
Table of Contents

Introducing the Automation Collaborative Platform _____ 1
Solution Explorer ... 3

Creating Projects... 6
Opening Projects and Solutions.. 8
Adding New Projects.. 9
Adding Existing Projects .. 11
Saving Changes to Solutions and Projects ... 12
Solution Properties ... 13

Setting Startup Projects..14
Setting Project Dependencies ..16
Setting Configuration Properties..17

Configuration Manager ..19
Creating Solution Configurations...21
Editing Solution Configurations...22
Editing Solution Platforms ...23

Specifying Debug Source Files..24

Navigation Window... 25

Language Editor... 27
Editing the Contents of Language Containers .. 29

Block Library ... 35

Deployment View .. 37
Devices ... 38
Networks... 40
Connections .. 41
Deployment View Keyboard Shortcuts .. 42

Variable Dependencies .. 43
Properties Window ... 47

Collection Editor..48

Locked Variables Viewer .. 49

ISaVIEW.. 51
Creating ISaVIEW Screens .. 53
Exporting ISaVIEW Screens as Templates .. 55
Inserting Objects... 56
Automation Collaborative Platform i

Arc ...57
Arrow...58
Ellipse ..59
Rectangle ...60
Rounded Rectangle..61
Triangle..62
Image ...63
Web Container ...64
Button ..65
Edit Box...66
Gauge...67
Slider..70
Line ..73
Bar Meter ...74
Polygon ..76

Editing Objects ... 77
Selecting Objects ...78
Editing the Properties of Objects...79
Cutting, Copying, and Pasting Objects..80
Deleting Objects ..81
Moving Objects ...82
Resizing Objects ..83
Grouping Objects...84
Aligning Objects..85
Moving Objects to the Front and Back..86

Defining Animation Effects for Objects .. 87
Action ..88
Color ..90
Displacement ...92
Rotation ...94
Size ..96
Text ..98
Visibility ..100

Previewing ISaVIEW Screens.. 101
Previewing Selections..102
Previewing Animation Effects (Editable)..103

Toolbox.. 107

Variable Selector ... 113
ii Table of Contents

Creating Variables .. 117
Creating Multiple Variables Using Quick Declaration 118
Editing Existing Variables.. 120
Cutting, Copying, and Pasting Variables.. 121
Deleting Variables .. 122
Sorting Columns ... 123
Filtering Variables .. 124

Block Selector.. 125
Parameters Display ... 129

Parameters View .. 131

Generating Documentation .. 135

Find and Replace Utility .. 141
Quick Find .. 142
Quick Replace... 144

Spy Lists .. 147

Add-in Manager ... 153

External Tools.. 155

Working in the Development Environment... 157
Displaying the Output Window.. 158
Using the Error List .. 160
Navigating in the Development Environment .. 162
Customizing Toolbars... 165
Creating Toolbars ... 166
Customizing Commands... 167
Importing and Exporting Settings... 171

Export Selected Environment Settings ..172
Naming a Settings File ...173
Settings Export in Progress ..174

Import Selected Environment Settings ..175
Choosing a Collection of Settings to Import....................................176
Choosing Settings to Import...177
Settings Import in Progress ..178

Reset all Settings..179
Settings Reset in Progress ..180

Operations Summary ...181
Development Environment Keyboard Shortcuts .. 182

Options for the Development Environment... 187
Automation Collaborative Platform iii

Setting Environment Options ... 188
Find and Replace ...190
Fonts and Colors ..191
Import and Export Settings..192
International Settings ...193
Shortcut Keyboard Combinations..194
Startup..197

Specifying Project Options... 198
Build Options...200
Interrupts Options ..201
Online Settings ..202

Specifying Source Control Settings ... 203
Plug-in Selection..204
Subversion Environment ...205
Subversion User Tools...207

Specifying Block Library Settings ... 208
Specifying CAM3 Settings... 209
Specifying Deployment View Settings .. 210
Specifying Device View Options ... 211
Specifying Documentation Generator Options .. 212

Word Settings ..213
Setting Grid Options... 214

Arrays View...215
Defined Words View ...216
Dictionary View...217
Parameters Grid ...218
Structures View ...219
Variable Groups View ...220
Variable Selector ...221

Defining CAM 3 I/O Device Settings .. 222
Defining CAM 5 I/O Device Settings .. 223
Setting IEC Language Options... 224

Function Block Diagram..225
IEC 61499..229
Ladder Diagram...233
SAMA..236
Sequential Function Chart ...238
Structured Text ..242

Setting ISaVIEW Options .. 245
iv Table of Contents

ISaVIEW Animation Settings..246
ISaVIEW Edition Settings ...247
ISaVIEW Objects Settings...248

