuning. The parameter should be set to a value high enough to create significant change in the <i>Process</i> value.

ATParameters	Parameters	Recommendation

ATDynamSet	Set the <i>ATDynamSet</i> parameter value to a reasonably long time for the autotune process. Since every system is different, specify more time for systems having process values slower in reacting to change.
ATReset	Set the <i>ATReset</i> parameter to TRUE to reset the output to 0 after the completion of the autotune process. Set the parameter to FALSE to keep the output at <i>Load</i> value after the completion of the autotune process.

To perform an AutoTune sequence

- 1. Set *Initialize* to **TRUE**.
- 2. Set *AutoTune* to TRUE.
- **3.** Wait for *Process* to stabilize or reach a steady state, then note the fluctuation of the *Process* value.
- **4.** Calculate the *Deviation* value with regards to the fluctuation value. For example, if the temperature stabilizes around 22 °C (72 °F) with a fluctuation of 21.7 22.5 °C (71 72.5 °F), the *Deviation* value is:

For °C	For °F
(22.5-21.7)/2=0.4	(72.5-71)/2=0.75

- 5. Set the *Deviation* value.
- 6. Set *Initialize* to FALSE.
- 7. Wait until the *ATWarning* output value is 2, meaning the Autotune process has completed successfully.
- 8. Get the autotuned value displayed in the *OutGains* output.

Troubleshooting the Autotune Process

The sequences of control output enable knowing what is happening behind the autotune process. The following table displays some known sequences of control output, the autotune result, and what actions to perform if autotune fails:

(* For the following *Load* is equal to 50 and *Step* is equal to 20 *)

Output Sequence 1: 50 -> 70 -> 30

Sequence Condition	Autotune Result	Action when Autotune Fails
Process value reached "f	irst Likely successful	N/A
peak" and "second peak"	in	
the required time		

Output Sequence 2: 50 -> 70 -> 50

Sequence Condition	Autotune Result	Action when Autotune Fails
Process value unable to reach	h Likely	Reduce Deviation or increase Step value
"first peak"	unsuccessful	

Output Sequence 3: 50 -> 70 -> 30 -> 50

Sequence Condition	Autotune Result	Action when Autotune Fails
Process value unable to reach	Likely	Increase Deviation or increase Step value
"second peak"	unsuccessful	

Output Sequence 4: 50 -> 70

Sequence Condition	Autotune Result	Action when Autotune Fails
Process value unable to reach	n Likely	Increase ATDynamSet value
"first peak" in the required	d unsuccessful	
time		

To finalize the tuning, some fine tuning may be needed depending on the processes and needs.

Example

(* ST equivalence: IPIDCONTROLLER1 is an instance of IPIDCONTROLLER block *)

IPIDCONTROLLER1 (Proc,

```
SP,
FBK,
Auto,
Init,
G_In,
A_Tune,
A_TunePar,
Err );
Out_process := IPIDCONTROLLER1.Output;
A_Tune_Warn := IPIDCONTROLLER1.ATWarning;
Gain Out := IPIDCONTROLLER1.OutGains;
```

LEADLAGCONTROLLER

LEADLAGCO	NTROLLER
IN	OUT
REAL	REAL
Lead	STAT
REAL	DINT
A	
REAL	
Lag	
REAL	
в	
REAL	
ENB	
BOOL	
ERR	
DINT	

Arguments:

Input	IN	REAL	Input signal		
TimeLead	Lead	REAL	Time constant for lead controller, in seconds		
А	А	REAL	Gain for lea	d controller ($a > 1$ and $a \ge b = 1$)	
TimeLag	Lag	REAL	Time consta	nt for lag controller, in seconds	
В	В	REAL	Gain for lag	controller (b < 1 and a x b = 1)	
Enable	ENB	BOOL	Enables the Output = 0.0	LEADLAGCONTROLLER. If set to FALSE,	
ErrorMode	ERR	DINT	Mode used t a < 1.0 1 0 b > 1.0 1	to handle the various types of errors: prints message in ErrorLog and stops resource code execution sets a to 1.0001 prints message in ErrorLog and stops resource	
			0 TimeLag < 0 1	code execution sets b to 0.9999 0 prints message in ErrorLog, stops resource code execution, and sets Status output to 1 sets Status output to 1	

Output	OUT	REAL	LEADLAC	GCONTROLLER output
Status	STAT	DINT	Status for I	LEADLAGCONTROLLER:
			0	OK
			1	TimeLag < 0.0
			2	Divided by zero
			3	Square root error (negative argument)

Description:

The LEADLAGCONTROLLER is based on the transfer function from Automatic control systems by Benjamin C.Kuo:

$$C(s) = \frac{(1 + aT_{leadS})(1 + bT_{lagS})}{(1 + T_{leadS})(1 + T_{lagS})}$$

a > 1
b < 1
a × b = 1

The lead controller gain a must be greater than 1.0, the lag controller gain b must be less than 1.0, and a multiplied by b must equal 1.0. If a x b does not equal 1.0, the controller will use b = 1/a.

With TimeLead set to zero, the controller will act as a Lag controller.

For entry errors, ErrorMode gives you the possibility to stop the resource.

For error of type division by zero or square root with negative argument, the controller sets the Status output to 2 or 3 respectively. The Output for those cases will be 0.0.

Discretization method: Zero-Order Hold

The Zero-Order Hold method is used by the function block to provide a match between the continuous and discrete time systems in the time domain discretization.

The following steps illustrate the summary of the calculus:

1. Conversion: continuous time to discrete time:

$$C(z) = (1 - z^{-1})Z\left[\frac{C(S)}{S}\right] = (1 - z^{-1})Z\left[\frac{(1 + aT_{lead}S)(1 + bT_{lag}S)}{S(1 + T_{lead}S)(1 + T_{lead}S)}\right]$$

Where z = the transform operator s = the Laplace operator

2. Partial fraction decomposition:

The equation from step 1 could be written after development of denominator as:

$$C(z) = (1 - z^{-1}) Z \left[\frac{(1 + aT_{lead}S)(1 + bT_{lag}S)}{S(T_{lead}T_{lag}S^2 + (T_{lead} + T_{lag})S + 1)} \right] = (1 - z^{-1}) Z \left[\frac{(1 + aT_{lead}S)(1 + bT_{lag}S)}{S(S - R)(S - Q)T_{lead}T_{lag}} \right]$$

Where R and Q are the solutions of the quadratic equation:

$$T_{lead}T_{lag}S^2 + \left(T_{lead} + T_{lag}\right)S + 1$$

Then C(z) could be written as:

$$C(z) = (1 - z^{-1})Z\left[\frac{A}{S} \times \frac{1}{\tau_{lead}\tau_{lag}} + \frac{B}{S - R} \times \frac{1}{\tau_{lead}\tau_{lag}} + \frac{C}{S - Q} \times \frac{1}{\tau_{lead}\tau_{lag}}\right]$$

3. Factors A, B and C:

$$A = \left[\frac{(1 + aT_{lead}S)(1 + bT_{lag}S)}{S(S - R)(S - Q)T_{lead}T_{lag}}\right]_{S=0} = \frac{1}{QR} \times \frac{1}{T_{lead}T_{lag}}$$

$$B = \left[\frac{(1 + aT_{lead}S)(1 + bT_{lag}S)}{S(S - R)(S - Q)T_{lead}T_{lag}}\right]_{S=R} = \frac{(1 + aT_{lead}R)(1 + bT_{lag}R)}{R(R - Q)} \times \frac{1}{T_{lead}T_{lag}}$$

$$C = \left[\frac{(1 + aT_{lead}S)(1 + bT_{lag}S)}{S(S - R)(S - Q)T_{lead}T_{lag}}\right]_{S=Q} = \frac{(1 + aT_{lead}Q)(1 + bT_{lag}Q)}{Q(Q - R)} \times \frac{1}{T_{lead}T_{lag}}$$

LEADLAGBACONTROLLER

LEADLAGBAC	ONTROLLER
IN	OUT
REAL	REAL
Lead	STAT
REAL	DINT
A	
REAL	
Lag	
REAL	
B	
REAL	
ENB	
BOOL	
ERR	
DINT	

Arguments:

Input	IN	REAL	Input signal
TimeLead	Lead	REAL	Time constant for lead controller, in seconds
A	А	REAL	Gain for lead controller $(a > 1 \text{ and } a \times b = 1)$
TimeLag	Lag	REAL	Time constant for lag controller, in seconds
В	В	REAL	Gain for lag controller ($b < 1$ and a x $b = 1$)
Enable	ENB	BOOL	Enables the LEADLAGBACONTROLLER. If set to FALSE, Output = 0.0

ErrorMode	ERR	DINT	Mode used	to handle the various types of errors:
			a < 1.0	
			1	prints message in ErrorLog and stops resource code execution
			0	sets A to 1.0001
			b > 1.0	
			1	prints message in ErrorLog and stops resource code execution
			0	sets <i>B</i> to 0.9999
			TimeLag <	0
			1	prints message in ErrorLog, stops resource code execution, and sets Status output to 1
			0	sets Status output to 1
Output	OUT	REAL	LEADLAG	BACONTROLLER output
Status	STAT	DINT	Status for L	EADLAGBACONTROLLER:
			0	OK
			1	TimeLag < 0.0
			2	Divided by zero
			3	Square root error (negative argument)

Description:

The LEADLAGBACONTROLLER is based on the transfer function from Automatic control systems by Benjamin C.Kuo:

$$C(s) = \frac{(1 + aT_{leadS})(1 + bT_{lagS})}{(1 + T_{leadS})(1 + T_{lagS})}$$

a > 1
b < 1
a × b = 1

Where

s = Laplace transform complex variable
a = Lead compensator gain
b = Lag compensator gain
Tld = Lead compensator time constant, in seconds
Tlg = Lag compensator time constant, in seconds
C(s) = Output to input transfer function

The lead controller gain a must be greater than 1.0, the lag controller gain b must be less than 1.0, and a multiplied by b must equal 1.0. If a x b does not equal 1.0, the controller will use b = 1/a.

With TimeLead set to zero, the controller will act as a Lag controller.

For entry errors, ErrorMode gives you the possibility to stop the resource.

For error of type division by zero or square root with negative argument, the controller sets the Status output to 2 or 3 respectively. The Output for those cases will be 0.0.

Discretization method: Bilinear Approximation (also called Tustin Approximation)

The Bilinear Approximation method is used by the function block to provide a match between the continuous and discrete time systems in the time domain discretization.

To convert from the analog domain to the digital domain we apply a bilinear transform:

$$s = \frac{2}{T} \frac{(z-1)}{(z+1)}$$

where

s = Laplace transform complex variable z = Z transform complex variable

T =Sampling period, in seconds

Substituting this "s" with C(s) and simplification results in Z transform of the Lead-Lag compensator:

$$C(z)^{[]]} = \frac{(T \, z + T + 2 \, b \, Tlg \, z - 2 \, b \, Tlg) \, (T \, z + T + 2 \, a \, Tld \, z - 2 \, a \, Tld}{(T \, z + T + 2 \, Tlg \, z - 2 \, Tlg) \, (T \, z + T + 2 \, Tld \, z - 2 \, Tld)}$$

Obviously we want the time domain filter to have the form:

 $y(n) = K1x(n) + K2x(n-1) + K3x(n-2) + \dots$

Without going in calculation details the end results from Z transform to Time domain we get:

y(n) = 1/K7 [x(n) + 2 x(n-1) + K5 x(n) + x(n-2) - K5 x(n-2) + K6 x(n) + K4 x(n) - 2 K4 x(n-1) - K6 x(n-2) + K4 x(n-2) - 2 y(n-1) + 2 K3 y(n-1) - y(n-2) + K1 y(n-2) + K2 y(n-2) - K3 y(n-2)]

Where K1 = (2 Tld)/T K2 = (2 Tlg)/T K3 = K1 K2 K4 = a b K3 K5 = a K1 K6 = b K2 K7 = 1 + K1 + K2 + K3 T = VM cycle time y = filter outputx = filter input

LIMITER

	TER
IN	OUT
REAL	REAL
HLIM	HSTS
REAL	BOOL
LLIM	LSTS
REAL	BOOL
ERR	
DINT	

Arguments:

Input	IN	REAL	Real value on which to limit the value
HighLimit	HLIM	REAL	High limit value
LowLimit	LLIM	REAL	Low limit value
ErrorMode	ERR	DINT	Mode used to handle errors of type HighLimit ≤ LowLimit. Possible values are: 1 prints message in ErrorLog and stops resource code execution 0 sets Output = Input if HighLimit ≤ LowLimit
Output	OUT	REAL	Tracks Input up to HighLimit and down to LowLimit
HighStatus	HSTS	BOOL	TRUE when Input > HighLimit
LowStatus	LSTS	BOOL	TRUE when Input < LowLimit

Description:

Tracks Input value and limits it to a value between LowLimit and HighLimit

Example

```
(* ST equivalence: LIMITER1 is an instance of LIMITER block *)
LIMITER1( InputA, 250.0, 25.0, 0 );
OutputB := LIMITER1.Output ;
High_Limit := LIMITER1.HighStatus ;
Low_Limit := LIMITER1.LowStatus ;
```

PID_AL

	PID_AL
Auto	Xout
BOOL	REAL
Pv	
REAL	
-Sp	
REAL	
X0	
REAL	
кр	
REAL	
Ti	
REAL	
Td	
REAL	
Ts	
TIME	
Xmin	
REAL	
Xmax	
REAL	

Arguments:

AUTO	BOOL	The operation mode of the PID controller:TRUEcontroller runs in automatic modeFALSEcontroller runs in manual mode. Atinitialisation, set the operation mode to FALSE.
Pv	REAL	Process output value
Sp	REAL	Setpoint value, i.e., value required at the output
X0	REAL	Adjustment value. When running in manual mode, in the case of an open loop, is the non-regulated value entering the system where the output value of the PID controller is equal to X0.
Кр	REAL	Proportionality constant
Ti	REAL	Integral time constant
Td	REAL	Derivative time constant

Ts	TIME	Sampling period
Xmin	REAL	Minimum possible value
Xmax	REAL	Maximum possible value
Xout	REAL	Command. In the case of a closed loop with regulation, is the regulated value entering the system.

Description:

The PID_AL function block is a proportional-integral-derivative controller (PID controller) using a generic control loop feedback mechanism (controller). This function block calculates an error value as the difference between a measured process variable and a desired setpoint. The block attempts to minimize the error by adjusting the process control inputs while implementing a bumpless compensation algorithm allowing the modification of PID coefficients at run-time.

While in Auto mode, the PID_AL function block is a PID process regulator using the feedback concept where an output is regulated according to the difference between its actual value and the expected value. While in Manual mode, the PID_AL function block is a non regulated system enabling the performance of tests and adjustments.

The PID_AL function block is implemented using the following PID model:

$$MV(t) = K_p \cdot \left(e(t) + \frac{1}{T_i} \cdot \int_0^t e(\tau) d\tau + T_d \cdot \frac{d}{dt} e(t) \right)$$

where Ti is the integral time Td is the derivative time

RATELIMITER

RATELI	MITER
IN	OUT
REAL	REAL
UP	RL
REAL	BOOL
DOWN	FL
REAL	BOOL
ENB	
BOOL	

Arguments:

Input	IN	REAL	Real value on which to limit the rate variation
UpRate	UP	REAL	The upper limit rate, in units/minute
DownRate	DOWN	REAL	The lower limit rate, in units/minute
Enable	ENB	BOOL	TRUE enables rate limitation action
Output	OUT	REAL	When Enable is FALSE, Output equals Input. When Enable is TRUE, Output rate is limited by UpRate or DownRate.
RaisingLimit	RL	BOOL	TRUE when block limits a rising Input
FallingLimit	FL	BOOL	TRUE when block limits a falling Input

Description:

Limits the rate of change for an input signal:

Enable = TRUE:

When the Input signal increases, the RisingLimit is TRUE and Output changes at the UpRate rate. When the Input signal decreases, the FallingLimit is TRUE and Output changes at the DownRate rate. When the Input signal changes at a rate between UpRate and DownRate, Output tracks Input.

Enable = FALSE:

The Output tracks the Input.

Example

(* ST equivalence: RATELIMITER1 is an instance of the RATELIMITER block; *)

RATELIMITER1(InputA, 5.0 , 1.0 , Enable_Bit) ;
OutputB := RATELIMITER1.Output ;
Limiting_Up_Rate := RATELIMITER1.RisingLimit ;
Limiting_Down_Rate := RATELIMITER1.FallingLimit ;

RATIO

Arguments:

InputA	INA	REAL	Input signal A
InputE	INE	REAL	Input signal E
Ratio	RAT	REAL	RATIO value
Output	OUT	REAL	Output value. Output = (RATIO) x InputA x InputE

Description:

Provides a means of setting a ratio in an external setpoint control. For example, controlling a captive flow while maintaining the ratio between a wild flow and the captive flow at the desired value. Input signal A, input signal E (external ratio), and the operator set RATIO values are multiplied and become the function block Output. The RATIOCALIBRATION function block calibrates RATIO using a tracked input signal.

Example

```
(* ST equivalence: RATIO1 is an instance of RATIO block and RATIOCALIBRATION1 is an instance of RATIOCALIBRATION block *)
```

```
RATIO1(Signal_InA, Signal_InE, RATIOCALIBRATION1.Ratio);
Out_Value := RATIO1.Output ;
```

RATIOCALIBRATION

RATIOCAL	IBRATION
INA	RAT
REAL	REAL
INE	то
REAL	REAL
REAL	
LLIM	
REAL	
TV	
REAL	
TC	
BOOL	

Arguments:

InputA	INA	REAL	Input signal A
InputE	INE	REAL	Input signal E
Initial	INIT	REAL	RATIO value at first scan
HighLimit	HLIM	REAL	High Limit for RATIO
LowLimit	LLIM	REAL	Low Limit for RATIO
TrackVariable	TV	REAL	Input Signal to track
TrackCommand	TC	BOOL	Command to initiate TrackVariable tracking
Ratio	RAT	REAL	RATIO value
TrackOutput	ТО	REAL	When TrackCommand = FALSE, TrackOutput = 0.0 When TrackCommand = TRUE, TrackOutput = (TrackVariable) / (InputA * RATIO)

Description:

Calibrates RATIO using TrackVariable. When TrackCommand is FALSE, RATIO equals last RATIO value and TrackOutput is 0.0. When TrackCommand is TRUE, RATIO equals (TrackVariable) / (InputA * InputE); TrackOutput = (TrackVariable) / (InputA * RATIO) also RATIO will be limited by HighLimit and LowLimit. The RATIO function block provides a means of setting a ratio in an external setpoint application.

Example

(* ST equivalence: RATIO1 is an instance of RATIO block and RATIOCALIBRATION1 is an instance of RATIOCALIBRATION block *)

RATIOCALIBRATION1(Signal_InA,

Signal_InE, 0.2, 300.0, 10.0, Flow_Water, TK); RATIO1(Signal_InA, Signal_InE, RATIOCALIBRATION1.RATIO); Out_Value := RATIO1.Output ;

RETENTIVEONTIMER

RETENTIV	EONTIMER
INO	OUT
BOOL	BOOL
INE	ONOT
BOOL	BOOL
DTIM	ETIM
REAL	REAL
ERR	RTIM
DINT	REAL

Arguments:

InputOn	INO	BOOL	Input to start timer
InputEnable	INE	BOOL	Input to enable timer
DelayTime	DTIM	REAL	Delay time in seconds
ErrorMode	ERR	DINT	Mode used to handle errors of type: DelayTime < 0.0:1prints message in ErrorLog and stops resource code execution0sets Output to TRUE, OutputNot to FALSE, ElapseTime to 0.0, and RemainingTime = 0.0
Output	OUT	BOOL	Signal = TRUE when RemainingTime ≥ 0.0
OutputNot	ONOT	BOOL	Signal = FALSE when RemainingTime ≥ 0.0
ElapseTime	ETIM	REAL	Time elapsed since the timer started
RemainingTime	RTIM	REAL	Time remaining before Output changes to TRUE.

Description:

Performs an on-delay timing function with output states determined by InputOn and InputEnable. When InputEnable is FALSE, Output and OutputNot are FALSE, RemainingTime equals DelayTime. When InputEnable is TRUE, Output and OutputNot are determined by InputOn and RemainingTime.

When InputOn is TRUE, ElapseTime starts to increase and RemainingTime starts to decrease. Output changes to TRUE after RemainingTime <= 0.0. If InputOn changes to FALSE, RemainingTime and ElapseTime stop at their current value and continue when InputOn returns to TRUE. ElapseTime returns to 0.0 when InputEnable is FALSE. OutputNot is TRUE if InputEnable is TRUE and Output is FALSE.

Example

(* ST equivalence: RETENTIVEONTIMER1 is an instance of RETENTIVEONTIMER block *)

RETENTIVEONTIMER1(On_Tmr, En_Tmr, 300.0, 0); Timer_Done := RETENTIVEONTIMER1.Output ; Timer_Not_Done := RETENTIVEONTIMER1.OutputNot ; Time_To_Count := RETENTIVEONTIMER1.RemainingTime ; Time_Counted := RETENTIVEONTIMER1.ElapseTime ;

SCALER

SCALEF	۲ ا
IN	OUT
REAL	REAL
IMIN	
REAL	
IMAX	
REAL	
OMIN	
REAL	
OMAX	
REAL	

Arguments:

Input	IN	REAL	Input signal
InputMin	IMIN	REAL	Minimum value of Input
InputMax	IMAX	REAL	Maximum value of Input
OutputMin	OMIN	REAL	Minimum value of Output
OutputMax	OMAX	REAL	Maximum value of Output
Output	OUT	REAL	Output value

Description:

Scales the input value according to the output range:

$$\frac{(Input - Input Min)}{(Input Max - Input Min)} \times (Output Max - Outptu Min) + Output Min$$

Example

```
(* ST equivalence: SCALER1 is an instance of SCALER block *)
SCALER1(Signal_In, 4.0, 20.0 , 0.0 , 150.0 ) ;
Out_Temp := SCALER1.Output ;
```

SETPOINT

SE	ETPOINT
TV	OUT
REAL	REAL
TS	
REAL	
RR	
REAL	
RT	
REAL	
СМD	
DINT	
PU	
BOOL	
PD	
BOOL	
PR	
DINT	
ERR	
DINT	

Arguments:

TrackVariable	TV	REAL	Variable to track	
TargetSetpoint	TS	REAL	Value to attain for setpoint	
RampRate	RR	REAL	Ramp rate value, per second	
RampTime	RT	REAL	Ramp time value, in seconds	
Command	CMD	DINT	Command for SETPOINT. Possible values are:0Output equals last output1Output equals TrackVariable2Output changes from current value to TargetSetpoint at RampRate rate3Output changes from current value to TargetSetpoint at (TargetSetpoint – Initial value) /RampTime rate	
PulseUp	PU	BOOL	Increment output for PulseRate value upon detection of upward pulses	
PulseDown	PD	BOOL	Decrement output for PulseRate value upon detection of downward pulses	

PulseRate	PR	DINT	Pulse rate value, per second
ErrorMode	ERR	DINT	Mode used to handle errors of type negative RampRateand negative RampTime. Possible values are:1prints message in ErrorLog and stops resource code execution0sets output to zero
Output	OUT	REAL	Current setpoint value

Description:

Multi-action setpoint command having six different settings and adjustment of SETPOINT for controller. On first scan, output equals TrackVariable. Using a different Command, the setpoint can be adjusted to last Output, TrackVariable, or TargetSetpoint. At any time, the two pulse entries can be used to increment or decrement the output (for example, via an HMI or a pulse switch).

Example

(* ST equivalence: SETPOINT1 is an instance of SETPOINT block *)

SETPOINT1(Signal_In, SETPOINTValue, 10.0, 25.0, UserCommand, RemoteUp, RemoteDown, 5, 0);

```
ProcessSETPOINT := SETPOINT1.Output ;
```

SIGNALSELECTOR

INA REAL	OUT- REAL
REAL	REAL
18.17	
INB	
REAL	
INC	
REAL	
SEL	
BOOL	

Arguments:

InputA	INA	REAL	Input signal A
InputB	INB	REAL	Input signal B
InputC	INC	REAL	Input signal C
Selector	SEL	BOOL	(Selector) Indication of whether the highest or lowest signalvalue is selected. Possible values are:TRUEselects highest signal valueFALSEselects lowest signal value
Output	OUT	REAL	(Output) Selected signal

Description:

Selects either the highest or lowest signal value from three input signals. When Selector is FALSE, the lowest signal value between input A, input B, and input C is sent to Output. When Selector is TRUE, the highest signal value between input A, input B, and input C is sent to Output.

Example

```
(* ST equivalence: SIGNALSELECTOR1 is an instance of SIGNALSELECTOR block \star)
```

SIGNALSELECTOR1(InA, InB, InC, Sel) ; Selected Signal := SIGNALSELECTOR1.Output ;

TRACKANDHOLD

TRACKAN	DHOLD
INIT	OUT
REAL	REAL
TV	
REAL	
TC	
BOOL	

Arguments:

Initial	INIT	REAL	Initial value to transfer to Output
TrackVariable	TV	REAL	(TrackVariable) Input signal to track
TrackCommand	TC	BOOL	(Track command) When TRUE, Output tracks the TrackVariable. When FALSE, Output stays the same as the last Output value.
Output	OUT	REAL	Output signal

Description:

Holds an initial value transferred to output on first scan. Tracks the TrackVariable when TrackCommand is TRUE and holds the last output value when FALSE.

Example

```
(* ST equivalence: TRACKANDHOLD1 is an instance of TRACKANDHOLD block \star)
```

```
TRACKANDHOLD1(25.0, Signal_To_Track, Command);
```

```
Out_Value := TRACKANDHOLD1.Output ;
```

TRANSFERSWITCH

TRANSFE	RSWITCH
INA	OUT
REAL	REAL
INB	
REAL	
СМД	
BOOL	

Arguments:

InputA	INA	REAL	Input signal A
InputB	INB	REAL	Input signal B
Command	CMD	BOOL	(Command) Indication of which signal to select:FALSEselects InputATRUEselects InputB
Output	OUT	REAL	Output signal

Description:

Selects a signal between two inputs with the switch command.

Example

```
(* ST equivalence: TRANSFERSWITCH1 is an instance of TRANSFERSWITCH block *)
```

```
TRANSFERSWITCH1( Signal_A, Signal_B, Switch_Command);
```

```
Out_value := TRANSFERSWITCH1.Output;
```

Matrix2 Operations

A matrix is a two-dimensional array variable made up of rows and columns. It is mainly used to perform complex calculations involving the data of the running application. The Matrix2 function block performs all of these operations. However, each operation has a specific identifier and requires different inputs. The outputs other than those specified for the function do not contain valid information. All Matrix2 operations are executed on a change in value greater than 0.

The intersection of a row and a column is called a cell; cells hold the matrix values. The number of the first row of a matrix is 0; the number of its first column is also 0.

The Workbench offers the Matrix2 built-in function block performing multiple operations for filling and manipulating matrices. Each of the available operations is indicated by a number ranging from 0 to 10. Furthermore, the Matrix2 block performs an operation on a change in value (increasing or decreasing). Therefore, to repeat a specific operation, the block operation number must increase or decrease before resuming a previous operation number.

The available Matrix2 operations are the following:

NULLIFY_OPERATION	0	Nullifies an operation to enable repeating one of the other possible Matrix2 operations.
COPY_ROW_MATRIX	7	Copies a row from a matrix into a row of the same size in another matrix. The cell value type must be the same in both matrices (Index1 and Index2 are used).
COPY_COL_MATRIX	8	Copies a column from a matrix into a row of the same size in another matrix. The cell value type must be the same in both matrices (Index1 and Index2 are used).
TRANSPOSE_MATRIX	1	Swaps the rows and columns of an existing matrix into another existing matrix called a transpose
INVERT_MATRIX	2	Computes the inverse of a float (REAL) matrix
ADD_MATRIX	3	Adds up two existing matrices and places the result in a third matrix

SUBTRACT_MATRIX	4	Subtracts an existing matrix from another existing matrix and places the result in a third matrix
MULTIPLY_MATRIX	5	Multiplies two existing matrices and places the result in a third matrix
SCALAR_MATRIX	6	Multiplies each cell value of a float (REAL) matrix by a float (REAL) value
PRINT_MATRIX	9	Prints the contents of all matrices on the console
GET_VERSION	10	Returns the version number of the function block

The examples for the individual Matrix2 operations are based on the variables from the following definitions:

	Name	Logical ¥alue	Physical ¥alue	Lock	Data T	ype	Dimension
	- A.					· At	- A*
+	mat1				DINT	•	[03,03]
+	mat2				DINT	•	[03,03]
+	mat3				DINT	•	[03,03]
	FirstCycle				BOOL	•	
+	matR1				REAL	•	[03,03]
+	matR2				REAL	•	[03,03]
+	matR3				REAL	•	[03,03]
	cmd1_transpose	1			DINT	•	
	cmd2_invert	2			DINT	•	
	cmd3_add	3			DINT	•	
	cmd4_sub	4			DINT	•	
	cmd5_mult	5			DINT	•	
	cmd6_scalar	6			DINT	•	
	cmd7_copy_row	7			DINT	•	
	cmd8_copy_col	8			DINT	•	
	cmd9_print	9			DINT	•	
	cmd10_get_ver	10			DINT	•	
+	fbm1				MATRIX2	•	

COPY_ROW_MATRIX

Arguments:

The outputs other than those specified for the function do not contain valid information.

Operation	DINT	Number indicating the operation. The value of this operation is 7.
In_Matrix1	ANY_ELEMENTARY	Array variable for the source matrix
In_Matrix2	ANY_ELEMENTARY	Array variable for the destination matrix. This must not be the source matrix.
Index 1	DINT	Number of the row, in the source matrix, that is copied. The possible values range from 0 to N-1, N being the total number of rows.
Index2	DINT	Number of the row, in the destination matrix, that receives a row. The possible values range from 0 to N-1, N being the total number of rows.
Error_Code	DINT	Status of the operation: 0 = No error 3 = Type mismatch 5 = Column mismatch 7 = Index out of range
Copies a row from a matrix into a row of the same size in another matrix. The cell value type must be the same in both matrices.

Example

To copy the contents of a row from a matrix and place it into a row of another matrix. For a list of variable definitions used in the following example, refer to the Matrix2 Operations page.

```
IF (Copy row 7)
THEN
  (* Copies a row from a matrix into a row of the same size in another
matrix or into the same matrix. *)
  Copy row 7 := FALSE;
 IF (Use Int Matrix) THEN op1 := cmd7 copy row; ELSE op2 :=
cmd7_copy_row; END_IF;
END IF;
(* FB for DINT operations *)
fbm1( op1, mat1, mat2, mat3, idx11, idx12, in1i);
err1 := fbm1.Error code;
out1i := fbm1.OUT INTEGER VALUE;
out1r := fbm1.OUT FLOAT VALUE;
op1 := 0;
(* FB for REAL operations *)
fbm2( op2, matR1, matR2, matR3, idx21, idx22, in2r);
err2 := fbm2.Error code;
out2i := fbm2.OUT INTEGER VALUE;
out2r := fbm2.OUT_FLOAT_VALUE;
```

op2 := 0;

COPY_COL_MATRIX

Arguments:

The outputs other than those specified for the function do not contain valid information.

Operation	DINT	Number indicating the operation. The value of this operation is 8.
In_Matrix1	ANY_ELEMENTARY	Array variable for the source matrix
In_Matrix2	ANY_ELEMENTARY	Array variable for the destination matrix. This must not be the source matrix.
Index 1	DINT	Number of the column, in the source matrix, that is copied. The possible values range from 0 to N-1, N being the total number of columns.

Index2	DINT	Number of the column, in the destination matrix, that receives a column. The possible values range from 0 to N-1, N being the total number of columns.
Error_Code	DINT	Status of the operation: 0 = No error 2 = Invalid type 3 = Type mismatch 5 = Column mismatch 7 = Index out of range

Copies a column from a matrix into a column of the same size in another matrix. The cell value type must be the same in both matrices.

Example

To copy the contents of a column from a matrix and place it into a column of another matrix. For a list of variable definitions used in the following example, refer to the Matrix2 Operations page.

```
IF (Copy_col_8)
THEN
  (* Copies a column from a matrix into a row of the same size in another
matrix or into the same matrix. *)
  Copy_col_8 := FALSE;
  IF (Use_Int_Matrix) THEN op1 := cmd8_copy_col; ELSE op2 :=
  cmd8_copy_col; END_IF;
END_IF;
  (* FB for DINT operations *)
fbm1( op1, mat1, mat2, mat3, idx11, idx12, in1i);
err1 := fbm1.Error_code;
```

outli := fbml.OUT_INTEGER_VALUE; outlr := fbml.OUT_FLOAT_VALUE; opl := 0;

(* FB for REAL operations *)
fbm2(op2, matR1, matR2, matR3, idx21, idx22, in2r);
err2 := fbm2.Error_code;
out2i := fbm2.OUT_INTEGER_VALUE;
out2r := fbm2.OUT_FLOAT_VALUE;
op2 := 0;

TRANSPOSE_MATRIX

Arguments:

The outputs other than those specified for the function do not contain valid information.

Operation	DINT	Number indicating the operation. The value of this operation is 1.
In_Matrix1	ANY_ELEMENTARY	Array variable for the matrix to be transposed (source)
Out_Matrix3	ANY_ELEMENTARY	Array variable for the matrix to receive the resulting transposed matrix. This must not be the source matrix.
Error_Code	DINT	Status of the operation: 0 = No error 1 = Not enough memory 6 = Dimension mismatch 7 = Index out of range

Description:

Swaps the rows and columns of an existing matrix into another matrix called a transpose. For instance, the transpose of a matrix having three rows and five columns has five rows and three columns. The transpose matrix is created with the required row-column structure and data type. You place the transposed matrix into an existing matrix.

Example

To swap the rows and columns of an existing matrix into another existing matrix called a transpose. For a list of variable definitions used in the following example, refer to the Matrix2 Operations page.

```
IF (Transpose 1)
THEN
  (* Transpose the matrix *)
 Transpose 1 := FALSE;
 IF (Use Int Matrix) THEN op1 := cmd1 transpose; ELSE op2 :=
cmd1_transpose; END_IF;
END IF;
(* FB for DINT operations *)
fbm1( op1, mat1, mat2, mat3, idx11, idx12, in1i);
err1 := fbm1.Error code;
out1i := fbm1.OUT INTEGER VALUE;
out1r := fbm1.OUT FLOAT VALUE;
op1
    := 0;
(* FB for REAL operations *)
fbm2( op2, matR1, matR2, matR3, idx21, idx22, in2r);
err2 := fbm2.Error code;
out2i := fbm2.OUT_INTEGER VALUE;
out2r := fbm2.OUT FLOAT VALUE;
op2 := 0;
```

INVERT_MATRIX

Arguments:

The outputs other than those specified for the function do not contain valid information.

Operation	DINT	Number indicating the operation. The value of this operation is 2.
In_Matrix1	ANY_ELEMENTARY	Array variable for the matrix to be inverted (source). The cell value type must be float (REAL).
Out_Matrix3	ANY_ELEMENTARY	Array variable for the matrix to receive the resulting inverted matrix. This must not be the source matrix. The cell value type must be float (REAL).
Error_Code	DINT	Status of the operation: 0 = No error 1 = Not enough memory 2 = Invalid type 3 = Type mismatch 6 = Dimension mismatch 7 = Index out of range 8 = Not square 9 = Mathematical error

Computes the inverse of a matrix. The source matrix must be square (i.e., have the same number of rows and columns) and its cell value type must be float (REAL). The inverse matrix will be created with the required row-column structure and data type.

You place the transposed matrix into an existing matrix.

Note: Not all matrices are invertible. Invertible matrices are those whose determinant is not equal to 0.

Example

To invert a source matrix and place the result in a destination matrix. For a list of variable definitions used in the following example, refer to the Matrix2 Operations page.

```
IF (Invert_2)
THEN
  (* Invert the matrix - This operation is only for floats *)
  Invert_2 := FALSE;
  op2 := cmd2_invert;
END_IF;
  (* FB for DINT operations *)
fbm1( op1, mat1, mat2, mat3, idx11, idx12, in1i);
err1 := fbm1.Error_code;
outli := fbm1.OUT_INTEGER_VALUE;
outli := fbm1.OUT_FLOAT_VALUE;
op1 := 0;
  (* FB for REAL operations *)
fbm2( op2, matR1, matR2, matR3, idx21, idx22, in2r);
err2 := fbm2.Error_code;
```

- out2i := fbm2.OUT_INTEGER_VALUE;
- out2r := fbm2.OUT_FLOAT_VALUE;

op2 := 0;

ADD_MATRIX

Arguments:

The outputs other than those specified for the function do not contain valid information.

Operation	DINT	Number indicating the operation. The value of this operation is 3.
In_Matrix1	ANY_ELEMENTARY	Array variable for the first matrix in the addition
In_Matrix2	ANY_ELEMENTARY	Array variable for the other matrix in the addition

Out_Matrix3	ANY_ELEMENTARY	Array variable for the existing matrix that will receive the operation result. This must not be one of the matrices indicated in In_Matrix1 or In_Matrix2.
Error_Code	DINT	Status of the operation: 0 = No error 1 = Not enough memory 2 = Invalid type 3 = Type mismatch 4 = Row mismatch 5 = Column mismatch 6 = Dimension mismatch 7 = Index out of range

Adds up two existing matrices then places the result in a third matrix. The summation is performed cell by cell, with the result occupying the same cell position in the third matrix. The matrices that are added up must have the same dimensions and cell value type.

You place the result into an existing matrix.

Example

To add two matrices then place the result in a third matrix. For a list of variable definitions used in the following example, refer to the Matrix2 Operations page.

```
IF (Add_3)
THEN
  (* Add the matrices *)
  Add_3 := FALSE;
  IF (Use_Int_Matrix) THEN op1 := cmd3_add; ELSE op2 := cmd3_add;
END_IF;
END_IF;
  (* FB for DINT operations *)
```

- fbm1(op1, mat1, mat2, mat3, idx11, idx12, in1i);
- err1 := fbm1.Error_code;
- outli := fbml.OUT_INTEGER_VALUE;
- out1r := fbm1.OUT_FLOAT_VALUE;

op1 := 0;

- (* FB for REAL operations *)
- fbm2(op2, matR1, matR2, matR3, idx21, idx22, in2r);
- err2 := fbm2.Error_code;
- out2i := fbm2.OUT_INTEGER_VALUE;
- out2r := fbm2.OUT_FLOAT_VALUE;
- op2 := 0;

SUBTRACT_MATRIX

Arguments:

The outputs other than those specified for the function do not contain valid information.

Operation	DINT	Number indicating the operation. The value of this operation is 4.
In_Matrix1	ANY_ELEMENTARY	Array variable for the first matrix in the subtraction
In_Matrix2	ANY_ELEMENTARY	Array variable for the other matrix in the subtraction

Out_Matrix3	ANY_ELEMENTARY	Array variable for the existing matrix that will receive the operation result. This must not be one of the matrices indicated in In_Matrix1 or In_Matrix2.
Error_Code	DINT	Status of the operation: 0 = No error 1 = Not enough memory 2 = Invalid type 3 = Type mismatch 4 = Row mismatch 5 = Column mismatch 6 = Dimension mismatch 7 = Index out of range

Subtracts an existing matrix from another existing matrix then places the result in a third matrix. The difference is performed cell by cell, with the result occupying the same cell position in the third matrix. The matrices involved in the subtraction must have the same dimensions and cell value type.

You place the result into an existing matrix.

Example

To subtract a matrix from another matrix then place the result in a third matrix. For a list of variable definitions used in the following example, refer to the Matrix2 Operations page.

```
IF (Sub_4)
THEN
  (* Subtract the matrices *)
  Sub_4 := FALSE;
  IF (Use_Int_Matrix) THEN op1 := cmd4_sub; ELSE op2 := cmd4_sub;
END_IF;
END_IF;
```

(* FB for DINT operations *)
fbml(opl, matl, mat2, mat3, idx11, idx12, in1i);
err1 := fbml.Error_code;
out1i := fbml.OUT_INTEGER_VALUE;
out1r := fbml.OUT_FLOAT_VALUE;
op1 := 0;
(* FB for REAL operations *)

fbm2(op2, matR1, matR2, matR3, idx21, idx22, in2r);

- err2 := fbm2.Error code;
- out2i := fbm2.OUT_INTEGER_VALUE;
- out2r := fbm2.OUT_FLOAT_VALUE;

op2 := 0;

MULTIPLY_MATRIX

Arguments:

The outputs other than those specified for the function do not contain valid information.

Operation	DINT	Number indicating the operation. The value of this operation is 5.
In_Matrix1	ANY_ELEMENTARY	Array variable for the first matrix in the multiplication
In_Matrix2	ANY_ELEMENTARY	Array variable for the other matrix in the multiplication
Out_Matrix3	ANY_ELEMENTARY	Array variable for the existing matrix that will receive the operation result. This must not be one of the matrices indicated in In_Matrix1 or In_Matrix2.
Error_Code	DINT	Status of the operation: 0 = No error 1 = Not enough memory 2 = Invalid type 3 = Type mismatch 6 = Dimension mismatch 7 = Index out of range

Multiplies two existing matrices then places the result in a third matrix. The number of columns in the first matrix must be equal to the number of rows in the second matrix. The resulting matrix has the same number of rows as the first matrix and the same number of columns as the second matrix. For example, you can multiply a 3x4 matrix with a 4x2 matrix; the result will be a 3x2 matrix; however, you cannot multiply two 3x4 matrices. The matrices being multiplied must have the same cell value type.

The resulting matrix will be created with the required row-column structure and data type. You can place the result into an existing matrix.

Example

To multiply two matrices then place the result in a third matrix. For a list of variable definitions used in the following example, refer to the Matrix2 Operations page.

```
IF (Mult_5)
THEN
  (* Multiply the matrices *)
  Mult_5 := FALSE;
  IF (Use_Int_Matrix) THEN op1 := cmd5_mult; ELSE op2 := cmd5_mult;
END_IF;
END_IF;
  (* FB for DINT operations *)
fbm1( op1, mat1, mat2, mat3, idx11, idx12, in1i);
err1 := fbm1.Error_code;
out1i := fbm1.OUT_INTEGER_VALUE;
out1r := fbm1.OUT_FLOAT_VALUE;
op1 := 0;
  (* FB for REAL operations *)
```

fbm2(op2, matR1, matR2, matR3, idx21, idx22, in2r);

- err2 := fbm2.Error_code;
- out2i := fbm2.OUT_INTEGER_VALUE;
- out2r := fbm2.OUT_FLOAT_VALUE;

op2 := 0;

SCALAR_MATRIX

Arguments:

The outputs other than those specified for the function do not contain valid information.

Operation	DINT	Number indicating the operation. The value of this operation is 6.
In_Matrix1	ANY_ELEMENTARY	Array variable for the first matrix in the scalar operation. The cell value type must be float (REAL).
In_Matrix2	ANY_ELEMENTARY	Array variable for the other matrix in the scalar operation. The cell value type must be float (REAL).
Out_Matrix3	ANY_ELEMENTARY	Array variable for the existing matrix that will receive the operation result. The cell value type must be float (REAL). This must not be one of the matrices indicated in In_Matrix1 or In_Matrix2.