Arc Settings..249
Arrow Settings ...250
Bar Meter Settings..251
Button Settings ...252
Edit Box Settings..253
Ellipse Settings...254
Gauge Settings ...255
Group Settings..256
Image Settings..257
Line Settings...258
Polygon Settings...259
Rectangle Settings..260
Rounded Rectangle Settings ..261
Slider Settings ..262
Triangle Settings ..263
Web Container Settings..264

Defining Spy List Settings.. 265
Offline Grid Settings..266
Online Grid Settings ..267

Description Window .. 269

ISaGRAF 3 Concrete Automation Model _____________ 271
Creating a Project... 272

Devices ... 274
Programs... 278
Functions .. 279
Function Blocks .. 281
Variables ... 283
Targets .. 284
Networks and Connections ... 285

TCP/IP..286
Serial ..287

Importing an ISaGRAF 3 Project... 288

Creating a Library .. 290

Importing an ISaGRAF 3 Library .. 292
Automation Collaborative Platform v

Using a Library in a Project... 294

Importing and Exporting Variables Data... 296

Generating Code .. 299
Building Solutions and Project Elements ... 300
Rebuilding Solutions .. 302
Cleaning Solutions and Project Elements .. 303

Running an Application Online ... 304
Downloading Code to Targets.. 305
Debugging .. 306

Forcing the Values of Variables ..309
Simulating .. 311
Monitoring.. 312
Error Messages ... 313

Getting Started... 323
System Requirements for Development Platforms 325
Naming Conventions and Limitations.. 327
Introducing the Automation Collaborative Platform (ACP).................. 330
Walking Through an Existing Application .. 350
Starting with a Basic Application... 362
Importing an Existing Application ... 376

Dictionary .. 383
Defined Words Grid ... 385
Variables Grid .. 388

Device View .. 393

I/O Wiring.. 395
I/O Devices... 397
I/O Channels... 400
I/O Conversions.. 403

Conversion Tables ...404
Conversion Functions ..406

I/O Wiring Keyboard Shortcuts ... 407

FBD Language... 409
FBD Diagram Main Format ... 410
Execution Order of FBD Programs .. 413
Debugging FBD Programs ... 414
FBD Elements .. 415

Blocks ..416
vi Table of Contents

Variables ..418
Vertical Bars ..420
Labels...421
Jumps ...423
Returns ...425
Rungs ...426
Left Power Rails ..427
Right Power Rails ..428
Coils ...429

Direct Coil ..431
Reverse Coil ...432
Set Coil...433
Reset Coil ...435

Contacts..437
Direct Contact ..439
Reverse Contact ...440
Pulse Rising Edge Contact ...441
Pulse Falling Edge Contact ..442

Regions ..443
Comments ..444

FBD Keyboard Shortcuts.. 445

LD Language ... 449
Debugging LD Programs.. 451
LD Elements ... 453

Rungs ...454
Blocks ..456
Coils ...460

Direct Coil ..463
Reverse Coil ...464
Pulse Rising Edge Coil...465
Pulse Falling Edge Coil..466
Set Coil...467
Reset Coil ...469

Contacts..471
Direct Contact ..473
Reverse Contact ...474
Pulse Rising Edge Contact ...475
Pulse Falling Edge Contact ..476

Jumps ...477
Automation Collaborative Platform vii

Returns...479
Branches ..481

LD Keyboard Shortcuts.. 482

ST Language.. 485
ST Main Syntax.. 486
Expressions and Parentheses .. 490
Calling Functions ... 492
Calling Function Blocks ... 493
Debugging ST Programs .. 494
ST Basic Elements and Statements .. 495

Assignments...496
CASE Statement ..497
EXIT Statement ...498
FOR Statement ..499
IF-THEN-ELSIF-ELSE-END_IF Statement...501
REPEAT Statement ...503
RETURN Statement ..504
WHILE Statement ...505

ST Extensions... 506
TSTART Statement ...507
TSTOP Statement ..509
GSTART Statement in SFC Action...511
GFREEZE Statement in SFC Action...512
GKILL Statement in SFC Action ..513
GSTATUS Statement in SFC Action ..514
GRST Statement in SFC Action ..516

ST Keyboard Shortcuts .. 517

Language Reference .. 521
Programs... 522
Functions .. 524
Function Blocks.. 525
Execution Rules.. 526
Reserved Keywords.. 527
Variables... 529
Directly Represented Variables.. 531
Defined Words ... 532
Data Types.. 534

Boolean Data Type ..535
viii Table of Contents

Double Integer Data Type..536
Real Data Type ..537
Time Data Type ...539
Message Data Type..540