Multiplier	ANY_ELEMENTARY	Number by which cell values are multiplied. This multiplier must be a float (REAL) value.
Error_Code	DINT	Status of the operation: 0 = No error 1 = Not enough memory 3 = Type mismatch 6 = Dimension mismatch 7 = Index out of range

Multiplies each cell value of a float matrix by a float value then places the result in another matrix. This operation is called scalar multiplication.

You place the result into an existing matrix.

Example

To multiply each cell of a float matrix by a float value then place the result in another matrix. For a list of variable definitions used in the following example, refer to the Matrix2 Operations page.

```
IF (Scalar_6)
THEN
  (* Multiply each cell value of a float matrix by a value *)
  Scalar_6 := FALSE;
  IF (Use_Int_Matrix) THEN op1 := cmd6_scalar; ELSE op2 := cmd6_scalar;
  END_IF;
  END_IF;
  (* FB for DINT operations *)
  fbm1( op1, mat1, mat2, mat3, idx11, idx12, in1i);
  err1 := fbm1.Error_code;
```

```
outli := fbml.OUT_INTEGER_VALUE;
outlr := fbml.OUT_FLOAT_VALUE;
opl := 0;
```

```
(* FB for REAL operations *)
fbm2( op2, matR1, matR2, matR3, idx21, idx22, in2r);
err2 := fbm2.Error_code;
out2i := fbm2.OUT_INTEGER_VALUE;
out2r := fbm2.OUT_FLOAT_VALUE;
op2 := 0;
```

PRINT_MATRIX

Arguments:

The outputs other than those specified for the function do not contain valid information.

Operation	DINT	Number indicating the operation. The value of this operation is 9.
In_Matrix1	ANY_ELEMENTARY	Array variable for the matrix
In_Matrix2	ANY_ELEMENTARY	Array variable for the matrix
Out_Matrix3	ANY_ELEMENTARY	Array variable for the matrix having the results of an operation executed on In_Matrix1 and In_Matrix2.
Error_Code	DINT	Status of the operation: 0 = No error 2 = Invalid type

Description:

Prints the contents of matrices to a standard output, i.e., a console window.

Example

To print the contents of all matrices onto a console window. For a list of variable definitions used in the following example, refer to the Matrix2 Operations page.

```
IF (Print_9)
THEN
  (* Prints the content of the matrix *)
 Print_9 := FALSE;
 IF (Use Int Matrix) THEN op1 := cmd9 print; ELSE op2 := cmd9 print;
END IF;
END_IF;
(* FB for DINT operations *)
fbm1( op1, mat1, mat2, mat3, idx11, idx12, in1i);
err1 := fbm1.Error code;
outli := fbm1.OUT INTEGER VALUE;
outlr := fbm1.OUT FLOAT VALUE;
op1
    := 0;
(* FB for REAL operations *)
fbm2( op2, matR1, matR2, matR3, idx21, idx22, in2r);
err2 := fbm2.Error code;
out2i := fbm2.OUT INTEGER VALUE;
out2r := fbm2.OUT FLOAT VALUE;
op2
    := 0;
```

GET_VERSION

Arguments:

The outputs other than those specified for the function do not contain valid information.

Operation	DINT	Number indicating the operation. The value of this operation is 10.
Error_Code	DINT	Status of the operation: 0 = No error 2 = Invalid type
OUT_INTEGER_VALUE DINT		Version number of the function block

Description:

Gets the version number for the function block. The version number is a 2-byte integer representing a major and minor version. For example, 16#0203 means v2.3.

Example

To get the version number of the MATRIX2 function block. For a list of variable definitions used in the following example, refer to the Matrix2 Operations page.

IF (Get_ver_10)

```
THEN
```

```
(* Get FB version *)
Get_ver_10 := FALSE;
IF (Use_Int_Matrix) THEN op1 := cmd10_get_ver; ELSE op2 :=
cmd10_get_ver; END_IF;
END_IF;
(* FB for DINT operations *)
fbm1( op1, mat1, mat2, mat3, idx11, idx12, in1i);
err1 := fbm1.Error_code;
out1i := fbm1.OUT_INTEGER_VALUE;
out1r := fbm1.OUT_FLOAT_VALUE;
out1r := fbm1.OUT_FLOAT_VALUE;
op1 := 0;
(* FB for REAL operations *)
fbm2( op2, matR1, matR2, matR3, idx21, idx22, in2r);
```

```
err2 := fbm2.Error_code;
```

```
out2i := fbm2.OUT_INTEGER_VALUE;
```

```
out2r := fbm2.OUT_FLOAT_VALUE;
```

```
op2 := 0;
```

Matrix Operations

A matrix is a two-dimensional array made up of rows and columns. It is mainly used to perform complex calculations involving the data of the running application. The matrix function block performs all of these operations. However, each operation has a specific identifier and requires different inputs. The outputs other than those specified for the function do not contain valid information.

The intersection of a row and a column is called a cell; cells hold the matrix values. The number of the first row of a matrix is 0; the number of its first column is also 0.

The Workbench offers built-in function blocks for creating, filling, and manipulating matrices. Each of the functions has an operation number ranging from 0 to 20.

You can create as many matrices as required per program.

The available Matrix operations are the following:

NEW_MATRIX	Creates a matrix
FREE_MATRIX	Closes a matrix
PUT_I_MATRIX	Inserts an integer into a cell of an integer matrix
GET_I_MATRIX	Reads the value of a cell in an integer matrix
PUT_F_MATRIX	Inserts a float value into a cell of a float matrix
GET_F_MATRIX	Reads the value of a cell in a float matrix
DUP_MATRIX	Creates a duplicate of an existing matrix
COPY_MATRIX	Copies the contents of a matrix into an existing matrix having the same row-column structure and cell value type
COPY_ROW_MATRIX	Copies a row from a matrix into a row of the same size in another matrix or into the same matrix
COPY_COL_MATRIX	Copies a column from a matrix into a row of the same size in another matrix or into the same matrix

TYPE_MATRIX	Returns the data type of the cell values of a matrix
ROWS_MATRIX	Returns the number of rows in a matrix
COLS_MATRIX	Returns the number of columns in a matrix
TRANSPOSE_MATRIX	Swaps the rows and columns of an existing matrix into another matrix
INVERT_MATRIX	Computes the inverse of a matrix
ADD_MATRIX	Adds up two existing matrices
SUBTRACT_MATRIX	Subtracts an existing matrix from another existing matrix
MULTIPLY_MATRIX	Multiplies two existing matrices
SCALAR_I_MATRIX	Multiplies each cell value of an integer matrix by an integer value
SCALAR_F_MATRIX	Multiplies each cell value of a float matrix by a float value
PRINT_MATRIX	Sends the contents of a matrix to the errlog

NEW_MATRIX

Note: The failover mechanism does not support the Matrix function blocks.

Arguments:

You need to enter a value for each input parameter that appears blank. All blank inputs require a 0 except for the FLT which requires 0.0. The outputs other than those specified for the function do not contain valid information.

OPERATION	OP	DINT	Number indicating the operation. This operation number is 0.
INDEX_1	IDX1	DINT	Number of rows. The possible values range from 0 to N-1, N being the total number of rows.
INDEX_2	IDX2	DINT	Number of columns. The possible values range from 0 to M-1, M being the total number of columns.
IN_INTEGER_VALUE	INT	DINT	Number indicating the type of matrix: 0 = Integer 1 = Float

MATRIX_RESULT	RES	DINT	Handle of the new matrix
ERROR_CODE	ERR	DINT	Status of the operation: 1 = Not enough memory 2 = Invalid type
			2 = Invalid type

Warning: This function uses the Malloc dynamic memory allocation at run time.

Creates a matrix. The data type of all cells is the same for any matrix. Therefore, an integer matrix contains only integer values, and a float matrix, float values.

Examples

To create a float-type matrix having three columns and three rows:

```
matrix_fbl(0, 0, 0, 0, 3, 3, 1, 0.0); (* new float matrix 3 x 3*)
if matrix_fbl.ERROR_CODE = 0 then
    mat[1] := matrix_fbl.MATRIX_RESULT;
else
    RESULT := log_msg('ErrLog','unable to allocate matrix ' +
    any_to_string(matrix_fbl.ERROR_CODE));
end if;
```

To create an integer-type matrix having two columns and two rows:

FREE_MATRIX

Note: The failover mechanism does not support the Matrix function blocks.

Arguments:

You need to enter a value for each input parameter that appears blank. All blank inputs require a 0 except for the FLT which requires 0.0. The outputs other than those specified for the function do not contain valid information.

OPERATION	OP	DINT	Number indicating the operation. The value of this operation is 1.
MATRIX_1	MAT1	DINT	Handle of the matrix
ERROR_CODE	ERR	DINT	Status of the operation: 0 = No error 6 = Index out of range

Description:

Closes a matrix.

Example

To close the matrix having the handle indicated by the index variable:

```
FOR index := 1 TO 10 BY 1 DO
if mat[index] > 0 then
matrix_fbl(1, mat[index], 0, 0, 0, 0, 0, 0, 0, 0, 0); (* free mat[index] *)
if matrix_fbl.ERROR_CODE > 0 then
RESULT := log_msg('ErrLog','unable to free matrix ' +
any_to_string(matrix_fbl.ERROR_CODE));
end_if;
end_if;
END_FOR;
```

GET_I_MATRIX

Note: The failover mechanism does not support the Matrix function blocks.

Arguments:

You need to enter a value for each input parameter that appears blank. All blank inputs require a 0 except for the FLT which requires 0.0. The outputs other than those specified for the function do not contain valid information.

OPERATION	OP	DINT	Number indicating the operation. This operation number is 3.
MATRIX_1	MAT1	DINT	Handle of the matrix
INDEX_1	IDX1	DINT	Row number of the cell. The possible values range from 0 to N-1, N being the total number of rows.
INDEX_2	IDX2	DINT	Column number of the cell. The possible values range from 0 to M-1, M being the total number of columns.
OUT_INTEGER_VALUE	INTG	DINT	Integer value contained in the cell
Description:			

Reads the value of a cell in an integer matrix.

Example

To get the integer value held in the cell located in the first column and first row of the matrix having the handle 2 and place it into the ivalue variable:

```
matrix_fbl(3, mat[2], 0, 0, 1, 2, 0, 0.0); (* ivalue = mat[1][1,2] *)
ivalue := matrix_fbl.out_integer_value;
```

PUT_I_MATRIX

Note: The failover mechanism does not support the Matrix function blocks.

Arguments:

You need to enter a value for each input parameter that appears blank. All blank inputs require a 0 except for the FLT which requires 0.0. The outputs other than those specified for the function do not contain valid information.

OPERATION	OP	DINT	Number indicating the operation. This operation number is 2.
MATRIX_1	MAT1	DINT	Handle of the matrix
INDEX_1	IDX1	DINT	Row number of the cell. The possible values range from 0 to N-1, N being the total number of rows.
INDEX_2	IDX2	DINT	Column number of the cell. The possible values range from 0 to M-1, M being the total number of columns.

IN_INTEGER_VALUE	INT	DINT	Value to be inserted
ERROR_CODE	ERR	DINT	Status of the operation: 0 = No error 3 = Type mismatch 6 = Index out of range
			0 – muex out of fange

Inserts an integer into a cell of an integer matrix.

Example

To set the values of the cells in the first and second columns of the first row to 2 and -1 respectively:

matrix_fbl(2, mat[2], 0, 0, 0,0, 2, 0.0); matrix_fbl(2, mat[2], 0, 0, 0,1, -1, 0.0)
GET_F_MATRIX

Note: The failover mechanism does not support the Matrix function blocks.

Arguments:

You need to enter a value for each input parameter that appears blank. All blank inputs require a 0 except for the FLT which requires 0.0. The outputs other than those specified for the function do not contain valid information.

OPERATION	ОР	DINT	Number indicating the operation. This operation number is 5.
MATRIX_1	MAT1	DINT	Handle of the matrix
iNDEX_1	IDX1	DINT	Row number of the cell. The possible values range from 0 to N-1, N being the total number of rows.
iNDEX_2	IDX2	DINT	Column number of the cell. The possible values range from 0 to M-1, M being the total number of columns.
OUT_FLOAT_VALUE	FLT	REAL	Returns the float value contained in the cell

Description:

Reads the value of a cell in a float matrix.

Example

To get the float value from the cell in the second row and third column of the matrix having the handle 1 and place it in the fvalue variable:

```
matrix_fbl(5, mat[1], 0, 0, 1, 2, 0, 0.0); (* fvalue =mat[1][1,2]*)
fvalue := matrix_fbl.out_float_value;
```

PUT_F_MATRIX

Note: The failover mechanism does not support the Matrix function blocks.

Arguments:

OPERATION	OP	DINT	Number indicating the operation. This operation number is 4.
MATRIX_1	MAT1	DINT	Handle of the matrix
INDEX_1	IDX1	DINT	Row number of the cell. The possible values range from 0 to N-1, N being the total number of rows.
INDEX_2	IDX2	DINT	Column number of the cell. The possible values range from 0 to M-1, M being the total number of columns.

IN_FLOAT_VALUE FLT REAL Value to be inserted ERROR_CODE ERR DINT Status of the operation: 0 = No error 3 = Type mismatch 6 = Index out of range

Description:

Inserts a float value into a cell of a float matrix.

Example

To place the value 2.0 into the cell in the first row and first column in the matrix having the handle 1:

matrix_fbl(4, mat[1], 0, 0, 0, 0, 0, 2.0)

DUP_MATRIX

Note: The failover mechanism does not support the Matrix function blocks.

Arguments:

You need to enter a value for each input parameter that appears blank. All blank inputs require a 0 except for the FLT which requires 0.0. The outputs other than those specified for the function do not contain valid information.

OPERATION	OP	DINT	Number indicating the operation. The value of this operation is 6.
MATRIX_1	MAT1	DINT	Handle of the matrix
MATRIX_RESULT	RES	DINT	Handle of the new matrix
ERROR_CODE	ERR	DINT	Status of the operation: 0 = No error 1 = Not enough memory 7 = Out of range

Description:

Warning: This function uses the Malloc dynamic memory allocation at run time.

Creates a duplicate of an existing matrix. The duplicate matrix will have the same structure and contents as the original one. The duplicate matrix will be created with the required row-column structure and data type. If the matrix already exists, it will be deleted then recreated.

Example

To duplicate the matrix having the handle 1:

```
matrix_fbl(6, mat[1], 0, 0, 0, 0, 0, 0.0); (* duplicate mat[1] *)
if matrix_fbl.ERROR_CODE = 0 then
mat[3] := matrix_fbl.MATRIX_RESULT;
else
RESULT := log_msg('ErrLog','unable to duplicate matrix ' +
any_to_string(matrix_fbl.ERROR_CODE));
end_if
```

COPY_MATRIX

Note: The failover mechanism does not support the Matrix function blocks.

Arguments:

OPERATION	OP	DINT	Number indicating the operation. The value of this operation is 7.
MATRIX_1	MAT1	DINT	Handle of the source matrix
MATRIX_2	MAT2	DINT	Handle of the destination matrix. This must not be the source matrix.
ERROR_CODE	ERR	DINT	Status of the operation: 0 = No error 3 = Type mismatch 4 = Row mismatch 5 = Column mismatch 6 = Dimension mismatch 7 = Index out of range

Copies the contents of a matrix into an existing matrix having the same row-column structure and cell value type.

Example

To copy the contents of the matrix having the handle 1 and place it into the matrix having the handle 3:

```
matrix_fbl(7, mat[1], mat[3], 0, 0, 0, 0, 0, 0.0); (* mat[3]=mat[1] *)
if matrix_fbl.ERROR_CODE = 0 then
mat[3] := matrix_fbl.MATRIX_RESULT;
else
RESULT := log_msg('ErrLog','unable to duplicate matrix ' +
any_to_string(matrix_fbl.ERROR_CODE));
end_if
```

COPY_ROW_MATRIX

Note: The failover mechanism does not support the Matrix function blocks.

Arguments:

OPERATION	OP	DINT	Number indicating the operation. The value of this operation is 8.
MATRIX_1	MAT1	DINT	Handle of the source matrix
INDEX_1	IDX1	DINT	Number of the row, in the source matrix, that is copied. The possible values range from 0 to N-1, N being the total number of rows.
MATRIX_2	MAT2	DINT	Handle of the destination matrix. This must not be the source matrix.

INDEX_2	IDX2	DINT	Number of the row, in the destination matrix, that receives a row. The possible values range from 0 to N-1, N being the total number of rows.
ERROR_CODE ERR DINT		DINT	Status of the operation: 0 = No error 3 = Type mismatch 5 = Column mismatch 6 = Index out of range

Copies a row from a matrix into a row of the same size in another matrix or into the same matrix. The cell value type must be the same in both matrices.

Example

To copy the contents of the second row of the matrix having the handle 1 and place it into the third row of the matrix having the handle 3:

```
matrix_fbl(8, mat[1], mat[3], 1, 2, 0, 0, 0.0); (* mat[3][2,0..M] =
mat[1][1,0..M] *)
if matrix_fbl.ERROR_CODE > 0 then
RESULT := log_msg('ErrLog','unable to copy row matrix ' +
any_to_string(matrix_fbl.ERROR_CODE));
end if
```

COPY_COL_MATRIX

Note: The failover mechanism does not support the Matrix function blocks.

Arguments:

OPERATION	OP	DINT	Number indicating the operation. The value of this operation is 9.
MATRIX_1	MAT1	DINT	Handle of the source matrix
INDEX_1	IDX1	DINT	Number of the column, in the source matrix, that is copied. The possible values range from 0 to M-1, M being the total number of columns.
MATRIX_2	MAT2	DINT	Handle of the destination matrix. This must not be the source matrix.

INDEX_2	IDX2	DINT	Number of the row, in the destination matrix, that receives a column. The possible values range from 0 to M-1, M being the total number of columns.
ERROR_CODE	ERR	DINT	Status of the operation: 0 = No error 2 = Invalid type 3 = Type mismatch 4 = Row mismatch 6 = Index out of range

Copies a column from a matrix into a row of the same size in another matrix or into the same matrix. The cell value type must be the same in both matrices.

Example

To copy the contents of the second column of the matrix having the handle 1 and place it into the third column of the matrix having the handle 3:

```
matrix_fbl(9, mat[1], mat[3], 1, 2, 0, 0, 0.0); (* mat[3][0..N,2] =
mat[1][0..N,1] *)
if matrix_fbl.ERROR_CODE > 0 then
RESULT := log_msg('ErrLog','unable to copy col matrix ' +
any_to_string(matrix_fbl.ERROR_CODE));
end if
```

TYPE_MATRIX

Note: The failover mechanism does not support the Matrix function blocks.

Arguments:

You need to enter a value for each input parameter that appears blank. All blank inputs require a 0 except for the FLT which requires 0.0. The outputs other than those specified for the function do not contain valid information.

OPERATION	OP	DINT	Number indicating the operation. The value of this operation is 10.
MATRIX_1	MAT1	DINT	Handle of the matrix. This number is the result of the NEW_MATRIX operation, when the matrix was created.
MATRIX_TYPE	ТҮРЕ	DINT	Data type of the cells: 0 = Integer 1 = Float

Description:

Returns the data type of the cell values of a matrix.

Example

To get the type of cells contained in the matrix having the handle 1 and place it in the mat_type variable:

```
matrix_fbl(10, mat[1], 0, 0, 0, 0, 0, 0.0); (* get mat[1] type
(integer/float)*)
mat_type := matrix_fbl.matrix_type
```

ROWS_MATRIX

Note: The failover mechanism does not support the Matrix function blocks.

Arguments:

You need to enter a value for each input parameter that appears blank. All blank inputs require a 0 except for the FLT which requires 0.0. The outputs other than those specified for the function do not contain valid information.

OPERATION	OP	DINT	Number indicating the operation. The value of this operation is 11.
MATRIX_1	MAT1	DINT	Handle of the matrix
MATRIX_ROWS	ROWS	DINT	Number of rows in the matrix. The possible values range from 0 to N-1, N being the total number of rows.

Description:

Returns the number of rows in a matrix.

Example

To get the number of rows contained in the matrix having the handle 1:

```
matrix_fbl(11, mat[1], 0, 0, 0, 0, 0, 0.0); (* get mat[1] number of
rows *)
rows := matrix_fbl.matrix_rows
```

COLS_MATRIX

Note: The failover mechanism does not support the Matrix function blocks.

Arguments:

You need to enter a value for each input parameter that appears blank. All blank inputs require a 0 except for the FLT which requires 0.0. The outputs other than those specified for the function do not contain valid information.

OPERATION	OP	DINT	Number indicating the operation. The value of this operation is 12.
MATRIX_1	MAT1	DINT	Handle of the matrix
MATRIX_COLS	COLS	DINT	Number of columns in the matrix. The possible values range from 0 to M-1, M being the total number of columns.

Description:

Returns the number of columns in a matrix.

Example

To get the number of columns contained in the matrix having the handle 1:

```
matrix_fbl(12, mat[1], 0, 0, 0, 0, 0, 0.0); (* get mat[1] number of
columns *)
cols := matrix_fbl.matrix_cols
```

TRANSPOSE_MATRIX

Note: The failover mechanism does not support the Matrix function blocks.

Arguments:

OPERATION	ОР	DINT	Number indicating the operation. The value of this operation is 13.
MATRIX_1	MAT1	DINT	Handle of the matrix to be transposed (source)
MATRIX_2	MAT2	DINT	Handle of the matrix to receive the resulting transposed matrix. This must not be the source matrix. A value of 0 indicates that a new matrix will be created.

MATRIX_RESULT	RES	DINT	Handle of the resulting transposed matrix
ERROR_CODE	ERR	DINT	Status of the operation:
			0 = No error
			1 = Not enough memory
			6 = Dimension mismatch
			7 = Index out of range

Swaps the rows and columns of an existing matrix into another matrix called a transpose. For instance, the transpose of a matrix having three rows and five columns has five rows and three columns. The transpose matrix will be created with the required row-column structure and data type. You can choose to place the transposed matrix into an existing matrix or create a new one.

Example

To swap the rows and columns of the matrix having the handle 1 and place the result in a new matrix:

```
matrix_fbl(13, mat[1], 0, 0, 0, 0, 0, 0, 0.0); (* transpose mat[1] *)
if matrix_fbl.ERROR_CODE = 0 then
mat[4] := matrix_fbl.MATRIX_RESULT;
else
RESULT := log_msg('ErrLog','unable to transpose matrix ' +
any_to_string(matrix_fbl.ERROR_CODE));
end_if
```

INVERT_MATRIX

Note: The failover mechanism does not support the Matrix function blocks.

Arguments:

OPERATION	OP	DINT	Number indicating the operation. The value of this operation is 14.
MATRIX_1	MAT1	DINT	Handle of the matrix to be inverted (source)
MATRIX_2	MAT2	DINT	Handle of the matrix to receive the resulting inverted matrix. This must not be the source matrix. A value of 0 indicates that a new matrix will be created.

MATRIX_RESULT	RES	DINT	Handle of the resulting inverted matrix
ERROR_CODE	ERR	DINT	Status of the operation:
			0 = No error
			1 = Not enough memory
			2 = Invalid type
			3 = Type mismatch
			6 = Dimension mismatch
			7 = Index out of range
			8 = Not square
			9 = Mathematical error

Warning: This function uses the Malloc dynamic memory allocation at run time.

Computes the inverse of a matrix. The source matrix must be square (i.e., have the same number of rows and columns) and its cell value type must be float. The inverse matrix will be created with the required row-column structure and data type.

You can choose to place the inverted matrix into an existing matrix or create a new one.

Note: Not all matrices are invertible. Invertible matrices are those whose determinant is not equal to 0.

Example

To invert the matrix having the handle 1 and place the result in a new matrix:

```
matrix_fbl(14, mat[1], 0, 0, 0, 0, 0, 0, 0.0); (* invert mat[1] *)
if matrix_fbl.ERROR_CODE = 0 then
mat[4] := matrix_fbl.MATRIX_RESULT;
else
RESULT := log_msg('ErrLog','unable to inverse matrix ' +
any_to_string(matrix_fbl.ERROR_CODE));
end_if
```

ADD_MATRIX

Note: The failover mechanism does not support the Matrix function blocks.

Arguments:

OPERATION	OP	DINT	Number indicating the operation. The value of this operation is 15.
MATRIX_1	MAT1	DINT	Handle of the first matrix in the addition
MATRIX_2	MAT2	DINT	Handle of the other matrix in the addition
MATRIX_3	MAT3	DINT	Handle of the existing matrix that will receive the operation result. This must not be one of the matrices indicated in MAT_1 or MAT_2. A value of 0 indicates that result of the operation is sent to a new matrix.

ERROR_CODEERRDINTStatus of the operation: $0 = No$ error $1 = Not$ enough memory $2 = Invalid type$ $3 = Type mismatch$ $4 = Row mismatch$ $5 = Column mismatch$ $6 = Dimension mismatch$	MATRIX_RESULT	RES	DINT	Handle of the resulting matrix
7 = Index out of range	ERROR_CODE	ERR	DINT	Status of the operation: 0 = No error 1 = Not enough memory 2 = Invalid type 3 = Type mismatch 4 = Row mismatch 5 = Column mismatch 6 = Dimension mismatch 7 = Index out of range

Adds up two existing matrices then places the result in a third matrix. The summation is performed cell by cell, with the result occupying the same cell position in the third matrix. The matrices that are added up must have the same dimensions and cell value type.

You can choose to place the result into an existing matrix or create a new one.

Example

To add the matrix having the handle 1 and another having the handle 4 then place the result in a new matrix:

```
matrix_fbl(15, mat[1], mat[4], 0, 0, 0, 0, 0, 0.0); (* mat[1]+mat[4]*)
if matrix_fbl.ERROR_CODE = 0 then
mat[5] := matrix_fbl.MATRIX_RESULT;
else
RESULT := log_msg('ErrLog','unable to add matrix ' +
any_to_string(matrix_fbl.ERROR_CODE));
end_if
```

SUBTRACT_MATRIX

Note: The failover mechanism does not support the Matrix function blocks.

Arguments:

OPERATION	OP	DINT	Number indicating the operation. The value of this operation is 16.
MATRIX_1	MAT1	DINT	Handle of the first matrix in the subtraction
MATRIX_2	MAT2	DINT	Handle of the other matrix in the subtraction
MATRIX_3	MAT3	DINT	Handle of the existing matrix that will receive the operation result. This must not be one of the matrices indicated in MAT_1 or MAT_2. A value of 0 indicates that result of the operation is sent to a new matrix.

MATRIX_RESULT	RES	DINT	Handle of the resulting matrix
ERROR_CODE	ERR	DINT	Status of the operation: 0 = No error 1 = Not enough memory 2 = Invalid type 3 = Type mismatch 4 = Row mismatch 5 = Column mismatch 6 = Dimension mismatch 7 = Index out of range

Subtracts an existing matrix from another existing matrix then places the result in a third matrix. The difference is performed cell by cell, with the result occupying the same cell position in the third matrix. The matrices involved in the subtraction must have the same dimensions and cell value type.

You can choose to place the result into an existing matrix or create a new one.

Example

To subtract the matrix having the handle 4 from the matrix having the handle 1 then place the result in a new matrix:

```
matrix_fbl(16, mat[1], mat[4], 0, 0, 0, 0, 0, 0.0); (* mat[1]-mat[4]*)
if matrix_fbl.ERROR_CODE = 0 then
mat[6] := matrix_fbl.MATRIX_RESULT;
else
RESULT := log_msg('ErrLog','unable to sub matrix ' +
any_to_string(matrix_fbl.ERROR_CODE));
end if
```

MULTIPLY_MATRIX

Note: The failover mechanism does not support the Matrix function blocks.

Arguments:

OPERATION	OP	DINT	Number indicating the operation. The value of this operation is 17.
MATRIX_1	MAT1	DINT	Handle of the first matrix in the multiplication
MATRIX_2	MAT2	DINT	Handle of the other matrix in the multiplication
MATRIX_3	MAT3	DINT	Handle of the existing matrix that will receive the operation result. This must not be one of the matrices indicated in MAT_1 or MAT_2. A value of 0 indicates that result of the operation is sent to a new matrix.

MATRIX_RESULT	RES	DINT	Handle of the resulting matrix
ERROR_CODE	ERR	DINT	Status of the operation:
			0 = No error
			1 = Not enough memory
			2 = Invalid type
			3 = Type mismatch
			6 = Dimension mismatch
			7 = Index out of range

Multiplies two existing matrices then places the result in a third matrix. The number of columns in the first matrix must be equal to the number of rows in the second matrix. The resulting matrix has the same number of rows as the first matrix and the same number of columns as the second matrix. For example, you can multiply a 3x4 matrix with a 4x2 matrix; the result will be a 3x2 matrix; however, you cannot multiply two 3x4 matrices. The matrices being multiplied must have the same cell value type.

The resulting matrix will be created with the required row-column structure and data type. You can choose to place the result into an existing matrix or create a new one.

Example

To multiply the matrix having the handle 1 and the matrix having the handle 4 then place the result in a new matrix:

```
matrix_fbl(17, mat[1], mat[4], 0, 0, 0, 0, 0, 0.0); (* mat[1]*mat[4]*)
if matrix_fbl.ERROR_CODE = 0 then
mat[7] := matrix_fbl.MATRIX_RESULT;
else
RESULT := log_msg('ErrLog','unable to multiply matrix ' +
any_to_string(matrix_fbl.ERROR_CODE));
end if
```

SCALAR_I_MATRIX

Note: The failover mechanism does not support the Matrix function blocks.

Arguments:

OPERATION	OP	DINT	Number indicating the operation. The value of this operation is 18.
MATRIX_1	MAT1	DINT	Handle of the first matrix in the scalar operation
MATRIX_2	MAT2	DINT	Handle of the other matrix in the scalar operation
MATRIX_3	MAT3	DINT	Handle of the existing matrix that will receive the operation result. This must not be one of the matrices indicated in MAT_1 or MAT_2. A value of 0 indicates that result of the operation is sent to a new matrix.
IN_INTEGER_VALUE	INT	DINT	Number by which cell values are multiplied

MATRIX_RESULT	RES	DINT	Handle of the resulting matrix
ERROR_CODE	ERR	DINT	Status of the operation:
			0 = No error 1 = Not enough memory
			3 = Type mismatch
			6 = Dimension mismatch
			7 = Index out of range

Warning: This function uses the Malloc dynamic memory allocation at run time.

Multiplies each cell value of an integer matrix by an integer value then places the result in another matrix. This operation is called scalar multiplication.

You can choose to place the result into an existing matrix or create a new one.

Example

To multiply each cell of the matrix having the handle 2 by the value 4 then place the result in a new matrix:

```
matrix_fbl(18, mat[2], 0 , 0, 0, 0, 0, 4, 0.0); (* mat[2] * 4 *)
if matrix_fbl.ERROR_CODE = 0 then
mat[8] := matrix_fbl.MATRIX_RESULT;
else
RESULT := log_msg('ErrLog','unable to scalar i matrix ' +
any_to_string(matrix_fbl.ERROR_CODE));
end_if
```

SCALAR_F_MATRIX

Note: The failover mechanism does not support the Matrix function blocks.

Arguments:

OPERATION	ОР	DINT	Number indicating the operation. The value of this operation is 19.
MATRIX_1	MAT1	DINT	Handle of the first matrix in the scalar operation
MATRIX_2	MAT2	DINT	Handle of the other matrix in the scalar operation
MATRIX_3	MAT3	DINT	Handle of the existing matrix that will receive the operation result. This must not be one of the matrices indicated in MAT_1 or MAT_2. A value of 0 indicates that result of the operation is sent to a new matrix.
IN_FLOAT_VALUE	FLT	FLT	Number by which cell values are multiplied

MATRIX_RESULT	RES	DINT	Handle of the resulting matrix
ERROR_CODE	ERR	DINT	Status of the operation:
			0 = No error
			1 = Not enough memory
			3 = Type mismatch
			6 = Dimension mismatch
			7 = Index out of range

Warning: This function uses the Malloc dynamic memory allocation at run time.

Multiplies each cell value of a float matrix by a float value then places the result in another matrix. This operation is called scalar multiplication.

You can choose to place the result into an existing matrix or create a new one.

Example

To multiply each cell of the matrix having the handle 1 by the value 5.0 then place the result in a new matrix:

```
matrix_fbl(19, mat[1], 0 , 0, 0, 0, 0, 5.0); (* mat[2] * 5.0 *)
if matrix_fbl.ERROR_CODE = 0 then
mat[9] := matrix_fbl.MATRIX_RESULT;
else
RESULT := log_msg('ErrLog','unable to scalar f matrix ' +
any_to_string(matrix_fbl.ERROR_CODE));
end_if
```

PRINT_MATRIX

Note: The failover mechanism does not support the Matrix function blocks.

Arguments:

You need to enter a value for each input parameter that appears blank. All blank inputs require a 0 except for the FLT which requires 0.0. The outputs other than those specified for the function do not contain valid information.

OPERATION	OP	DINT	Number indicating the operation. The value of this operation is 20.
MATRIX_1	MAT1	DINT	Handle of the matrix
ERROR_CODE	ERR	DINT	Status of the operation: 0 = No error 2 = Invalid type

Description:

Sends the contents of a matrix to the errlog. The default errlog for the workbench is e.log.

Example

To send the contents of the matrix having the handle held in the index variable to the ErrLog file:

```
FOR index := 1 TO 10 BY 1 DO
if mat[index] > 0 then
RESULT := log_msg('ErrLog','print matrix ' + any_to_string(index));
matrix_fbl(20, mat[index], 0 , 0, 0, 0, 0, 0.0); (* print mat[index] *)
if matrix_fbl.ERROR_CODE > 0 then
RESULT := log_msg('ErrLog','unable to print matrix ' +
any_to_string(matrix_fbl.ERROR_CODE));
end_if;
end_if;
END_FOR
```

Motion Control Function Blocks

Motion control function blocks control axes using language elements defined in the IEC 61131-3 standard.

The following data types, arrays, and parameters are used in motion control function blocks:

- AXIS_REF
- MC_CAM_ID
- MC_CAM_REF
- MC_CAMSWITCH_REF
- MC_CAMSWITCH_REF parameters •
- MC_INPUT_REF
- MC_OUTPUT_REF
- MC_StartMode
- MC_TA
- MC_TA_REF

- MC_TAArray
- MC_TRACK_REF
- MC_TRACK_REF parameters
- MC_TRIGGER_REF
- MC_TP
- MC_TP_REF
- MC_TPArray
- MC_TV
- MC TV REF
- MC_TVArray

Motion Control function blocks perform various motion control operations:

MC_AbortTrigger	Connection of trigger events
MC_AccelerationProfile	Direction of time-acceleration locked motion profiles
MC_CamIn	Initiation of the CAM
MC_CamOut	Disconnection of the slave from the master axis
MC_CamTableSelect	Selection of CAM tables
MC_DigitalCamSwitch	Initiation a motor shaft
MC_GearIn	Controlling of a velocity ratio
MC_GearInPos	Controlling of a gear ratio between positions
MC_GearOut	Disconnection of the slave from the master axis
MC_Halt	Controlling of motion halts

MC_Home	Operation of search home sequences
MC_MoveAbsolute	Movement to specified absolute positions
MC_MoveAdditive	Movement to a specified distance
MC_MoveContinuousAbsolute	Controlled motion to a specified absolute position ending with specified velocity
MC_MoveContinuousRelative	Controlled motion to a specified relative distance ending with specified velocity
MC_MoveRelative	Movement relative to the current position
MC_MoveSuperimposed	Movement to a position an additional distance from the current position
MC_MoveVelocity	Controlled continuous motion at specified velocity
MC_Phasing	Modification to create a phase shift
MC_PositionProfile	Controlling of a time-position locked motion profile
MC_Power	Controlling of power stages; on and off
MC_ReadActualPosition	Yielding of actual positions
MC_ReadActualTorque	Yielding of actual torque values
MC_ReadActualVelocity	Yielding of actual velocity values
MC_ReadAxisError	Yielding of axis errors
MC_ReadBoolParameter	Yielding of the value of a specific BOOL parameters
MC_ReadDigitalInput	Yielding of specific input values
MC_ReadDigitalOutput	Yielding of specific output values
MC_ReadParameter	Yielding of specific parameter values
MC_ReadStatus	Yielding of axis status
MC_Reset	Removal of all axis-related internal errors
MC_SetOverride	Specification of the override value for an axis
MC_SetPosition	Specification of the position of an axis
MC_Stop	Direction of a controlled motion stop
MC_TorqueControl	Direction continuous torque
-----------------------	--
MC_TouchProbe	Recording of current axis position
MC_VelocityProfile	Direction of a time-velocity locked motion profile
MC_WriteBoolParameter	Modification of specific BOOL parameter values
MC_WriteDigitalOutput	Modification of specific output values
MC_WriteParameter	Modification of specific parameter values
AXIS_REF data type:	

AXIS_REF

DISPLAY: AxisNo STRUCT AxisNo : DINT;

END STRUCT

The AXIS_REF data type is a structure containing information about a specific axis.

MC_CAM_ID data type:

MC_CAM_ID

DISPLAY: CamID

STRUCT

CamID : DINT;

CamTableIndex : DINT;

END_STRUCT

MC_CAM_REF data type:

MC_CAM_REF

DISPLAY: CamID

STRUCT

```
CamID : DINT;
CamName : STRING(32);
CamParam1 : DINT;
CamParam2 : REAL;
```

END_STRUCT

MC_CAMSWITCH_REF data type:

MC_CAMSWITCH_REF

DISPLAY: TrackNumber

STRUCT

```
TrackNumber : DINT;
FirstOnPosition : REAL;
LastOnPosition : REAL;
AxisDirection : DINT;
CamSwitchMode : DINT;
Duration : TIME;
```

END_STRUCT

MC_CAMSWITCH_REF parameters:

Parameter Name	Data Type	Description
TrackNumber	INT	References the track
FirstOnPosition [u]	REAL	The lower boundary of where the switch is ON
LastOnPosition [u]	REAL	The upper boundary of where the switch is ON
AxisDirection	INT	0 = both directions; the default value 1 = positive 2 = negative

Duration TIME Coupled to the time-based CamSwitchMode MC_INPUT_REF data type: MC INPUT REF DISPLAY: Input ID STRUCT InputID : DINT; END_STRUCT MC OUTPUT REF data type: MC_OUTPUT_REF DISPLAY: OutputID STRUCT OutputID : DINT; END STRUCT MC StartMode data type: MC_StartMode DISPLAY: Mode STRUCT Mode : DINT; StartParam : DINT; END STRUCT MC_TA data type: Automation Collaborative Platform

CamSwitchMode

INT

0 = position based; default value

1 = time based

```
MC_TA
```

```
DISPLAY: delta_time

STRUCT

delta_time : TIME;

acceleration : REAL;

END_STRUCT

MC_TA_REF data type:

MC_TA_REF

DISPLAY: Number_of_pairs

STRUCT

Number_of_pairs : DINT;

ISAbsolute : BOOL;

MC_TA_Array : MC_TAArray;

END_STRUCT

MC_TAArray data type:

MC_TAArray
```

```
ARRAY [1..16]
OF MC_TA
```

MC_TRACK_REF data type:

MC_TRACK_REF

DISPLAY: TrackID

STRUCT

TrackID : DINT; OnCompensation : TIME; OffCompensation : TIME; Hysteresis : REAL;

END_STRUCT

MC_TRACK_REF parameters:

Parameter Name	Data Type	Description
TrackID	DINT	References the track
OnCompensation	TIME	Time that the switching ON is advanced or delayed per track
OffCompensation	TIME	Time that the switching OFF is delayed per track
Hysteresis [u]	REAL	Positive or negative distance from the switching point where the switch is not executed
		Note: You can set different Hysteresis values for each track

MC_TRIGGER_REF data type arguements:

MC_TRIGGER_REF

DISPLAY: Trigger_ID STRUCT Trigger_ID : DINT; END STRUCT

MC_TP data type:

```
MC_TP
```

DISPLAY: delta_time STRUCT delta_time : TIME; position : REAL; END_STRUCT MC_TP_REF data type: MC_TP_REF DISPLAY: Number_of_pairs STRUCT Number_of_pairs : DINT; ISAbsolute : BOOL; MC_TP_Array : MC_TPArray; END_STRUCT

MC_TPArray data type:

MC_TPArray

```
Array [1..16]
OF MC_TP
```

MC_TV data type:

```
MC_TV
```

```
DISPLAY: delta_time
STRUCT
     delta_time : TIME;
     velocity : REAL
END_STRUCT
MC_TV_REF data type:
MC TV REF
     DISPLAY: Number of Pairs
STRUCT
     Number of Pairs : DINT;
     InAbsolute : BOOL
     MC TV Array : MC TVArray
END_STRUCT
MC_TVArray data type:
MC_TVArray
     Array [1..16]
     of MC_TV
```

MC_AbortTrigger

MC_Abo	rtTrigger
Axis	Axis
AXIS_REF	AXIS_REF
Tgin	Trin
MC_TRIGGER_REF	MC_TRIGGER_REF
Exec	Done
BOOL	BOOL
	Busy
	BOOL
	Err
	BOOL
	ErID
	DINT

AxisIn	Axis	AXIS_REF	Specifies axis connected to the trigger functionality
TriggerInp	TgIn	MC_TRIGGER_REF	Reference to trigger signal source
Execute	Exec	BOOL	Aborts the trigger event at the rising edge
Axis	Axis	AXIS_REF	Specifies axis connected to the trigger functionality
TriggerInput	TrIn	MC_TRIGGER_REF	Reference to trigger signal sourc
Done	Done	BOOL	Trigger functionality aborted
Busy	Busy	BOOL	Function block is unfinished

Error	Err	BOOL	An error has occured
ErrorID	ErID	DINT	Error identification. Possible values include the following: 1 = MC_ErrState, bad state 2 = MC_ErrRange, bad parameter (value is out of range) 3 = MC_ErrParam, bad parameter (negative value) 4 = MC_ErrFBInvalid, function block is not implemented 5 = MC_ErrAxisNo, axis number is invalid 6 = MC_ErrDrive, error from drive 7 = MC_ErrAborted, command aborted 8 = MC_ErrNoPower, mc_power is not running

Aborts function blocks that are connected to trigger events

MC_AccelerationProfile

MC_Acceler	rationProfile
Axis	Axis
AXIS_REF	AXIS_REF
TA	TA
MC_TA_REF	MC_TA_REF
Exec	Done
BOOL	BOOL
Time	Busy
REAL	BOOL
Scal	Act
REAL	BOOL
Off	CmdA
REAL	BOOL
Buf	Err
SINT	BOOL
	ErID
	DINT

AxisIn	Axis	AXIS_REF	Reference to an axis
TimeAccelerationIn	TA	MC_TA_REF	Reference to time / acceleration
Execute	Exec	BOOL	Begin motion at rising edge
TimeScale	Time	REAL	Time scaling factor of the profile
AccelerationScale	Scal	REAL	Scaling factor for the acceleration amplitude
Offset	Off	REAL	Offset for the profile
BufferMode	Buf	SINT	Definition of the mode of behavior for the axis: mcAborting, mcBuffered, mcBlending. Possible values are the following: 0 = mcAborting, the next function block is taking control of the axis immediately 1 = mcBuffered, the next function block awaits completion (DONE) before taking control of the axis 2 = mcBlending
Axis	Axis	AXIS_REF	Reference to an axis
TimeAcceleration	TA	MC_TA_REF	Reference to time / acceleration

Done	Done	BOOL	Profile completed
Busy	Busy	BOOL	Function block is unfinished
Active	Act	BOOL	Function Block is actively controlling the axis
CommandAborted	CmdA	BOOL	Command is aborted by another command
Error	Err	BOOL	Error occured within the function block
ErrorID	ErID	DINT	Error identification. Possible values include the following: 1 = MC_ErrState, bad state 2 = MC_ErrRange, bad parameter (value is out of range) 3 = MC_ErrParam, bad parameter (negative value) 4 = MC_ErrFBInvalid, function block is not implemented 5 = MC_ErrAxisNo, axis number is invalid 6 = MC_ErrDrive, error from drive 7 = MC_ErrAborted, command aborted 8 = MC_ErrNoPower, mc_power is not running

Directs a time-acceleration locked motion profile, then goes to zero, maintains the final velocity, and remains in the a state of continuous motion.

MC_CamIn

MC_C	amin
Mstr	Mstr
AXIS_REF	AXIS_REF
Slav	Slav
AXIS_REF	AXIS_REF
Exec	Sync
BOOL	BOOL
MOff	Busy
REAL	BOOL
SOff	Act
REAL	BOOL
Mscl	CmdA
REAL	BOOL
Sscl	Err
REAL	BOOL
Dis	ErID
REAL	DINT
Pos	EPro
REAL	BOOL
Mode	
MC_StartMode	
CID	
MC_CAM_ID	
Buf	
SINT	

MasterIn	Mstr	AXIS REF	References the master axis
SlaveIn	Slav	AXIS_REF	References the slave axis
Execute	Exec	BOOL	Starts at the rising edge
MasterOffset	MOff	REAL	The offset of the master table
SlaveOffset	SOff	REAL	The offset of the slave table
MasterScaling	Mscl	REAL	Factor by which the master profile is multiplied Default = 1.0
SlaveScaling	Sscl	REAL	Factor by which the slave profile is multiplied Default = 1.0

MasterStart Distance	Dis	REAL	The position that the master must reach for the slave to begin synchronization
MasterSyncPosition	Pos	REAL	Position where the slave is in-sync with the master
StartMode	Mode	MC_StartMode	Start mode: absolute, relative, or ramp-in
CamTableID	CID	MC_CAM_ID	The identifier of the CAM table used The output of MC_CamTableSelect
BufferMode	Buf	SINT	Definition of the mode of behavior for the axis: mcAborting, mcBuffered, mcBlending. Possible values are the following: 0 = mcAborting, the next function block is taking control of the axis immediately 1 = mcBuffered, the next function block awaits completion (DONE) before taking control of the axis 2 = mcBlending
Master	Mstr	AXIS_REF	Reference to the master axis
Slave	Slav	AXIS_REF	Reference to the slave axis
InSync	Sync	BOOL	CAM is engaged for the first time
Busy	Busy	BOOL	The function block is unfinished
Active	Act	BOOL	Function Block is actively controlling the axis
CommandAborted	CmdA	BOOL	The command is aborted by another command
Error	Err	BOOL	An error has occurred within the function block

ErrorID	ErID	DINT	Error identification. Possible values include the following: 1 = MC_ErrState, bad state 2 = MC_ErrRange, bad parameter (value is out of range) 3 = MC_ErrParam, bad parameter (negative value) 4 = MC_ErrFBInvalid, function block is not implemented 5 = MC_ErrAxisNo, axis number is invalid 6 = MC_ErrDrive, error from drive 7 = MC_ErrAborted, command aborted 8 = MC_ErrNoPower, mc_power is not running
EndOfProfile	EPro	BOOL	Pulsed output signaling the cyclic end of the CAM profile

Engages the CAM

Motion of the master axis is permitted.

When the function block is executed, the actual positions of the master and the slave should correspond to the offset values, or an error may occur.

MC_CamOut

MC_C	amOut
Slav	Slav
AXIS_REF	AXIS_REF
Exec	Done
BOOL	BOOL
	Busy
	BOOL
	Err
	BOOL
	ErID
	DINT

Arguments:

SlaveIn	Slav	AXIS_REF	References the slave axis
Execute	Exec	BOOL	Disengages the slave axis from the master axis
Slave	Slav	AXIS_REF	References the slave axis
Done	Done	BOOL	Action is complete
Busy	Busy	BOOL	The function block is unfinished
Error	Err	BOOL	An error has occurred within the function block
ErrorID	ErID	DINT	Error identification. Possible values include the following: 1 = MC_ErrState, bad state 2 = MC_ErrRange, bad parameter (value is out of range) 3 = MC_ErrParam, bad parameter (negative value) 4 = MC_ErrFBInvalid, function block is not implemented 5 = MC_ErrAxisNo, axis number is invalid 6 = MC_ErrDrive, error from drive 7 = MC_ErrAborted, command aborted 8 = MC_ErrNoPower, mc_power is not running

Description:

Immediately disconnects the slave axis from the master axis

Another function block usually follows this function block, otherwise the last velocity is maintained as the default condition.

MC_CamTableSelect

MC_CamTableSelect		
Mstr	Mstr	
AXIS_REF	AXIS_REF	
Slav	Slav	
AXIS_REF	AXIS_REF	
CTab	CTab	
MC_CAM_REF	MC_CAM_REF	
Exec	Done	
BOOL	BOOL	
Per	Busy	
BOOL	BOOL	
MA	Err	
BOOL	BOOL	
SA	ErID	
BOOL	DINT	
Mode	CID	
BOOL	MC_CAM_ID	

MasterIn	Mstr	AXIS_REF	References the master axis
SlaveIn	Slav	AXIS_REF	References the slave axis
CamTableIn	CTab	MC_CAM_REF	Reference to the CAM description
Execute	Exec	BOOL	Begins selection at the rising edge
Periodic	Per	BOOL	1 = periodic 0 = non-periodic
MasterAbsolute	MA	BOOL	1 = absolute 0 = relative coordinates
SlaveAbsolute	SA	BOOL	1 = absolute 0 = relative coordinates
MC_ExecutionMode	Mode	BOOL	mcImmediately = the functionality is valid and may influence the motion, i.e. the default behavior, and not the state mcQueued = the functionality is valid when all previous motion commands set one of the following output parameters: Done, Aborted, Error, and Busy is is set to false.

Master	Mstr	AXIS_REF	References the master axis
Slave	Slav	AXIS_REF	References the slave axis
CamTable	CTab	MC_CAM_REF	CamTable
Done	Done	BOOL	Pre-selection is complete
Busy	Busy	BOOL	The function block is unfinished
Error	Err	BOOL	An error has occurred within the function block
ErrorID	ErID	DINT	Error identification. Possible values include the following: 1 = MC_ErrState, bad state 2 = MC_ErrRange, bad parameter (value is out of range) 3 = MC_ErrParam, bad parameter (negative value) 4 = MC_ErrFBInvalid, function block is not implemented 5 = MC_ErrAxisNo, axis number is invalid 6 = MC_ErrDrive, error from drive 7 = MC_ErrAborted, command aborted 8 = MC_ErrNoPower, mc_power is not running
CamTableID	CID	MC_CAM_ID	Identifies the CAM table to be used in MC_CamIn function block

Selects the CAM tables by setting connections to the relevant tables

It is possible to use a virtual axis as the master axis.

When the output parameter *Done* is set, the CamTableID is valid for use in MC_CamIn.

MC_DigitalCamSwitch

MC_Digita	ICamSwitch
axis	Axis
AXIS_REF	AXIS_REF
Swch	Swch
MC_CAMSWITCH_REF	MC_CAMSWITCH_REF
Outp	Outp
MC_OUTPUT_REF	MC_OUTPUT_REF
Topt	Topt
MC_TRACK_REF	MC_TRACK_REF
En	InOp
500L	BOOL
EnM	Busy
DINT	BOOL
	Err
	BOOL
	ErID
	DINT

AxisIn	Axis	AXIS_REF	References the axis to which the switches are connected
SwitchesIn	Swch	MC_CAMSWITCH_REF	References the switching actions
OutputsIn	Outp	MC_OUTPUT_REF	References signal outputs directly related to the referenced tracks Maximum = 32 per function block First output = first track number
TrackOptionsIn	Topt	MC_TRACK_REF	References the structure containing track related properties
Enable	En	BOOL	Enables the outputs of switches
Enablemask	EnM	DINT	Enables the tracks 32 bits of BOOL Lowest track number = least significant data data set to 1 = TRUE, the related track number is enabled
Axis	Axis	AXIS_REF	References the axis to which the switches are connected

Switches	Swch	MC_CAMSWITCH_REF	References the switching actions
Outputs	Outp	MC_OUTPUT_REF	References signal outputs directly related to the referenced tracks Maximum = 32 per function block First output = first track number
TrackOptions	Topt	MC_TRACK_REF	References the structure containing track related properties
InOperation	InOp	BOOL	Tracks are enabled
Busy	Busy	BOOL	Function block is unfinished
Error	Err	BOOL	An error has occurred within the function block
ErrorID	ErID	DINT	Error identification. Possible values include the following: 1 = MC_ErrState, bad state 2 = MC_ErrRange, bad parameter (value is out of range) 3 = MC_ErrParam, bad parameter (negative value) 4 = MC_ErrFBInvalid, function block is not implemented 5 = MC_ErrAxisNo, axis number is invalid 6 = MC_ErrDrive, error from drive 7 = MC_ErrAborted, command aborted 8 = MC_ErrNoPower, mc_power is not running

Commands a group of output bits to change into CAM controlled switches connected to an axis

Forward and backward movements are permitted.

The functionality of this function block is also known as Programmable Limit Switch (PLS).

MC_GearIn

MC_Gearln			
Mstr	Mstr		
AXIS_REF	AXIS_REF		
Slav	Slav		
AXIS_REF	AXIS_REF		
Exec	Gear		
BOOL	BOOL		
RNum	Busy		
DINT	BOOL		
RDen	Act		
DINT	BOOL		
Туре	CmdA		
SINT	BOOL		
Acce	Err		
REAL	BOOL		
Dece	ErID		
REAL	DINT		
Jerk			
REAL			
Buf			
SINT			

MasterIn	Mstr	AXIS_REF	References the master axis
SlaveIn	Slav	AXIS_REF	References the slave axis
Execute	Exec	BOOL	Begins the gearing process at the rising edge
RatioNumerator	RNum	DINT	The gear ratio numerator
RatioDenominator	RDem	DINT	The gear ratio denominator
MC_GearInType	Туре	SINT	mcCommandedValue = synchronization on command value (0) mcFeedbackValue = synchronization on feedback value (1)
Acceleration	Acce	REAL	Acceleration for gearing in
Deceleration	Dece	REAL	Deceleration for gearing in
Jerk	Jerk	REAL	Jerk of Gearing

BufferMode	Buf	SINT	Defines the behavioral mode of the axis: mcAborting, mcBuffering, mcBlending. Possible values are the following: 0 = mcAborting, the next function block is taking control of the axis immediately 1 = mcBuffered, the next function block awaits completion (DONE) before taking control of the axis 2 = mcBlending
Master	Mstr	AXIS_REF	References the master axis
Slave	Slav	AXIS_REF	References the slave axis
InGear	Gear	BOOL	Gearing completed
Busy	Busy	BOOL	Function block is unfinished
Active	Act	BOOL	Function Block is actively controlling the axis
CommandAborted	CmdA	BOOL	The command was aborted by another command
Error	Err	BOOL	An error has occurred within the function block
ErrorID	ErID	DINT	Error identification. Possible values include the following: 1 = MC_ErrState, bad state 2 = MC_ErrRange, bad parameter (value is out of range) 3 = MC_ErrParam, bad parameter (negative value) 4 = MC_ErrFBInvalid, function block is not implemented 5 = MC_ErrAxisNo, axis number is invalid 6 = MC_ErrDrive, error from drive 7 = MC_ErrAborted, command aborted 8 = MC_ErrNoPower, mc_power is not running

Commands a velocity ratio between the slave axis and master axis

The slave increases until the master velocity ratio is reached, then locks. The Gear output is set the first time the gearing ratio is reached.

When MC_GearIn is running, you can modify the gearing ratio using a consecutive MC_GearIn command.

MC_GearInPos

MC_Gea	rInPos
Mstr	Mstr
AXIS_REF	AXIS_REF
Slav	Slav
AXIS_REF	AXIS_REF
Exec	SrtS
BOOL	BOOL
RNum	InS
DINT	BOOL
RDen	Busy
DINT	BOOL
MSP	Act
REAL	BOOL
SSP	CmdA
REAL	BOOL
SMod	Err
SINT	BOOL
MSD	Erid
REAL Male	DINT
velo	
Asso	The second second
REAL	
Dece	
REAL	
lerk	
REAL	
Buf	
SINT	

MasterIn	Mstr	AXIS_REF	References the master axis
SlaveIn	Slav	AXIS_REF	References the slave axis
Execute	Exec	BOOL	Begins the gearing process at the rising edge
RatioNumerator	RNum	DINT	The gear ratio numerator
RatioDenominator	RDem	DINT	The gear ratio denominator
MasterSyncPosition	MSP	REAL	The master position when the axes are running in sync
SlaveSyncPosition	SSP	REAL	The slave position when the axes are running in sync

SyncMode	SMod	SINT	Definition of the mode of synchronization
MasterStartDistance	MSD	REAL	The master distance to where the slave axis begins synchronization
Velocity	Velo	REAL	Maximum velocity during the time interval between StartSync and InSync outputs
Acceleration	Acce	REAL	Maximum acceleration during the time interval between StartSync and InSync outputs
Deceleration	Dece	REAL	Maximum deceleration during the time interval between StartSync and InSync outputs
Jerk	Jerk	REAL	Maximum jerk during the time interval between StartSync and InSync outputs
BufferMode	Buf	SINT	Defines the behavioral mode of the axis: mcAborting, mcBuffering, mcBlending. Possible values are the following: 0 = mcAborting, the next function block is taking control of the axis immediately 1 = mcBuffered, the next function block awaits completion (DONE) before taking control of the axis 2 = mcBlending
Master	Mstr	AXIS_REF	References the master axis
Slave	Slav	AXIS_REF	References the slave axis
StartSync	SrtS	BOOL	Beginning of the commanded gearing
InSync	InS	BOOL	Completion of the commanded gearing
Busy	Busy	BOOL	Function Block is incomplete
Active	Act	BOOL	Function Block is actively controlling the axis
CommandAborted	CmdA	BOOL	Command was aborted by another command
Error	Err	BOOL	An error has occurred within the function block
ErrorID	Erld	DINT	Error identification

From the synchronization point onward, commands the gear ratio between master axis and slave axis positions

MC_GearInPos maintained previous motion until the master axis reaches the MSD or MSP inputs values, then SrtS output value is set. When a stop command is executed on the slave axis before the synchronization is complete, the synchronization is inhibited and the CmdA output value is generated.

When the MSD value is not provided, MC_GearInPos can calculate the SrtS output value based on the other input values.

MC_GearOut

MC_G	earOut
Slav	Slav
AXIS_REF	AXIS_REF
Exec	Done
BOOL	BOOL
	Busy
	BOOL
	Err
	BOOL
	ErID
	DINT

Arguments:

SlaveIn	Slav	AXIS_REF	References the slave axis
Execute	Exec	BOOL	Begins the disconnection process at the rising edge
Slave	Slav	AXIS_REF	References the slave axis
Done	Done	BOOL	Disconnection is complete
Busy	Busy	BOOL	Function Block is unfinished
Error	Err	BOOL	An error has occured within the function block
ErrorID	ErID	DINT	Error identification. Possible values include the following: 1 = MC_ErrState, bad state 2 = MC_ErrRange, bad parameter (value is out of range) 3 = MC_ErrParam, bad parameter (negative value) 4 = MC_ErrFBInvalid, function block is not implemented 5 = MC_ErrAxisNo, axis number is invalid 6 = MC_ErrDrive, error from drive 7 = MC_ErrAborted, command aborted 8 = MC_ErrNoPower, mc power is not running

Description:

Disconnects the slave from the master axis

Another function block usually follows this function block, otherwise the last velocity is maintained as the default condition.

MC_Halt

MC_	Halt
Axis	Axis
AXIS_REF	AXIS_REF
Exec	Done
BOOL	BOOL
Dece	Busy
REAL	BOOL
Jerk	Act
REAL	BOOL
Buf	CmdA
SINT	BOOL
	Err
	BOOL
	ErID
	DINT

AxisIn	Axis	AXIS_REF	References the axis
Execute	Exec	BOOL	Begins the stopping action at the rising edge
Deceleration	Dece	REAL	Deceleration value = $\left[\frac{u}{s^2}\right]$
Jerk	Jerk	REAL	Jerk value = $[u/s^3]$
BufferMode	Buf	SINT	Definition of the mode of behavior for the axis: mcAborting, mcBuffered, mcBlending. Possible values are the following: 0 = mcAborting, the next function block is taking control of the axis immediately 1 = mcBuffered, the next function block awaits completion (DONE) before taking control of the axis 2 = mcBlending
Axis	Axis	AXIS_REF	References the axis
Done	Done	BOOL	The velocity has reached zero
Busy	Busy	BOOL	Function block is unfinished
Active	Act	BOOL	Function Block is actively controlling the axis
CommandAborted	CmdA	BOOL	Command is aborted by another command

Error	Err	BOOL	An error has occured within the function block
ErrorID	ErID	DINT	Error identification. Possible values include the following: 1 = MC_ErrState, bad state 2 = MC_ErrRange, bad parameter (value is out of range) 3 = MC_ErrParam, bad parameter (negative value) 4 = MC_ErrFBInvalid, function block is not implemented 5 = MC_ErrAxisNo, axis number is invalid 6 = MC_ErrDrive, error from drive 7 = MC_ErrAborted, command aborted 8 = MC_ErrNoPower, mc_power is not running

Directs a controlled motion stop

The axis state is DiscreteMotion until the velocity reaches zero. When the Done output is set, the axis state becomes StandStill.

In non-buffering mode, you can abort MC_Halt by setting another motion command during the deceleration of the axis.

To avoid a complete stoppage, you can issue the next command while MC_Halt is running.

MC_Home

MC_H	Home
Axis	Axis
AXIS_REF	AXIS_REF
Exec	Done
BOOL	BOOL
Pos	Busy
REAL	BOOL
Mode	Act
SINT	BOOL
Buf	CmdA
SINT	BOOL
	Err
	BOOL
	ErID
	DINT

AxisIn	Axis	AXIS_REF	References the axis
Execute	Exec	BOOL	Begins motion at the rising edge
Position	Pos	REAL	When the reference signal [u] is detected, absolute position
HomingMode	Mode	SINT	HomingMode
BufferMode	Buf	SINT	Definition of the mode of behavior for the axis: mcAborting, mcBuffered, mcBlending. Possible values are the following: 0 = mcAborting, the next function block is taking control of the axis immediately 1 = mcBuffered, the next function block awaits completion (DONE) before taking control of the axis 2 = mcBlending
Axis	Axis	AXIS_REF	References the axis
Done	Done	BOOL	StandStill is reached
Busy	Busy	BOOL	The function block is unfinished
Active	Act	BOOL	Function Block is actively controlling the axis
CommandAborted	CmdA	BOOL	Command is aborted by another command

Error	Err	BOOL	An error has occured within the function block
ErrorID	ErID	DINT	Error identification. Possible values include the following: 1 = MC_ErrState, bad state 2 = MC_ErrRange, bad parameter (value is out of range) 3 = MC_ErrParam, bad parameter (negative value) 4 = MC_ErrFBInvalid, function block is not implemented 5 = MC_ErrAxisNo, axis number is invalid 6 = MC_ErrDrive, error from drive 7 = MC_ErrAborted, command aborted 8 = MC_ErrNoPower, mc_power is not running

Performs search home sequences

MC_MoveAbsolute

Avis Avis	Ļ
1 012	
AXIS_REF AXIS_REF	L
Exec Done	Ł
BOOL BOOL	L
Pos busy	Ł
REAL BOOL	L
Velo Act	Ł
REAL BOOL	L
Acce CmdA	Ł
REAL BOOL	L
Dece Err	Ł
REAL BOOL	L
Jerk ErID	Ł
REAL DINT	L
Dir	
SINT	
buf	l
SINT	l

AxisIn	Axis	AXIS_REF	References the axis
Execute	Exec	BOOL	Begins motion at the rising edge
Position	Pos	REAL	Negative or positive target position [u]
Velocity	Velo	REAL	Maximum velocity value [u/s]
Acceleration	Acce	REAL	Positive acceleration value [u/s ²]
Deceleration	Dece	REAL	Positive deceleration value [u/s ²]
Jerk	Jerk	REAL	Positive jerk value [u/s ³]

Direction	Dir	SINT	Direction type. Possible values include the following: 1 = MC_DirPositive, moving in the positive direction 2 = MC_DirShortest, moving in the shortest direction 3 = MC_DirNegative, moving in the negative direction 4 = MC_DirCurrent, moving in the currect direction
Buffermode	Buf	SINT	Definition of the mode of behavior for the axis: mcAborting, mcBuffered, mcBlending. Possible values are the following: 0 = mcAborting, the next function block is taking control of the axis immediately 1 = mcBuffered, the next function block awaits completion (DONE) before taking control of the axis 2 = mcBlending
Axis	Axis	AXIS_REF	References the axis
Done	Done	BOOL	Position is reached
Busy	Busy	BOOL	The function block is unfinished
Active	Act	BOOL	Function Block is actively controlling the axis
CommandAborted	CmdA	BOOL	Command is aborted by another command

Error	Err	BOOL	An error has occured within the function block
ErrorID	ErID	DINT	Error identification. Possible values include the following: 1 = MC_ErrState, bad state 2 = MC_ErrRange, bad parameter (value is out of range) 3 = MC_ErrParam, bad parameter (negative value) 4 = MC_ErrFBInvalid, function block is not implemented 5 = MC_ErrAxisNo, axis number is invalid 6 = MC_ErrDrive, error from drive 7 = MC_ErrAborted, command aborted 8 = MC_ErrNoPower, mc_power is not running

Commands controlled motion to a specified absolute position

When MC_MoveAbsolute is complete, the velocity equals zero and not further action occurs.

When there is only one way to reach the desired position, the Dir input value is unused.

For modulo axes, absolute position values are between zero and 360 (360 is excluded). For relative positions, a modulo axes absolute position value of 360 applies.

MC_MoveAdditive

MC_Move	Additive
Axis	Axis
AXIS_REF	AXIS_REF
Exec	Done
BOOL	BOOL
Dist	Busy
REAL	BOOL
Velo	Act
REAL	BOOL
Acce	CmdA
REAL	BOOL
dece	Err
REAL	BOOL
Jerk	ErID
REAL	DINT
Buf	
SINT	

AxisIn	Axis	AXIS_REF	References the axis
Execute	Exec	BOOL	Begins the motion at the rising edge
Distance	Dist	REAL	Relative distance [u] of the motion
Velicity	Velo	REAL	Maximum velocity value [u/s]
Acceleration	Acce	REAL	Acceleration value [u/s ²]
Deceleration	Dece	REAL	Deceleration value [u/s ²]
Jerk	Jerk	REAL	Jerk value [u/s ³]
BufferMode	Buf	SINT	Definition of the behavior mode for the axis: mcAborting, mcBuffered, mcBlending. Possible values are the following: 0 = mcAborting, the next function block is taking control of the axis immediately 1 = mcBuffered, the next function block awaits completion (DONE) before taking control of the axis 2 = mcBlending
Axis	Axis	AXIS_REF	References the axis

Done	Done	BOOL	Distance is reached
Busy	Busy	BOOL	The function block is unfinished
Active	Act	BOOL	Function Block is actively controlling the axis
CommandAborted	CmdA	BOOL	Command is aborted by another command
Error	Err	BOOL	An error has occured within the function block
ErrorID	ErID	DINT	Error identification. Possible values include the following: 1 = MC_ErrState, bad state 2 = MC_ErrRange, bad parameter (value is out of range) 3 = MC_ErrParam, bad parameter (negative value) 4 = MC_ErrFBInvalid, function block is not implemented 5 = MC_ErrAxisNo, axis number is invalid 6 = MC_ErrDrive, error from drive 7 = MC_ErrAborted, command aborted 8 = MC_ErrNoPower, mc_power is not running

Moves a specified distance from the last commanded position

When MC_MoveAdditive is aborted, you can use another MC_MoveAdditive immediately.

MC_MoveContinuousAbsolute

MC_MoveCon	tinuousAbsolute
Axis	Axis-
AXIS_REF	AXIS_REF
Exec	End
BOOL	BOOL
Pos	Busy
REAL	BOOL
Velo	Act
REAL	BOOL
End	CmdA
REAL	BOOL
Dir	Err
SINT	BOOL
Acce	ErID
REAL	DINT
Decc	
REAL	
Jerk	
REAL	
Dir	
SINT	
Buf	
SINT	

AxisIn	Axis	AXIS_REF	References the axis
Execute	Exec	BOOL	Begins motion at the rising edge
Position	Pos	REAL	Negative or positive target position [u]
Velocity	Velo	REAL	Maximum velocity value [u/s]
EndVelocity	End	REAL	End velocity value [u/s]
EndVelocityDirection	Dir	SINT	Direction of the end velocity
Acceleration	Acce	REAL	Acceleration value [u/s ²]
Deceleration	Dece	REAL	Deceleration value [u/s ²]
Jerk	Jerk	REAL	Jerk value [u/s ³]
Direction	Dir	SINT	Direction. Possible values include the following: 1 = MC_DirPositive, moving in the positive direction 3 = MC_DirNegative, moving in the negative direction 4 = MC_DirCurrent, moving in the currect direction
----------------	------	----------	---
BufferMode	Buf	SINT	Definition of the mode of behavior for the axis: mcAborting, mcBuffered, mcBlending. Possible values are the following: 0 = mcAborting, the next function block is taking control of the axis immediately 1 = mcBuffered, the next function block awaits completion (DONE) before taking control of the axis 2 = mcBlending
Axis	Axis	AXIS_REF	References the axis
InEndVelocity	End	BOOL	Defined distance and velocity reached
Busy	Busy	BOOL	The function block is unfinished
Active	Act	BOOL	Function Block is actively controlling the axis
CommandAborted	CmdA	BOOL	Command is aborted by another command

Error	Err	BOOL	An error has occured within the function block
ErrorID	ErID	DINT	Error identification. Possible values include the following: 1 = MC_ErrState, bad state 2 = MC_ErrRange, bad parameter (value is out of range) 3 = MC_ErrParam, bad parameter (negative value) 4 = MC_ErrFBInvalid, function block is not implemented 5 = MC_ErrAxisNo, axis number is invalid 6 = MC_ErrDrive, error from drive 7 = MC_ErrAborted, command aborted 8 = MC_ErrNoPower, mc_power is not running

Directs controlled motion to a specified absolute position, ending with specified velocity

When no motion command exists following MC_MoveContinuousAbsolute, the axis continues to run at the specified velocity and a state of continuous motion persists.

MC_MoveContinuousRelative

MC_MoveContinu	ousRelative
Axis	Axis
AXIS_REF	AXIS_REF
Exec	End
BOOL	BOOL
Dist	Busy
REAL	BOOL
Velo	Act
REAL	BOOL
End	CmdA
REAL	BOOL
Dir	Err
SINT	BOOL
Acce	ErID
REAL	DINT
Decc	
REAL	
Jerk	
REAL	
Buf	
SINT	

AxisIn	Axis	AXIS_REF	References the axis
Execute	Exec	BOOL	Begin motion at the rising edge
Distance	Dist	REAL	Relative distance [u] for the required motion
Velocity	Velo	REAL	Maximum velocity value [u/s]
EndVelocity	End	REAL	End velocity value [u/s]
EndVelocityDirection	Dir	SINT	Direction of the end velocity
Acceleration	Acce	REAL	Acceleration value [u/s ²]
Deceleration	Decc	REAL	Deceleration value [u/s ²]
Jerk	Jerk	REAL	Jerk value [u/s ³]

BufferMode	Buf	SINT	Definition of the mode of behavior for the axis: mcAborting, mcBuffered, mcBlending. Possible values are the following: 0 = mcAborting, the next function block is taking control of the axis immediately 1 = mcBuffered, the next function block awaits completion (DONE) before taking control of the axis 2 = mcBlending
Axis	Axis	AXIS_REF	References the axis
InEndVelocity	End	BOOL	Defined distance and velocity reached
Busy	Busy	BOOL	The function block is unfinished
Active	Act	BOOL	Function Block is actively controlling the axis
CommandAborted	CmdA	BOOL	Command is aborted by another command
Error	Err	BOOL	An error has occured within the function block
ErrorID	ErID	DINT	Error identification. Possible values include the following: 1 = MC_ErrState, bad state 2 = MC_ErrRange, bad parameter (value is out of range) 3 = MC_ErrParam, bad parameter (negative value) 4 = MC_ErrFBInvalid, function block is not implemented 5 = MC_ErrAxisNo, axis number is invalid 6 = MC_ErrDrive, error from drive 7 = MC_ErrAborted, command aborted 8 = MC_ErrNoPower, mc_power is not running

Directs controlled motion to a specified relative distance ending with specified velocity

When no motion command exists following MC_MoveContinuousRelative, the axis continues to run at the specified velocity and a state of continuous motion persists.

MC_MoveRelative

MC_MoveF	Relative
Axis	Axis
AXIS_REF	AXIS_REF
Exec	Done
BOOL	BOOL
Dist	Busy
REAL	BOOL
Velo	Act
REAL	BOOL
Acce	CmdA
REAL	BOOL
Dece	Err-
REAL	BOOL
Jerk	ErID
REAL	DINT
Buf	
SINT	

AxisIn	Axis	AXIS_REF	References the axis
Execute	Exec	BOOL	Begin motion at the rising edge
Distance	Dist	REAL	Relative distance [u] for the required motion
Velocity	Velo	REAL	Maximum velocity value [u/s]
Acceleration	Acce	REAL	Acceleration value [u/s ²]
Deceleration	Dece	REAL	Deceleration value [u/s ²]
Jerk	Jerk	REAL	Jerk value [u/s ³]
BufferMode	Buf	SINT	Definition of the mode of behavior for the axis: mcAborting, mcBuffered, mcBlending. Possible values are the following: 0 = mcAborting, the next function block is taking control of the axis immediately 1 = mcBuffered, the next function block awaits completion (DONE) before taking control of the axis 2 = mcBlending
Axis	Axis	AXIS_REF	References the axis

Done	Done	BOOL	Distance is reached
Busy	Busy	BOOL	Function block is unfinished
Active	Act	BOOL	Function Block is actively controlling the axis
Commandaborted	CmdA	BOOL	Command is aborted by another command
Error	Err	BOOL	An error has occured within the function block
ErrorID	ErID	DINT	Error identification. Possible values include the following: 1 = MC_ErrState, bad state 2 = MC_ErrRange, bad parameter (value is out of range) 3 = MC_ErrParam, bad parameter (negative value) 4 = MC_ErrFBInvalid, function block is not implemented 5 = MC_ErrAxisNo, axis number is invalid 6 = MC_ErrDrive, error from drive 7 = MC_ErrAborted, command aborted 8 = MC_ErrNoPower, mc_power is not running

Directs movement to a specified distance relative to the actual position at the time of execution

When no commands are placed following MC_MoveRelative, the axis velocity value of zero is maintained.

MC_MoveSuperimposed

MC_MoveS	uperimposed
Axis	Axis
AXIS_REF	AXIS_REF
Exec	Done
BOOL	BOOL
Dist	Busy
REAL	BOOL
Velo	Act
REAL	BOOL
Acce	Dist
REAL	REAL
Dece	CmdA
REAL	BOOL
Jerk	Err
REAL	BOOL
	ErID
	DINT

AxisIn	Axis	AXIS_REF	References the axis
Execute	Exec	BOOL	Begin motion at the rising edge
Distance	Dist	REAL	Additional distance [u] to be superimposed
VelocityDiff	Velo	REAL	Velocity difference value $\left[u/s\right]$ for the additional motion
Acceleration	Acce	REAL	Acceleration value [u/s ²]
Deceleration	Dece	REAL	Deceleration value [u/s ²]
Jerk	Jerk	REAL	Jerk value [u/s ³]
Axis	Axis	AXIS_REF	References the axis
Done	Done	BOOL	Additional distance is superimposed on the ongoing motion
Busy	Busy	BOOL	The function block is unfinished
Active	Act	BOOL	Function Block is actively controlling the axis
CoveredDistance	Dist	REAL	Distance covered since starting
CommandAborted	CmdA	BOOL	Command is aborted by another command

Error	Err	BOOL	An error has occured within the function block
ErrorID	ErID	DINT	Error identification. Possible values include the following: 1 = MC_ErrState, bad state 2 = MC_ErrRange, bad parameter (value is out of range) 3 = MC_ErrParam, bad parameter (negative value) 4 = MC_ErrFBInvalid, function block is not implemented 5 = MC_ErrAxisNo, axis number is invalid 6 = MC_ErrDrive, error from drive 7 = MC_ErrAborted, command aborted 8 = MC_ErrNoPower, mc_power is not running

Directs controlled uninterrupted motion to a specified relative distance additional to the existing motion.

When MC_MoveSuperimposed is running, other existing commands that are in abort mode can cause MC_MoveSuperimposed and the associated motion commands to abort. When the other existing commands are in a mode other then abort, MC_MoveSuperimposed is aborted and the underlying motion command is maintained.

When add MC_MoveSuperimposed to an active MC_MoveSuperimposed, the running MC_MoveSuperimposed is aborted then replaced and the underlying motion command is maintained.

MC_MoveSuperimposed causes a change in velocity and position of ongoing motion in all states. In StandStill state, MC_MoveSuperimposed performs the same as MC_MoveRelative.

The Acce, Dece, and Jerk input values are additional to the ongoing motion. Regardless of a concurrent MC_MoveSuperimposed, running motion commands finish within the specified time period.

MC_MoveVelocity

MC_Mov	eVelocity
Axis	Axis-
AXIS_REF	AXIS_REF
Exec	InVe
BOOL	BOOL
Velo	Busy
REAL	BOOL
Acce	Act
REAL	BOOL
Dece	Dir
REAL	SINT
Jerk	CmdA
REAL	BOOL
Dir	Err
SINT	BOOL
Buf	ErID
SINT	DINT

AxisIn	Axis	AXIS_REF	References the axis
Execute	Exec	BOOL	Begin motion at the rising edge
Velocity	Velo	REAL	Maximum velocity value [u/s]
Acceleration	Acce	REAL	Acceleration value [u/s ²]
Deceleration	Dece	REAL	Deceleration value [u/s ²]
Jerk	Jerk	REAL	Jerk value [u/s ³]
Directionin	Dir	SINT	Direction. Possible directions are positive, negative, and current
BufferMode	Buf	SINT	Definition of the mode of behavior for the axis: mcAborting, mcBuffered, mcBlending. Possible values are the following: 0 = mcAborting, the next function block is taking control of the axis immediately 1 = mcBuffered, the next function block awaits completion (DONE) before taking control of the axis 2 = mcBlending

Axis	Axis	AXIS_REF	References the axis
InVelocity	InVe	BOOL	The required velocity is reached
Busy	Busy	BOOL	The function block is unfinished
Active	Act	BOOL	Function Block is actively controlling the axis
Direction	Dir	SINT	Direction. Possible directions are positive, negative, and current
CommandAborted	CmdA	BOOL	Command is aborted by another command
Error	Err	BOOL	An error has occured within the function block
ErrorID	ErID	DINT	Error identification. Possible values include the following: 1 = MC_ErrState, bad state 2 = MC_ErrRange, bad parameter (value is out of range) 3 = MC_ErrParam, bad parameter (negative value) 4 = MC_ErrFBInvalid, function block is not implemented 5 = MC_ErrAxisNo, axis number is invalid 6 = MC_ErrDrive, error from drive 7 = MC_ErrAborted, command aborted 8 = MC_ErrNoPower, mc_power is not running

Directs continuous motion at a specified velocity

You can stop MC_MoveVelocity by interrupting using another function block. When MC_MoveVelocity is aborted, reset the InVe output value.

MC_Phasing

MC_P	hasing
Mstr	Mstr
AXIS_REF	AXIS_REF
Slav	Slav
AXIS_REF	AXIS_REF
Exec	Done
BOOL	BOOL
PS	Busy
REAL	BOOL
Velo	Act
REAL	BOOL
Acce	Dis
REAL	REAL
Dece	CmdA
REAL	BOOL
Jerk	Err
REAL	BOOL
Buf	ErID
SINT	DINT

MasterIn	Mstr	AXIS_REF	References the master axis
SlaveIn	Slav	AXIS_REF	References the slave axis
Execute	Exec	BOOL	Begins phasing process at the rising edge
PhaseShift	PS	REAL	Phase difference [u]
Velocity	Velo	REAL	Maximum velocity value [u/s]
Acceleration	Acce	REAL	Acceleration value [u/s ²]
Deceleration	Dece	REAL	Deceleration value [u/s ²]
Jerk	Jerk	REAL	Jerk value [u/s ³]

BufferMode	Buf	SINT	Definition of the mode of behavior for the axis: mcAborting, mcBuffered, mcBlending. Possible values are the following: 0 = mcAborting, the next function block is taking control of the axis immediately 1 = mcBuffered, the next function block awaits completion (DONE) before taking control of the axis 2 = mcBlending
Master	Mstr	AXIS_REF	References the master axis
Slave	Slav	AXIS_REF	References the slave axis
Done	Done	BOOL	Required phase difference is reached
Busy	Busy	BOOL	The function block is unfinished
Active	Act	BOOL	Function Block is actively controlling the axis
CoveredDistance	Dis	REAL	Distance covered since starting
CommandAborted	CmdA	BOOL	Command is aborted by another command
Error	Err	BOOL	An error has occured within the function block
ErrorID	ErID	DINT	Error identification. Possible values include the following: 1 = MC_ErrState, bad state 2 = MC_ErrRange, bad parameter (value is out of range) 3 = MC_ErrParam, bad parameter (negative value) 4 = MC_ErrFBInvalid, function block is not implemented 5 = MC_ErrAxisNo, axis number is invalid 6 = MC_ErrDrive, error from drive 7 = MC_ErrAborted, command aborted 8 = MC_ErrNoPower, mc_power is not running

Creates a phase shift effecting the position of the slave axis

MC_Phasing is used to delay or advance the slave axis in relation to its master.

MC_Phasing controls five inputs: PS, Velo, Acce, Dece, and Jerk.

MC_PositionProfile

ionProfile
Axis
AXIS_REF
TPos
MC_TP_REF
Done
BOOL
Busy
BOOL
Act
BOOL
CmdA
BOOL
Err
BOOL
ErID
DINT

AxisIn	Axis	AXIS_REF	References the axis
TimePositionIn	TPos	MC_TP_REF	Reference to time / position
Execute	Exec	BOOL	Begins the motion at the rising edge
TimeScale	Time	REAL	Time scaling factor [t.u.] for the profile
PositionScale	Pos	REAL	Position scale factor [t.u.]
Offset	Off	REAL	Offset [u] for the profile
BufferMode	Buf	SINT	Definition of the mode of behavior for the axis: mcAborting, mcBuffered, mcBlending. Possible values are the following: 0 = mcAborting, the next function block is taking control of the axis immediately 1 = mcBuffered, the next function block awaits completion (DONE) before taking control of the axis 2 = mcBlending
Axis	Axis	AXIS_REF	References the axis
TimePosition	TPos	MC_TP_REF	Reference to time / position

Done	Done	BOOL	The profile is complete
Busy	Busy	BOOL	The function block is unfinished
Active	Act	BOOL	Function Block is actively controlling the axis
CommandAborted	CmdA	BOOL	Command is aborted by another command
Error	Err	BOOL	An error has occured within the function block
ErrorID	ErID	DINT	Error identification. Possible values include the following: 1 = MC_ErrState, bad state 2 = MC_ErrRange, bad parameter (value is out of range) 3 = MC_ErrParam, bad parameter (negative value) 4 = MC_ErrFBInvalid, function block is not implemented 5 = MC_ErrAxisNo, axis number is invalid 6 = MC_ErrDrive, error from drive 7 = MC_ErrAborted, command aborted 8 = MC_ErrNoPower, mc_power is not running

Directs a time-position locked motion profile

MC_Power

Axis Axi AXIS_REF AXIS_RE En Sta BOOL BOO EnPO Va BOOL BOO	
AXIS_REF AXIS_RE -En Sta BOOL BOO -EnPO Va BOOL BOO	s
-En Sta BOOL BOO -EnPO Va BOOL BOO	F
BOOL BOO -EnPO Va BOOL BOO	it -
EnPO Va BOOL BOO	L
BOOL BOO	al þ
	L
EnNE Er	rł
B00L B00	L
Erll	D
DIN	т

AxisIn	Axis	AXIS_REF	References the axis
Enable	En	BOOL	TRUE = power is ON FALSE = power is OFF
Enable_Positive	EnPO	BOOL	TRUE = motion in the positive direction only FALSE = no motion in the positive direction
Enable_Negative	EnNE	BOOL	TRUE = motion in the negative direction only FALSE = no motion in the negative direction
Axis	Axis	AXIS_REF	References the axis
Status	Stat	BOOL	Status of the power stage
Valid	Val	BOOL	Valid

Error	Err	BOOL	An error has occured within the function block
ErrorID	ErID	DINT	Error identification. Possible values include the following: 1 = MC_ErrState, bad state 2 = MC_ErrRange, bad parameter (value is out of range) 3 = MC_ErrParam, bad parameter (negative value) 4 = MC_ErrFBInvalid, function block is not implemented 5 = MC_ErrAxisNo, axis number is invalid 6 = MC_ErrDrive, error from drive 7 = MC_ErrAborted, command aborted 8 = MC_ErrNoPower, mc_power is not running

Directs the power stages to turn On and Off

MC_ReadActualPosition

Axis A	xis
AXIS_REF AXIS_F	REF
En	Val
BOOL BO	OL
BL	isy
BC	OL
	Err
BC	OL
E	rID.
D	INT
F	os
R	EAL

Arguments:

AxisIn	Axis	AXIS_REF	References the axis
Enable	En	BOOL	When enabled, yields the parameter value continuously
Axis	Axis	AXIS_REF	References the axis
Valid	Val	BOOL	The value is available
Busy	Busy	BOOL	The function block is unfinished and output values are expected
Error	Err	BOOL	An error has occured within the function block
ErrorID	ErID	DINT	Error identification. Possible values include the following: 1 = MC_ErrState, bad state 2 = MC_ErrRange, bad parameter (value is out of range) 3 = MC_ErrParam, bad parameter (negative value) 4 = MC_ErrFBInvalid, function block is not implemented 5 = MC_ErrAxisNo, axis number is invalid 6 = MC_ErrDrive, error from drive 7 = MC_ErrAborted, command aborted 8 = MC_ErrNoPower, mc_power is not running
Position	Pos	REAL	Absolute position [u]

Description:

Yields the actual position

MC_ReadActualTorque

MC_Read/	ActualTorque
Axis	Axis
AXIS_REF	AXIS_REF
En	Val
BOOL	BOOL
	Busy
	BOOL
	Err
	BOOL
	ErID
	DINT
	Torq
	REAL

AxisIn	Axis	AXIS_REF	References the axis
Enable	En	BOOL	When enabled, yields the parameter value continuously
Axis	Axis	AXIS_REF	References the axis
Valid	Val	BOOL	A valid value is available
Busy	Busy	BOOL	The function block is unfinished
Error	Err	BOOL	An error has occured within the function block
ErrorID	ErID	DINT	Error identification. Possible values include the following: 1 = MC_ErrState, bad state 2 = MC_ErrRange, bad parameter (value is out of range) 3 = MC_ErrParam, bad parameter (negative value) 4 = MC_ErrFBInvalid, function block is not implemented 5 = MC_ErrAxisNo, axis number is invalid 6 = MC_ErrDrive, error from drive 7 = MC_ErrAborted, command aborted 8 = MC_ErrNoPower, mc_power is not running
ActualTorque	Torq	REAL	Actual torque value in technical units

Yields the actual torque value

You can have a signed value for the Torq output value.

MC_ReadActualVelocity

MC_ReadA	ctualVelocity
Axis	Axis
AXIS_REF	AXIS_REF
En	Val
BOOL	BOOL
	Busy
	BOOL
	Err
	BOOL
	ErID
	DINT
	Velo
	REAL

Axis	Axis	AXIS_REF	References the axis	
Enable	En	BOOL	When enabled, yields the parameter value continuously	
Axis	Axis	AXIS_REF	References the axis	
Valid	Val	BOOL	Valid value is available	
Busy	Busy	BOOL	The function block is unfinished	
Error	Err	BOOL	An error has occured within the function block	
ErrorID	ErID	DINT	Error identification. Possible values include the following: 1 = MC_ErrState, bad state 2 = MC_ErrRange, bad parameter (value is out of range) 3 = MC_ErrParam, bad parameter (negative value) 4 = MC_ErrFBInvalid, function block is not implemented 5 = MC_ErrAxisNo, axis number is invalid 6 = MC_ErrDrive, error from drive 7 = MC_ErrAborted, command aborted 8 = MC_ErrNoPower, mc_power is not running	
ActualVelocity	Velo	REAL	Axis error value	

Yields the actual velocity value

When the En input is reset, the data becomes invalid and all outputs are reset.

When the Velo output is valid, the Val output is true.

MC_ReadAxisError

MC_Read	dAxisError
Axis	Axis
AXIS_REF	AXIS_REF
En	Val
BOOL	BOOL
	Busy
	BOOL
	Err
	BOOL
	ErID
	DINT
	AxEr
	DINT

Arguments:

AxisIn	Axis	AXIS_REF	References the axis
Enable	En	BOOL	When enabled, yields the parameter value continuously
Axis	Axis	AXIS_REF	References the axis
Valid	Val	BOOL	Valid value is available
Busy	Busy	BOOL	The function block is unfinished
Error	Err	BOOL	An error has occured within the function block
ErrorID	ErID	DINT	Error identification. Possible values include the following: 1 = MC_ErrState, bad state 2 = MC_ErrRange, bad parameter (value is out of range) 3 = MC_ErrParam, bad parameter (negative value) 4 = MC_ErrFBInvalid, function block is not implemented 5 = MC_ErrAxisNo, axis number is invalid 6 = MC_ErrDrive, error from drive 7 = MC_ErrAborted, command aborted 8 = MC_ErrNoPower, mc_power is not running
AxisErrorId	AxEr	DINT	Axis error value

Description:

Yields general axis errors that are not related to function blocks

MC_ReadBoolParameter

MC_ReadBoo	IParameter
Axis	Axis
AXIS_REF	AXIS_REF
En	Val
BOOL	BOOL
Num	Busy
DINT	BOOL
	Err-
	BOOL
	ErID
	DINT
	Val
	BOOL

AxisIn	Axis	AXIS_REF	References the axis
Enable	En	BOOL	When enabled, yields the parameter value continuously
ParameterNumber	Num	DINT	Number of the parameter
Axis	Axis	AXIS_REF	References the axis
Valid	Val	BOOL	Valid parameter value is available
Busy	Busy	BOOL	The function block is unfinished
Error	Err	BOOL	An error has occured within the function block

ErrorID	ErID	DINT	Error identification. Possible values include the following: 1 = MC_ErrState, bad state 2 = MC_ErrRange, bad parameter (value is out of range) 3 = MC_ErrParam, bad parameter (negative value) 4 = MC_ErrFBInvalid, function block is not implemented 5 = MC_ErrAxisNo, axis number is invalid 6 = MC_ErrDrive, error from drive 7 = MC_ErrAborted, command aborted 8 = MC_ErrNoPower, mc_power is not running
Value	Val	BOOL	Value of the parameter

Yields the value of a specific BOOL parameter

List of Parameters:

Number	Parameter Name	Data Type	Description
1	CommandedPosition	REAL	Commanded position
2	SWLimitPos	REAL	Positive software limit switch position
3	SWLimitNeg	REAL	Negative software limit switch position
4	EnableLimitPos	BOOL	Enable positive software limit switch
5	EnableLimitNeg	BOOL	Enable negative software limit switch
6	EnablePosLagMonitoring	BOOL	Enable monitoring of position lag
7	MaxPositionLag	BOOL	Maximal position lag
8	MaxVelocitySystem	REAL	Maximal allowed velocity of the axis in the motion system
9	MaxVelocityAppl	REAL	Maximal allowed velocity of the axis in the application
10	ActualVelocity	REAL	Actual velocity

11	CommandedVelocity		Commanded set point velocity READ only
12	MaxAccelerationSystem	REAL	Maximal allowed acceleration of the axis in the motion system
13	MaxAccelerationAppl	REAL	Maximal allowed acceleration of the axis in the application
14	MaxDecelerationSystem	REAL	Maximal allowed deceleration of the axis
15	MaxDecelerationAppl	REAL	Maximal allowed deceleration of the axis
16	MaxJerk	REAL	Maximal allowed jerk of the axis

MC_ReadDigitalInput

MC_ReadDigitalInput			
Inp	Inp		
MC_INPUT_REF	MC_INPUT_REF		
En	Vid		
BOOL	BOOL		
InNb	Busy		
DINT	BOOL		
	Err		
	BOOL		
	ErID		
	DINT		
	Val		
	BOOL		

Inp	Inp	MC_INPUT_REF	References the source of the input signal
Enable	En	BOOL	When enabled, yields the parameter value continuously
InputNumber	InNb	DINT	Selects the input
Input	Inp	MC_INPUT_REF	References the source of the input signal
Valid	Vld	BOOL	Valid parameter value is available
Busy	Busy	BOOL	The function block is unfinished
Error	Err	BOOL	An error has occured within the function block

ErrorID	ErID	DINT	Error identification. Possible values include the following: 1 = MC_ErrState, bad state 2 = MC_ErrRange, bad parameter (value is out of range) 3 = MC_ErrParam, bad parameter (negative value) 4 = MC_ErrFBInvalid, function block is not implemented 5 = MC_ErrAxisNo, axis number is invalid 6 = MC_ErrDrive, error from drive 7 = MC_ErrAborted, command aborted 8 = MC_ErrNoPower, mc_power is not running
Value	Val	BOOL	Value of the parameter

Yields the value of a specific input

Note: When a pulse signal ends before the next function block cycle begins, the signal is undetected.

MC_ReadDigitalOutput

MC_ReadE	DigitalOutput
Outp	Outp
MC_OUTPUT_REF	MC_OUTPUT_REF
En	Val
BOOL	500L
OuNb	Busy
DINT	BOOL
	Err-
	BOOL
	ErID
	DINT
	Val
	BOOL

Outp	Outp	MC_OUTPUT_REF	References signal outputs
Enable	En	BOOL	When enabled, yields the parameter value continuously
OutputNumber	OuNb	DINT	Selects the output
Output	Outp	MC_OUTPUT_REF	References signal outputs
Valid	Val	BOOL	Valid output signal value is available
Busy	Busy	BOOL	The function block is unfinished
Error	Err	BOOL	An error has occured within the function block

ErrorID	ErID	DINT	Error identification. Possible values include the following: 1 = MC_ErrState, bad state 2 = MC_ErrRange, bad parameter (value is out of range) 3 = MC_ErrParam, bad parameter (negative value) 4 = MC_ErrFBInvalid, function block is not implemented 5 = MC_ErrAxisNo, axis number is invalid 6 = MC_ErrDrive, error from drive 7 = MC_ErrAborted, command aborted 8 = MC_ErrNoPower, mc_power is not running
Value	Val	BOOL	Value of the output signal

Yields the value of a specific output

Note: When a pulse signal ends before the next function block cycle begins, the signal is undetected.

MC_ReadParameter

MC_Read	Parameter
Axis	Axis
AXIS_REF	AXIS_REF
En	Val
BOOL	BOOL
Num	Busy
DINT	BOOL
	Err
	BOOL
	ErID
	DINT
	Val
	REAL

AxisIn	Axis	AXIS_REF	References the axis
Enable	En	BOOL	When enabled, yields the parameter value continuously
ParameterNumber	Num	DINT	Number of the parameter
Axis	Axis	AXIS_REF	References the axis
Valid	Val	BOOL	Valid parameter value is available
Busy	Busy	BOOL	The function block is unfinished
Error	Err	BOOL	An error has occured within the function block

ErrorID	ErID	DINT	 Error identification. Possible values include the following: 1 = MC_ErrState, bad state 2 = MC_ErrRange, bad parameter (value is out of range) 3 = MC_ErrParam, bad parameter (negative value) 4 = MC_ErrFBInvalid, function block is not implemented 5 = MC_ErrAxisNo, axis number is invalid 6 = MC_ErrDrive, error from drive 7 = MC_ErrAborted, command aborted 8 = MC ErrNoPower, mc power is not running
Value	Val	REAL	Value of the parameter

Yields the value of a specific parameter

List of Parameters:

Number	Parameter Name	Data Type	Description
1	CommandedPosition	REAL	Commanded position
2	SWLimitPos	REAL	Positive software limit switch position
3	SWLimitNeg	REAL	Negative software limit switch position
4	EnableLimitPos	BOOL	Enable positive software limit switch
5	EnableLimitNeg	BOOL	Enable negative software limit switch
6	EnablePosLagMonitoring	BOOL	Enable monitoring of position lag
7	MaxPositionLag	BOOL	Maximal position lag
8	MaxVelocitySystem	REAL	Maximal allowed velocity of the axis in the motion system
9	MaxVelocityAppl	REAL	Maximal allowed velocity of the axis in the application
10	ActualVelocity	REAL	Actual velocity

11	CommandedVelocity		Commanded set point velocity READ only
12	MaxAccelerationSystem	REAL	Maximal allowed acceleration of the axis in the motion system
13	MaxAccelerationAppl	REAL	Maximal allowed acceleration of the axis in the application
14	MaxDecelerationSystem	REAL	Maximal allowed deceleration of the axis
15	MaxDecelerationAppl	REAL	Maximal allowed deceleration of the axis
16	MaxJerk	REAL	Maximal allowed jerk of the axis

MC_ReadStatus

MC_Rea	adStatus
Axis	Axis
AXIS_REF	AXIS_REF
En	Val
BOOL	BOOL
	Busy
	BOOL
	Err
	BOOL
	ErID
	DINT
	Stop
	BOOL
	Des
	BOOL
	Stop-
	BOOL
	Ref
	BOOL
	Stan-
	BOOL
-	DM
	- CM
	5001
	SM
	BOOL
	Home
and the second se	BOOL
	CV
	BOOL
	Acce
	BOOL
	Dece
	BOOL

AxisIn	Axis	AXIS_ REF	References the axis
Enable	En	BOOL	When enabled, yields the parameter value continuously
Axis	Axis	AXIS_ REF	References the axis
Valid	Val	REAL	True = valid output available
--------------------	------	------	---
Busy	Busy	BOOL	The function block is unfinished
Error	Err	BOOL	An error has occured within the function block
ErrorID	ErID	DINT	Error identification. Possible values include the following: 1 = MC_ErrState, bad state 2 = MC_ErrRange, bad parameter (value is out of range) 3 = MC_ErrParam, bad parameter (negative value) 4 = MC_ErrFBInvalid, function block is not implemented 5 = MC_ErrAxisNo, axis number is invalid 6 = MC_ErrDrive, error from drive 7 = MC_ErrAborted, command aborted 8 = MC_ErrNoPower, mc_power is not running
Errorstop	Stop	BOOL	ErrorStop
Disabled	Dis	BOOL	Set when axis is in disabled state
Stopping	Stop	BOOL	Stopping state
Referenced	Ref	BOOL	Absolute reference position of the axis
StandStill	Stan	BOOL	Standstill state
DiscreteMotion	DM	BOOL	DiscreteMotion state
ContinuousMotion	СМ	BOOL	ContinuousMotion state
SynchronizedMotion	SM	BOOL	SynchronizedMotion state

Homing	Home	BOOL	Homing state. Possible values include the following: 0 = MC_AbsSwitch, absolute switch homing plus limit switches 1 = MC_LimitSwitch, homing against limit switches 2 = MC_RefPulse, homing using encoder reference pulse "zero mark" 3 = MC_Direct, static homing forcing position from user reference 4 = MC_Absolute, static homing forcing position from absolute encoder
			5 = MC_Block, homing against hardware parts blocking movement
ConstantVelocity	CV	BOOL	ConstantVelocity state
Accelerating	Acce	BOOL	Acceleration value
Decelerating	Dece	BOOL	Deceleration value

Yields the detailed status of an axis that is in motion

MC_Reset

MC_R	Reset
Axis	Axis
AXIS_REF	AXIS_REF
Exec	Done
BOOL	BOOL
	Busy
	BOOL
	Err
	BOOL
	ErID
	DINT

Arguments:

AxisIn	Axis	AXIS_REF	References the axis
Execute	Exec	BOOL	Begins resetting the axis at the rising edge
Axis	Axis	AXIS_REF	References the axis
Done	Done	BOOL	The Standstill state is reached
Busy	Busy	BOOL	The function block is unfinished
Error	Err	BOOL	An error has occured within the function block
ErrorID	ErID	DINT	Error identification. Possible values include the following: 1 = MC_ErrState, bad state 2 = MC_ErrRange, bad parameter (value is out of range) 3 = MC_ErrParam, bad parameter (negative value) 4 = MC_ErrFBInvalid, function block is not implemented 5 = MC_ErrAxisNo, axis number is invalid 6 = MC_ErrDrive, error from drive 7 = MC_ErrAborted, command aborted 8 = MC_ErrNoPower, mc_power is not running

Description:

Transitions axis from the ErrorStop state to the StandStill state by resetting all axis-related internal errors

The outputs of function block instances are unaffected by MC_Rest.

MC_SetOverride

Axis Axis AXIS_REF AXIS_REF En En-
AXIS_REF AXIS_REF
En En
2001 2001
BOOL BOOL
VelF Busy
REAL BOOL
AccF Err
REAL BOOL
JrkF ErID
REAL DINT

AxisIn	Axis	AXIS_REF	References the axis
Enable	En	BOOL	When enabled, yields the override factor value continuously
VelFactor	VelF	REAL	Override factor for velocity = [0.0 1.0] Default = 1.0 A value of 0.0 stops the axis, StandStill state is unachieved
AccFactor	AccF	REAL	Override factor for acceleration/deceleration = [0.0 1.0] Default = 1.0 A value of 0.0 is not permitted
JerkFactor	JrkF	REAL	Override factor for jerk = [0.0 1.0] Default = 1.0 A value of 0.0 is not permitted
Axis	Axis	AXIS_REF	References the axis
Enabled	En	BOOL	The override factors are set successfully
Busy	Busy	BOOL	The function block is unfinished

Error	Err	BOOL	An error has occured within the function block
ErrorID	ErID	DINT	Error identification. Possible values include the following: 1 = MC_ErrState, bad state 2 = MC_ErrRange, bad parameter (value is out of range) 3 = MC_ErrParam, bad parameter (negative value) 4 = MC_ErrFBInvalid, function block is not implemented 5 = MC_ErrAxisNo, axis number is invalid 6 = MC_ErrDrive, error from drive 7 = MC_ErrAborted, command aborted 8 = MC_ErrNoPower, mc_power is not running

Specifies the override values for the axis

The override parameters act as factors, which the commanded velocity, acceleration, deceleration, and jerk are multiplied by in order to move the function block.

MC_SetOverride works on master axes only, axes in the SyncronizedMotion state, such as slave axes, are unaffected.

The VelF input is modifiable at all times and acts directly on the ongoing motion.

When in the DiscreteMotion state, reducing the input values for AccF and JrkF may lead to position overshoot.

MC_SetPosition

MC_SetPosition				
Axis	Axis			
AXIS_REF	AXIS_REF			
Exec	Done			
BOOL	BOOL			
Pos	Busy			
REAL	BOOL			
Rel	Err			
BOOL	BOOL			
Mode	ErID			
BOOL	DINT			

AxisIn	Axis	AXIS_REF	References the axis
Execute	Exec	BOOL	Begins setting position
Position	Pos	REAL	Position unit [u] Requires that input Rel is set to TRUE
Relative	Rel	BOOL	TRUE = relative distance FALSE = absolute position Default value = FALSE
MC_ExecutionMode	Mode	BOOL	Motion control execution mode mcImmediately = functionality immediately valid and affects ongoing motion mcQueued = functionality valid when all other motion commands have one of the following output parameters set: Done, Aborted, Error, or Busy is set to FALSE Default value = mcImmediately
Axis	Axis	AXIS_REF	References the axis
Done	Done	BOOL	New Pos value available
Busy	Busy	BOOL	The function block is unfinished

Error	Err	BOOL	An error has occured within the function block
ErrorID	ErID	DINT	Error identification. Possible values include the following: 1 = MC_ErrState, bad state 2 = MC_ErrRange, bad parameter (value is out of range) 3 = MC_ErrParam, bad parameter (negative value) 4 = MC_ErrFBInvalid, function block is not implemented 5 = MC_ErrAxisNo, axis number is invalid 6 = MC_ErrDrive, error from drive 7 = MC_ErrAborted, command aborted 8 = MC_ErrNoPower, mc_power is not running

Shifts the position of an axis by modifying the set-point position and the actual position of the axis

When the Rel input is set to TRUE, the relative distance is added to the actual position value at the time of execution. When the Rel output is set to FALSE, the actual position is set to the value of the Pos input.

MC_Stop

MC_S	top
Axis	Axis
AXIS_REF	AXIS_REF
Exec	Done
BOOL	BOOL
Dece	Busy
REAL	BOOL
Jerk	Act
REAL	BOOL
	CmdA
	BOOL
	Err
	BOOL
	ErID
	DINT

AxisIn	Axis	AXIS_REF	References the axis
Execute	Exec	BOOL	Begins the stopping action at the rising edge
Deceleration	Dece	REAL	Deceleration value = $[u/s^2]$
Jerk	Jerk	REAL	Jerk value = $[u/s^3]$
Axis	Axis	AXIS_REF	References the axis
Done	Done	BOOL	Velocity has reached zero
Busy	Busy	BOOL	The function block is unfinished
Active	Act	BOOL	Function Block is actively controlling the axis
CommandAborted	CmdA	BOOL	Command is aborted by another command

Error	Err	BOOL	An error has occured within the function block
ErrorID	ErID	DINT	Error identification. Possible values include the following: 1 = MC_ErrState, bad state 2 = MC_ErrRange, bad parameter (value is out of range) 3 = MC_ErrParam, bad parameter (negative value) 4 = MC_ErrFBInvalid, function block is not implemented 5 = MC_ErrAxisNo, axis number is invalid 6 = MC_ErrDrive, error from drive 7 = MC_ErrAborted, command aborted 8 = MC_ErrNoPower, mc_power is not running

Directs a controlled motion stop and transferees the axis to the Stopping state

While the axis is in the Stopping state, the axis is unavailable for use with other function blocks and all running function blocks are aborted. The axis remains in the Stopping state while the Exec input is set to TRUE and the velocity of the axis is above zero. When the velocity reaches zero, the Done output is set to TRUE, the Exec output is set to FALSE, and the axis achieves the StandStill state.

MC_TorqueControl

MC_Torq	ueControl
Axis	Axis
AXIS_REF	AXIS_REF
Exec	InT
BOOL	BOOL
Torg	Busy
REAL	BOOL
TRmp	Act
REAL	BOOL
Velo	CmdA
REAL	BOOL
Acce	Err
REAL	BOOL
Dece	ErID
REAL	DINT
Jerk	
REAL	
Dir	
SINT	
Buf	
SINT	

AxisIn	Axis	AXIS_REF	References the axis
Execute	Exec	BOOL	Begin torque action at rising edge
Torque	Torq	REAL	Torque value in t.u.
TorqueRamp	TRmp	REAL	Maximum time derivative value in t.u./sec
Velocity	Velo	REAL	Absolute value of the maximum velocity
Acceleration	Acce	REAL	Maximum acceleration value
Deceleration	Dece	REAL	Maximum deceleration value
Jerk	Jerk	REAL	Maximum jerk value
Direction	Dir	SINT	Motion control direction, either positive or negative

BufferMode	Buf	SINT	Definition of the mode of behavior for the axis: mcAborting, mcBuffered, mcBlending. Possible values are the following: 0 = mcAborting, the next function block is taking control of the axis immediately 1 = mcBuffered, the next function block awaits completion (DONE) before taking control of the axis 2 = mcBlending
Axis	Axis	AXIS_REF	References the axis
InTorque	InT	BOOL	Torque setpoint value is reached
Busy	Busy	BOOL	The function block is unfinished
Active	Act	BOOL	Function Block is actively controlling the axis
CommandAborted	CmdA	BOOL	Command is aborted by another command
Error	Err	BOOL	An error has occured within the function block
ErrorID	ErID	DINT	Error identification. Possible values include the following: 1 = MC_ErrState, bad state 2 = MC_ErrRange, bad parameter (value is out of range) 3 = MC_ErrParam, bad parameter (negative value) 4 = MC_ErrFBInvalid, function block is not implemented 5 = MC_ErrAxisNo, axis number is invalid 6 = MC_ErrDrive, error from drive 7 = MC_ErrAborted, command aborted 8 = MC_ErrNoPower, mc_power is not running

Directs continuous exertion of torque of a specific magnitude

Torque increases according to the TRmp input value. When the specified torque is reached, InT output is set.

MC_TorqueControl applies to both torque and force. When there is no external load, force applies instead of torque.

MC_TouchProbe

MC_Touch	Probe
Axis	Axis
AXIS_REF	AXIS_REF
Trig	Trig
MC_TRIGGER_REF	MC_TRIGGER_REF
Exec	Done
BOOL	500L
WinO	Busy
BOOL	BOOL
FPos	CmdA
REAL	BOOL
LPos	Err
REAL	BOOL
	ErID
	DINT
	RPos
	REAL

AxisIn	Axis	AXIS_REF	References the axis for which the position is recorded for a defined Trig input event
TiggerInp	Trig	MC_TRIGGER_REF	References the source of the trigger signal
Execute	Exec	BOOL	Begins touch probe recording at the rising edge
WindowOnly	WinO	BOOL	When set, only values within a specific window can trigger events
FirstPosition	FPos	REAL	The start position [u] where trigger events are accepted The start position value is included in the range of window values
LastPosition	LPos	REAL	The stop position [u] where trigger events are accepted The stop position value is included in the range of window values

Axis	Axis	AXIS_REF	References the axis for which the position is recorded for a defined Trig input event
TriggerInput	Trig	MC_TRIGGER_REF	References the source of the trigger signal
Done	Done	BOOL	The trigger event is recorded
Busy	Busy	BOOL	The function block is unfinished
CommandAborted	CmdA	BOOL	Command is aborted by another command
Error	Err	BOOL	An error has occured within the function block
ErrorID	ErID	DINT	Error identification. Possible values include the following: 1 = MC_ErrState, bad state 2 = MC_ErrRange, bad parameter (value is out of range) 3 = MC_ErrParam, bad parameter (negative value) 4 = MC_ErrFBInvalid, function block is not implemented 5 = MC_ErrAxisNo, axis number is invalid 6 = MC_ErrDrive, error from drive 7 = MC_ErrAborted, command aborted 8 = MC_ErrNoPower, mc_power is not running
RecordedPosition	RPos	REAL	Position [u] where the trigger event occured

Records the position of an axis during a trigger event

The first trigger event is recorded and subsequent trigger events are disregarded.

MC_VelocityProfile

MC_Velo	cityProfile
Axis	Axis
AXIS_REF	AXIS_REF
TV	TV
MC_TV_REF	MC_TV_REF
Exec	Done
BOOL	BOOL
Time	Busy
REAL	BOOL
Scal	Act
REAL	BOOL
Off	CmdA
REAL	BOOL
Buf	Err
SINT	BOOL
	ErID
	DINT

Axisln	Axis	AXIS_REF	References the axis
TimeVelocityIn	TV	MC_TV_REF	References Time / Velocity Time can equal the difference in time between two points
Execute	Exec	BOOL	Begins the motion at the rising edge
TimeScale	Time	REAL	Time scaling factor for the profile
VelocityScale	Scal	REAL	Velocity scaling factor for the profile
Offset	Off	REAL	Offset factor for the profile
BufferMode	Buf	SINT	Definition of the mode of behavior for the axis: mcAborting, mcBuffered, mcBlending. Possible values are the following: 0 = mcAborting, the next function block is taking control of the axis immediately 1 = mcBuffered, the next function block awaits completion (DONE) before taking control of the axis 2 = mcBlending
Axis	Axis	AXIS_REF	References the axis

TimeVelocity	TV	MC_TV_REF	References Time / Velocity Time can equal the difference in time between two points
Done	Done	BOOL	The profile is complete
Busy	Busy	BOOL	The function block is unfinished
Active	Act	BOOL	Function Block is actively controlling the axis
CommandAborted	CmdA	BOOL	Command is aborted by another command
Error	Err	BOOL	An error has occured within the function block
ErrorID	ErID	DINT	Error identification. Possible values include the following: 1 = MC_ErrState, bad state 2 = MC_ErrRange, bad parameter (value is out of range) 3 = MC_ErrParam, bad parameter (negative value) 4 = MC_ErrFBInvalid, function block is not implemented 5 = MC_ErrAxisNo, axis number is invalid 6 = MC_ErrDrive, error from drive 7 = MC_ErrAborted, command aborted 8 = MC_ErrNoPower, mc_power is not running

Directs a time-velocity locked motion profile

When the Done output is set, the final velocity is maintained and the axis remains in the ContinuousMotion state.

MC_WriteBoolParameter

MC_WriteBo	olParameter
Axis	Axis
AXIS_REF	AXIS_REF
Exec	Done
BOOL	BOOL
Num	Busy
DINT	BOOL
Val	Err
BOOL	BOOL
Mode	ErID
SINT	DINT

AxisIn	Axis	AXIS_REF	References the axis
Execute	Exec	BOOL	Begins writing the parameter value at the rising edge
ParameterNumber	Num	DINT	Number of the parameter
Value	Val	BOOL	Value of the parameter
MC_ExecutionMode	Mode	SINT	Motion control execution mode mcImmediately = functionality immediately valid and affects ongoing motion mcQueued = functionality valid when all other motion commands have one of the following output parameters set: Done, Aborted, Error, or Busy is set to FALSE Default value = mcImmediately
Axis	Axis	AXIS_REF	References the axis
Done	Done	BOOL	Parameter is successfully written
Busy	Busy	BOOL	The function block is unfinished

Error	Err	BOOL	An error has occured within the function block
ErrorID	ErID	DINT	Error identification. Possible values include the following: 1 = MC_ErrState, bad state 2 = MC_ErrRange, bad parameter (value is out of range) 3 = MC_ErrParam, bad parameter (negative value) 4 = MC_ErrFBInvalid, function block is not implemented 5 = MC_ErrAxisNo, axis number is invalid 6 = MC_ErrDrive, error from drive 7 = MC_ErrAborted, command aborted 8 = MC_ErrNoPower, mc_power is not running

Modifies the value of a specific BOOL parameter

List of Parameters:

Number	Parameter Name	Data Type	Description
1	CommandedPosition	REAL	Commanded position
2	SWLimitPos	REAL	Positive software limit switch position
3	SWLimitNeg	REAL	Negative software limit switch position
4	EnableLimitPos	BOOL	Enable positive software limit switch
5	EnableLimitNeg	BOOL	Enable negative software limit switch
6	EnablePosLagMonitoring	BOOL	Enable monitoring of position lag
7	MaxPositionLag	BOOL	Maximal position lag
8	MaxVelocitySystem	REAL	Maximal allowed velocity of the axis in the motion system
9	MaxVelocityAppl	REAL	Maximal allowed velocity of the axis in the application
10	ActualVelocity	REAL	Actual velocity

11	CommandedVelocity		Commanded set point velocity READ only
12	MaxAccelerationSystem	REAL	Maximal allowed acceleration of the axis in the motion system
13	MaxAccelerationAppl	REAL	Maximal allowed acceleration of the axis in the application
14	MaxDecelerationSystem	REAL	Maximal allowed deceleration of the axis
15	MaxDecelerationAppl	REAL	Maximal allowed deceleration of the axis
16	MaxJerk	REAL	Maximal allowed jerk of the axis

MC_WriteDigitalOutput

MC_WriteDigitalOutput		
Outp	Outp	
MC_OUTPUT_REF	MC_OUTPUT_REF	
Exec	Done	
BOOL	500L	
OuNb	Busy	
DINT	BOOL	
Val	Err	
BOOL	BOOL	
Mode	ErID	
SINT	DINT	

Outp	Outp	MC_OUTPUT_REF	References the signal output
Execute	Exec	BOOL	Writes the value of the selected output
OutputNumber	OuNb	DINT	Selects the output by number
Value	Val	BOOL	Value of the selected parameter
MC_ExecutionMode	Mode	SINT	Motion control execution mode mcImmediately = functionality immediately valid and affects ongoing motion mcQueued = functionality valid when all other motion commands have one of the following output parameters set: Done, Aborted, Error, or Busy is set to FALSE Default value = mcImmediately
Output	Outp	MC_OUTPUT_REF	References the signal output
Done	Done	BOOL	Output signal value successfully written
Busy	Busy	BOOL	The function block is unfinished

Error	Err	BOOL	An error has occured within the function block
ErrorID	ErID	DINT	Error identification. Possible values include the following: 1 = MC_ErrState, bad state 2 = MC_ErrRange, bad parameter (value is out of range) 3 = MC_ErrParam, bad parameter (negative value) 4 = MC_ErrFBInvalid, function block is not implemented 5 = MC_ErrAxisNo, axis number is invalid 6 = MC_ErrDrive, error from drive 7 = MC_ErrAborted, command aborted 8 = MC_ErrNoPower, mc_power is not running

Modifies a specific output value

MC_WriteParameter

Axis Axis- AXIS_REF AXIS_REF Exec Done- BOOL BOOL Num Busy- DINT BOOL Val Err- REA BOOL	MC_Write	Parameter
AXIS_REF AXIS_REF Exec Done- BOOL BOOL Num Busy- DINT BOOL -Val Err- EEA BOOL	Axis	Axis
Exec Done- 500L 500L Num Busy- DINT 500L -Val Err- EEA 500L	AXIS_REF	AXIS_REF
BOOL BOOL Num Busy- DINT BOOL -Val Err- EEAL BOOL	Exec	Done
Num Busy- DINT BOOL Val Err- REAL BOOL	BOOL	BOOL
DINT BOOL Val Err	Num	Busy
Val Err-	DINT	BOOL
REAL BOOL	Val	Err
1000	REAL	BOOL
Mode ErID	Mode	ErID
SINT DINT	SINT	DINT

AxisIn	Axis	AXIS_REF	References the axis
Execute	Exec	BOOL	Begins writing the parameter value at the rising edge
ParameterNumber	Num	DINT	Number of the parameter
Value	Val	BOOL	Value of the parameter
MC_ExecutionMode	Mode	SINT	MC_ExecutionMode
Axis	Axis	AXIS_REF	References the axis
Done	Done	BOOL	Parameter written successfully
Busy	Busy	BOOL	TRUE = function block is actively controlling the axis FALSE = axis is not actively controlled by the function block

Error	Err	BOOL	An error has occured within the function block
ErrorID	ErID	DINT	Error identification. Possible values include the following: 1 = MC_ErrState, bad state 2 = MC_ErrRange, bad parameter (value is out of range) 3 = MC_ErrParam, bad parameter (negative value) 4 = MC_ErrFBInvalid, function block is not implemented 5 = MC_ErrAxisNo, axis number is invalid 6 = MC_ErrDrive, error from drive 7 = MC_ErrAborted, command aborted 8 = MC_ErrNoPower, mc_power is not running

Modifies the value of a specific parameter

List of Parameters:

Number	Parameter Name	Data Type	Description
1	CommandedPosition	REAL	Commanded position
2	SWLimitPos	REAL	Positive software limit switch position
3	SWLimitNeg	REAL	Negative software limit switch position
4	EnableLimitPos	BOOL	Enable positive software limit switch
5	EnableLimitNeg	BOOL	Enable negative software limit switch
6	Enable PosLag Monitoring	BOOL	Enable monitoring of position lag
7	MaxPositionLag	BOOL	Maximal position lag
8	MaxVelocitySystem	REAL	Maximal allowed velocity of the axis in the motion system
9	MaxVelocityAppl	REAL	Maximal allowed velocity of the axis in the application
10	ActualVelocity	REAL	Actual velocity

11	CommandedVelocity		Commanded set point velocity READ only
12	MaxAccelerationSystem	REAL	Maximal allowed acceleration of the axis in the motion system
13	MaxAccelerationAppl	REAL	Maximal allowed acceleration of the axis in the application
14	MaxDecelerationSystem	REAL	Maximal allowed deceleration of the axis
15	MaxDecelerationAppl	REAL	Maximal allowed deceleration of the axis
16	MaxJerk	REAL	Maximal allowed jerk of the axis

SAMA Elements and Functions

The workbench supports the following SAMA elements:

Process Control	High Limiting	Chooses the lowest value, either the input or the High_Limit
	Integrate or Totalize	Determines the time integral of the input value
	Low Limiting	Chooses the higher value, either the input or the Low_Limit
	MATransfer	The output value is determined by the CMD value. When CMD has a value of Logic One the Output_signal value is equal to the InputMan value. When CMD has a value of Logic Zero the Output_signal value is equal to the InputAuto value.
	MATransferSet	The Set_Point_out value is equal to the SetPoint value. The Output_Signal value is determined by the CMD value. When CMD has a value of Logic One the Output_signal value is equal to the InputMan value. When CMD has a value of Logic Zero the Output_signal value is equal to the InputAuto value.
	Memory (Basic)	When one input has a value of Logic One, the output value is Logic One.
	Memory (So Dominant)	When multiple inputs have a value of Logic One, only the output with an override designation (S_0) is Logic One.
	Memory (Ro Dominant)	When multiple inputs have a value of Logic One, only the output with an override designation (S_0) is Logic One.
	Proportional	Output value is directly proportional to the input value

	Proportional and Integral	Output value is directly proportional to both the magnitude and duration of the input value
	Proportional and Derivative	Output value is directly proportional to the rate of change of the input value.
	Reverse Proportional	Output value is inversely proportional to the input value.
	Tri-State Signal	Output has discrete states dependent on the state of the input.
	Velocity Limiting	When the rate of change of input is below High_Limit, output is equal to input
Time Operations	Pulse Duration	When input is Logic One, the output is Logic One for a specific time period only
	Pulse Duration Of The Lesser Time	When input has been Logic One for a specific time period, output changes to a Logic Zero
	Time Delay On Initiation	When input has been Logic One continuously for a specific time period, output becomes a Logic One
	Time Delay On Termination	When input equals a Logic Zero for a specific time period, output becomes Logic Zero

High Limiting

Arguments:

In	IN	REAL
High_Limit	HL	REAL
Output	Q	REAL

Description:

The output value is either the input value or the High_Limit value, whichever is the lowest.

To insert a High Limiting element

• From the Toolbox, drag the High Limiting element into the language container.

The High Limiting element is displayed in the language container in SAMA format.

To insert a HighLimit function block

1. From the Toolbox, drag the block element into the language container.

The Block Selector is displayed.

2. In the Block Selector, select HighLimit, then click OK.

The High Limiting element is displayed in the language container in SAMA format.

Integrate or Totalize

SAMA Representation:

FBD Representation:

Arguments:

Flow	REAL
TBAS	DINT
Reset	BOOL
Quantity	REAL

Description:

The output value is a frequency that depends on the input value. The output is usually associated with a counting device, which displays the time integral of the input value with some initial condition applied at time (T) equals zero.

To insert an Integrate or a Totalize element

• From the Toolbox, drag the Integrate or Totalize element into the language container.

The Integrate or Totalize element is displayed in the language container in SAMA format.

To insert a Totalizer function block

1. From the Toolbox, drag the block element into the language container.

The Block Selector is displayed.

2. In the Block Selector, select Totalizer, then click OK.

The Integrate or Totalize element is displayed in the language container in SAMA format.

Low Limiting

Arguments:

In	IN	REAL
Low_Limit	LL	REAL
Output	Q	REAL

Description:

The output value is either the input value or the low limit value, whichever is the highest.

To insert a Low Limiting element

• From the Toolbox, drag the Low Limiting element into the language container.

The Low Limiting element is displayed in the language container in SAMA format.

To insert a LowLimit function block

1. From the Toolbox, drag the block element into the language container.

The Block Selector is displayed.

2. In the Block Selector, select LowLimit, then click OK.

The Low Limiting element is displayed in the language container in SAMA format.

MATransfer

Arguments:

InputAuto	INA	REAL	Automatic input
Command	CMD	BOOL	Indication of which signal to select True selects InputAuto False selects InputMan
InputMan	INM	REAL	Manual input
Output signal	Out	REAL	Output signal

Description:

The Output_signal value of MATransfer is determined by the CMD value. When CMD has a value of Logic One (TRUE) the Output_signal value is equal to the InputMan value. When CMD has a value of Logic Zero (FALSE) the Output_signal value is equal to the InputAuto value.

To insert an MATransfer element

• From the Toolbox, drag the MATransfer element into the language container.

The MATransfer element is displayed in the language container in SAMA format.

To insert an MATransfer function block

- From the Toolbox, drag the block element into the language container. The Block Selector is displayed.
- 2. In the Block Selector, select MATransfer, then click OK.

The MATransfer element is displayed in the language container in SAMA format.

MATransferSet

FBD Representation:

Arguments:

InputAuto	INA	REAL	Automatic input
CMD	CMD	BOOL	Indication of which signal to select True selects InputAuto False selects InputMan
InputMan	INM	REAL	Manual input
SetPoint	SetP	REAL	Set point value
Set_Point_out	SetP	REAL	Set point for loop control Local and forced by user
Output Signal	Out	REAL	Output signal

Description:

The Set_Point_out value of MATransferSet is equal to the SetPoint value. The Output_Signal value is determined by the CMD value. When CMD has a value of Logic One (TRUE) the Output_signal value is equal to the InputMan value. When CMD has a value of Logic Zero (FALSE) the Output_signal value is equal to the InputAuto value.

To insert an MATransferSet element

• From the Toolbox, drag the MATransferSet element into the language container.

The MATransferSet element is displayed in the language container in SAMA format.

To insert an MATransferSet function block

1. From the Toolbox, drag the block element into the language container.

The Block Selector is displayed.

2. In the Block Selector, select MATransferSet, then click OK.

The MATransferSet element is displayed in the language container in SAMA format.

Memory (Basic)

SAMA Representation:

MemBasic SET Q1-BOOL BOOL RES Q2-BOOL BOOL

FBD Representation:

Arguments:

SET	SET	BOOL
RESET	RES	BOOL
Out1	Q1	BOOL
Out2	Q2	BOOL

Description:

When one input has a value of Logic One, the output value is Logic One. If the input value is subsequently lost (Logic Zero), the associated output value is memorized (retained at Logic One). Connecting a Logic One output to an input gives the same value (Logic One) and changes the output states.

Mathematical equation:

А	В	С	D	
1	0	1	0	
0	0	1	0	
0	1	0	1	
0	0	0	1	
*1	1	0	0	

Note: When A and B are simultaneously true, the output condition changes from the last state.

Graphic representation:

To insert a Memory (Basic) element

• From the Toolbox, drag the Memory (Basic) element into the language container.

The Memory (Basic) element is displayed in the language container in SAMA format.

To insert a MemBasic function block

1. From the Toolbox, drag the block element into the language container.

The Block Selector is displayed.

2. In the Block Selector, select MemBasic, then click OK.

The Memory (Basic) element is displayed in the language container in SAMA format.
Memory (S_o Dominant)

SET SO Out1 RESET R Out2

SAMA Representation:

FBD Representation:

Arguments:

SET	SET	BOOL
RESET	RES	BOOL
Out1	Q1	BOOL
Out2	Q2	BOOL

Description:

When one input has a value of Logic One, the output value is Logic One. If the input value is subsequently lost (Logic Zero), the associated output value is memorized (retained at Logic One). Connecting a Logic One output to an input gives the same value (Logic One) and changes the output states. When multiple inputs have a value of Logic One, only the output with an override designation (S_0) is Logic One.

Mathematical equation:

А	В	С	D
1	0	1	0
0	0	1	0
0	1	0	1
0	0	0	1
1	1	1	0

Graphic representation:

To insert a Memory (So Dominant) element

• From the Toolbox, drag the **Memory (So Dominant)** element into the language container.

The Memory (So Dominant) element is displayed in the language container in SAMA format.

To insert a MemSR function block

1. From the Toolbox, drag the block element into the language container.

The Block Selector is displayed.

2. From the Block Selector, select **MemSR**, then click **OK**.

The Memory (So Dominant) element is displayed in the language container in SAMA format.

Memory (R_o Dominant)

FBD Representation:

Arguments:

SET	SET	BOOL
RESET	RES	BOOL
Out1	Q1	BOOL
Out2	Q2	BOOL

Description:

When one input has a value of Logic One, the output value is Logic One. If the input value is subsequently lost (Logic Zero), the associated output value is memorized (retained at Logic One). Connecting a Logic One output to an input gives the same value (Logic One) and changes the output states. When multiple inputs have a value of Logic One, only the output with an override designation (R_0) is Logic One.

Mathematical equation:

А	В	С	D
1	0	1	0
0	0	1	0
0	1	0	1
0	0	0	1
1	1	0	1

Graphic representation:

To insert a Memory (Ro Dominant) element

• From the Toolbox, drag the **Memory (Ro Dominant)** element into the language container.

The Memory (Ro Dominant) element is displayed in the language container in SAMA format.

To insert a MemRS function block

1. From the Toolbox, drag the block element into the language container.

The Block Selector is displayed.

2. In the Block Selector, select **MemRS**, then click **OK**.

The Memory (Ro Dominant) element is displayed in the language container in SAMA format.

Proportional

SAMA Representation:

FBD Representation:

Arguments:

In	IN	REAL	
Feedback	FB	REAL	
K	Κ	REAL	Proportional constant
Out	Q	REAL	

Description:

The output value is directly proportional to the input value.

To insert a Proportional element

• From the Toolbox, drag the **Proportional** element into the language container.

The Proportional element is displayed in the language container in SAMA format.

To insert a Proportional function block

1. From the Toolbox, drag the block element into the language container.

The Block Selector is displayed.

• In the Block Selector, select **Proportional**, then click **OK**.

The Proportional element is displayed in the language container in SAMA format.

Proportional and Integral

SAMA Representation:

FBD Representation:

RemoteTunedPl	
in	out
REAL	REAL
gain	stat
REAL	DINT
tau	
REAL	
omax	
REAL	
omin	
REAL	
err	
DINT	

Arguments:

in	REAL
gain	REAL
tau	REAL
omax	REAL
omin	REAL
err	DINT
out	REAL
stat	DINT

Description:

The output value is directly proportional to both the magnitude and duration of the input value.

To insert a Proportional & Integral element

• From the Toolbox, drag the **Proportional & Integral** element into the language container.

The Proportional & Integral element is displayed in the language container in SAMA format.

To insert a RemoteTunedPI function block

1. From the Toolbox, drag the block element into the language container.

The Block Selector is displayed.

2. From the Block Selector, select **RemoteTunedPI**, then click **OK**.

The Proportional & Integral element is displayed in the language container in SAMA format.

Proportional and Derivative

SAMA Representation:

FBD Representation:

PD	
FLAG	OUT
BOOL	REAL
IN	P-
REAL	REAL
FB	D
REAL	REAL
ĸ	E
REAL	REAL
TD	E1-
REAL	REAL
	ST
	REAL
	KP-
	REAL
	TD1
	REAL
	FB1-
	REAL

Arguments:

Flag	FLAG	BOOL
In	IN	REAL
Feedback	FB	REAL
K	Κ	REAL
TD	TD	REAL
OUT	OUT	REAL
Р	Р	REAL
D	D	REAL
Е	Е	REAL

E1	E1	REAL
ST	ST	REAL
KP	KP	REAL
TD1	TD1	REAL
FB1	FB1	REAL

Description:

The output value is directly proportional to the rate of change for the input value.

To insert a Proportional and Derivative element

• From the Toolbox, drag the **PD** element into the language container.

The PD element is displayed in the language container in SAMA format.

To insert a Proportional and Derivative function block

- From the Toolbox, drag the block element into the language container. The Block Selector is displayed.
- 2. In the Block Selector, select PD, then click OK.

The PD element is displayed in the language container in SAMA format.

Pulse Duration

SAMA Representation: FBD Representation:

Arguments:

IN	IN	BOOL	
DT	DT	TIME	Duration time
OUT	Q	BOOL	
ET	ET	TIME	Current elapsed time

Description:

The output becomes a Logic One and remains a Logic One for a prescribed time duration "t" when triggered by the change in state of the input from Logic Zero to Logic One.

Graphic representation:

To insert a Pulse Duration element

• From the Toolbox, drag the **Pulse Duration** element into the language container.

The Pulse Duration element is displayed in the language container in SAMA format.

To insert a PulseDuration function block

1. From the Toolbox, drag the block element into the language container.

The Block Selector is displayed.

2. In the Block Selector, select **PulseDuration**, then click **OK**.

The Pulse Duration element is displayed in the language container in SAMA format.

Pulse Duration Of The Lesser Time

FBD Representation:

PulseDurationOfTheLesserTime	
IN	0
BOOL BO	DOL
RES	ET
BOOL T	ME
TD	
TIME	

Arguments:

IN	IN	BOOL	
Reset	RES	BOOL	
TD	TD	TIME	Time delay
OUT	Q	BOOL	
ET	ET	TIME	

Description:

The output becomes Logic One when the input becomes Logic One. The output becomes Logic Zero when the input becomes Logic Zero, when the input has been Logic One for *t* seconds, or when the optional reset input becomes Logic One.

Graphic representation:

To insert a Pulse Duration of the Lesser Time element

• From the Toolbox, drag the **Pulse Duration of the Lesser Time** element into the language container.

The Pulse Duration of the Lesser Time element is displayed in the language container.

To insert a PulseDurationOfTheLesserTime function block

1. From the Toolbox, drag the block element into the language container.

The Block Selector is displayed.

2. In the Block Selector, select **PulseDurationOfTheLesserTime**, then click **OK**.

The Pulse Duration of the Lesser Time element is displayed in the language container.

Reverse Proportional

IN - Out Feedback - - P K -

ReversePro	portional
IN	() (Q
REAL	REAL
FB	
REAL	
ĸ	
REAL	

FBD Representation:

Arguments:

IN	IN	REAL
Feedback	FB	REAL
K	Κ	REAL
Out	OUT	REAL

Description:

The output value is inversely proportional to the input value.

To insert a Reverse Proportional element

• From the Toolbox, drag the **Reverse Proportional** element into the language container.

The Reverse Proportional element is displayed in the language container in SAMA format.

To insert a ReverseProportional function block

1. From the Toolbox, drag the block element into the language container.

The Block Selector is displayed.

2. From the Block Selector, select **ReverseProportional**, then click **OK**.

The Reverse Proportional element is displayed in the language container in SAMA format.

Time Delay On Initiation

FBD Representation:

Arguments:

IN	IN	BOOL
RESET	RES	BOOL
РТ	РТ	TIME
OUT	Q	BOOL
ET	ΕT	TIME

Description:

The output becomes a Logic One when the input is Logic One continuously from *t*. The output remains Logic One until the input becomes Logic Zero or until the optional reset input is Logic One, causing the timer to reset and the output to become Logic Zero.

Graphic Representation:

To insert a Time Delay On Initiation element

• From the Toolbox, drag the **Time Delay On Inititiation** element into the language container.

The Time Delay On Inititiation element is displayed in the language container in SAMA format.

To insert a TimeDelayOnInitiation function block

1. From the Toolbox, drag the block element into the language container.

The Block Selector is displayed.

2. In the Block Selector, select TimeDelayOnInititiation, then click OK.

The Time Delay On Inititiation element is displayed in the language container in SAMA format.

Time Delay On Termination

FBD Representation:

TimeDela	yOnTermination
IN	\ \ \ Q.
BOOL	BOOL
RES	L L L L L ET-
BOOL	TIME
PT	
ТІМЕ	

Arguments:

IN	IN	BOOL
RESET	RES	BOOL
РТ	РТ	TIME
OUT	Q	BOOL
ET	ET	TIME

Description:

The output becomes Logic One when the input becomes Logic One. The output becomes Logic Zero when the input become Logic Zero and does not become Logic One for time *t*.

Graphic representation:

To insert a Time Delay On Termination element

• From the Toolbox, drag the **Time Delay On Termination** element into the language container.

The Time Delay On Termination element is displayed in the language container in SAMA format.

To insert a TimeDelayOnTermination function block

1. From the Toolbox, drag the block element into the language container.

The Block Selector is displayed.

2. In the Block Selector, select TimeDelayOnTermination, then click OK.

The Time Delay On Termination element is displayed in the language container in SAMA format.

Tri-State Signal

SAMA Representation:

FBD Representation:

Arguments:

BOOL
DINT
REAL
REAL
REAL
REAL

Description:

The output has discrete states dependent on the state of the input. The Tri-State Signal element is normally associated with an integrator of some type.

To insert a Tri-State Signal element

• From the Toolbox, drag the Tri-State Signal element into the language container.

The Tri-State Signal element is displayed in the language container in SAMA format.

To insert a TriState function block

1. From the Toolbox, drag the block element into the language container.

The Block Selector is displayed.

2. In the Block Selector, select **TriState**, then click **OK**.

The Tri-State Signal element is displayed in the language container in SAMA format.

Velocity Limiting

SAMA Representation:

FBD Representation:

Arguments:

Ι	Ι	REAL	
High_ Limit	HL	REAL	High limit
0	0	REAL	

Description:

When the rate of change of the input value is less then the limit value, the output value is equal to the input value.

To insert a Velocity Limiting element

• From the Toolbox, drag the Velocity Limiting element into the language container.

The Velocity Limiting element is displayed in the language container in SAMA format.

To insert a HighSignalLimiter function block

1. From the Toolbox, drag the block element into the language container.

The Block Selector is displayed.

2. In the Block Selector, select HighSignalLimiter, then click OK.

The Velocity Limiting element is displayed in the language container in SAMA format.

Safety Function Blocks

Note: The Safety function blocks are available separately. For details on using these blocks, contact technical support at support@isagraf.com.

Safety function blocks perform various safety-related operations:

Safety C Function Block	Description
SF_AND	AND operator between a boolean input and a safety input resulting in a safety output
SF_Antivalent	Conversion of two safety inputs to one safety output
SF_EDM	Controlling safety outputs and monitoring of controlled actuators
SF_EmergencyStop	Monitoring of emergency stop button and triggering of emergency switch-off
SF_EnableSwitch	Evaluation of signals from enabled switches
SF_Equivalent	Conversion of two equivalent safety inputs to one safety output
SF_ESPE	Monitoring of electro-sensitive protective equipment
SF_GuardLocking	Controlling of interlocking guard with four state guard interlocking
SF_GuardMonitoring	Monitoring safety guard with two switches and providing time monitoring
SF_ModeSelector	Selection of system operation mode
SF_MutingPar	Suppression of safety functions using parallel muting with four muting sensors
SF_MutingPar_2Sensor	Suppression of safety functions using parallel muting with two muting sensors
SF_MutingSeq	Suppression of safety functions using sequential muting with four muting sensors
SF_OutControl	Controlling of safety output using safety and application signals

SF_SafelyLimitedSpeed	Activation of safety limited speed monitoring
SF_SafeStop1	Initiation of a controlled stop (IEC 60204-1, category 1)
SF_SafeStop2	Initiation of a controlled stop (IEC 60204-1, category 2)
SF_SafetyRequest	Places the actuator in a safe state
SF_TestableSafetySensor	Detection of loss of sensing, exceeding of response time, or static "On" signals
SF_TwoHandControlTypeII	Two-hand control functionality (EN 574, Section 4, Type II)
SF_TwoHandControlTypeIII	Two-hand control functionality (EN 574, Section 4, Type III)

Diagnostic codes for safety function block errors:

 $0000_0000_0000_0000_{bin}$ The function block is not activated or safety CPU is halted

 $10xx_xxxx_xxx_xxx_{bin}$ The activated function block is in an operational state without an error

 $11xx_xxx_xxx_xxx_bin$ The activated function block is in an error state X = a function block specific code

0xxx_xxxx_xxxx_xxx_bin X = system or device specific message

Note: 0000hex is reserved

0000_0000_0000_0000_{bin} The function block is inactivated and in the Idle state 0000_{hex} 1000_0000_0000_0000_{bin} The function block is activated and is without an error or any 8000_{hex} condition that sets the safety output to FALSE. The default operational state Safety output S_Out = TRUE 1000_0000_0000_0001_{bin} The function block is activated 8001_{hex} The Initial operational state Safety input S_In = TRUE Safety output S_Out = FALSE

1000_0000_0000_0010bin	The activated function block detects a safety demand and disables
8002 _{hex}	the safety output
	Safety input S_In = FALSE
	Safety output S_Out = FALSE
1000_0000_0000_0011 _{bin}	The activated function block detected a safety demand in the past
8003 _{hex}	and the safety output continues to be disabled until it is reset
nox	Safety input S_In = TRUE
	Safety output S_Out = FALSE

SF_AND

Note: The Safety function blocks are available separately. For details on using these blocks, contact technical support at support@isagraf.com.

Arguments:

s	in	SAFEBOOL
_		

in BOOL

s_out SAFEBOOL Safebool AND of the input terms

Description:

AND operator between two terms having the BOOL and SAFEBOOL data types.

SF_Antivalent

Note: The Safety function blocks are available separately. For details on using these blocks, contact technical support at support@isagraf.com.

SF_An	tivalent
Act	Rdy
BOOL	BOOL
S_NC	Sout
SAFEBOOL	SAFEBOOL
S_NO	Err
SAFEBOOL	BOOL
Time	Diag
TIME	WORD

Arguments:

Activate	Act	BOOL	Activation of the function block A variable or a constant FALSE = All output variables are set to initial values TRUE = No device connected Initial value = FALSE
S_ChannelNC	S_NC	SAFEBOOL	Variable input for Normally Closed connection FALSE = No contact open TRUE = No contact closed Initial value = FALSE
S_ChannelNO	S_NO	SAFEBOOL	Variable input for Normally Open connection FALSE = No contact open TRUE = No contact closed Initial value = TRUE
DiscrepancyTime	Time	TIME	A constant value for the maximum monitoring time of discrepancy status for both inputs Initial value = T#0ms
Ready	Rdy	BOOL	TRUE = Function block is activated and output results are valid FALSE = Function block is inactive and the program is not executed Initial value = FALSE

S_AntivalentOut	Sout	SAFEBOOL	Safety related output FALSE = Minimum of one "not active" input signal received or the status changed outside of the monitoring time TRUE = Input signals are "active" or the status changed within the monitoring time Initial value = FALSE
Error	Err	BOOL	Error flag TRUE = An error has occurred and the function block is in an error state FALSE = No error observed Initial value = FALSE
DiagCode	Diag	WORD	Diagnostic code in hexadecimal format Indicates the first detected error Initial value = 16#0000

Description:

Converts two antivalent safety input values into one safety output value with discrepancy and time monitoring

SF_EDM

Note: The Safety function blocks are available separately. For details on using these blocks, contact technical support at support@isagraf.com.

SF_E	EDM
Act	Rdy
BOOL	BOOL
s_oc	S_EO
SAFEBOOL	SAFEBOOL
S_E1	Err
SAFEBOOL	BOOL
S_E2	Diag
SAFEBOOL	WORD
Time	
TIME	
S SR	
SAFEBOOL	
Rst	
BOOL	

Arguments:

Activate	Act	BOOL	Activation of the function block A variable or a constant FALSE = All output variables are set to initial values TRUE = Device disconnected Initial value = FALSE
S_OutControl	S_OC	SAFEBOOL	A variable. Control signal from the proceeding safety function blocks FALSE = Disabled safety output S_EO TRUE = Enabled safety output S_EO Initial value = FALSE

S_EDM1	S_E1	SAFEBOOL	A variable Feedback signal from the first connected actuator FALSE = Switching state of the first connected actuator TRUE = Initial state of the first connected actuator Initial value = FALSE
S_EDM2	S_E2	SAFEBOOL	A variable Feedback signal from the second connected actuator FALSE = Switching state of the second connected actuator TRUE = Initial state of the second connected actuator Initial value = FALSE
MonitoringTime	Time	TIME	A constant Maximum response time for the connected and monitored actuators Initial value = #0ms
S_StartReset	S_SR	SAFEBOOL	A variable or a constant FALSE = Manual reset when Programmable Electronic System is started (warm or cold). TRUE = Automatic reset when Programmable Electronic System is started (warm or cold). Initial value = FALSE
Reset	Rst	BOOL	A variable Reset of error on the state machine or manual functional reset by the operator Resetting action occurs when the signal changes from FALSE to TRUE A static TRUE signal = No further action Initial value = FALSE

Ready	Rdy	BOOL	TRUE = function block is activated and output results are valid FALSE = function block is inactive and the program is not executed Initial value = FALSE
S_EDM_Out	S_EO	SAFEBOOL	Controls the actuator FALSE = Disable connected actuators TRUE = Enable connected actuators Initial value = FALSE
Error	Err	BOOL	Error flag TRUE = an error has occurred and the function block is in an error state FALSE = no error observed Initial value = FALSE
DiagCode	Diag	WORD	Diagnostic code in hexadecimal format Indicates the first detected error Initial value = 16#0000

Description:

Controls a safety output and monitors controlled actuators

SF_EDM is used for external device monitoring.

SF_EmergencyStop

Note: The Safety function blocks are available separately. For details on using these blocks, contact technical support at support@isagraf.com.

SF_Emerg	encyStop
Act	Rdy
BOOL	BOOL
S_ES	S_ES
SAFEBOOL	SAFEBOOL
S_SR	Err
SAFEBOOL	BOOL
S_AR	Diag
SAFEBOOL	WORD
Rst	
BOOL	

Arguments:

Activate	Act	BOOL	Activation of the function block A variable or a constant FALSE = all output variables are set to initial values TRUE = no device connected Initial value = FALSE
S_EStopIn	S_ES	SAFEBOOL	A variable The safety demand input value FALSE = Safety-related response demanded TRUE = Safety-related response not requested Initial value = FALSE
S_StartReset	S_SR	SAFEBOOL	A variable or a constant FALSE = Manual reset when Programmable Electronic System is started (warm or cold). TRUE = Automatic reset when Programmable Electronic System is started (warm or cold). Initial value = FALSE

S_AutoReset	S_AR	SAFEBOOL	A variable or a constant FALSE = Manual reset occurs when emergency stop is released TRUE = Automatic reset occurs when emergency stop is released Initial value = FALSE
Reset	Rst	BOOL	A variable Reset of error on the state machine or manual functional reset by the operator Resetting action occurs when the signal changes from FALSE to TRUE A static TRUE signal = No further action Initial value = FALSE
Ready	Rdy	BOOL	TRUE = function block is activated and output results are valid FALSE = function block is inactive and the program is not executed Initial value = FALSE
S_EStopOut	S_ES	SAFEBOOL	Safety-related response output value FALSE = Safety output is disabled TRUE = Safety output is enabled Initial value = FALSE
Error	Err	BOOL	Error flag TRUE = an error has occurred and the function block is in an error state FALSE = no error observed Initial value = FALSE
DiagCode	Diag	WORD	Diagnostic code in hexadecimal format Indicates the first detected error Initial value = 16#0000

Description:

Monitors an emergency stop button

SF_Emergancy is used to trigger emergency switch-off functionality (stop category 0) (stop category 1 or 2 when additional peripheral support is provided).

SF_Emergancy stop overrides all other commands.

SF_EnableSwitch

Note: The Safety function blocks are available separately. For details on using these blocks, contact technical support at support@isagraf.com.

SF_Enal	bleSwitch
Act	Rdy
BOOL	BOOL
S_SA	S_ES
SAFEBOOL	SAFEBOOL
S_S1	Err
SAFEBOOL	BOOL
S_S2	Diag
SAFEBOOL	WORD
S_AR	
SAFEBOOL	
Rst	
BOOL	

Arguments:

Activate	Act	BOOL	Activation of the function block A variable or a constant FALSE = all output variables are set to initial values TRUE = no device connected Initial value = FALSE
S_SafetyActive	S_SA	SAFEBOOL	A variable or constant value Confirmation of safe mode FALSE = Safe mode is inactive TRUE = Safe mode is active Initial value = FALSE
S_EnableSwitchCh1	S_S1	SAFEBOOL	A variable Signal from contacts E1 and E2 of the connected enable switch FALSE = Connected switches are open TRUE = Connected switches are closed Initial value = FALSE

S_EnableSwitchCh2	S_S2	SAFEBOOL	A variable Signal from contacts E3 and E4 of the connected enable switch FALSE = Connected switches are open TRUE = Connected switches are closed Initial value = FALSE
S_AutoReset	S_AR	SAFEBOOL	A variable or a constant FALSE = Manual reset occurs when emergency stop is released TRUE = Automatic reset occurs when emergency stop is released Initial value = FALSE
Reset	Rst	BOOL	A variable Reset of error on the state machine or manual functional reset by the operator Resetting action occurs when the signal changes from FALSE to TRUE A static TRUE signal = No further action Initial value = FALSE
Ready	Rdy	BOOL	TRUE = function block is activated and output results are valid FALSE = function block is inactive and the program is not executed Initial value = FALSE
S_EnableSwitchOut	S_ES	SAFEBOOL	Safety-related output value Indicates suspension of guard FALSE = Disable suspension of safeguarding TRUE = Enable suspension of safeguarding Initial value = FALSE
Error	Err	BOOL	Error flag TRUE = an error has occurred and the function block is in an error state FALSE = no error observed Initial value = FALSE
DiagCode	Diag	WORD	Diagnostic code in hexadecimal format
----------	------	------	---------------------------------------
			Indicates the first detected error
			Initial value = 16#0000

Evaluates the signals of an enabled switch with three positions

SF_Equivalent

Note: The Safety function blocks are available separately. For details on using these blocks, contact technical support at support@isagraf.com.

SF_Eq	uivalent
Act	Rdy
BOOL	BOOL
S_A	Sout
SAFEBOOL	SAFEBOOL
S_B	Err
SAFEBOOL	BOOL
Time	Diag
TIME	WORD

Activate	Act	BOOL	Activation of the function block A variable or a constant FALSE = all output variables are set to initial values TRUE = no device connected Initial value = FALSE
S_ChannelA	S_A	SAFEBOOL	A variable Input A for logical connection FALSE = Contact A is open TRUE = Contact A is closed Initial value = FALSE
S_ChannelB	S_B	SAFEBOOL	A variable Input B for logical connection FALSE = Contact B is open TRUE = Contact B is closed Initial value = FALSE
DiscrepancyTime	Time	TIME	A constant Maximum monitoring time for the discrepancy status of both inputs Initial value = T#0ms

Ready	Rdy	BOOL	TRUE = function block is activated and output results are valid FALSE = function block is inactive and the program is not executed Initial value = FALSE
S_EquivalentOut	Sout	SAFEBOOL	Safety-related output value FALSE = A minimum of one output is set to "FALSE" or the status changed outside of the monitoring time TRUE = Input signals are active and status changed during the monitoring time Initial value = FALSE
Error	Err	BOOL	Error flag TRUE = an error has occurred and the function block is in an error state FALSE = no error observed Initial value = FALSE
DiagCode	Diag	WORD	Diagnostic code in hexadecimal format Indicates the first detected error Initial value = 16#0000

Converts two equivalent SAFEBOOL inputs to one SAFEBOOL output, including discrepancy time monitoring

SF_Equivalent is used with other safety functionalities. Use of SF_Equivalent as a stand-alone function block is not recommended.

SF_ESPE

Note: The Safety function blocks are available separately. For details on using these blocks, contact technical support at support@isagraf.com.

SF_ES	SPE
Act	Rdy
BOOL	BOOL
S_EI	S_EO
SAFEBOOL	SAFEBOOL
S_SR	Err
SAFEBOOL	BOOL
S_AR	Diag
SAFEBOOL	WORD
Rst	
BOOL	

Activate	Act	BOOL	Activation of the function block A variable or a constant FALSE = all output variables are set to initial values TRUE = no device connected Initial value = FALSE
S_ESPE_In	S_EI	SAFEBOOL	A variable Safety demand input FALSE = ESPE actuated, demand for safety response TRUE = ESPE not actuated, no demand for safety response Initial value = FALSE
S_StartReset	S_SR	SAFEBOOL	A variable or a constant FALSE = Manual reset when Programmable Electronic System is started (warm or cold). TRUE = Automatic reset when Programmable Electronic System is started (warm or cold). Initial value = FALSE

S_AutoReset	S_AR	SAFEBOOL	A variable or a constant FALSE = Manual reset occurs when emergency stop is released TRUE = Automatic reset occurs when emergency stop is released Initial value = FALSE
Reset	Rst	BOOL	A variable Reset of error on the state machine or manual functional reset by the operator Resetting action occurs when the signal changes from FALSE to TRUE A static TRUE signal = No further action Initial value = FALSE
Ready	Rdy	BOOL	TRUE = function block is activated and output results are valid FALSE = function block is inactive and the program is not executed Initial value = FALSE
S_ESPE_Out	S_EO	SAFEBOOL	Safety-related response value FALSE = Safety output disabled, demand for response TRUE = Safety output enabled, no demand for response Initial value = FALSE
Error	Err	BOOL	Error flag TRUE = an error has occurred and the function block is in an error state FALSE = no error observed Initial value = FALSE
DiagCode	Diag	WORD	Diagnostic code in hexadecimal format Indicates the first detected error Initial value = 16#0000

Monitors electro-sensitive protective equipment (ESPE)

SF_GuardLocking

Note: The Safety function blocks are available separately. For details on using these blocks, contact technical support at support@isagraf.com.

Act	Rdy
BOOL	BOOL
S GM	S GL
SAFEBOOL	SAFEBOOL
S SA	S UG
SAFEBOOL	SAFEBOOL
S_GL	Err
SAFEBOOL	BOOL
UnLc	Diag
BOOL	WORD
S_SR	
SAFEBOOL	
S_AR	
SAFEBOOL	
Rst	
BOOL	

Activate	Act	BOOL	Activation of the function block A variable or a constant FALSE = all output variables are set to initial values TRUE = no device connected Initial value = FALSE
S_GuardMonitoring	S_GM	SAFEBOOL	A variable. Status of the external device monitoring area (EDM), monitoring or safe time off delay. FALSE = Machine in an "unsafe" state. TRUE: Machine in safe state.
S_SafetyActive	S_SA	SAFEBOOL	A variable or constant value Confirmation of safe mode FALSE = Safe mode is inactive TRUE = Safe mode is active Initial value = FALSE

S_GuardLock	S_GL	SAFEBOOL	A variable Status of the mechanical guard locking FALSE = Guard is unlocked TRUE = Guard is locked Initial value = FALSE
UnlockRequest	UnLc	BOOL	A variable Request to unlock the guard by operator FALSE = Unlock not requested TRUE = Unlock requested Initial value = FALSE
S_StartReset	S_SR	SAFEBOOL	A variable or a constant FALSE = Manual reset when Programmable Electronic System is started (warm or cold) TRUE = Automatic reset when Programmable Electronic System is started (warm or cold) Initial value = FALSE
S_AutoReset	S_AR	SAFEBOOL	A variable or a constant FALSE = Manual reset occurs when emergency stop is released TRUE = Automatic reset occurs when emergency stop is released Initial value = FALSE
Reset	Rst	BOOL	A variable Used to request that the guard be re-locked Reset of error on the state machine or manual functional reset by the operator Resetting action occurs when the signal changes from FALSE to TRUE A static TRUE signal = No further action Initial value = FALSE
Ready	Rdy	BOOL	TRUE = function block is activated and output results are valid FALSE = function block is inactive and the program is not executed Initial value = FALSE

S_GuardLocked	S_GL	SAFEBOOL	Interface to hazardous area to be stopped FALSE = Unsafe state TRUE = Safe state Initial value = FALSE
S_UnlockGuard	S_UG	SAFEBOOL	Signal to unlock the guard FALSE = The guard is locked TRUE = Commanded unlocking of the guard Initial value = FALSE
Error	Err	BOOL	Error flag TRUE = an error has occurred and the function block is in an error state FALSE = no error observed Initial value = FALSE
DiagCode	Diag	WORD	Diagnostic code in hexadecimal format Indicates the first detected error Initial value = 16#0000

Controls an entrance to a hazardous area using an interlocking guard with guard locking (four state interlocking)

SF_GuardMonitoring

Note: The Safety function blocks are available separately. For details on using these blocks, contact technical support at support@isagraf.com.

SF_Guard	Monitoring
Act	Rdy
BOOL	BOOL
S_S1	S_GM
SAFEBOOL	SAFEBOOL
S S2	Err
SAFEBOOL	BOOL
Time	Diag
TIME	WORD
S SR	
SAFEBOOL	
S AR	
SAFEBOOL	
Rst	
BOOL	

Activate	Act	BOOL	Activation of the function block A variable or a constant FALSE = all output variables are set to initial values TRUE = no device connected Initial value = FALSE
S_GuardSwitch1	S_S1	SAFEBOOL	A variable The input for guard switch 1 FALSE = Guard switch 1 is open TRUE = Guard switch 1 is closed Initial value = FALSE
S_GuardSwitch2	S_S2	SAFEBOOL	A variable The input for guard switch 2 FALSE = Guard switch 2 is open TRUE = Guard switch 2 is closed Initial value = FALSE

DiscrepancyTime	Time	TIME	A constant Configures the monitored synchronous time between S_GuardSwitch1 and S_GuardSwitch2 Initial value = T#0ms
S_StartReset	S_SR	SAFEBOOL	A variable or a constant FALSE = Manual reset when Programmable Electronic System is started (warm or cold). TRUE = Automatic reset when Programmable Electronic System is started (warm or cold). Initial value = FALSE
S_AutoReset	S_AR	SAFEBOOL	A variable or a constant FALSE = Manual reset occurs when emergency stop is released TRUE = Automatic reset occurs when emergency stop is released Initial value = FALSE
Reset	Rst	BOOL	A variable Reset of error on the state machine or manual functional reset by the operator Resetting action occurs when the signal changes from FALSE to TRUE A static TRUE signal = No further action Initial value = FALSE
Ready	Rdy	BOOL	TRUE = function block is activated and output results are valid FALSE = function block is inactive and the program is not executed Initial value = FALSE
S_GuardMonitoring	S_GM	SAFEBOOL	Output value indicating the status of the guard FALSE = Guard is inactive TRUE = Guard is active, both S_S1 and S_S2 are set to TRUE, and no error is observed Initial value = FALSE

Error	Err	BOOL	Error flag TRUE = an error has occurred and the function block is in an error state FALSE = no error observed Initial value = FALSE
DiagCode	Diag	WORD	Diagnostic code in hexadecimal format Indicates the first detected error Initial value = 16#0000

Monitors the required safety guard using independent input parameters for each of the two guard switches and provides time monitoring

SF_ModeSelector

Note: The Safety function blocks are available separately. For details on using these blocks, contact technical support at support@isagraf.com.

SF_ModeSel	ector
Act	Rdy
BOOL	BOOL
S MO	S 50
SAFEBOOL	SAFEBOOL
S M1	S S1
SAFEBOOL	SAFEBOOL
S-M2	S 52
SAFEBOOL	SAFEBOOL
S M3	S 53
SAFEBOOL	SAFEBOOL
S M4	5 54
SAFEBOOL	SAFEBOOL
C M5	9 95
SAFEBOOL	SAFEBOOL
C ME	C 06
SAFEBOOI	SAFEBOOL
C 117	SA 20002
D_MI/	0.55500
SAFEBOOL	SAFEBOOL
S_UL	5_58
SAFEBOOL	SAFEBOOL
S_MO	Erre
SAFEBOOL	BOOL
Auto	Diag-
BOOL	WORD
Time	
TIME	
RST	
BOOL	

Activate	Act	BOOL	Activation of the function block
			A variable or a constant
			FALSE = all output variables are set to initial
			values
			TRUE = no device connected
			Initial value = FALSE

S_Mode0	S_M0	SAFEBOOL	A variable or a constant Input 0 from the mode selector switch FALSE = Mode 0 is not requested by operator TRUE = Mode 0 is requested by operator Initial value = FALSE
S_Mode1	S_M1	SAFEBOOL	A variable or a constant Input 1 from the mode selector switch FALSE = Mode 1 is not requested by operator TRUE = Mode 1 is requested by operator Initial value = FALSE
S_Mode2	S_M2	SAFEBOOL	A variable or a constant Input 2 from the mode selector switch FALSE = Mode 2 is not requested by operator TRUE = Mode 2 is requested by operator Initial value = FALSE
S_Mode3	S_M3	SAFEBOOL	A variable or a constant Input 3 from the mode selector switch FALSE = Mode 3 is not requested by operator TRUE = Mode 3 is requested by operator Initial value = FALSE
S_Mode4	S_M4	SAFEBOOL	A variable or a constant Input 4 from the mode selector switch FALSE = Mode 4 is not requested by operator TRUE = Mode 4 is requested by operator Initial value = FALSE
S_Mode5	S_M5	SAFEBOOL	A variable or a constant Input 5 from the mode selector switch FALSE = Mode 5 is not requested by operator TRUE = Mode 5 is requested by operator Initial value = FALSE
S_Mode6	S_M6	SAFEBOOL	A variable or a constant Input 6 from the mode selector switch FALSE = Mode 6 is not requested by operator TRUE = Mode 6 is requested by operator Initial value = FALSE

S_Mode7	S_M7	SAFEBOOL	A variable or a constant Input 7 from the mode selector switch FALSE = Mode 7 is not requested by operator TRUE = Mode 7 is requested by operator Initial value = FALSE
AutoSetMode	S_UL	SAFEBOOL	A variable or a constant Locks the selected mode FALSE = The selected safety mode output is locked, outputs are unaffected by changes to any input, even in the event of a rising edge of Set-Mode. TRUE = The selected safety mode output is unlocked, a mode selection change is possible Initial value = FALSE
ModeMonitorTime	S_Mo	SAFEBOOL	A variable or a constant FALSE output when Auto is set to TRUE Sets a mode is acknowledged by the operator Change to one of a safety mode inputs (example: S_Mx) leads to the S_Sa output value / S_Sx output value = FALSE A rising S_Mo trigger causes $S_Sx = TRUE$ Initial value = FALSE
AutoSetMode	Auto	BOOL	A constant Parameterizes the acknowledgment mode FALSE = Changes in mode are acknowledged by the operator using S_Mo TRUE = When S_Mo is unlocked, a valid change to a safety mode input (example: S_Mx) leads to a change in safety mode output (example: S_Sx) using S_Mo Initial value = FALSE
ModeMonitorTime	Time	TIME	A constant Maximum permissible time for changing the selection input Initial value = T#0

Reset	Rst	BOOL	A variable Reset of error on the state machine or manual functional reset by the operator Resetting action occurs when the signal changes from FALSE to TRUE A static TRUE signal = No further action Initial value = FALSE
Ready	Rdy	BOOL	TRUE = function block is activated and output results are valid FALSE = function block is inactive and the program is not executed Initial value = FALSE
S_Mode0Sel	S_S0	SAFEBOOL	Indicates whether the S_M0 input is selected and acknowledged FALSE = S_M0 is deselected or inactive TRUE = S_M0 is selected and active Initial value = FALSE
S_Mode1Sel	S_S1	SAFEBOOL	Indicates whether the S_M1input is selected and acknowledged FALSE = S_M1 is deselected or inactive TRUE = S_M1 is selected and active Initial value = FALSE
S_Mode2Sel	S_S2	SAFEBOOL	Indicates whether the S_M2 input is selected and acknowledged FALSE = S_M2 is deselected or inactive TRUE = S_M2 is selected and active Initial value = FALSE
S_Mode3Sel	S_S3	SAFEBOOL	Indicates whether the S_M3 input is selected and acknowledged FALSE = S_M3 is deselected or inactive TRUE = S_M3 is selected and active Initial value = FALSE

S_Mode4Sel	S_S4	SAFEBOOL	Indicates whether the S_M4 input is selected and acknowledged FALSE = S_M4 is deselected or inactive TRUE = S_M4 is selected and active Initial value = FALSE
S_Mode5Sel	S_S5	SAFEBOOL	Indicates whether the S_M5 input is selected and acknowledged FALSE = S_M5 is deselected or inactive TRUE = S_M5 is selected and active Initial value = FALSE
S_Mode6Sel	S_S6	SAFEBOOL	Indicates whether the S_M6 input is selected and acknowledged FALSE = S_M6 is deselected or inactive TRUE = S_M6 is selected and active Initial value = FALSE
S_Mode7Sel	S_S7	SAFEBOOL	Indicates whether the S_M7 input is selected and acknowledged $FALSE = S_M7$ is deselected or inactive $TRUE = S_M7$ is selected and active Initial value = FALSE
S_AnyModeSel	S_Sa	SAFEBOOL	Indicates whether one of the eight input modes (S_M0 through S_M7) is selected and acknowledged FALSE = The input modes are deselected or inactive TRUE = One of the input modes is selected and active Initial value = FALSE
Error	Err	BOOL	Error flag TRUE = an error has occurred and the function block is in an error state FALSE = no error observed Initial value = FALSE
DiagCode	Diag	WORD	Diagnostic code in hexadecimal format Indicates the first detected error Initial value = 16#0000

Selects the system operation mode

SF_MutingPar

Note: The Safety function blocks are available separately. For details on using these blocks, contact technical support at support@isagraf.com.

Act Rdy BOOL BOOL
500L 500L
C AL C AC
+3_AL 3_AC
SAFEBOOL SAFEBOOL
MS11 S MA
BOOL SAFEBOOL
MS12 En
500L 500L
MS21 Diag
BOOL WORD
MS22
BOOL
S_ML
SAFEBOOL
DT1
TIME
DT2
TIME
ммт
TIME
ME
BOOL
S_SR
SAFEBOOL
Rst
BOOL

Activate	Act	BOOL	Activation of the function block
			A variable or a constant
			FALSE = all output variables are set to initial
			values
		TRUE = no device connected	
			Initial value = FALSE

S_AOPD_In	S_AI	SAFEBOOL	A variable Output signal switching device (OSSD) signal from the active opto-electronic protective device (AOPD) FALSE = Protection field is interrupted TRUE = Protection field is uninterrupted Initial value = FALSE
MutingSwitch11	MS11	BOOL	A variable The status of muting sensor 11 (MS11) FALSE = MS11 is not actuated TRUE = MS11 is actuated Initial value = FALSE
MutingSwitch12	MS12	BOOL	A variable The status of muting sensor 12 (MS12) FALSE = MS12 is not actuated TRUE = MS12 is actuated Initial value = FALSE
MutingSwitch21	MS21	BOOL	A variable The status of muting sensor 21 (MS21) FALSE = MS21 is not actuated TRUE = MS21 is actuated Initial value = FALSE
MutingSwitch22	MS22	BOOL	A variable The status of muting sensor 22 (MS22) FALSE = MS22 is not actuated TRUE = MS22 is actuated Initial value = FALSE
S_MutingLamp	S_ML	SAFEBOOL	A variable or a constant Indicates the operation of the muting lamp FALSE = Failure of the muting lamp TRUE = Muting lamp is operational Initial value = FALSE
DiscTime11_12	DT1	TIME	A constant 04s; Maximum discrepancy time for MS11 and MS12 Initial value = T#0s

DiscTime21_22	DT2	TIME	A constant 04s; Maximum discrepancy time for MS21 and MS22 Initial value = T#0s
MaxMutingTime	MMT	TIME	A constant 010min; Maximum time for the complete muting sequence, time starts when the first muting sensor is actuated Initial value = T#0s
MutingEnable	ME	BOOL	A variable or a constant Control system command that enables the start of the muting function ME signal after the muting function has stated, you can switch off the ME signal FALSE = The muting is disabled TRUE = The ability to start the muting function is enabled
S_StartReset	S_SR	SAFEBOOL	A variable or a constant FALSE = Manual reset when Programmable Electronic System is started (warm or cold). TRUE = Automatic reset when Programmable Electronic System is started (warm or cold). Initial value = FALSE
Reset	Rst	BOOL	A variable Reset of error on the state machine or manual functional reset by the operator Resetting action occurs when the signal changes from FALSE to TRUE A static TRUE signal = No further action Initial value = FALSE
Ready	Rdy	BOOL	TRUE = function block is activated and output results are valid FALSE = function block is inactive and the program is not executed Initial value = FALSE

S_AOPD_Out	S_AO	SAFEBOOL	Safety-related output Indicates the status of the muted guard FALSE = Active opto-electronic protective device (AOPD) protection field is interrupted and muting is inactive TRUE = AOPD protection field and muting process are active Initial value = FALSE
S_MutingActive	S_MA	SAFEBOOL	Indicates the status of the muting process FALSE = Muting process is inactive TRUE = Muting process is active Initial value = FALSE
Error	Err	BOOL	Error flag TRUE = an error has occurred and the function block is in an error state FALSE = no error observed Initial value = FALSE
DiagCode	Diag	WORD	Diagnostic code in hexadecimal format Indicates the first detected error Initial value = 16#0000

Suppresses safety functions using parallel muting with four muting sensors

SF_MutingPar is unable to detect short circuits in the muting sensor signals or functional application errors affecting the signal supply.

SF_MutingPar_2Sensor

Note: The Safety function blocks are available separately. For details on using these blocks, contact technical support at support@isagraf.com.

SF_Muting	Par_2Sensor
Act	Rdy
BOOL	BOOL
S AI	S AO
SAFEBOOL	SAFEBOOL
S_11	S_MA
SAFEBOOL	SAFEBOOL
S_12	Err
SAFEBOOL	BOOL
S_ML	Diag
SAFEBOOL	WORD
DTE	
TIME	
MMT	
TIME	
ME	
BOOL	
S_SR	
SAFEBOOL	
Rst	
BOOL	

Activate	Act	BOOL	Activation of the function block A variable or a constant FALSE = all output variables are set to initial values TRUE = no device connected Initial value = FALSE
S_AOPD_In	S_AI	SAFEBOOL	A variable Output signal switching device (OSSD) signal from the active opto-electronic protective device (AOPD) FALSE = Protection field is interrupted TRUE = Protection field is uninterrupted Initial value = FALSE

S_MutingSwitch11	MS11	BOOL	A variable The status of muting sensor 11 (MS11) FALSE = MS11 is not actuated TRUE = MS11 is actuated Initial value = FALSE
S_MutingSwitch12	MS12	BOOL	A variable The status of muting sensor 12 (MS12) FALSE = MS12 is not actuated TRUE = MS12 is actuated Initial value = FALSE
S_MutingLamp	S_ML	SAFEBOOL	A variable or a constant Indicates the operation of the muting lamp FALSE = Failure of the muting lamp TRUE = Muting lamp is operational Initial value = FALSE
DiscTimeEntry	DTE	TIME	A constant 04s; Maximum discrepancy time for MS11 and MS12 when entering the muting gate Initial value = T#0s
MaxMutingTime	MMT	TIME	A constant 010min; Maximum time for the complete muting sequence, time starts when the first muting sensor is actuated Initial value = T#0s
MutingEnable	ME	BOOL	A variable or a constant Control system command that enables the start of the muting function ME signal after the muting function has stated, you can switch off the ME signal FALSE = The muting is disabled TRUE = The ability to start the muting function is enabled

S_StartReset	S_SR	SAFEBOOL	A variable or a constant FALSE = Manual reset when Programmable Electronic System is started (warm or cold). TRUE = Automatic reset when Programmable Electronic System is started (warm or cold). Initial value = FALSE
Reset	Rst	BOOL	A variable Reset of error on the state machine or manual functional reset by the operator Resetting action occurs when the signal changes from FALSE to TRUE A static TRUE signal = No further action Initial value = FALSE
Ready	Rdy	BOOL	TRUE = function block is activated and output results are valid FALSE = function block is inactive and the program is not executed Initial value = FALSE
S_AOPD_Out	S_AO	SAFEBOOL	Safety-related output Indicates the status of the muted guard FALSE = Active opto-electronic protective device (AOPD) protection field is interrupted and muting is inactive TRUE = AOPD protection field and muting process are active Initial value = FALSE
S_MutingActive	S_MA	SAFEBOOL	Indicates the status of the muting process FALSE = Muting process is inactive TRUE = Muting process is active Initial value = FALSE
Error	Err	BOOL	Error flag TRUE = an error has occurred and the function block is in an error state FALSE = no error observed Initial value = FALSE

DiagCode	Diag	WORD	Diagnostic code in hexadecimal format
			Indicates the first detected error
			Initial value = $16\#0000$

Suppresses safety functions using parallel muting with two muting sensors

SF_MutingSeq

Note: The Safety function blocks are available separately. For details on using these blocks, contact technical support at support@isagraf.com.

Act Rdy- BOOL BOOL S_AI S_AO SAFEBOOL SAFEBOOL MS11 S_MA BOOL SAFEBOOL MS12 Err BOOL BOOL
BOOL BOOL S_AI S_AO SAFEBOOL SAFEBOOL MS11 S_MA BOOL SAFEBOOL MS12 Err BOOL BOOL
S_AI S_AO SAFEBOOL SAFEBOOL MS11 S_MA BOOL SAFEBOOL MS12 Err BOOL BOOL
SAFEBOOL SAFEBOOL MS11 S_MA- 500L SAFEBOOL MS12 Err. 500L BOOL
MS11 S_MA- BOOL SAFEBOOL MS12 Err. BOOL BOOL
BOOL SAFEBOOL MS12 Err- BOOL BOOL
MS12 Err BOOL BOOL
BOOL BOOL
11004
MIS21 Diag
BOOL WORD
MS22
BOOL
S ML
SAFEBOOL
Time
TIME
ME
BOOL
S SR
SAFEBOOL
Rst
BOOL

Activate	Act	BOOL	Activation of the function block A variable or a constant FALSE = all output variables are set to initial values TRUE = no device connected Initial value = FALSE
S_AOPD_In	S_AI	SAFEBOOL	A variable Output signal switching device (OSSD) signal from the active opto-electronic protective device (AOPD) FALSE = Protection field is interrupted TRUE = Protection field is uninterrupted Initial value = FALSE

MutingSwitch11	MS11	BOOL	A variable The status of muting sensor 11 (MS11) FALSE = MS11 is not actuated TRUE = MS11 is actuated Initial value = FALSE
MutingSwitch12	MS12	BOOL	A variable The status of muting sensor 12 (MS12) FALSE = MS12 is not actuated TRUE = MS12 is actuated Initial value = FALSE
MutingSwitch21	MS21	BOOL	A variable The status of muting sensor 21 (MS21) FALSE = MS21 is not actuated TRUE = MS21 is actuated Initial value = FALSE
MutingSwitch22	MS22	BOOL	A variable The status of muting sensor 22 (MS22) FALSE = MS22 is not actuated TRUE = MS22 is actuated Initial value = FALSE
S_MutingLamp	S_ML	SAFEBOOL	A variable or a constant Indicates the operation of the muting lamp FALSE = Failure of the muting lamp TRUE = Muting lamp is operational Initial value = FALSE
MaxMutingTime	Time	TIME	A constant 010min; Maximum time for the complete muting sequence, time starts when the first muting sensor is actuated Initial value = T#0s

MutingEnable	ME	BOOL	A variable or a constant Control system command that enables the start of the muting function ME signal after the muting function has stated, you can switch off the ME signal FALSE = The muting is disabled TRUE = The ability to start the muting function is enabled
S_StartReset	S_SR	SAFEBOOL	A variable or a constant FALSE = Manual reset when Programmable Electronic System is started (warm or cold). TRUE = Automatic reset when Programmable Electronic System is started (warm or cold). Initial value = FALSE
Reset	Rst	BOOL	A variable Reset of error on the state machine or manual functional reset by the operator Resetting action occurs when the signal changes from FALSE to TRUE A static TRUE signal = No further action Initial value = FALSE
Ready	Rdy	BOOL	TRUE = function block is activated and output results are valid FALSE = function block is inactive and the program is not executed Initial value = FALSE
S_AOPD_Out	S_AO	SAFEBOOL	Safety-related output Indicates the status of the muted guard FALSE = Active opto-electronic protective device (AOPD) protection field is interrupted and muting is inactive TRUE = AOPD protection field and muting process are active Initial value = FALSE

S_MutingActive	S_MA	SAFEBOOL	Indicates the status of the muting process FALSE = Muting process is inactive TRUE = Muting process is active Initial value = FALSE
Error	Err	BOOL	Error flag TRUE = an error has occurred and the function block is in an error state FALSE = no error observed Initial value = FALSE
DiagCode	Diag	WORD	Diagnostic code in hexadecimal format Indicates the first detected error Initial value = 16#0000

Suppresses safety functions using sequential muting with four muting sensors

SF_MutingSeq is unable to detect short circuits in the muting sensor signals or functional application errors affecting the signal supply.

SF_OutControl

Note: The Safety function blocks are available separately. For details on using these blocks, contact technical support at support@isagraf.com.

SF_Out	Control
Act	Rdy
BOOL	BOOL
S_SC	s_oc-
SAFEBOOL	SAFEBOOL
PC	Err
BOOL	BOOL
SC	Diag
BOOL	WORD
S_SR	
SAFEBOOL	
S_AR	
SAFEBOOL	
Rst	
BOOL	

Activate	Act	BOOL	Activation of the function block A variable or a constant FALSE = all output variables are set to initial values TRUE = no device connected Initial value = FALSE
S_SafeControl	S_SC	SAFEBOOL	A variable Control signal form the preceding safety function blocks FALSE = The preceding safety function blocks are in the safe state TRUE = The preceding safety function blocks have enabled safely control Initial value = FALSE
ProcessControl	PC	BOOL	A variable or a constant Control signal from the functional application FALSE = Request to set S_OC output to false TRUE = Request to set S_OC output to true Initial value = FALSE

StaticControl	SC	BOOL	A constant Optional conditions for process control FALSE = After activation of the function block or triggering of the safety function, a dynamic change to the PC input value (from FALSE to TRUE) and restarting the function block is required TRUE: After activation of the function block or triggering of the safety function, a dynamic change to the PC input value is unnecessary Initial value = FALSE
S_StartReset	S_SR	SAFEBOOL	A variable or a constant FALSE = Manual reset when Programmable Electronic System is started (warm or cold). TRUE = Automatic reset when Programmable Electronic System is started (warm or cold). Initial value = FALSE
S_AutoReset	S_AR	SAFEBOOL	A variable or a constant FALSE = Manual reset occurs when emergency stop is released TRUE = Automatic reset occurs when emergency stop is released Initial value = FALSE
Reset	Rst	BOOL	A variable Reset of error on the state machine or manual functional reset by the operator Resetting action occurs when the signal changes from FALSE to TRUE A static TRUE signal = No further action Initial value = FALSE
Ready	Rdy	BOOL	TRUE = function block is activated and output results are valid FALSE = function block is inactive and the program is not executed Initial value = FALSE

S_OutControl	S_OC	SAFEBOOL	Controls connected actuators FALSE = Disable connected actuators TRUE = Enable connected actuators Initial value = FALSE
Error	Err	BOOL	Error flag TRUE = an error has occurred and the function block is in an error state FALSE = no error observed Initial value = FALSE
DiagCode	Diag	WORD	Diagnostic code in hexadecimal format Indicates the first detected error Initial value = 16#0000

Controls safety output using a signal from the functional application and a safety signal with optional startup restraints

SF_SafelyLimitedSpeed

Note: The Safety function blocks are available separately. For details on using these blocks, contact technical support at support@isagraf.com.

SF_SafelyLi	mitedSpeed
Act	Rdy
BOOL	BOOL
S_OM	S_SA
SAFEBOOL	SAFEBOOL
S_En	Err
SAFEBOOL	BOOL
Axis	Diag
INT	WORD
Time	
TIME	
Rst	
BOOL	

Activate	Act	BOOL	Activation of the function block A variable or a constant FALSE = all output variables are set to initial values TRUE = no device connected Initial value = FALSE
S_OpMode	S_OM	SAFEBOOL	A variable Operation mode selection FALSE = Indicates safe operation mode TRUE = Deselection of safe operation mode and selection of operation mode Initial value = FALSE
S_Enabled	S_En	SAFEBOOL	A variable Enables axis movement FALSE = In safe operation mode, axis movement is prohibited TRUE = In safe operation mode, axis movement is permitted Initial value = FALSE

AxisID	Axis	INT	A constant Unique axis identification, axis address Initial value = 0
MonitingTime	Time	TIME	A constant Response time between the safety function request (S_OM input = FALSE) and the acknowledgment (S_SA output = TRUE) Initial value = T#0s
Reset	Rst	BOOL	A variable Reset of error on the state machine or manual functional reset by the operator Resetting action occurs when the signal changes from FALSE to TRUE A static TRUE signal = No further action Initial value = FALSE
Ready	Rdy	BOOL	TRUE = function block is activated and output results are valid FALSE = function block is inactive and the program is not executed Initial value = FALSE
S_SafetyActive	S_SA	SAFEBOOL	A variable or constant value Confirmation of safe mode FALSE = Safe mode is inactive TRUE = Safe mode is active Initial value = FALSE
Error	Err	BOOL	Error flag TRUE = an error has occurred and the function block is in an error state FALSE = no error observed Initial value = FALSE
DiagCode	Diag	WORD	Diagnostic code in hexadecimal format Indicates the first detected error Initial value = 16#0000

Activates safety limited speed monitoring

The functional application initiates the axis movement.

SF_SafeStop1

Note: The Safety function blocks are available separately. For details on using these blocks, contact technical support at support@isagraf.com.

SF_Sa	feStop1
Act	Rdy
BOOL	BOOL
S_SI	S_s-
SAFEBOOL	SAFEBOOL
Axis	Err
INT	BOOL
Time	Diag
TIME	WORD
Rst	
BOOL	

Activate	Act	BOOL	Activation of the function block A variable or a constant FALSE = all output variables are set to initial values TRUE = no device connected Initial value = FALSE
S_StopIn	S_SI	SAFEBOOL	A variable Safe stop request input derived from a safety function block Preceding function blocks ensure the restart interlock FALSE = Safe stop is requested TRUE = Safe stop is unrequested Initial value = FALSE
AxisID	Axis	INT	A constant The drive address Initial value = 0
MonitoringTime	Time	TIME	A constant Time required to stop the drive Initial value = T#0s
Reset	Rst	BOOL	A variable Reset of error on the state machine or manual functional reset by the operator Resetting action occurs when the signal changes from FALSE to TRUE A static TRUE signal = No further action Initial value = FALSE
-----------	------	----------	---
Ready	Rdy	BOOL	TRUE = function block is activated and output results are valid FALSE = function block is inactive and the program is not executed Initial value = FALSE
S_Stopped	S_s	SAFEBOOL	Safety output value Indicates the motion status of the drive FALSE = Drive is uninterrupted TRUE = Drive is stopped Initial value = FALSE
Error	Err	BOOL	Error flag TRUE = an error has occurred and the function block is in an error state FALSE = no error observed Initial value = FALSE
DiagCode	Diag	WORD	Diagnostic code in hexadecimal format Indicates the first detected error Initial value = 16#0000

Description:

Initiates a controlled stop of an electrical drive in accordance with category 1 in IEC 60204-1

SF_SafeStop1 provides the functionality of Safe Stop 1 (SS1) and Safe Torque Off (SSO) from the standard IEC 61800-5-2.

SF_SafeStop2

Note: The Safety function blocks are available separately. For details on using these blocks, contact technical support at support@isagraf.com.

SF_SafeStop2			
Act	Rdy		
BOOL	BOOL		
S_SI	S_ss-		
SAFEBOOL	SAFEBOOL		
Axis	Err		
INT	BOOL		
Time	Diag		
TIME	WORD		
Rst			
BOOL			

Arguments:

Activate	Act	BOOL	Activation of the function block A variable or a constant FALSE = all output variables are set to initial values TRUE = no device connected Initial value = FALSE
S_StopIn	S_SI	SAFEBOOL	A variable Safe stop request input derived from a safety function block Preceding function blocks ensure the restart interlock FALSE = Safe stop is requested TRUE = Safe stop is unrequested Initial value = FALSE
AxisID	Axis	INT	A constant The drive address Initial value = 0
MonitoringTime	Time	TIME	A constant Time required to stop the drive Initial value = T#0s

Reset	Rst	BOOL	A variable Reset of error on the state machine or manual functional reset by the operator Resetting action occurs when the signal changes from FALSE to TRUE A static TRUE signal = No further action Initial value = FALSE
Ready	Rdy	BOOL	TRUE = function block is activated and output results are valid FALSE = function block is inactive and the program is not executed Initial value = FALSE
S_Standstill	S_ss	SAFEBOOL	Safety output value Indicates the motion status of the drive FALSE = Drive is uninterrupted TRUE = Drive is at a controlled standstill Initial value = FALSE
Error	Err	BOOL	Error flag TRUE = an error has occurred and the function block is in an error state FALSE = no error observed Initial value = FALSE
DiagCode	Diag	WORD	Diagnostic code in hexadecimal format Indicates the first detected error Initial value = 16#0000

Description:

Initiates a controlled stop of an electrical drive in accordance with category 2 of IEC 60204-1

SF_SafeStop2 provides the functionality of Safe Stop 2 (SS2) and Safe Operating Stop (SOS) from the IEC 61800-5-2 standard.

SF_SafetyRequest

Note: The Safety function blocks are available separately. For details on using these blocks, contact technical support at support@isagraf.com.

SF_SafetyRequest			
Act	Rdy		
BOOL	BOOL		
S_Op	S_SA		
SAFEBOOL	SAFEBOOL		
S_Ac	S_SR		
SAFEBOOL	SAFEBOOL		
Time	Err		
TIME	BOOL		
Rst	Diag		
BOOL	WORD		

Arguments:

Activate	Act	BOOL	Activation of the function block A variable or a constant FALSE = all output variables are set to initial values TRUE = no device connected Initial value = FALSE
S_OpMode	S_Op	SAFEBOOL	A variable Requests the mode of a safe actuator FALSE = Safe mode is requested TRUE = Operation mode is requested Initial value = FALSE
S_Acknowledge	S_Ac	SAFEBOOL	A variable Confirms the actuator state FALSE = Operation mod TRUE = Safe mode Initial value = FALSE
MonitoringTime	Time	TIME	A constant Response time between the safety function request (S_Op input = FALSE) and the actuator acknowledgment (S_SA output = TRUE) Initial value = T#0s

Reset	Rst	BOOL	A variable Reset of error on the state machine or manual functional reset by the operator Resetting action occurs when the signal changes from FALSE to TRUE A static TRUE signal = No further action Initial value = FALSE
Ready	Rdy	BOOL	TRUE = function block is activated and output results are valid FALSE = function block is inactive and the program is not executed Initial value = FALSE
S_SafetyActive	S_SA	SAFEBOOL	A variable or constant value Confirmation of safe state FALSE = Unsafe state TRUE = Safe state Initial value = FALSE
S_SafetyRequest	S_SR	SAFEBOOL	Request to place the actuator in the safe state FALSE = Safe state is requested TRUE = Unsafe state Initial value = FALSE
Error	Err	BOOL	Error flag TRUE = an error has occurred and the function block is in an error state FALSE = no error observed Initial value = FALSE
DiagCode	Diag	WORD	Diagnostic code in hexadecimal format Indicates the first detected error Initial value = 16#0000

Description:

Places the actuator in the safe state

SF_TestableSafetySensor

Note: The Safety function blocks are available separately. For details on using these blocks, contact technical support at support@isagraf.com.

SF_Testable	SafetySensor
Act	Rdy
BOOL	BOOL
S_0I	s_00
SAFEBOOL	SAFEBOOL
Tst	S_TO
BOOL	SAFEBOOL
Time	Tst
TIME	BOOL
NET	Exec
BOOL	BOOL
S_SR	Err
SAFEBOOL	BOOL
S_AR	Diag
SAFEBOOL	WORD
Rst	
BOOL	

Arguments:

Activate	Act	BOOL	Activation of the function block A variable or a constant FALSE = all output variables are set to initial values TRUE = no device connected Initial value = FALSE
S_OSSD_In	S_OI	SAFEBOOL	A variable Status of sensor output FALSE = The safety sensor is in test state or a safety-related response is requested TRUE = Normal operation of the sensor Initial value = FALSE
startTest	Tst	BOOL	A variable Sets S_TO and begins internal time monitoring FALSE = Test is unrequested TRUE = Test is requested Initial value = FALSE

TestTime	Time	TIME	A constant Range = 0150ms The test time for safety sensors Initial value = T#10ms
NoExternalTest	NET	BOOL	A constant Indicates whether external manual testing is supported FALSE = External manual testing is supported TRUE = External manual testing is unsupported Initial value = FALSE
S_StartReset	S_SR	SAFEBOOL	A variable or a constant FALSE = Manual reset when Programmable Electronic System is started (warm or cold). TRUE = Automatic reset when Programmable Electronic System is started (warm or cold). Initial value = FALSE
S_AutoReset	S_AR	SAFEBOOL	A variable or a constant FALSE = Manual reset occurs when emergency stop is released TRUE = Automatic reset occurs when emergency stop is released Initial value = FALSE
Reset	Rst	BOOL	A variable Reset of error on the state machine or manual functional reset by the operator Resetting action occurs when the signal changes from FALSE to TRUE A static TRUE signal = No further action Initial value = FALSE
Ready	Rdy	BOOL	TRUE = function block is activated and output results are valid FALSE = function block is inactive and the program is not executed Initial value = FALSE

S_OSSD_Out	\$_00	SAFEBOOL	Indicates the status of the electro-sensitive protective equipment (ESPE) FALSE = A safety-related action is requested or a test error is observed TRUE = A safety-related action is not requested and no test errors observed Initial value = FALSE
S_TestOut	S_TO	SAFEBOOL	Safety related output indicating the status of the test request Coupled to the test input of the sensor FALSE = Test request issued TRUE = Test request canceled Initial value = FALSE
TestPossible	Tst	BOOL	The process feedback signal FALSE = Automatic sensor testing is disabled TRUE= Automatic sensor testing is enabled Initial value = FALSE
TestExecuted	Exec	BOOL	A positive signal edge indicates the successful execution of the automatic sensor test FALSE = An automatic sensor test was not executed, is active, or was faulty TRUE= An automatic sensor test was executed successfully Initial value = FALSE
Error	Err	BOOL	Error flag TRUE = an error has occurred and the function block is in an error state FALSE = no error observed Initial value = FALSE
DiagCode	Diag	WORD	Diagnostic code in hexadecimal format Indicates the first detected error Initial value = 16#0000

Description:

Detects loss of sensing capability, exceeding of specified response time, or static "On" signal in a single-channel sensor systems

Used for external testable safety sensors such as electro-sensitive protective equipment (ESPE).

SF_TwoHandControlTypell

Note: The Safety function blocks are available separately. For details on using these blocks, contact technical support at support@isagraf.com.

SF_TwoHan	dControlTypell
Act	Rdy
BOOL	BOOL
S_B1	S_TH
SAFEBOOL	SAFEBOOL
S_B2	Erre
SAFEBOOL	BOOL
	Diag
	WORD

Arguments:

Activate	Act	BOOL	Activation of the function block A variable or a constant FALSE = all output variables are set to initial values TRUE = no device connected Initial value = FALSE
S_Button1	S_B1	SAFEBOOL	A variable Input from button 1 (for category 3 or 4: two antivalent contacts) FALSE = Button 1 is released TRUE = Button 1 is actuated Initial value = FALSE
S_Button2	S_B2	SAFEBOOL	A variable Input from button 2 (for category 3 or 4: two antivalent contacts) FALSE = Button 2 is released TRUE = Button 2 is actuated Initial value = FALSE
Ready	Rdy	BOOL	TRUE = function block is activated and output results are valid FALSE = function block is inactive and the program is not executed Initial value = FALSE

S_TwoHandOut	S_TH	SAFEBOOL	Safety related output signal FALSE = Correct two hand operation unobserved TRUE = Correct two hand operation observed, S_B1 and S_B2 are set to TRUE and no errors occurred Initial value = FALSE
Error	Err	BOOL	Error flag TRUE = an error has occurred and the function block is in an error state FALSE = no error observed Initial value = FALSE
DiagCode	Diag	WORD	Diagnostic code in hexadecimal format Indicates the first detected error Initial value = 16#0000

Description:

Provides two-hand control functionality in accordance with EN 574, Section 4, Type II

SF_TwoHandControlTypeIII

Note: The Safety function blocks are available separately. For details on using these blocks, contact technical support at support@isagraf.com.

SF_TwoHand	IControlTypell
Act	Rdy
BOOL	BOOL
S_B1	S_TH
SAFEBOOL	SAFEBOOL
S_B2	Err-
SAFEBOOL	BOOL
	Diag
	WORD

Arguments:

Activate	Act	BOOL	Activation of the function block A variable or a constant FALSE = all output variables are set to initial values TRUE = no device connected Initial value = FALSE
S_Button1	S_B1	SAFEBOOL	A variable Input from button 1 (for category 3 or 4: two antivalent contacts) FALSE = Button 1 is released TRUE = Button 1 is actuated Initial value = FALSE
S_Button2	S_B2	SAFEBOOL	A variable Input from button 2 (for category 3 or 4: two antivalent contacts) FALSE = Button 2 is released TRUE = Button 2 is actuated Initial value = FALSE
Ready	Rdy	BOOL	TRUE = function block is activated and output results are valid FALSE = function block is inactive and the program is not executed Initial value = FALSE

S_TwoHandOut	S_TH	SAFEBOOL	Safety related output signal FALSE = Correct two hand operation unobserved TRUE = Correct two hand operation observed, S_B1 and S_B2 are set to TRUE and no errors occurred Initial value = FALSE
Error	Err	BOOL	Error flag TRUE = an error has occurred and the function block is in an error state FALSE = no error observed Initial value = FALSE
DiagCode	Diag	WORD	Diagnostic code in hexadecimal format Indicates the first detected error Initial value = 16#0000

Description:

Provides two-hand control functionality in accordance with EN 574, Section 4, Type III

Note: The fixed specified time difference is 500 ms.

Index

Symbols

- operator (CAM 3) 546
- operator (CAM 5) 1259
- * operator (CAM 3) 544
- * operator (CAM 5) 1255
- / operator (CAM 3) 548 /operator (CAM 5) 1261
- + operator (CAM 3) 545
- + operator (CAM 5) 1257
- < operator (CAM 3) 566
- < operator (CAM 5) 1308
- <= operator (CAM 3) 565
- <= operator (CAM 5) 1306
- operator (CAM 3) 569
- operator (CAM 5) 1312
- = operator (CAM 3) 555 = an amotor (CAM 5) 1200
- = operator (CAM 5) 1300 > operator (CAM 3) 557
- > operator (CAM 5) 557
 > operator (CAM 5) 1304
- \geq operator (CAM 3) 556
- \geq operator (CAM 5) 1302

Numerics

1 gain operator (CAM 3) 550 1 gain operator (CAM 5) 1263

A

ABS function (CAM 3) 577 ABS function (CAM 5) 1321 ABS LREAL function 1569 access control, setting passwords for elements 728 accessing device view 393, 901 diagnostic information for resources 758 licensing (CAM 3) 695 licensing (CAM 5) 1467 toolbox 107 ACOS function (CAM 3) 578 ACOS function (CAM 5) 1322 ACOS LREAL function 1570 action, animation effect for ISaVIEW objects 88 action blocks attaching to steps 968

coding and deleting SFC steps (CAM 5) 1149 types of 968 actions in steps boolean (CAM 5) 1151 boolean, in IEC 61499 language 970 non-stored (CAM 5) 1154 non-stored, in IEC 61499 language 973 pulse (CAM 5) 1152 pulse, in IEC 61499 language 971 SFC 1156 activating licensing (CAM 3) 695 licensing (CAM 5) 1467 ADD MATRIX function block 1759 ADD MATRIX, MATRIX2 operation 1711 add-ins, managing 153 adding dependency variables to the spy list 43 devices for I/O wiring (CAM 3) 397 devices for I/O wiring (CAM 5) 909 devices to projects (CAM 3) 274 devices to projects (CAM 5) 702 external tools 155 function blocks (CAM 3) 281 function blocks (CAM 5) 717 functions (CAM 3) 279 functions (CAM 5) 715 ISaVIEW screens 51 networks 40 programs to devices 278 programs to interrupts, prompting to associate when 201 programs to resources 712 resources to devices 705 variables to the group grid 283, 720 addition operator (CAM 3) 545 addition operator (CAM 5) 1257 advanced control blocks 1631 ANALOGALARM 1637 BATCHSWITCH 1646 **BATCHTOTALIZER 1648**

BIAS 1651 BIASCALIBRATION 1652 CHARACTERIZER 1654 COMPARATOR 1656 DIGITALALARM 1657 FLIPFLOP 1662 **IPIDCONTROLLER 1664** LEADLAGBACONTROLLER 1677 LEADLAGCONTROLLER 1674 LIMITER 1681 PID AL 1682 **RATELIMITER 1685 RATIO 1687 RATIOCALIBRATION 1688 RETENTIVEONTIMER 1690** SCALER 1692 SETPOINT 1693 SIGNALSELECTOR 1695 **TRACKANDHOLD 1696 TRANSFERSWITCH 1697** alarm management LIM ALRM function block (CAM 3) 665 LIM ALRM function block (CAM 5) 1395 Alarm Signal (SAMA elements) 1170 alias names for CAM 3 I/O devices, setting as default 222 for CAM 5 I/O devices, displaying and setting as default 223 aligning, ISaVIEW objects 85 ANA operator 558 analog variables conversion functions for 406 conversion tables for 404 ANALOGALARM function block 1637 AND operator (CAM 3) 551 AND operator (CAM 5) 1264 AND MASK function (CAM 3) 579 AND MASK function (CAM 5) 1323 AND MASK BYTE function 1571 AND MASK DWORD function 1572 AND MASK LWORD function 1573

AND MASK WORD function 1574 animation effects, ISaVIEW objects action for 88 color of 90 defining for 87 displacement of 92 previewing (editable) 103 previewing (non-editable) 102 rotation of 94 size of 96 text in 98 visibility of 100 animation settings (ISaVIEW), customizing options for 246 ANY (CAM 5) data type 1230 overloading 1230 ANY ELEMENTARY (CAM 5) data typeoverloading ANY ELEMENTARY data type 1231 overloading 1231 ANY TO BOOL operator 1266 ANY TO BYTE operator 1272 ANY TO DATE operator 1297 ANY TO DINT operator 1280 ANY TO DWORD operator 1284 ANY TO INT operator 1274 ANY TO LINT operator 1286 ANY TO LREAL operator 1294 ANY TO LWORD operator 1290 ANY TO REAL operator 1292 ANY TO SINT operator 1268 ANY TO STRING operator 1298 ANY_TO_TIME operator 1296 ANY TO UDINT operator 1282 ANY TO UINT operator 1276 ANY TO ULINT operator 1288 ANY TO USINT operator 1270 ANY TO WORD operator 1278 applications

monitoring values while running (CAM 5) 769 running online (CAM 3) 304 running online (CAM 5) 745 simulating the running of (CAM 3) 311 simulating the running of (CAM 5) 768 arc objects inserting 57 setting default properties for 249 **ARCREATE function 580** arithmetic operations 1 gain operator (CAM 3) 550 1 gain operator (CAM 5) 1263 ABS function (CAM 3) 577 ABS function (CAM 5) 1321 ABS LREAL function 1569 ACOS function (CAM 3) 578 ACOS function (CAM 5) 1322 ACOS LREAL function 1570 addition operator (CAM 3) 545 addition operator (CAM 5) 1257 ASIN function (CAM 3) 586 ASIN function (CAM 5) 1325 ASIN LREAL function 1575 ATAN function (CAM 3) 587 ATAN function (CAM 5) 1326 ATAN LREAL function 1576 COS function (CAM 3) 589 COS function (CAM 5) 1328 COS LREAL function 1577 division operator (CAM 3) 548 division operator (CAM 5) 1261 EXPT function (CAM 3) 593 EXPT function (CAM 5) 1332 EXPT LREAL function 1578 LOG function (CAM 3) 614 LOG function (CAM 5) 1340 LOG LREAL function 1595 MOD function (CAM 3) 621 MOD function (CAM 5) 1347 multiplication operator (CAM 3) 544 multiplication operator (CAM 5) 1255

NEG operator (CAM 3) 568 NEG operator (CAM 5) 1310 POW function (CAM 3) 629 POW function (CAM 5) 1355 POW LREAL function 1604 RAND function (CAM 3) 630 RAND function (CAM 5) 1356 SIN function (CAM 3) 642 SIN function (CAM 5) 1367 SIN LREAL function 1622 SQRT function (CAM 3) 643 SQRT function (CAM 5) 1368 SQRT LREAL function 1623 subtraction operator (CAM 3) 546 subtraction operator (CAM 5) 1259 TAN function (CAM 3) 644 TAN function (CAM 5) 1370 TAN LREAL function 1624 TRUNC function (CAM 3) 645 TRUNC function (CAM 5) 1371 TRUNC LREAL function 1625 array management **ARCREATE** function 580 ARREAD function 582 **ARWRITE** function 583 arrays defining basic or derived types in the parameters view 1250 derived data types 1227 managing, sorting, and filtering 881 arrays grid, customizing color options for 215 **ARREAD** function 582 arrow objects inserting 58 setting default properties for 250 **ARWRITE function 583** ASCII function (CAM 3) 585 ASCII function (CAM 5) 1324 ASIN function (CAM 3) 586 ASIN function (CAM 5) 1325 ASIN LREAL function 1575 assignment

ST basic statement (CAM 3) 496 ST basic statement (CAM 5) 1094 ATAN function (CAM 3) 587 ATAN function (CAM 5) 1326 ATAN_LREAL function 1576 attaching action blocks to steps 968 attributes of variables (CAM 3) 529 of variables (CAM 5) 1221 Automation Collaborative Platform, tools and windows in the 1 AVERAGE function block (CAM 3) 648 AVERAGE function block (CAM 5) 1376 Averaging (SAMA elements) 1171

В

bar meter objects inserting 74 setting default properties for 251 basic operations blocks 1631 **BATCHSWITCH function block 1646 BATCHTOTALIZER function block 1648** Bias (SAMA elements and functions) 1173 BIAS function block 1651 **BIASCALIBRATION function block 1652** binary operations NOT MASK function (CAM 3) 626 NOT MASK function (CAM 5) 1352 NOT MASK BYTE function 1596 NOT MASK DWORD function 1597 NOT MASK LWORD function 1598 NOT MASK WORD function 1599 OR MASK function (CAM 5) 1354 OR MASK BYTE function 1600 OR MASK DWORD function 1601 OR MASK LWORD function 1602 OR MASK WORD function 1603 ROL function (CAM 3) 636 ROL function (CAM 5) 1361 ROL BYTE function 1605

ROL DWORD function 1606 ROL LWORD function 1607 ROL WORD function 1608 ROR function (CAM 3) 637 ROR function (CAM 5) 1362 ROR BYTE function 1609 ROR DWORD function 1610 ROR LWORD function 1611 ROR WORD function 1612 SHL function (CAM 3) 639 SHL function (CAM 5) 1364 SHL BYTE function 1614 SHL DWORD function 1615 SHL LWORD function 1616 SHL WORD function 1617 SHR function (CAM 3) 640 SHR function (CAM 5) 1365 SHR BYTE function 1618 SHR DWORD function 1619 SHR LWORD function 1620 SHR WORD function 1621 XOR MASK function (CAM 3) 646 XOR MASK function (CAM 5) 1373 XOR MASK BYTE function 1626 XOR MASK DWORD function 1627 XOR MASK LWORD function 1628 XOR MASK WORD function 1629 bindings managing for producer and consumer variables 924 types and error variables for 919 BLINK function block (CAM 3) 650 BLINK function block (CAM 5) 1378 block library accessing, managing blocks in 35 defining options for 208 block selector displaying parameters in the 129 sorting and limiting searches 125 blocks inserting in FBD (CAM 3) 416 inserting in FBD (CAM 5) 1002

managing in LD diagrams (CAM 3) 456 managing in LD diagrams (CAM 5) 1048 BOO operator 553 BOOL data type variables and literal expressions, in (CAM 3) 535 variables and literal expressions, in (CAM 5) 1232 boolean actions within steps in SFC language (CAM 5) 1151 within steps in the IEC 61499 language 970 boolean expressions (CAM 5) 1086 boolean operations AND operator (CAM 3) 551 AND operator (CAM 5) 1264 AND MASK function (CAM 3) 579 AND MASK function (CAM 5) 1323 AND MASK BYTE function 1571 AND MASK DWORD function 1572 AND MASK LWORD function 1573 AND MASK WORD function 1574 F TRIG function block (CAM 3) 661 F TRIG function block (CAM 5) 1391 NOT operator 1311 ODD function (CAM 3) 627 ODD function (CAM 5) 1353 OR operator (CAM 3) 571 OR operator (CAM 5) 1314 R TRIG function block (CAM 3) 667 R TRIG function block (CAM 5) 1397 RS function block (CAM 3) 668 RS function block (CAM 5) 1398 SR function block (CAM 3) 671 SR function block (CAM 5) 1400 XOR operator (CAM 3) 573 XOR operator (CAM 5) 1316 branches inserting in LD diagrams (CAM 3) 481 inserting in LD diagrams (CAM 5) 1074 breakpoints managing, available types in FBD 997

managing, available types in SFC (CAM 5) 1129 on step activation in SFC (CAM 5) 1131 on step deactivation in SFC (CAM 5) 1132 on transition in SFC (CAM 5) 1134 bringing objects to the front, ISaVIEW screens 86 browser, cross reference 897 building elements (CAM 3) 300 elements (CAM 5) 741 button objects inserting 65 modifying toolbar commands for 167 setting default properties for 252 BYTE, data types as variables and literal expressions 1234

С

calling function blocks (CAM 3) 525 function blocks (CAM 5) 1217 function blocks from transitions in IEC 61499 language 978 function blocks from transitions in SFC language (CAM 5) 1162 functions (CAM 3) 524 functions (CAM 5) 1216 functions from transitions in IEC 61499 language 977 functions from transitions in SFC language (CAM 5) 1161 CAM (Concrete Automation Model) development process with (CAM 3) 271 development process with (CAM 5) 697 CAM3 defining options for 209 canceling local modifications 876 CASE ST basic statements (CAM 3) 497 ST basic statements (CAM 5) 1095

CAT operator 554 CHAR function (CAM 3) 588 CHAR function (CAM 5) 1327 CHARACTERIZER function block 1654 child SFC POUs (CAM 5) 1128 SFC program, of a (CAM 5) 1126 cleaning setting the option for 200 solutions and project elements (CAM 3) 303 solutions and project elements (CAM 5) 744 clearing transitions (CAM 5) 1135 CMP function block (CAM 3) 651 CMP function block (CAM 5) 1379 code managing generation 299 managing generation (CAM 5) 740 code generation, managing (CAM 3) 299 coding action blocks for SFC steps (CAM 5) 1149 conditions for transitions (CAM 5) 1158 coherency of resource code 747 coils direct type in FBD (CAM 3) 431 direct type in FBD (CAM 5) 1018 direct type in LD (CAM 3) 463 direct type in LD (CAM 5) 1056 pulse falling edge (negative) (CAM 3) 466 pulse falling edge (positive) (CAM 5) 1059 pulse rising edge (positive) (CAM 3) 465 pulse rising edge (positive) (CAM 5) 1058 reset in FBD (CAM 3) 435 reset in FBD (CAM 5) 1022 reset in LD (CAM 3) 469 reset in LD (CAM 5) 1062 reverse type in FBD (CAM 3) 432 reverse type in FBD (CAM 5) 1019 reverse type in LD (CAM 3) 464 reverse type in LD (CAM 5) 1057 Set for FBD (CAM 3) 433 Set for FBD (CAM 5) 1020 Set for LD (CAM 3) 467

Set for LD (CAM 5) 1060 usage and available types for FBD (CAM 3) 429 usage and available types for FBD (CAM 5) 1016 usage and available types for LD (CAM 3) 460 usage and available types for LD (CAM 5) 1053 collection editor accessing, creating, editing members of collections 48 collections, defining for color animation effect 90 colors animation effect for ISaVIEW objects, defining 90 arrays grid, options for the 215 customizing for interface items 191 defined words grid, options for 216 deployment view, defining for 210 dictionary, options for 217 parameters grid, options for 218 structures grid, options for 219 variable groups view, options for 220 variable selector, options for 221 COLS MATRIX function block 1753 columns arranging, in dictionary (CAM 5) 879 arranging, in the dictionary (CAM 3) 383 sorting in the variable selector 123 commands, modifying images for 167 comments inserting, formatting options for, in FBD (CAM 3) 444 inserting, formatting options for, in FBD (CAM 5) 1032 inserting, formatting options for, in LD (CAM 3) 454 inserting, formatting options for, in LD (CAM 5) 1046 inserting in IEC 61499 programs and composite blocks 984

communications CONNECT function block 1381 URCV S function block 1412 USEND S function block 1414 **COMPARATOR** function block 1656 comparing versions from source control 873 comparison operations CMP function block (CAM 5) 1379 CMP function block (CAM3) 651 equal operator (CAM 3) 555 equal operator (CAM 5) 1300 greater than operator (CAM 3) 557 greater than operator (CAM 5) 1304 greater than or equal operator (CAM 3) 556 greater than or equal operator (CAM 5) 1302 less than operator (CAM 3) 566 less than operator (CAM 5) 1308 less than or equal operator (CAM 3) 565 less than or equal operator (CAM 5) 1306 not equal operator (CAM 3) 569 not equal operator (CAM 5) 1312 composite function blocks, format of IEC 61499 979 concatenation operation, CAT operator 554 Concrete Automation Model development process with (CAM 5) 697 Concrete Automation Model, development process with (CAM 3) 271 conditions coding for SFC transitions (CAM 5) 1158 programming and attaching, to transitons 974 programming for transitions in LD (Ladder Diagram) 976 programming for transitions in ST (Structured Text) 975 configuration manager accessing 19 creating solution configurations 21 editing solution configurations 22 editing solution platforms 23 setting configuration properties 19

configuration properties, setting 17 configuring failover mechanisms 935 function block instances in FBD (CAM 5) 1033 function block instances in LD (CAM 5) 1075 I/O devices 1489 CONNECT function block 1381 connections 285 connections (devices to networks), managing 41 consumer variables, managing for bindings 924 consumption error variables 919 contacts direct in FBD (CAM 3) 439 direct in FBD (CAM 5) 1026 direct in LD (CAM 3) 473 direct in LD (CAM 5) 1066 managing, available types in FBD (CAM 3) 437 managing, available types in FBD (CAM 5) 1024 managing, available types in LD (CAM 3) 471 managing, available types in LD (CAM 5) 1064 pulse falling edge (negative) in FBD (CAM 3) 442 pulse falling edge (negative) in FBD (CAM 5) 1029 pulse falling edge (negative) in LD (CAM 3) 476 pulse falling edge (negative) in LD (CAM 5) 1069 pulse rising edge (positive) in FBD (CAM 3) 441 pulse rising edge (positive) in FBD (CAM 5) 1028 pulse rising edge (positive) in LD (CAM 3) 475 pulse rising edge (positive) in LD (CAM 5) 1068

reverse in FBD (CAM 3) 440 reverse in FBD (CAM 5) 1027 reverse in LD (CAM 3) 474 reverse in LD (CAM 5) 1067 control repositories accessing from the repository explorer 848 accessing from the working copy explorer 851 managing for source control 845 controllers, accessing status information for 905 convergence selection, in SFC (CAM 5) 1144 simultaneous, in SFC (CAM 5) 1146 conversion functions for analog variables 406 methods for I/O variables 403 tables for analog variables 404 COPY COL MATRIX function block 1747 COPY COL MATRIX, MATRIX2 operation 1703 COPY MATRIX function block 1743 COPY ROW MATRIX function block 1745 COPY ROW MATRIX, MATRIX2 operation 1700 copying elements in the Solution Explorer 3 **ISaVIEW** objects 80 parameters, local variables 131 spy list items 147 variables in the dictionary and variable selector 121 COS function (CAM 3) 589 COS function (CAM 5) 1328 COS LREAL function 1577 counters CTD function block (CAM 3) 653 CTD function block (CAM 5) 1384 CTU function block (CAM 3) 655 CTU function block (CAM 5) 1386 CTUD function block (CAM 3) 657 CTUD function block (CAM 5) 1387 creating

arrays 881 defined words (CAM 3) 385 defined words (CAM 5) 888 ISaGRAF 3 projects 272 **ISaVIEW** screens 53 networks 40 passwords for elements 728 passwords for targets 730 projects 6 structures 885 toolbars 166 variable groups 283, 720 variables using quick declaration 118 variables with the variable selector 117 cross reference browser, accessing and toolbar options for 897 CTD function block (CAM 5) 1384 CTD function block (CAM3) 653 CTU function block (CAM 3) 655 CTU function block (CAM 5) 1386 CTUD function block (CAM 3) 657 CTUD function block (CAM 5) 1387 CURRENT ISA DATE function 1329 customizing dictionary instance grid (CAM 3) 383 dictionary instance grid (CAM 5) 879 error list 160 fonts and colors 191 toolbars 165 cutting elements in Solution Explorer 3 **ISaVIEW** objects 80 parameters, local variables 131 spy list items 147 variables in the dictionary and variable selector 121 cycle execution time for IEC 61499 programs 948 cycles execution control charts, of 985 execution rules for devices 526 timing and execution rules for resources 1218

cyclical operations in programs (CAM 3) 522 in programs (CAM 5) 1214

D

data conversion ANA operator 558 ANY TO BOOL operator 1266 ANY TO BYTE operator 1272 ANY TO DATE operator 1297 ANY TO DINT operator 1280 ANY TO DWORD operator 1284 ANY TO INT operator 1274 ANY TO LINT operator 1286 ANY TO LREAL operator 1294 ANY TO LWORD operator 1290 ANY TO REAL operator 1292 ANY TO SINT operator 1268 ANY TO STRING operator 1298 ANY TO TIME operator 1296 ANY TO UDINT operator 1282 ANY TO UINT operator 1276 ANY TO ULINT operator 1288 ANY TO USINT operator 1270 ANY TO WORD operator 1278 BOO operator 553 MSG operator 567 **OPERATE** operator 570 **REAL operator 559** TMR operator 572 data manipulation AVERAGE function block (CAM 3) 648 AVERAGE function block (CAM 5) 1376 LIMIT function (CAM 3) 613 LIMIT function (CAM 5) 1338 MAX function (CAM 3) 615, 1341 MIN function (CAM 3) 618 MIN function (CAM 5) 1344 MUX4 function (CAM 3) 622 MUX4 function (CAM 5) 1348

MUX8 function (CAM 3) 624 MUX8 function (CAM 5) 1350 SEL function (CAM 3) 638 SEL function (CAM 5) 1363 data types ANY (CAM 5) 1230 ANY ELEMENTARY (CAM 5) 1231 available 534 BOOL (CAM 3) 535 BOOL (CAM 5) 1232 **DATE 1245 DINT 1237** elementary IEC 61131-3, derived types, arrays and structures 1227 INT 1235 LINT 1239 **LREAL 1242** message 540 motion control function blocks, for 1771 real (CAM 3) 537 real (CAM 5) 1241 SAFEBOOL 1249 safety 1248 SINT 1233 specifying numerical display of, when monitoring 202 STRING 1246 TIME (CAM 3) 539 TIME (CAM 5) 1243 UDINT and DWORD 1238 UINT and WORD 1236 ULINT and LWORD 1240 USINT and BYTE 1234 DATE, data types as variables and literal expressions 1245 DAY TIME function 590 debug information generating for ST POUs (CAM 3) 494 generating for ST POUs (CAM 5) 1090 debugging failover mechanism, a 939 FBD programs (CAM 3) 414

FBD programs (CAM 5) 997 generating information for ST programs (CAM 3) 494 generating information for ST programs (CAM 5) 1090 IEC 61499 programs 949 LD programs (CAM 3) 451 LD programs (CAM 5) 1041 monitoring values while (CAM 3) 312 monitoring values while (CAM 5) 769 running applications online (CAM 3) 304 running applications online for (CAM 5) 745 SAMA programs 1168 SFC programs (CAM 5) 1129 targets in real-time or simulation (CAM 3) 306 targets in real-time or simulation (CAM 5) 755 viewing and unlocking locked variables while 49 declared instances, creating and inserting 125 defined words customizing color options in the grid 216 managing in the grid (CAM 3) 385 managing in the grid (CAM 5) 888 usage, naming in programs (CAM 3) 532 usage, naming in programs (CAM 5) 1226 DELETE function (CAM 3) 591 DELETE function (CAM 5) 1330 deleting action blocks (CAM 5) 1149 arrays 881 connections (devices to networks) 41 defined words (CAM 3) 385 defined words (CAM 5) 888 devices from projects (CAM 3) 274 devices from projects (CAM 5) 702 elements in language containers 29 function blocks (CAM 3) 281 function blocks (CAM 5) 717 functions (CAM 3) 279 functions (CAM 5) 715

I/O devices (CAM 3) 397 I/O devices (CAM 5) 909 intermediate and output files (CAM 3) 303 intermediate and output files (CAM 5) 744 **ISaVIEW** objects 81 networks 40 passwords for elements 728 passwords for targets 730 programs from devices 278 programs from resources 712 resources from devices 705 structures 885 variables using the variable selector 122 dependencies projects on libraries (CAM 3) 294 projects on libraries (CAM 5) 726 viewing for variables 43 deployment view accessing 37 defining options for 210 DERIVATE function block (CAM 3) 659 DERIVATE function block (CAM 5) 1389 Derivative (SAMA elements) 1175 derived types arrays 1250 structures 1251 description window, accessing instances of 269 development platforms requirements for (CAM 3) 325 requirements for (CAM 5) 773 device view accessing and using 393, 901 implementing failover mechanism using 941 monitoring failover mechanism using 939 options for 211 devices adding to, deleting from the deployment view 38 building (CAM 3) 300 building (CAM 5) 741 cleaning (CAM 3) 303 cleaning (CAM 5) 744

creating connections (devices to networks) 41 managing in projects (CAM 3) 274 managing in projects (CAM 5) 702 navigation window, accessing aspects and information 25 diagnostic information, accessing for resources 758 diagram format main, FBD (CAM 3) 410 main, FBD (CAM 5) 992 main, SAMA 1166 dictionary accessing and customizing (CAM 3) 383 accessing and customizing (CAM 5) 879 accessing instances for dependency variables 43 arrays grid of 881 color options for 217 defined words grid (CAM 3) 385 defined words grid (CAM 5) 888 structures grid of 885 variables grid (CAM 3) 388 variables grid of, managing and properties for (CAM 5) 891 Difference (SAMA elements) 1177 DIGITALALARM function block 1657 DINT, data types as variables and literal expressions 1237 direct coils in FBD (CAM 3) 431 in FBD (CAM 5) 1018 in LD (CAM 3) 463 in LD (CAM 5) 1056 direct contacts in FBD (CAM 3) 439 in FBD (CAM 5) 1026 in LD (CAM 3) 473 in LD (CAM 5) 1066 directly represented variables (CAM 3) 531 directly represented variables (CAM 5) 1224

displacement, animation effect for ISaVIEW objects 92 display settings dictionary (CAM 3) 383 dictionary (CAM 5) 879 FBD diagrams 225 IEC 61499 diagrams 229 LD diagrams 233 SAMA diagrams 236 SFC diagrams 238 ST diagrams 242 divergence selection, in SFC (CAM 5) 1142 simultaneous in SFC (CAM 5) 1145 Dividing (SAMA elements) 1178 division operator (CAM 3) 548 division operator (CAM 5) 1261 document options 135 document overview, zooming in with the focus box 27 documentation generating 135 documentation generator 135 double integer data types, variables and literal expressions 536 downloading code to targets (CAM 3) 305 code to targets (CAM 5) 747 DUP MATRIX function block 1741 DWORD, data types as variables and literal expressions 1238 dynamic behavior for SFC POUs (CAM 5) 1122

Е

E_CTU function block 1421 E_CYCLE function block 1422 E_D_FF function block 1423 E_DELAY function block 1424 E_DEMUX function block 1425 E F TRIG function block 1426 E MERGE function block 1427 E N TABLE function block 1428 E PERMIT function block 1430 E R TRIG function block 1431 E REND function block 1432 E RESTART function block 1433 E RS function block 1434 E SELECT function block 1435 E SPLIT function block 1436 E SR function block 1437 E SWITCH function block 1438 E TABLE function block 1439 E TABLE CTRL function block 1441 E TRAIN function block 1442 ECC (execution control chart) behavior of 985 IEC 61499 basic function blocks, states for 957 edit box objects inserting 66 setting default properties for 253 editing arrays 881 defined words (CAM 3) 385 defined words (CAM 5) 888 ISaVIEW objects, physical appearance of 77 ISaVIEW objects, properties of 79 passwords for elements 728 passwords for targets 730 structures 885 variables with the variable selector 120 edition settings, defining for ISaVIEW screens and objects 247 elementary IEC 61131 types, available for programming 1228 elements Alarm Signal (SAMA) 1170 Averaging (SAMA) 1171 basic, for ST (CAM 3) 495 basic, for ST (CAM 5) 1093 Bias (SAMA) 1173

composite IEC 61499 function blocks. available for 979 Derivative (SAMA) 1175 Difference (SAMA) 1177 Dividing (SAMA) 1178 Equal To (SAMA) 1179 Exponential (SAMA) 1180 exporting 733 Greater Than (SAMA) 1181 High Limiting (SAMA) 1871 High Selecting (SAMA) 1182 importing 733 initial steps and steps, in SFC (CAM 5) 1138 Integral (SAMA) 1183 Integrate or Totalize (SAMA) 1872 IPID (SAMA) 1185 jumps (CAM 5) 1147 LD containers, available for (CAM 3) 453 LD containers, available for (CAM 5) 1045 Lesser Than (SAMA) 1190 Logical AND (SAMA) 1191 Logical OR (SAMA) 1193 Logical Signal (SAMA) 1195 Low Limiting (SAMA) 1874 Low Selecting (SAMA) 1196 managing in language containers 29 MATransfer (SAMA) 1875 MATransferSet (SAMA) 1877 Measuring or Readout (SAMA) 1197 Memory (Basic) (SAMA) 1879 Memory (Ro Dominant) (SAMA) 1883 Memory (So Dominant) (SAMA) 1881 Multiplying (SAMA) 1198 NOT (SAMA) 1199 PD (SAMA) 1888 Proportional (SAMA) 1885 Proportional and Integral (SAMA) 1886 Pulse Duration (SAMA) 1890 Pulse Duration of the Lesser Time (SAMA) 1892 Reverse Proportional (SAMA) 1894 Root Extraction (SAMA) 1200

SAMA Variable (SAMA) 1201 selection convergences (CAM 5) 1144 selection divergences (CAM 5) 1142 sequence controls (CAM 5) 1141 Server Monitored Variable (SAMA) 1202 SFC programs (CAM 5) 1136 Signal Monitor (SAMA) 1203 simultaneous convergences (CAM 5) 1146 simultaneous divergences (CAM 5) 1145 Summing (SAMA) 1205 Time Delay On Inititiation (SAMA) 1896 Time Delay On Termination (SAMA) 1898 Transfer (SAMA) 1206 transitions (CAM 5) 1140 Tri-State Signal (SAMA 1900 used in FBD (CAM 3) 415 used in FBD (CAM 5) 1001 used in SAMA 1169 Variable Signal Generator (SAMA) 1208 Velocity Limiting (SAMA) 1902 ellipse objects inserting 59 setting default properties for 254 EN and ENO parameters, in blocks (CAM 3) 456 EN and ENO parameters, in blocks (CAM 5) 1048 environment options modifying 188 source control, for 205 environment settings managing 171 equal operator (CAM 3) 555 equal operator (CAM 5) 1300 Equal To (SAMA elements) 1179 error list, accessing and usage of 160 error messages, types and descriptions of 313 errors build operations, in (CAM 3) 300 build operations, in (CAM 5) 741 rebuild operations, generated during (CAM 3) 302

rebuild operations, generated during (CAM 5) 743 ETCP network type, setting 1485 event transitions for IEC 61499 basic function blocks 959 events logger error messages 1523 for target execution 762 execution functions blocks, of (CAM 3) 525 functions blocks, of (CAM 5) 1217 functions, of (CAM 3) 524 functions, of (CAM 5) 1216 rules for device cycles 526 rules for resource cycles 1218 execution behavior, SFC language (CAM 5) 1124 execution control chart (ECC), behavior and stages of 985 EXIT ST basic statement (CAM 3) 498 EXIT, ST basic statement (CAM 5) 1097 explorer repository for source control 848 solutions, accessing and managing elements in 3 working copy, displaying contents of local repository 854 working copy for source control 851 Exponential (SAMA elements) 1180 exporting elements 733 environment settings 172 ISaVIEW screens as templates 55 variables 296, 736 expressions locating with Quick Find 142 replacing with the Quick Replace utility 144 ST programs, in (CAM 3) 490 ST programs, in (CAM 5) 1086 EXPT function (CAM 3) 593 EXPT function (CAM 5) 1332 EXPT LREAL function 1578

extensions in ST (Structured Text) (CAM 3) 506 extensions in ST (Structured Text) (CAM 5) 1105 external tools, adding and managing 155

F

F CLOSE function 594 F EOF function 595 F ROPEN function 597 F TRIG function block (CAM 3) 661 F TRIG function block (CAM 5) 1391 F WOPEN function 598 FA READ function 599 FA WRITE function 601 failover mechanism configuring for use 935 defining a 931 implementing on a Windows platform 941 limitations for systems 944 monitoring (online and debugging) 939 faulted status, controller 905 FBD (Function Block Diagram) blocks, inserting(CAM 3) 416 blocks, inserting(CAM 5) 1002 coils, usage and available types (CAM 3) 429 coils, usage and available types (CAM 5) 1016 comments, inserting (CAM 3) 444 comments, inserting (CAM 5) 1032 configuring function block instances (CAM 5) 1033 contacts, usage and available types (CAM 3) 437 contacts, usage and available types (CAM 5) 1024 customizing display settings for 225 debugging (CAM 3) 414 debugging (CAM 5) 997 debugging SAMA programs 1168

direct coils (CAM 3) 431 direct coils (CAM 5) 1018 direct contacts (CAM 3) 439 direct contacts (CAM 5) 1026 elements (CAM 3) 415 elements (CAM 5) 1001 execution order (CAM 3) 413 execution order (CAM 5) 994 jumps to labels, inserting (CAM 3) 423 jumps to labels, inserting (CAM 5) 1010 labels, inserting (CAM 3) (CAM 3) 421 labels, inserting (CAM 5) 1008 left power rails, inserting (CAM 3) 427 left power rails, inserting (CAM 5) 1014 main diagram format (CAM 3) 410 main diagram format (CAM 5) 992 pulse falling edge (negative) contacts (CAM 3) 442 pulse falling edge (negative) contacts (CAM 5) 1029 pulse rising edge (positive) contacts (CAM 3) 441 pulse rising edge (positive) contacts (CAM 5) 1028 regions, inserting (CAM 3) 443 regions, inserting (CAM 5) 1030 reset coils (CAM 3) 435 reset coils (CAM 5) 1022 returns, inserting (CAM 3) 425 returns, inserting (CAM 5) 1012 reverse coils (CAM 3) 432 reverse coils (CAM 5) 1019 reverse contacts (CAM 3) 440 reverse contacts (CAM 5) 1027 right power rails, inserting (CAM 3) 428 right power rails, inserting(CAM 5) 1015 rungs, inserting (CAM 3) 426 rungs, inserting (CAM 5) 1013 Set coils (CAM 3) 433 Set coils (CAM 5) 1020 variables, inserting (CAM 3) 418 variables, inserting (CAM 5) 1005

vertical bars, inserting (CAM 3) 420 vertical bars, inserting (CAM 5) 1007 file management F CLOSE function 594 F EOF function 595 F ROPEN function 597 F WOPEN function 598 FA READ function 599 FA WRITE function 601 FM READ function 604 FM WRITE function 606 filtering arrays in the grid 881 defined words (CAM 3) 385 defined words (CAM 5) 888 structures 885 variables in the variable selector 124 find and replace display settings for 190 possible operations for 141 FIND function (CAM 3) 608 FIND function (CAM 5) 1333 Find utility, Quick, working with 142 FLIPFLOP function block 1662 FM READ function 604 FM WRITE function 606 focus box, using to zoom within the workspace 27 fonts, customizing for interface items 191 FOR, TO, BY, DO, END FOR ST basic statements (CAM 3) 499 FOR, TO, BY, DO, END FOR, ST basic statement (CAM 5) 1098 forcing clearing transitions (CAM 5) 1135 data types for literal values 1252 values of I/O variables 400 values of variables (CAM 3) 309 values of variables (CAM 5) 764 format basic function blocks, of 952 comments, options for, in FBD (CAM 3) 444

comments, options for, in FBD (CAM 5) 1032 IEC 61499 composite function blocks, of 979 IEC 61499 function blocks main, of 950 FREE MATRIX function block 1731 freeing channels of devices (CAM 3) 400 channels of devices (CAM 5) 912 full screen, expanding the workspace 27 Function Block Diagram (FBD), programming language (CAM 3) 409 Function Block Diagram (FBD), programming language (CAM 5) 991 function blocks ADD MATRIX 1759 ADD MATRIX, MATRIX2 1711 adding (CAM 3) 281 adding (CAM 5) 717 advanced control 1631 ANALOGALARM 1637 AVERAGE (CAM 3) 648 AVERAGE (CAM 5) 1376 Averaging (SAMA) 1171 basic operations 1631 BATCHSWITCH 1646 **BATCHTOTALIZER 1648 BIAS 1651 BIASCALIBRATION 1652** BLINK (CAM 3) 650 BLINK (CAM 5) 1378 calling from ST programs (CAM 3) 493 calling from ST programs (CAM 5) 1089 calling from transitions (CAM 5) 1162 calling from transitions in IEC 61499 language 978 CHARACTERIZER 1654 CMP 651, 1379 COLS MATRIX 1753 COMPARATOR 1656 configuring instances in FBD (CAM 5) 1033 configuring instances in LD (CAM 5) 1075

CONNECT 1381 COPY COL MATRIX 1747 COPY COL MATRIX, MATRIX2 1703 COPY MATRIX 1743 COPY ROW MATRIX 1745 COPY ROW MATRIX, MATRIX2 1700 creating declared instances of 125 CTD (CAM 3) 653 CTD (CAM 5) 1384 CTU (CAM 3) 655 CTU (CAM 5) 1386 CTUD (CAM 3) 657 CTUD (CAM 5) 1387 deleting (CAM 3) 281 deleting (CAM 5) 717 DERIVATE (CAM 3) 659 DERIVATE (CAM 5) 1389 Derivative (SAMA) 1175 DIGITALALARM 1657 DUP MATRIX 1741 E CTU 1421 E CYCLE 1422 E D FF 1423 E DELAY 1424 E DEMUX 1425 E F TRIG 1426 E MERGE 1427 E N TABLE 1428 E PERMIT 1430 E R TRIG 1431 E REND 1432 E RESTART 1433 E RS 1434 E SELECT 1435 E SPLIT 1436 E SR 1437 E SWITCH 1438 E TABLE 1439 E TABLE CTRL 1441 E TRAIN 1442 F TRIG (CAM 3) 661 F TRIG (CAM 5) 1391

FBD, inserting (CAM 5) 1002 FBD, inserting in (CAM 3) 416 FLIPFLOP 1662 FREE MATRIX 1731 GET F MATRIX 1737 GET I MATRIX 1733 GET TIME STRUCT 1634 GET VERSION, MATRIX2 1725 HYSTER (CAM 3) 662 HYSTER (CAM 5) 1392 IEC 61499 programs and composite blocks, inserting in 980 INTEGRAL (CAM 3) 663 INTEGRAL (CAM 5) 1393 Integral (SAMA) 1183 **INVERT MATRIX 1757** INVERT MATRIX, MATRIX2 1708 **IPIDCONTROLLER 1664** LEADLAGBACONTROLLER 1677 LEADLAGCONTROLLER 1674 LIM ALRM (CAM 3) 665 LIM ALRM (CAM 5) 1395 LIMITER 1681 LocalEventInput 1444 main format in IEC 61499 programs 950 matrix operations 1631 MC AbortTrigger 1780 MC AccelerationProfile 1782 MC CamIn 1784 MC CamOut 1787 MC CamTableSelect 1788 MC DigitalCamSwitch 1790 MC GearInPos 1795 MC GearOut 1798 MC Halt 1799 MC Home 1801 MC MoveAbsolute 1803 MC MoveContinuousAbsolute 1808 MC MoveContinuousRelative 1811 MC MoveSuperimposed 1816 MC MoveVelocity 1818 MC PositionProfile 1823

MC Power 1825 MC ReadActualPosition 1827 MC ReadActualTorque 1828 MC ReadActualVelocity 1830 MC ReadAxisError 1832 MC ReadBoolParameter 1834 MC ReadDigitalInput 1837 MC ReadDigitalOutput 1839 MC ReadParameter 1841 MC ReadStatus 1844 MC Reset 1847 MC SetOverride 1848 MC TorqueControl 1854 MC TouchProbe 1857 MC VelocityProfile 1859 MC WriteBoolParameter 1861 MC WriteDigitalOutput 1864 MC WriteParameter 1866 **MULTIPLY MATRIX 1763** MULTIPLY MATRIX, MATRIX2 1717 naming, parameters, and calling (CAM 3) 525 naming, parameters, and calling (CAM 5) 1217 NEW MATRIX 1729 NOW 1636 PID AL 1682 PRINT MATRIX 1769 PRINT MATRIX, MATRIX2 1723 PUT F MATRIX 1739 PUT I MATRIX 1735 R TRIG (CAM 3) 667 R TRIG (CAM 5) 1397 **RATELIMITER 1685 RATIO 1687 RATIOCALIBRATION 1688** renaming (CAM 3) 281 renaming (CAM 5) 717 **RETENTIVEONTIMER 1690 ROWS MATRIX 1751** RS (CAM 3) 668 RS (CAM 5) 1398

SCALAR F MATRIX 1767 SCALAR I MATRIX 1765 SCALAR MATRIX, MATRIX2 1720 SCALER 1692 **SEMA 670** SETPOINT 1693 SF AND 1906 SF Antivalent 1907 SF EDM 1909 SF EmergencyStop 1912 SF EnableSwitch 1915 SF Equivalent 1918 SF ESPE 1920 SF GuardLocking 1922 SF GuardMonitoring 1925 SF ModeSelector 1928 SF MutingPar 1934 SF MutingPar 2Sensor 1938 SF MutingSeq 1942 SF OutControl 1946, 1949 SF SafeStop1 1952 SF SafeStop2 1954 SF SafetyRequest 1956 SF TestableSafetySensor 1958 SF TwoHandControlTypeII 1962 SF TwoHandControlTypeIII 1964 SIG GEN (CAM 3) 673 SIG GEN (CAM 5) 1402 Signal Monitor (SAMA) 1203 SIGNALSELECTOR 1695 SR (CAM 3) 671 SR (CAM 5) 1400 STACKINT (CAM 3) 675 STACKINT (CAM 5) 1404 SUBTRACT MATRIX 1761 SUBTRACT MATRIX, MATRIX2 1714 summary of (CAM 3) 647 summary of (CAM 5) 1375 TOF (CAM 3) 677 TOF (CAM 5) 1406 TON (CAM 3) 678 TON (CAM 5) 1408

TP (CAM 3) 679 TP (CAM 5) 1410 **TRACKANDHOLD 1696** TRANSFERSWITCH 1697 **TRANSPOSE MATRIX 1755** TRANSPOSE MATRIX, MATRIX2 1706 TYPE MATRIX 1749 types of 1631 URCV S 1412 USEND S 1414 functions ABS (CAM 3) 577 ABS (CAM 5) 1321 ABS LREAL 1569 ACOS (CAM 3) 578 ACOS (CAM 5) 1322 ACOS LREAL 1570 adding, renaming, and deleting (CAM 3) 279 adding, renaming, and deleting (CAM 5) 715 AND MASK (CAM 3) 579 AND MASK (CAM 5) 1323 AND MASK BYTE 1571 AND MASK DWORD 1572 AND MASK LWORD 1573 AND MASK WORD 1574 ARCREATE 580 ARREAD 582 **ARWRITE 583** ASCII (CAM 3) 585 ASCII (CAM 5) 1324 ASIN (CAM 3) 586 ASIN (CAM 5) 1325 ASIN LREAL 1575 ATAN (CAM 3) 587 ATAN (CAM 5) 1326 ATAN LREAL 1576 Bias (SAMA) 1173 calling from transitions (CAM 5) 1161 calling from transitions in IEC 61499 language 977 CHAR (CAM 3) 588 CHAR (CAM 5) 1327

COS (CAM 3) 589 COS (CAM 5) 1328 COS LREAL 1577 CURRENT ISA DATE 1329 DAY TIME 590 DELETE (CAM 3) 591 **DELETE (CAM 5) 1330** Exponential (SAMA) 1180 EXPT (CAM 3) 593 EXPT (CAM 5) 1332 EXPT LREAL 1578 F CLOSE 594 F EOF 595 F ROPEN 597 F WOPEN 598 FA READ 599 FA WRITE 601 FIND (CAM 3) 608 FIND (CAM 5) 1333 FM READ 604 FM WRITE 606 GET TIME STRING 1579 High Selecting (SAMA) 1182 HighLimit (SAMA) 1871 HighSignalLimiter (SAMA) 1902 INSERT (CAM 3) 609 **INSERT (CAM 5) 1334** IPIDController (SAMA) 1185 ISA SERIAL CLOSE 1580 ISA SERIAL CONNECT 1581 **ISA SERIAL DISCONNECT 1584** ISA SERIAL OPEN 1585 **ISA SERIAL RECEIVE 1587** ISA SERIAL SEND 1589 ISA SERIAL SET 1591 **ISA SERIAL STATUS 1593** LEFT (CAM 3) 611 LEFT (CAM 5) 1336 LIMIT (CAM 3) 613 LIMIT (CAM 5) 1338 LOCK CPU 1339 LOG (CAM 3) 614

LOG (CAM 5) 1340 LOG LREAL 1595 Low Selecting (SAMA) 1196 LowLimit (SAMA) 1874 MATransfer (SAMA) 1875 MATransferSet (SAMA) 1877 MAX (CAM 3) 615 MAX (CAM 5) 1341 MemBasict (SAMA) 1879 MemRS (SAMA) 1883 MemSR (SAMA) 1881 MID (CAM 3) 616 MID (CAM 5) 1342 MIN (CAM 3) 618 MIN (CAM 5) 1344 MLEN (CAM 3) 619 MLEN (CAM 5) 1345 MOD (CAM 3) 621 MOD (CAM 5) 1347 MUX4 (CAM 3) 622 MUX4 (CAM 5) 1348 MUX8 (CAM 3) 624 MUX8 (CAM 5) 1350 naming, usage, and execution of (CAM 3) 524 naming, usage, and execution of (CAM 5) 1216 NOT MASK (CAM 3) 626 NOT MASK (CAM 5) 1352 NOT MASK BYTE 1596 NOT MASK DWORD 1597 NOT MASK LWORD 1598 NOT MASK WORD 1599 ODD (CAM 3) 627 ODD (CAM 5) 1353 OR MASK (CAM 5) 1354 OR MASK BYTE 1600 OR MASK DWORD 1601 OR MASK LWORD 1602 OR MASK WORD 1603 PD (SAMA) 1888 POW (CAM 3) 629

POW (CAM 5) 1355 POW LREAL 1604 Proportional (SAMA) 1885 PulseDuration (SAMA) 1890 PulseDurationOfTheLesserTime (SAMA) 1892 RAND (CAM 3) 630 RAND (CAM 5) 1356 RemoteTunedPI (SAMA) 1886 REPLACE (CAM 3) 632 REPLACE (CAM 5) 1357 ReverseProportional (SAMA) 1894 RIGHT (CAM 3) 634 RIGHT (CAM 5) 1359 ROL (CAM 3) 636 ROL (CAM 5) 1361 ROL BYTE 1605 ROL DWORD 1606 ROL LWORD 1607 ROL WORD 1608 Root Extraction (SAMA) 1200 ROR (CAM 3) 637 ROR (CAM 5) 1362 ROR BYTE 1609 ROR DWORD 1610 ROR LWORD 1611 ROR WORD 1612 SEL (CAM 5) 1363 SEL(CAM 3) 638 SET PRIORITY 1613 SHL (CAM 3) 639 SHL (CAM 5) 1364 SHL BYTE 1614 SHL DWORD 1615 SHL LWORD 1616 SHL WORD 1617 SHR 1365 SHR (CAM 3) 640 SHR BYTE 1618 SHR DWORD 1619 SHR LWORD 1620 SHR WORD 1621

SIN (CAM 3) 642 SIN (CAM 5) 1367 SIN LREAL 1622 SQRT (CAM 3) 643 SQRT (CAM 5) 1368 SQRT_LREAL 1623 ST programs, calling from (CAM 3) 492 ST programs, calling from (CAM 5) 1088 SUB DATE DATE 1369 summary of (CAM 3) 575 summary of (CAM 5) 1319 TAN (CAM 3) 644 TAN (CAM 5) 1370 TAN LREAL 1624 TimeDelayOnInititiation (SAMA) 1896 TimeDelayOnTermination (SAMA) 1898 Totalizer (SAMA) 1872 TransferSwitch (SAMA) 1206 TriState (SAMA) 1900 TRUNC (CAM 3) 645 TRUNC (CAM 5) 1371 TRUNC LREAL 1625 types of 1567 UNLOCK CPU 1372 XOR MASK (CAM 3) 646 XOR MASK (CAM 5) 1373 XOR MASK BYTE 1626 XOR MASK DWORD 1627 XOR MASK LWORD 1628 XOR MASK WORD 1629 functions, conversion for analog variables 406

G

gauge objects inserting 67 setting default properties for 255 generating documentation 135 generating documentation 135 GET_F_MATRIX function block 1737 GET I MATRIX function block 1733 GET TIME STRING function 1579 GET TIME STRUCT function block 1634 GET VERSION, MATRIX2 operation 1725 getting versions of elements 858 GFREEZE statement (CAM 5) 1108 GFREEZE statement(CAM 3) 512 GKILL statement (CAM 3) 513 GKILL statement (CAM 5) 1110 global variables (CAM 3) 529 global variables (CAM 5) 1221 glossary of terms (CAM 3) 681 of terms (CAM 5) 1445 graphic languages in programs (CAM 3) 522 graphic languages in programs (CAM 5) 1214 Greater Than (SAMA elements) 1181 greater than operator 1304 greater than operator (CAM 3) 557 greater than or equal operator (CAM 3) 556 greater than or equal operator (CAM 5) 1302 grids, setting color options for 214 group grid for variables 283, 720 grouped objects default properties, setting for 256 ISaVIEW, in 84 GRST statement (CAM 3) 516 GRST statement (CAM 5) 1114 GSTART statement (CAM 3) 511 GSTART statement (CAM 5) 1106 GSTATUS statement (CAM 3) 514 GSTATUS statement (CAM 5) 1112

Η

healthy status, controller 905 heartbeat, defining for failover mechanisms 931 hierarchy SFC programs, of (CAM 5) 1126 High Limiting (SAMA elements) 1871

High Selecting (SAMA elements) 1182

HighLimit (SAMA functions) 1871 HighSignalLimiter (SAMA functions) 1902 history comparing versions from 873 viewer, working with 871 HSD network type, setting 1487 HYSTER function block (CAM 3) 662 HYSTER function block (CAM 5) 1392

I

I/O conversions, methods for 403 I/O devices alias names for CAM 3, displaying and setting as default 222 alias names for CAM 5, displaying and setting as default 223 I/O wiring view, configuring in 1489 Modbus/TCP client driver, configuring for 1490 Modbus/TCP server, configuring for 1505 supported drivers 1489 I/O wiring accessing and working with (CAM 3) 395 accessing and working with (CAM 5) 907 channels of devices (CAM 3) 400 channels of devices (CAM 5) 912 I/O devices, manager for 397 I/O devices, managing and setting attributes for (CAM 5) 909 identifiers defined words, using as (CAM 3) 532 defined words, using as (CAM 5) 1226 IEC 61131-3, elementary data types 1227 IEC 61499 basic function blocks 952 basic function blocks, keyboards shortcuts for 987 comments in programs and composite blocks, inserting 984 composite function blocks 979

cycle execution time for programs 948 debugging programs 949 diagrams, customizing display settings for 229 E CTU function block 1421 E CYCLE function block 1422 E D FF function block 1423 E DELAY function block 1424 E DEMUX function block 1425 E F TRIG function block 1426 E MERGE function block 1427 E N TABLE function block 1428 E PERMIT function block 1430 E R TRIG function block 1431 E REND function block 1432 E RESTART function block 1433 E RS function block 1434 E SELECT function block 1435 E SPLIT function block 1436 E SR function block 1437 E SWITCH function block 1438 E TABLE function block 1439 E_TABLE_CTRL function block 1441 E TRAIN function block 1442 execution control chart behavior 985 function blocks in programs and composite blocks, inserting 980 function blocks, main format of 950 links in programs and composite blocks, inserting 982 LocalEventInput function block 1444 program format and available elements 946 regions, inserting (CAM 5) 983 selection convergences in basic function blocks 964 selection divergences in basic function blocks 962 sequence controls in basic function blocks 961 simultaneous convergences in basic function blocks 966

simultaneous divergences in basic function blocks 965 states (steps) in basic function blocks 957 transitions and event transitions (conditions) for basic function blocks 959 variables in programs and composite blocks, inserting 981 IEC languages, customizing display options for 224 IF, THEN, ELSE, ELSIF, END IF ST basic statements (CAM 3) 501 IF, THEN, ELSE, ELSIF, END IF, ST basic statements (CAM 5) 1100 image objects inserting 63 setting default properties for 257 implementing failover mechanisms on a Windows platform 941 importing elements 733 environment settings 175 projects (CAM 5) 698 projects from ISaGRAF 3 288 target definitions into projects 732 variables 296, 736 initial states for IEC 61499 basic function blocks 957 initial steps inserting, in SFC (CAM 5) 1138 INSERT function (CAM 3) 609 INSERT function (CAM 5) 1334 inserting Alarm Signal (SAMA elements) 1170 arc objects 57 arrow objects 58 Averaging (SAMA elements) 1171 bar meter objects 74 Bias (SAMA elements and functions) 1173 blocks from the block library 35 blocks in FBD (CAM 3) 416 blocks in FBD (CAM 5) 1002 branches in LD diagrams (CAM 3) 481
button objects 65 coils in LD diagrams (CAM 3) 460 comments (FBD elements) (CAM 3) 444 comments (FBD elements) (CAM 5) 1032 comments in IEC 61499 programs and composite blocks 984 Derivative (SAMA elements) 1175 Difference (SAMA elements) 1177 Dividing (SAMA elements) 1178 edit box objects 66 elements in language containers 29 ellipse objects 59 Equal To (SAMA elements) 1179 Exponential (SAMA elements) 1180 function blocks in IEC 61499 programs and composite blocks 980 gauge objects 67 Greater Than (SAMA elements) 1181 High Limiting (SAMA elements) 1871 High Selecting (SAMA elements) 1182 HighLimit (SAMA functions) 1871 HighSignalLimiter (SAMA 1902 image objects 63 initial steps and steps, in SFC (CAM 5) 1138 Integral (SAMA elements) 1183 Integrate or Totalize (SAMA elements) 1872 IPID (SAMA elements) 1185 IPIDController (SAMA functions) 1185 **ISaVIEW** objects 56 jumps (CAM 5) 1147 jumps in LD diagrams (CAM 3) 477 jumps to labels (FBD elements)(CAM 3) 423 jumps to labels (FBD elements)(CAM 5) 1010 labels (FBD elements) (CAM 3) 421 labels (FBD elements)(CAM 5) 1008 left power rails (FBD elements)(CAM 3) 427 left power rails (FBD elements)(CAM 5) 1014 Lesser Than (SAMA elements) 1190

line objects 73 links in IEC 61499 programs and composite blocks 982 Logical AND (SAMA elements) 1191 Logical OR (SAMA elements) 1193 Logical Signal (SAMA elements) 1195 Low Limiting (SAMA elements) 1874 Low Selecting (SAMA elements) 1196 LowLimit (SAMA functions) 1874 MATransfer (SAMA elements and functions) 1875 MATransferSet (SAMA elements and functions) 1877 Measuring or Readout (SAMA elements) 1197 MemBasic (SAMA functions) 1879 Memory (Basic) (SAMA elements) 1879 Memory (Ro Dominant) (SAMA elements) 1883 Memory (So Dominant) (SAMA elements) 1881 MemRS (SAMA functions) 1883 MemSR (SAMA 1881 Multiplying (SAMA elements) 1198 NOT (SAMA elements) 1199 PD (SAMA elements and functions) 1888 polygon objects 76 Proportional (SAMA elements and functions) 1885 Proportional and Integral (SAMA elements) 1886 Pulse Duration (SAMA elements and functions) 1890 Pulse Duration of the Lesser Time (SAMA elements and functions) 1892 rectangle objects 60 regions (FBD elements)(CAM 3) 443 regions (FBD elements)(CAM 5) 1030 regions in IEC 61499 programs (CAM 5) 983 RemoteTunedPI (SAMA functions) 1886

return statements in LD diagrams (CAM 3) 479 returns (FBD elements)(CAM 3) 425 returns (FBD elements)(CAM 5) 1012 right power rails (FBD elements)(CAM 3) 428 right power rails (FBD elements)(CAM 5) 1015 Root Extraction (SAMA elements) 1200 rounded rectangle objects, inserting 61 rungs (FBD elements)(CAM 3) 426 rungs (FBD elements)(CAM 5) 1013 rungs with labels, comments (CAM 3) 454 rungs with labels, comments (CAM 5) 1046 SAMA Variable (SAMA elements) 1201 selection convergences (CAM 5) 1144 selection divergences (CAM 5) 1142 sequence controls (CAM 5) 1141 Server Monitored Variable (SAMA elements) 1202 Signal Monitor (SAMA elements) 1203 simultaneous convergences (CAM 5) 1146 simultaneous divergences (CAM 5) 1145 slider objects 70 Summing (SAMA elements) 1205 Time Delay On Inititiation (SAMA elements and functions) 1896 Time Delay On Termination (SAMA elements and functions) 1898 Totalizer (SAMA functions) 1872 Transfer (SAMA elements) 1206 TransferSwitch (SAMA 1206 transitions (CAM 5) 1140 Tri-State Signal (SAMA elements) 1900 triangle objects 62 TriState (SAMA 1900 Variable Signal Generator (SAMA elements) 1208 variables (FBD elements)(CAM 3) 418 variables (FBD elements)(CAM 5) 1005 variables in IEC 61499 programs and

Velocity Limiting (SAMA elements) 1902 vertical bars (FBD elements)(CAM 3) 420 vertical bars (FBD elements)(CAM 5) 1007 web container objects 64 installing, Windows runtime modules 1475 instances configuring function block, in FBD 1033 configuring function block, in LD 1075 instances, declared 125 INT, data types as variables and literal expressions 1235 Integral (SAMA elements) 1183 INTEGRAL function block (CAM 3) 663 INTEGRAL function block (CAM 5) 1393 Integrate or Totalize (SAMA elements) 1872 Integrated Development Environment (IDE) Navigator 162 interrupts enabling, configuring for programs 712 LOCK CPU function, usage with 1339 prompting to associate programs when adding or moving 201 UNLOCK CPU function, usage with 1372 **INVERT MATRIX function block 1757 INVERT MATRIX, MATRIX2 operation 1708** IPID and IPIDController (SAMA elements and functions) 1185 **IPIDCONTROLLER function block 1664** ISA SERIAL CLOSE function 1580 ISA SERIAL CONNECT function 1581 ISA SERIAL DISCONNECT function 1584 ISA SERIAL OPEN function 1585 ISA SERIAL RECEIVE function 1587 ISA SERIAL SEND function 1589 ISA SERIAL SET function 1591 **ISA SERIAL STATUS function 1593** ISAFREE-TGT target features 1473 ISAFREE-TGT target, files 1471 ISaGRAF target, error messages 1523 ISaRSI network type, setting 1488 **ISaVIEW**

composite blocks 981

adding screens 51 aligning objects 85 animation effects for objects 87 animation settings, customizing 246 arc objects, inserting 57 arrow objects, inserting 58 bar meter objects, inserting 74 button objects, inserting 65 color animation for objects, defining 90 creating screens 53 cutting, copying, and pasting objects 80 deleting objects 81 edit box objects, inserting 66 editing objects in screens 77 edition settings for screens and objects, defining 247 ellipse objects, inserting 59 exporting screens as templates 55 gauge objects, inserting 67 grouping and ungrouping objects 84 image objects, inserting 63 inserting objects 56 line objects, inserting 73 moving objects 82 moving objects to the front or back 86 objects, setting default property values for 248 polygon objects 76 previewing options for screens 101 properties, editing for objects 79 rectangle objects 60 resizing objects in screens 83 rounded rectangle objects 61 selecting objects 78 slider objects 70 triangle objects 62 web container objects 64 ISaVIEW, default property settings arc objects, for 249 arrow objects, for 250 bar meter objects, for 251 button objects, for 252

edit box objects, for 253 ellipse objects, for 254 gauge objects, for 255 grouped objects, for 256 image objects, for 257 line objects, for 259 rectangle objects, for 260 rounded rectangle objects, for 261 slider objects, for 262 triangle objects, for 263 web container objects, for 264

J

jumps for LD diagrams (CAM 5) 1070 in SFC programs (CAM 5) 1147 inserting in FB diagrams (CAM 3) 423 inserting in FB diagrams (CAM 5) 1010 inserting in LD diagrams (CAM 3) 477 Ladder Diagrams, inserting (CAM 5) 1070 steps, to (IEC programs) (CAM 5) 967 to steps (CAM 5) 1147

Κ

keyboard shortcuts accessing windows 182 defining for external tools 155 deployment view 42 development environment 182 FBD language (CAM 3) 445 FBD language (CAM 5) 1036 getting help 182 I/O wiring (CAM 3) 407 I/O wiring (CAM 5) 917 IEC 61499 basic function blocks 987 LD language (CAM 3) 482 LD language (CAM 5) 1078 managing 194 navigating in the development environment 182 SAMA language 1210 saving and closing 182 SFC language (CAM 5) 1163 ST language (CAM 3) 517 ST language (CAM 5) 1116 version source control 877 keywords reserved, list of (CAM 3) 527 reserved, list of (CAM 5) 1219

L

labels defining for rungs (CAM 3) 454 defining for rungs (CAM 5) 1046 inserting in FB diagrams (CAM 3) 421 inserting in FB diagrams (CAM 5) 1008 language containers, editing contents of 29 language editor, tasks performed using 27 language settings, changing the default 193 LD (Ladder Diagram) blocks, managing (CAM 3) 456 blocks, managing (CAM 5) 1048 branches (CAM 3) 481 branches (CAM 5) 1074 coils, usage and available types of (CAM 3) 460 coils, usage and available types of (CAM 5) 1053 conditions for transitions in IEC 61499 programs 976 configuring function block instances (CAM 5) 1075 contacts, usage and available types (CAM 3) 471 contacts, usage and available types (CAM 5) 1064 customizing display settings for 233

debugging (CAM 3) 451 debugging (CAM 5) 1041 direct coils (CAM 3) 463 direct coils (CAM 5) 1056 direct contacts (CAM 3) 473 direct contacts (CAM 5) 1066 jumps (CAM 3) 477 jumps (CAM 5) 1070 pulse falling edge (negative) coils (CAM 3) 466 pulse falling edge (negative) coils (CAM 5) 1059 pulse falling edge (negative) contacts (CAM 3) 476 pulse falling edge (negative) contacts (CAM 5) 1069 pulse rising edge (positive) coils (CAM 3) 465 pulse rising edge (positive) coils (CAM 5) 1058 pulse rising edge (positive) contacts (CAM 3) 475 pulse rising edge (positive) contacts (CAM 5) 1068 reset coils (CAM 3) 469 reset coils (CAM 5) 1062 return statements (CAM 3) 479 return statements (CAM 5) 1072 reverse coils (CAM 3) 464 reverse coils (CAM 5) 1057 reverse contacts (CAM 3) 474 reverse contacts (CAM 5) 1067 rungs, inserting (CAM 3) 454 rungs, inserting (CAM 5) 1046 Set coils (CAM 3) 467 Set coils (CAM 5) 1060 LD containers elements available for (CAM 3) 453 elements available for (CAM 5) 1045 LD language conditions for transitions (CAM 5) 1160

LEADLAGBACONTROLLER function block 1677 LEADLAGCONTROLLER function block 1674 LEFT function (CAM 3) 611 LEFT function (CAM 5) 1336 left power rails FB diagrams, inserting in (CAM 3) 427 FB diagrams, inserting in (CAM 5) 1014 less than operator (CAM 3) 566 less than operator (CAM 5) 1308 less than or equal operator (CAM 3) 565 less than or equal operator (CAM 5) 1306 Lesser Than (SAMA elements) 1190 libraries creating, templates for, effect of target on (CAM 3) 290 creating, templates for, effect of target on (CAM 5) 724 ISaGRAF 3.X, importing from 292 usage and limitations of, in projects (CAM 3) 294 usage and limitations of, in projects (CAM 5) 726 library, block, accessing and managing blocks in 35 licensing accessing and managing (CAM 3) 695 accessing and managing (CAM 5) 1467 LIM ALRM function block (CAM 3) 665 LIM ALRM function block (CAM 5) 1395 LIMIT function (CAM 3) 613 LIMIT function (CAM 5) 1338 limitations for failover mechanisms 944 LIMITER function block 1681 limiting searches, in the blocks list 125 line objects inserting 73 setting default properties for 258 linking devices and networks 41 IEC 61499 programs and composite blocks 982

jumps and steps (CAM 5) 1147 transitions to steps (jump to step) in IEC programs (CAM 5) 967 LINT, data types as variables and literal expressions 1239 literal expressions BOOL (CAM 3) 535 BOOL (CAM 5) 1232 **DATE 1245** DINT 1237 double integer 536 INT 1235 LINT 1239 **LREAL 1242** message 540 real (CAM 3) 537 real (CAM 5) 1241 SAFEBOOL 1249 SINT 1233 STRING 1246 TIME (CAM 3) 539 TIME (CAM 5) 1243 UDINT and DWORD 1238 UINT and WORD 1236 ULINT and LWORD 1240 USINT and BYTE 1234 literal languages in programs (CAM 3) 522 in programs (CAM 5) 1214 literal values, data types for 1252 local variables managing 131 scope of (CAM 5) 1221 scope of(CAM 3) 529 LocalEventInput function block 1444 LOCK CPU function 1339 locked variables enabling prompts when monitoring 202 forcing (CAM 3) 309 forcing (CAM 5) 764 viewing and unlocking while debugging 49 locking

I/O variables (CAM 3) 400 I/O variables (CAM 5) 912 items for source control 870 LOG function (CAM 3) 614 LOG function (CAM 5) 1340 LOG LREAL function 1595 logging target execution events 762 Logical AND (SAMA elements) 1191 Logical OR (SAMA elements) 1193 Logical Signal (SAMA elements) 1195 logical value forcing the (CAM 3) 309 forcing the (CAM 5) 764 Low Limiting (SAMA elements) 1874 Low Selecting (SAMA elements) 1196 LowLimit (SAMA functions) 1874 LREAL, data types as variables and literal expressions 1242 LWORD, data types as variables and literal expressions 1240

Μ

main format for IEC 61499 programs 946 manager, add-ins, defining behavior for loading 153 managing block library 35 code on targets (CAM 5) 746 dictionary variables in the grid (CAM 3) 388 dictionary variables in the grid (CAM 5) 891 environment settings 171 external tools 155 I/O wiring (CAM 3) 395 I/O wiring (CAM 5) 907 keyboard shortcuts 194 pending changes 855 toolbox 107 versions using source control 845 MATransfer (SAMA elements and functions) 1875

MATransferSet (SAMA elements and functions) 1877 matrix operations 1727 matrix operations block 1727 matrix operations blocks 1631 ADD MATRIX 1759 COLS MATRIX 1753 COPY COL MATRIX 1747 COPY MATRIX 1743 COPY ROW MATRIX 1745 DUP MATRIX 1741 FREE MATRIX 1731 GET F MATRIX 1737 GET I MATRIX 1733 **INVERT MATRIX 1757** MULTIPLY MATRIX 1763 NEW MATRIX 1729 PRINT MATRIX 1769 PUT F MATRIX 1739 PUT I MATRIX 1735 **ROWS MATRIX 1751** SCALAR F MATRIX 1767 SCALAR I MATRIX 1765 SUBTRACT MATRIX 1761 TRANSPOSE MATRIX 1755 **TYPE MATRIX 1749** MATRIX2 operations ADD MATRIX 1711 COPY COL MATRIX 1703 COPY ROW MATRIX 1700 GET VERSION 1725 **INVERT MATRIX 1708** MULTIPLY MATRIX 1717 PRINT MATRIX 1723 SCALAR MATRIX 1720 SUBTRACT MATRIX 1714 **TRANSPOSE MATRIX 1706** matrix2 operations 1698 matrix2 operations block 1698 MAX function (CAM 3) 615 MAX function (CAM 5) 1341 MC AbortTrigger function block 1780

MC AccelerationProfile function block 1782 MC CamIn function block 1784 MC CamOut function block 1787 MC CamTableSelect function block 1788 MC DigitalCamSwitch function block 1790 MC GearIn function block 1792 MC GearInPos function block 1795 MC GearOut function block 1798 MC Halt function block 1799 MC Home function block 1801 MC MoveAbsolute function block 1803 MC MoveContinuousAbsolute function block 1808 MC MoveContinuousRelative function block 1811 MC MoveRelative function block 1814 MC MoveSuperimposed function block 1816 MC MoveVelocity function block 1818 MC PositionProfile function block 1823 MC Power function block 1825 MC ReadActualPosition function block 1827 MC ReadActualTorque function block 1828 MC ReadActualVelocity function block 1830 MC ReadAxisError function block 1832 MC ReadBoolParameter function block 1834 MC ReadDigitalInput function block 1837 MC ReadDigitalOutput function block 1839 MC ReadParameter function block 1841 MC ReadStatus function block 1844 MC Reset function block 1847 MC SetOverride function block 1848 MC SetPosition function block 1850 MC TorqueControl function block 1854 MC TouchProbe function block 1857 MC VelocityProfile function block 1859 MC WriteBoolParameter function block 1861 MC WriteDigitalOutput function block 1864 MC WriteParameter function block 1866 Measuring or Readout (SAMA elements) 1197 MemBasic (SAMA functions) 1879 Memory (Basic) (SAMA elements) 1879 Memory (Ro Dominant) (SAMA elements) 1883 Memory (So Dominant) (SAMA elements) 1881 memory allocation SFC dynamic behavior, for (CAM 5) 1122 MemRS (SAMA functions) 1883 MemSR (SAMA functions) 1881 message data type, variables and literal expressions 540 error list, viewing in 160 MID function (CAM 3) 616 MID function (CAM 5) 1342 MIN function (CAM 3) 618 MIN function (CAM 5) 1344 MLEN function (CAM 3) 619 MLEN function (CAM 5) 1345 MOD function (CAM 3) 621 MOD function (CAM 5) 1347 modbus address settings 209 Modbus/TCP client driver configuring 1490 importing definitions into ISaGRAF 1494 message descriptions 1498 message prefixes 1497 modifying properties 1495 preparing targets 1493 Modbus/TCP server configuring 1505 exception codes 1520 importing drivers 1510 message desciptions 1513 message prefixes 1512 modifying properties 1511 preparing the target 1509 monitoring failover mechanism, a 939 prompts and variables, options for 202 values while running online or debugging (CAM 5) 769 variables while running or debugging (CAM 3) 312 motion control function blocks

data types and parameters for 1771 MC AbortTrigger 1780 MC AccelerationProfile 1782 MC CamIn 1784 MC CamOut 1787 MC CamTableSelect 1788 MC DigitalCamSwitch 1790 MC GearIn 1792 MC GearInPos 1795 MC GearOut 1798 MC Halt 1799 MC Home 1801 MC MoveAbsolute 1803 MC MoveContinuousAbsolute 1808 MC MoveContinuousRelative 1811 MC MoveRelative 1814 MC MoveSuperimposed 1816 MC MoveVelocity 1818 MC PositionProfile 1823 MC Power 1825 MC ReadActualPosition 1827 MC ReadActualTorque 1828 MC ReadActualVelocity 1830 MC ReadAxisError 1832 MC ReadBoolParameter 1834 MC ReadDigitalInput 1837 MC ReadDigitalOutput 1839 MC ReadParameter 1841 MC ReadStatus 1844 MC Reset 1847 MC SetOverride 1848 MC SetPosition 1850 MC TorqueControl 1854 MC TouchProbe 1857 MC VelocityProfile 1859 MC WriteBoolParameter 1861 MC WriteDigitalOutput 1864 MC WriteParameter 1866 moving elements in language containers 29 **ISaVIEW** objects 82 programs to the interrupts section 201 MSG operator 567 multiplication operator (CAM 3) 544 multiplication operator (CAM 5) 1255 MULTIPLY_MATRIX function block 1763 MULTIPLY_MATRIX, MATRIX2 operation 1717 Multiplying (SAMA elements) 1198 MUX4 function (CAM 3) 622 MUX4 function (CAM 5) 1348 MUX8 function (CAM 3) 624 MUX8 function (CAM 5) 1350

Ν

naming conventions defined words (CAM 3) 532 defined words (CAM 5) 1226 directly represented variables (CAM 3) 531 directly represented variables (CAM 5) 1224 function blocks, for (CAM 3) 525 function blocks, for (CAM 5) 1217 functions (CAM 3) 524 functions (CAM 5) 1216 programs, for (CAM 3) 522 programs, for (CAM 5) 1214 naming projects 6 navigation window device view, opening and setting as default 211 project aspects and information, accessing with 25 NEG operator (CAM 3) 568 NEG operator (CAM 5) 1310 networks ETCP type 1485 HSD type 1487 ISaRSI type 1488 managing 40 Serial type 287 TCP/IP type 286 Windows runtime modules supported 1484

networks (CAM3) 285 NEW MATRIX function block 1729 non-stored actions steps. in (CAM 5) 1154 steps, in (IEC 61499 language) 973 normative function blocks, summary of 1419 NOT (SAMA elements) 1199 not equal operator (CAM 3) 569 not equal operator (CAM 5) 1312 NOT operator 1311 NOT MASK function (CAM 3) 626 NOT MASK function (CAM 5) 1352 NOT MASK BYTE function 1596 NOT MASK DWORD function 1597 NOT MASK LWORD function 1598 NOT MASK WORD function 1599 NOW function block 1636 numerical display settings, when monitoring 202

0

objects. ISaVIEW action animation effects for 88 aligning 85 animation effects 87 arc. inserting 57 arrow, inserting 58 bar meter, inserting 74 button, inserting 65 color animation effect for 90 cutting, copying, and pasting 80 deleting 81 displacement animation effect for 92 edit box, inserting 66 ellipse, inserting 59 gauge, inserting 67 grouping and ungrouping 84 image, inserting 63 line, inserting 73 moving to the front or back 86 physical appearance of, editing 77

polygon, inserting 76 properties of, editing for 79 rectangle, inserting 60 repositioning objects in screens 82 resizing in screens 83 rotation animation effect for 94 rounded rectangle, inserting 61 selecting 78 size animation effect for 96 slider, inserting 70 text animation effect for 98 triangle, inserting 62 visibility animation effect for 100 web container, inserting 64 ODD function (CAM 3) 627 ODD function (CAM 5) 1353 offline grid settings for spy lists 265, 266 online applications monitoring values of (CAM 3) 312 monitoring values of (CAM 5) 769 running (CAM 3) 304 running (CAM 5) 745 online changes, performing 751 online execution, failover mechanism 939 online grid settings for spy lists 265, 267 **OPERATE** operator 570 operators 1 gain 1263 addition (CAM 3) 545 addition (CAM 5) 1257 ANA 558 AND 551, 1264 ANY TO BOOL 1266 ANY TO BYTE 1272 ANY TO DATE 1297 ANY TO DINT 1280 ANY TO DWORD 1284 ANY TO INT 1274 ANY TO LINT 1286 ANY TO LREAL 1294 ANY TO LWORD 1290 ANY TO REAL 1292

ANY TO SINT 1268 ANY TO STRING 1298 ANY TO TIME 1296 ANY TO UDINT 1282 ANY TO UINT 1276 ANY TO ULINT 1288 ANY TO USINT 1270 ANY TO WORD 1278 BOO 553 CAT 554 Difference (SAMA) 1177 Dividing (SAMA) 1178 division (CAM 3) 548, 1261 equal (CAM 3) 555 equal (CAM 5) 1300 Equal To (SAMA) 1179 greater than 1304 greater than (CAM 3) 557 Greater Than (SAMA) 1181 greater than or equal (CAM 3) 556 greater than or equal (CAM 5) 1302 less than (CAM 3) 566 less than (CAM 5) 1308 less than or equal (CAM 3) 565 less than or equal (CAM 5) 1306 Lesser Than (SAMA) 1190 Logical AND (SAMA) 1191 Logical OR (SAMA) 1193 MSG 567 multiplication (CAM 3) 544 multiplication (CAM 5) 1255 Multiplying (SAMA) 1198 NEG (CAM 3) 568 NEG (CAM 5) 1310 NOT 1311 NOT (SAMA) 1199 not equal (CAM 3) 569 not equal (CAM 5) 1312 **OPERATE 570** OR (CAM 3) 571 OR (CAM 5) 1314 REAL 559

subtraction (CAM 3) 546 subtraction (CAM 5) 1259 summary of (CAM 3) 543 summary of (CAM 5) 1253 Summing (SAMA) 1205 SYSTEM 560 TMR 572 XOR (CAM 3) 573 XOR (CAM 5) 1316 options block library, specifying for 208 CAM3, specifying for 209 deployment view, settings for 210 documentation generator 212, 213 generated documentation 212, 213 grids, accessing 214 IEC languages, customizing display settings for 224 ISaVIEW, customizing settings for objects, animation, editing 245 language settings, changing default 193 modbus address 209 projects, default locations and behaviors 198 settings files, saving 192 source control, for 203 source control, specifying environment options for 205 source control, specifying plug-in options for 204 source control, specifying user tools for 207 startup, behavior during 197 word settings 213 workbench environment, accessing for 188 OR operator (CAM 3) 571 OR operator (CAM 5) 1314 OR MASK function (CAM 5) 1354 OR MASK BYTE function 1600 OR MASK DWORD function 1601 OR MASK LWORD function 1602 OR MASK WORD function 1603 output window, accessing, managing contents of 158

overloading ANY data type 1230

Ρ

parallel branches for LD diagrams (CAM 5) 1074 parameters arrays, defining for 1250 defining in LD (CAM 3) 456 defining in LD (CAM 5) 1048 FBD, defining in (CAM 3) 416 FBD, defining in (CAM 5) 1002 function blocks, for (CAM 3) 525 function blocks. for (CAM 5) 1217 functions, for (CAM 3) 524 functions, for (CAM 5) 1216 managing 131 motion control function blocks, for 1771 parameters display, accessing and usage of 129 parameters grid, customizing color options for 218 parameters view accessing, usage in FBD programs (CAM 3) 416 accessing, usage in FBD programs (CAM 5) 1002 accessing, usage in LD programs (CAM 3) 456 accessing, usage in LD programs(CAM 5) 1048 user-defined functions or function blocks, managing in 131 parent SFC program, of a (CAM 5) 1126 parentheses ST programs, in (CAM 3) 490 ST programs, in (CAM 5) 1086 password creating, deleting, for elements 728 creating, deleting, for targets 730 pasting

elements in the Solution Explorer 3 **ISaVIEW** objects 80 parameters, local variables 131 spv list items 147 variables in the dictionary and variable selector 121 PD (SAMA elements and functions) 1888 pending changes, committing 855 performing online changes 751 physical value forcing the (CAM 3) 309 forcing the (CAM 5) 764 PID AL function block 1682 polygon objects inserting 76 setting default properties for 259 ports, defining for usage 1522 POUs block library, inserting from 35 building (CAM 3) 300 building (CAM 5) 741 child SFC (CAM 5) 1128 cleaning (CAM 3) 303 cleaning (CAM 5) 744 POW function (CAM 3) 629 POW function (CAM 5) 1355 POW LREAL function 1604 previewing animation effects animation (editable effects) 103 ISaVIEW screens 101 selections (non-editable animation effects) 102 primary device, defining for failover mechanisms 931 PRINT MATRIX function block 1769 PRINT MATRIX, MATRIX2 operation 1723 process control DERIVATE function block (CAM 3) 659 DERIVATE function block (CAM 5) 1389 HYSTER function block (CAM 3) 662 HYSTER function block (CAM 5) 1392

INTEGRAL function block (CAM 3) 663 INTEGRAL function block (CAM 5) 1393 STACKINT function block (CAM 3) 675 STACKINT function block (CAM 5) 1404 producer variables, managing for bindings 924 production error variables 919 programs cycle execution for IEC 61499 948 devices, adding and managing for 278 interrupts options, prompting to associate programs 201 naming and hierarchy of types (CAM 3) 522 naming and hierarchy of types (CAM 5) 1214 resources, managing for 712 projects adding temporary 9 building (CAM 3) 300 building (CAM 5) 741 cleaning (CAM 3) 303 cleaning (CAM 5) 744 cleaning, setting the option for 200 creating (CAM 5) 698 creating ISaGRAF 3 272 default options for components, defining for 198 downloading code to targets (CAM 3) 305 downloading code to targets (CAM 5) 747 existing, adding to solutions 11 importing from ISaGRAF (CAM 5) 698 importing from ISaGRAF 3 288 importing libraries for use with 292 importing target definitions into 732 libraries, creating for use with (CAM 3) 290 libraries, creating for use with (CAM 5) 724 libraries, using in a (CAM 3) 294 libraries, using in a (CAM 5) 726 naming 6 navigation window, accessing aspects and information for 25 new, adding to solutions 9 opening 8

saving changes to 12 startup, setting 14 templates and template features, available for 722 uploading code from targets 749 properties, accessing for solutions 13 properties window accessing and using the 47 creating and editing members using the collection editor 48 Proportional (SAMA elements and functions) 1885 Proportional and Integral (SAMA elements) 1886 pulse actions in steps 971, 1152 Pulse Duration (SAMA elements and functions) 1890 Pulse Duration of the Lesser Time (SAMA elements and functions) 1892 pulse falling edge (negative) coils (CAM 3) 466 coils (CAM 5) 1059 contacts in FBD (CAM 3) 442 contacts in FBD (CAM 5) 1029 contacts in LD (CAM 3) 476 contacts in LD (CAM 5) 1069 pulse rising edge (positive) coils (CAM 3) 465 coils (CAM 5) 1058 contacts in FBD (CAM 3) 441 contacts in FBD (CAM 5) 1028 contacts in LD (CAM 3) 475 contacts in LD (CAM 5) 1068 PUT F MATRIX function block 1739 PUT I MATRIX function block 1735

Q

quick declaration, creating variables using 118 Quick Find utility, working with 142

R

R TRIG function block (CAM 3) 667 R TRIG function block (CAM 5) 1397 RAND function (CAM 3) 630 RAND function (CAM 5) 1356 **RATELIMITER function block 1685 RATIO** function block 1687 RATIOCALIBRATION function block 1688 real attribute for I/O devices (CAM 3) 397 for I/O devices (CAM 5) 909 real data type variables and literal expressions (CAM 3) 537 variables and literal expressions (CAM 5) 1241 REAL operator 559 real-time debugging targets in (CAM 3) 306 debugging targets in (CAM 5) 755 rebuilding items and viewing progress during (CAM 3) 302 items and viewing progress during (CAM 5) 743 rectangle objects inserting 60 setting default properties for 260 references, cross 897 regions inserting in FB diagrams (CAM 3) 443 inserting in FB diagrams (CAM 5) 1030 inserting in IEC 61499 diagrams (CAM 5) 983 RemoteTunedPI (SAMA functions) 1886 removing licensing (CAM 3) 695 licensing (CAM 5) 1467 renaming devices (CAM 3) 274

devices (CAM 5) 702 function blocks (CAM 3) 281 function blocks (CAM 5) 717 functions (CAM 3) 279 functions (CAM 5) 715 programs (CAM 3) 278 programs (CAM 5) 712 resources 705 renumbering elements in basic function blocks 952 SFC elements (CAM 5) 1136 REPEAT, UNTIL, END REPEAT ST basic statements (CAM 3) 503 ST basic statements (CAM 5) 1102 REPLACE function (CAM 3) 632 REPLACE function (CAM 5) 1357 replacing strings, expressions and wildcards with the Ouick Replace utility 144 repositories defining for source control 854 exploring the control 848 exploring the working copy 851 requirements minimum and additional for development platforms (CAM 3) 325 minimum and additional for development platforms (CAM 5) 773 reserved keywords list of (CAM 3) 527 list of (CAM 5) 1219 reset coil in FBD (CAM 3) 435 in FBD (CAM 5) 1022 in LD (CAM 3) 469 in LD (CAM 5) 1062 resetting environment settings 179 resizing, ISaVIEW objects 83 resources building 741 cleaning (CAM 5) 744 diagnostic information, accessing for 758

execution rules for 1218 managing for devices 705 starting and stopping on targets 750 **RETENTIVEONTIMER function block 1690** return statements LD diagrams, inserting in (CAM 3) 479 LD diagrams, inserting in (CAM 5) 1072 ST diagrams, inserting in (CAM 5) 1103 ST programs, inserting in (CAM 3) 504 return symbols FB diagrams, inserting in (CAM 3) 425 FB diagrams, inserting in (CAM 5) 1012 reverse coil in FBD (CAM 3) 432 in FBD (CAM 5) 1019 in LD (CAM 3) 464 in LD (CAM 5) 1057 reverse contact in FBD (CAM 3) 440 in FBD (CAM 5) 1027 in LD (CAM 3) 474 in LD (CAM 5) 1067 reverting versions of elements 861 RIGHT function (CAM 3) 634 RIGHT function (CAM 5) 1359 right power rails inserting in FBD (CAM 3) 428 inserting in FBD (CAM 5) 1015 ROL function (CAM 3) 636 ROL function (CAM 5) 1361 ROL BYTE function 1605 ROL DWORD function 1606 ROL LWORD function 1607 ROL WORD function 1608 Root Extraction (SAMA elements) 1200 ROR function (CAM 3) 637 ROR function (CAM 5) 1362 ROR BYTE function 1609 ROR DWORD function 1610 ROR LWORD function 1611 ROR WORD function 1612 rotation, animation effect for ISaVIEW objects 94 rounded rectangle objects inserting 61 setting default properties 261 rows arrays grid, customizing display in 215 defined words view, customizing display in 216 dictionary view, customizing display in 217 parameters grid, customizing display in 218 structures grid, customizing display in 219 variable groups view, customizing display in 220 variable selector, customizing display in 221 variables selector, filtering in 124 **ROWS MATRIX function block 1751** RS function block (CAM 3) 668 RS function block (CAM 5) 1398 rules for device cycles execution 526 rungs FB diagrams, inserting in (CAM 3) 426 FB diagrams, inserting in (CAM 5) 1013 labels and comments, inserting with (CAM 3) 454 labels and comments, inserting with (CAM 5) 1046 running applications in simulation mode (CAM 3) 311 applications in simulation mode (CAM 5) 768 applications online (CAM 3) 304 applications online (CAM 5) 745 runtime modules, Windows 1469

S

SAFE type 1248 SAFEBOOL, data types as variables and literal expressions 1249 Safety C Function Blocks SF_AND 1906

SF Antivalent 1907 SF EDM 1909 SF EmergencyStop 1912 SF EnableSwitch 1915 SF Equivalent 1918 SF ESPE 1920 SF GuardLocking 1922 SF GuardMonitoring 1925 SF ModeSelector 1928 SF MutingPar 1934 SF MutingPar 2Sensor 1938 SF MutingSeq 1942 SF OutControl 1946 SF SafelyLimitedSpeed 1949 SF SafeStop1 1952 SF SafeStop2 1954 SF SafetyRequest 1956 SF TestableSafetySensor 1958 SF TwoHandControlTypeII 1962 SF TwoHandControlTypeIII 1964 SAMA (Scientific Apparatus Makers Association) debugging programs 1168 display settings, customizing for 236 elements 1169 execution order 1167 main diagram format 1166 SAMA (Scientific Apparatus Makers Association) elements Alarm Signal 1170 Averaging 1171 Difference 1177 Dividing 1178 Equal To 1179 Exponential 1180 Greater Than 1181 High Selecting 1182 Lesser Than 1190 Logical AND 1191 Logical OR 1193 Logical Signal 1195 Low Selecting 1196

Measuring or Readout 1197 Multiplying 1198 NOT 1199 Root Extraction 1200 SAMA Variable 1201 Server Monitored Variable 1202 Signal Monitor 1203 Summing 1205 Variable Signal Generator 1208 SAMA (Scientific Apparatus Makers Association) elements and functions Bias 1173 Derivative 1175 High Limiting 1871 HighLimit 1871 HighSignalLimiter 1902 Integral 1183 Integrate or Totalize 1872 **IPID 1185 IPIDController** 1185 Low Limiting 1874 LowLimit 1874 MATranferSet 1877 MATransfer 1875 MemBasic 1879 Memory (Basic) 1879 Memory (Ro Dominant) 1883 Memory (So Dominant) 1881 MemRS 1883 MemSR 1881 PD 1888 Proportional 1885 Proportional and Integral 1886 Pulse Duration 1890 Pulse Duration of the Lesser Time 1892 RemoteTunedPI 1886 Time Delay On Inititiation 1896 Time Delay On Termination 1898 Totalizer 1872 Transfer 1206 TransferSwitch 1206 Tri-State Signal 1900

TriState 1900 Velocity Limiting 1902 saving changes to solutions and projects 12 SCALAR F MATRIX function block 1767 SCALAR I MATRIX function block 1765 SCALAR MATRIX, MATRIX2 operation 1720 SCALER function block 1692 scope of variables (CAM 3) 529 of variables (CAM 5) 1221 screens, ISaVIEW aligning objects 85 cutting, copying, and pasting objects 80 deleting objects 81 moving objects 82 moving objects to the front or back 86 previewing 101 resizing objects 83 secondary device, defining for failover mechanisms 931 sections template 212 SEL function (CAM 5) 1363 SEL function(CAM 3) 638 selecting blocks, displaying parameters when 129 elements in language containers 29 **ISaVIEW** objects 78 selection convergences basic function blocks, in IEC 61499 964 inserting (CAM 5) 1144 selection divergences basic function blocks, in IEC 61499 962 inserting (CAM 5) 1142 selections, previewing (non-editable animation effects) 102 SEMA function block 670 sending objects to the back, ISaVIEW screens 86 sequence controls inserting (CAM 5) 1141 inserting in IEC 61499 basic function blocks 961

sequential programs, SFC (CAM 5) 1122 Serial 285 serial communications ISA SERIAL CLOSE 1580 ISA SERIAL CONNECT 1581 ISA SERIAL DISCONNECT 1584 ISA SERIAL OPEN 1585 **ISA SERIAL RECEIVE 1587** ISA SERIAL SEND 1589 ISA SERIAL SET 1591 ISA SERIAL STATUS 1593 Serial network 287 Server Monitored Variable (SAMA elements) 1202 Set coil for FBD (CAM 3) 433 for FBD (CAM 5) 1020 for LD (CAM 3) 467 for LD (CAM 5) 1060 SET PRIORITY function 1613 SETPOINT function block 1693 setting Serial network connection properties 287 TCP/IP network connection properties 286 setting passwords for elements in the solution explorer 728 for targets in the solution explorer 730 settings exporting environment 172 importing environment 175 managing environment 171 reverting environment 179 settings files, options for saving 192 SF AND function block 1906 SF Antivalent function block 1907 SF EDM function block 1909 SF EmergencyStop function block 1912 SF EnableSwitch function block 1915 SF Equivalent function block 1918 SF ESPE function block 1920 SF GuardLocking function block 1922 SF GuardMonitoring function block 1925

SF ModeSelector function block 1928 SF MutingPar function block 1934 SF MutingPar 2Sensor function block 1938 SF MutingSeq function block 1942 SF OutControl function block 1946 SF SafelyLimitedSpeed function block 1949 SF SafeStop1 function block 1952 SF SafeStop2 function block 1954 SF SafetyRequest function block 1956 SF TestableSafetySensor function block 1958 SF TwoHandControlTypeII function block 1962 SF TwoHandControlTypeIII function block 1964 SFC (Sequential Function Chart) breakpoints on step activation (CAM 5) 1131 customizing display settings for 238 GFREEZE statement in actions (CAM 3) 512 GFREEZE statement in actions (CAM 5) 1108 GKILL statement in actions (CAM 3) 513 GKILL statement in actions (CAM 5) 1110 GRST statement in actions (CAM 3) 516 GRST statement in actions (CAM 5) 1114 GSTART statement in actions (CAM 3) 511 GSTART statement in actions (CAM 5) 1106 GSTATUS statement in actions (CAM 3) 514 GSTATUS statement in actions (CAM 5) 1112 TSTART statement in actions 507 TSTOP statement in actions 509 SFC language breakpoints on step deactivation (CAM 5) 1132 breakpoints on transition (CAM 5) 1134 child POUs (CAM 5) 1128 debugging programs (CAM 5) 1129 execution behavior, stages of (CAM 5) 1124

format, behavior, and execution of programs (CAM 5) 1122 keyboards shortcuts for (CAM 5) 1163 SFC programs actions in steps 1156 child and parent, hierarchy of (CAM 5) 1126 coding action blocks for steps (CAM 5) 1149 elements available for (CAM 5) 1136 initial steps and steps (CAM 5) 1138 jumps (CAM 5) 1147 selection convergences (CAM 5) 1144 selection divergences (CAM 5) 1142 sequence controls (CAM 5) 1141 simultaneous convergences (CAM 5) 1146 simultaneous divergences (CAM 5) 1145 transitions (CAM 5) 1140 SHL function (CAM 3) 639 SHL function (CAM 5) 1364 SHL BYTE function 1614 SHL DWORD function 1615 SHL LWORD function 1616 SHL WORD function 1617 shortcuts, keyboard 194 SHR function 1365 SHR function (CAM 3) 640 SHR BYTE function 1618 SHR DWORD function 1619 SHR LWORD function 1620 SHR WORD function 1621 signal generation BLINK function block (CAM 3) 650 BLINK function block (CAM 5) 1378 SIG GEN function block (CAM 3) 673 SIG GEN function block (CAM 5) 1402 Signal Monitor (SAMA elements) 1203 SIGNALSELECTOR function block 1695 simulation mode debugging targets during (CAM 3) 306 debugging targets during (CAM 5) 755 running an application (CAM 3) 311 running an application (CAM 5) 768 simultaneous convergences

in IEC 61499 basic function blocks 966 inserting (CAM 5) 1146 simultaneous divergences in IEC 61499 basic function blocks 965 inserting (CAM 5) 1145 SIN function (CAM 3) 642 SIN function (CAM 5) 1367 SIN LREAL function 1622 SINT, data types as variables and literal expressions 1233 size, animation effect for ISaVIEW objects 96 slider objects inserting 70 setting default properties for 262 solution configurations creating 21 editing 22 solution explorer, accessing and managing elements in 3 solution platforms, renaming 23 solutions building (CAM 3) 300 building (CAM 5) 741 cleaning (CAM 3) 303 cleaning (CAM 5) 744 existing projects, adding to 11 new projects, adding to a 9 opening 8 properties, accessing for 13 rebuilding (CAM 3) 302 rebuilding (CAM 5) 743 saving changes to 12 sorting arrays in the grid 881 block library 35 blocks list, the 125 columns in the variable selector 123 defined words (CAM 3) 385 defined words (CAM 5) 888 errors 160 structures 885 source control

accessing from the working copy explorer 851 canceling local modifications 876 committing pending changes 855 comparing versions from 873 environment options for 205 getting versions of elements 858 history of items, viewing 871 locking and unlocking items 870 plug-in selection for 204 repositories, defining for 854 repository explorer, accessing from 848 reverting versions of elements 861 settings for 203 subversion user tools, specifying for 207 versions, managing for elements 845 working copy from a repository, creating 868 spy list accessing and usage 147 dependency variables, adding to 43 grid settings, defining offline 266 grid settings, defining offline and online 265 grid settings, defining online 267 SQRT function (CAM 3) 643 SORT function (CAM 5) 1368 SORT LREAL function 1623 SR function block (CAM 3) 671 SR function block (CAM 5) 1400 ST (Structured Text) assignment basic statements for (CAM 3) 496 assignment basic statements for (CAM 5) 1094 basic elements and statements (CAM 3) 495 basic elements and statements (CAM 5) 1093 calling function blocks from (CAM 3) 493 calling function blocks from (CAM 5) 1089 calling functions from (CAM 3) 492 calling functions from (CAM 5) 1088

CASE, OF, ELSE, END_CASE basic statements for (CAM 3) 497

- CASE, OF, ELSE, END_CASE basic statements for (CAM 5) 1095
- debugging programs (CAM 3) 494
- debugging programs (CAM 5) 1090
- display settings, customizing for 242
- EXIT basic statements for (CAM 3) 498
- EXIT basic statements for (CAM 5) 1097
- expressions and parentheses in (CAM 3) 490
- expressions and parentheses in (CAM 5) 1086
- extensions for SFC child execution (CAM 3) 506
- extensions for SFC child execution (CAM 5) 1105
- FOR, TO, BY, DO, END_FOR basic statements for (CAM 3) 499
- FOR, TO, BY, DO, END_FOR basic statements for (CAM 5) 1098
- IF, THEN, ELSE, ELSIF, END_IF basic statements for (CAM 3) 501
- IF, THEN, ELSE, ELSIF, END_IF basic statements for (CAM 5) 1100
- main syntax of programs in (CAM 3) 486
- main syntax of programs in (CAM 5) 1082
- programming conditions for transitions in 975
- REPEAT, UNTIL, END_REPEAT basic statements for (CAM 3) 503
- REPEAT, UNTIL, END_REPEAT basic statements for (CAM 5) 1102
- return statements for (CAM 3) 504
- return statements for (CAM 5) 1103
- WHILE, DO, END_WHILE basic statements for (CAM 3) 505
- WHILE, DO, END_WHILE basic statements for (CAM 5) 1104
- ST language
 - conditions for transitions (CAM 5) 1159
- STACKINT function block (CAM 3) 675
- STACKINT function block (CAM 5) 1404

stages of SFC execution behavior (CAM 5) 1124 standard functions ABS LREAL 1569 ACOS LREAL 1570 AND MASK BYTE 1571 AND MASK DWORD 1572 AND MASK LWORD 1573 AND MASK WORD 1574 ASIN LREAL 1575 ATAN LREAL 1576 COS LREAL 1577 EXPT LREAL 1578 LOG LREAL 1595 NOT MASK BYTE 1596 NOT MASK DWORD 1597 NOT MASK LWORD 1598 NOT MASK WORD 1599 OR MASK BYTE 1600 OR MASK DWORD 1601 OR MASK LWORD 1602 OR MASK WORD 1603 POW LREAL 1604 ROL BYTE 1605 ROL DWORD 1606 ROL LWORD 1607 ROL WORD 1608 ROR BYTE 1609 ROR DWORD 1610 ROR LWORD 1611 ROR WORD 1612 SET PRIORITY 1613 SHL BYTE 1614 SHL DWORD 1615 SHL LWORD 1616 SHL WORD 1617 SHR BYTE 1618 SHR DWORD 1619 SHR LWORD 1620

SHR WORD 1621

SIN LREAL 1622

SQRT_LREAL 1623 TAN LREAL 1624

TRUNC LREAL 1625 XOR MASK BYTE 1626 XOR MASK DWORD 1627 XOR MASK LWORD 1628 XOR MASK WORD 1629 standard operators, SYSTEM 560 starting resources on targets 750 startup options 197 startup projects, setting 14 statements for ST, summary of basic (CAM 3) 495 statements, basic for ST, summary of (CAM 5) 1093 states for IEC 61499 basic function blocks 957 status information, accessing for controllers 905 status messages, reviewing in the output window 158 status of items using source control 845 stepping into code (CAM 3) 451 into code (CAM 5) 1041 steps attaching action blocks to 968 boolean actions in 1151 coding action blocks for (CAM 5) 1149 inserting, in SFC (CAM 5) 1138 jumping to, in IEC programs (CAM 5) 967 non-stored actions in (CAM 5) 1154 pulse actions in (CAM 5) 1152 SFC actions 1156 stopping resources on targets 750 STRING, data types as variables and literal expressions 1246 string manipulation ASCII function (CAM 3) 585 ASCII function (CAM 5) 1324 CHAR function (CAM 3) 588 CHAR function (CAM 5) 1327 DELETE function (CAM 3) 591 DELETE function (CAM 5) 1330 FIND function (CAM 3) 608 FIND function (CAM 5) 1333

GET TIME STRING function 1579 INSERT function (CAM 3) 609 INSERT function (CAM 5) 1334 LEFT function (CAM 3) 611 LEFT function (CAM 5) 1336 MID function (CAM 3) 616 MID function (CAM 5) 1342 MLEN function (CAM 3) 619 MLEN function (CAM 5) 1345 REPLACE function (CAM 3) 632 REPLACE function (CAM 5) 1357 RIGHT function (CAM 3) 634 RIGHT function (CAM 5) 1359 strings locating with Quick Find 142 replacing with the Quick Replace utility 144 structures derived types 1251 structures grid customizing color options for 219 managing, sorting, and filtering 885 SUB DATE DATE function 1369 SUBTRACT MATRIX function block 1761 SUBTRACT MATRIX, MATRIX2 operation 1714 subtraction operator (CAM 3) 546 subtraction operator (CAM 5) 1259 Subversion environment options for source control, specifying 205 settings for source control 203 user tools for source control 207 Summing (SAMA elements) 1205 syntax of ST programs (CAM 3) 486 of ST programs (CAM 5) 1082 system operations LOCK CPU function 1339 UNLOCK CPU function 1372 SYSTEM operator 560 system requirements (CAM 3) 325 system requirements (CAM 5) 773

system variables 758

Т

tables, conversion for analog variables 404 TAN function (CAM 3) 644 TAN function (CAM 5) 1370 TAN LREAL function 1624 target control, SET PRIORITY function 1613 target features **ISAFREE-TGT 1473** targets access control, setting password protection 730 CC86M 284 debugging in real-time or simulation (CAM 3) 306 debugging in real-time or simulation (CAM 5) 755 definitions, importing into projects 732 downloading code to (CAM 3) 305 downloading code to (CAM 5) 747 error messages (Events logger and ISaGRAF) 1523 error messages (system, application, and programs) 313 ISA68M 284 ISA86M 284 ISAFREE-TGT, files 1471 logging execution events for 762 management operations for (CAM 5) 746 performing online changes on 751 project templates for 722 running applications online (CAM 3) 304 running applications online (CAM 5) 745 SCC 284 SIMULATE 284 starting and stopping resources on 750 type of, effect on libraries 292 types of, effect on libraries (CAM 5) 724 uploading code from 749

TCP/IP 285 TCP/IP network 286 templates exporting ISaVIEW screens as 55 for projects, features of 722 temporary projects, adding 9 terms glossary of (CAM 3) 681 glossary of (CAM 5) 1445 text, animation effect for ISaVIEW objects 98 third-party libraries, dependencies on (CAM 5) 726 TIME data type, variables and literal expressions (CAM 3) 539 data type, variables and literal expressions (CAM 5) 1243 Time Delay On Inititiation (SAMA elements and functions) 1896 Time Delay On Termination (SAMA elements and functions) 1898 time operations CURRENT ISA DATE function 1329 DAY TIME function 590 GET TIME STRUCT function block 1634 NOW function block 1636 SUB DATE DATE function 1369 TOF function block (CAM 3) 677 TOF function block (CAM 5) 1406 TON function block (CAM 3) 678 TON function block (CAM 5) 1408 TP function block (CAM 3) 679 TP function block (CAM 5) 1410 TMR operator 572 toolbars creating 166 cross reference browser 897 customizing 165 **ISaVIEW 51** modifying images for commands in 167 output window, for 158 properties window, for the 47

toolbox

accessing and managing 107 coils types available for FBD (CAM 3) 429 coils types available for FBD (CAM 5) 1016 coils types available for LD (CAM 5) 1053 contact elements available for LD diagrams (CAM 3) 471 contact elements available for LD diagrams (CAM 5) 1064 contact elements for FBD (CAM 3) 437 contact elements for FBD (CAM 5) 1024 Totalizer (SAMA functions) 1872 TP function block (CAM 3) 679 TP function block (CAM 5) 1410 **TRACKANDHOLD** function block 1696 Transfer (SAMA elements) 1206 TransferSwitch (SAMA functions) 1206 **TRANSFERSWITCH function block 1697** transitions attaching conditions to 974 calling function blocks from 978 calling functions from, in IEC 61499 language 977 clearing forcing (CAM 5) 1135 coding conditions for (CAM 5) 1158 IEC 61499 basic function blocks, for 959 jump to steps (CAM 5) 1147 LD programming for conditions in IEC 61499 language 976 LD programming for conditions of (CAM 5) 1160 SFC programs, inserting in (CAM 5) 1140 ST programming for conditions in IEC 61499 language 975 ST programming for conditions of (CAM 5) 1159 TRANSPOSE MATRIX function block 1755 TRANSPOSE MATRIX, MATRIX2 operation 1706 Tri-State Signal (SAMA elements) 1900 triangle objects inserting 62

setting default properties for 263 TriState (SAMA functions) 1900 TRUNC function (CAM 3) 645 TRUNC function (CAM 5) 1371 TRUNC_LREAL function 1625 TSTART statement 507 TSTOP statement 509 TYPE_MATRIX function block 1749 types action blocks, of 968 data 534 derived, arrays 1250 derived, structures 1251 elementary IEC 61131-3 1228 safety 1248

U

UDINT, data types as variables and literal expressions 1238 UINT, data types as variables and literal expressions 1236 ULINT, data types as variables and literal expressions 1240 ungrouping ISaVIEW objects 84 unified differences, when comparing from source control history 873 UNLOCK CPU function 1372 unlocking I/O variables (CAM 3) 400 I/O variables (CAM 5) 912 items for source control 870 unlocking variables enabling prompts when monitoring 202 forcing values of (CAM 3) 309 forcing values of (CAM 5) 764 while debugging 49 uploading, code from targets 749 URCV S function block 1412 USEND S function block 1414 user types, defining 1228

USINT, data types as variables and literal expressions 1234

V

values forcing variables (CAM 3) 309 forcing variables (CAM 5) 764 variable bindings 919 variable groups view customizing color options for 220 variable selector accessing and managing display settings for the 113 color options for, customizing 221 creating variables 117 cutting, copying, pasting in 121 deleting variables 122 editing variables with 120 sorting the columns of 123 Variable Signal Generator (SAMA elements) 1208 variables access system 758 Alarm Signal (SAMA) 1170 analog, conversion functions for 406 analog, conversion tables for 404 binding errors 919 BOOL (CAM 3) 535 BOOL (CAM 5) 1232 DATE 1245 DINT 1237 directly represented (CAM 3) 531 directly represented (CAM 5) 1224 double integer 536 editing variables using the variable selector 120 exporting 296, 736 filtering using the variable selector 124 forcing values of (CAM 3) 309 forcing values of (CAM 5) 764

grouping 283, 720 I/O, forcing values of 400 importing 296, 736 inserting in FB diagrams (CAM 3) 418 inserting in FB diagrams (CAM5) 1005 inserting in IEC 61499 programs and composite blocks 981 INT 1235 LINT 1239 Logical Signal (SAMA) 1195 **LREAL 1242** managing in the grid (CAM 3) 388 managing in the grid (CAM 5) 891 Measuring or Readout (SAMA) 1197 message 540 quick declaration, creating with 118 real (CAM 3) 537 real (CAM 5) 1241 SAFEBOOL 1249 SAMA Variable (SAMA) 1201 scope and attributes of (CAM 3) 529 scope and attributes of (CAM 5) 1221 Server Monitored Variable (SAMA) 1202 SINT 1233 sorting columns in the variable selector 123 STRING 1246 TIME (CAM 3) 539 TIME (CAM 5) 1243 UDINT and DWORD 1238 UINT and WORD 1236 ULINT and LWORD 1240 **USINT and BYTE 1234** variable selector, creating with the 117 Variable Signal Generator (SAMA) 1208 viewing and unlocking locked 49 variables dependencies, viewing 43 Velocity Limiting (SAMA elements) 1902 version source control canceling local modifications 876 committing pending changes 855 comparing versions from 873

creating a working copy from a repository 868 getting versions of elements 858 locking and unlocking items 870 managing elements in 845 reverting versions of elements 861 viewing the history of items 871 vertical bars inserting in FBD (CAM 3) 420 inserting in FBD (CAM 5) 1007 viewing build operations (CAM 3) 300 build operations (CAM 5) 741 dependencies of variables 43 history of items 871 locked variables while debugging 49 virtual attribute for I/O devices (CAM 3) 397 for I/O devices (CAM 5) 909 visibility, animation effect for ISaVIEW objects 100

W

warning status, controller 905 warnings, viewing in the error list 160 web container objects inserting 64 setting default properties for 264 WHILE, DO, END WHILE ST basic statements (CAM 3) 505 ST basic statements (CAM 5) 1104 wildcards locating with Quick Find 142 replacing with the Quick Replace utility 144 Windows runtime modules files used by 1469 format of 1469 installing 1475 network types 1484 wiring

channels of devices (CAM 3) 400 channels of devices (CAM 5) 912 defining for variables (CAM 3) 395 defining for variables (CAM 5) 907 WITH qualifier 952 WORD, data types as variables and literal expressions 1236 words defined (CAM 3) 532 defined (CAM 5) 1226 workbench environment, modifying options 188 working copy from a repository, creating a 868 workspace, full-screen and zooming in 27

X

XOR operator (CAM 3) 573 XOR operator (CAM 5) 1316 XOR_MASK function (CAM 3) 646 XOR_MASK function (CAM 5) 1373 XOR_MASK_BYTE function 1626 XOR_MASK_DWORD function 1627 XOR_MASK_LWORD function 1628 XOR_MASK_WORD function 1629

Ζ

zooming using the focus box 27