Operators.. 543
Multiplication ... 544
Addition .. 545
Subtraction.. 546
Division .. 548
1 GAIN ... 550
AND.. 551
BOO.. 553
CAT .. 554
Equal ... 555
Greater Than or Equal .. 556
Greater Than ... 557
ANA.. 558
REAL.. 559
SYSTEM .. 560
Less Than or Equal ... 565
Less Than.. 566
MSG ... 567
NEG ... 568
Not Equal .. 569
OPERATE .. 570
OR .. 571
TMR ... 572
XOR ... 573

Functions.. 575
ABS .. 577
ACOS.. 578
AND_MASK .. 579
ARCREATE ... 580
ARREAD.. 582
ARWRITE .. 583
ASCII.. 585
ASIN... 586
ATAN ... 587
Automation Collaborative Platform ix

CHAR... 588
COS .. 589
DAY_TIME.. 590
DELETE... 591
EXPT .. 593
F_CLOSE ... 594
F_EOF .. 595
F_ROPEN... 597
F_WOPEN.. 598
FA_READ .. 599
FA_WRITE .. 601
FM_READ ... 604
FM_WRITE.. 606
FIND... 608
INSERT .. 609
LEFT .. 611
LIMIT... 613
LOG ... 614
MAX .. 615
MID ... 616
MIN ... 618
MLEN... 619
MOD .. 621
MUX4... 622
MUX8... 624
NOT_MASK .. 626
ODD .. 627
OR_MASK... 628
POW .. 629
RAND... 630
REPLACE .. 632
RIGHT.. 634
ROL .. 636
ROR ... 637
SEL .. 638
SHL ... 639
SHR ... 640
SIN ... 642
SQRT.. 643
x Table of Contents

TAN ... 644
TRUNC... 645
XOR_MASK .. 646

Function Blocks ... 647
AVERAGE ... 648
BLINK .. 650
CMP ... 651
CTD ... 653
CTU ... 655
CTUD .. 657
DERIVATE .. 659
F_TRIG... 661
HYSTER... 662
INTEGRAL .. 663
LIM_ALRM ... 665
R_TRIG .. 667
RS .. 668
SEMA ... 670
SR .. 671
SIG_GEN.. 673
STACKINT... 675
TOF... 677
TON .. 678
TP ... 679

Glossary ... 681

Licensing.. 695

ISaGRAF 5 Concrete Automation Model _____________ 697
Creating a Project... 698

Devices ... 702
Resources.. 705
Programs... 712
Functions .. 715
Function Blocks .. 717
Variables ... 720

Choosing Project Templates for Targets ... 722

Creating a Library .. 724
Automation Collaborative Platform xi

Using a Library in a Project... 726

Setting Project Access Control .. 728

Setting Target Access Control ... 730

Importing Target Definitions... 732

Importing and Exporting Elements.. 733

Importing and Exporting Variables Data... 736

Generating Code .. 740
Building Solutions and Project Elements ... 741
Rebuilding Solutions .. 743
Cleaning Solutions and Project Elements .. 744

Running an Application Online ... 745
Target Management.. 746

Downloading Code to Targets ...747
Uploading Code from Targets ...749
Stopping and Starting Resources ...750
Performing Online Changes ..751

Debugging .. 755
Accessing Diagnostic Information (System Variables).........................758
Logging Target Execution Events ...762
Forcing the Values of Variables ..764

Simulating .. 768
Monitoring.. 769

Getting Started... 771
System Requirements for Development Platforms 773
Differences with Previous Versions ... 775
Naming Conventions and Limitations.. 779
Introducing the Automation Collaborative Platform (ACP).................. 784
Walking Through an Existing Application .. 806
Starting with a Basic Application... 819
Importing an Existing Application ... 838

Version Source Control ... 845
Using the Repository Explorer ... 848
Using the Working Copy Explorer... 851
Defining a Repository .. 854
Committing Pending Changes.. 855
Getting Versions of Elements... 858
Reverting Versions of Elements... 861
xii Table of Contents

Creating a Working Copy from a Repository... 868
Locking and Unlocking Elements .. 870
Viewing the History of Elements ... 871
Comparing Element Versions... 873
Canceling Local Modifications... 876
Version Source Control Keyboard Shortcuts ... 877

Dictionary .. 879
Arrays Grid ... 881
Structures Grid.. 885
Defined Words Grid ... 888
Variables Grid... 891

Cross Reference Browser... 897

Device View .. 901

Controller Status .. 905

I/O Wiring.. 907
I/O Devices ... 909
I/O Channels ... 912
I/O Wiring Keyboard Shortcuts.. 917

Bindings ... 919
Bindings View .. 924

Failover Mechanism .. 931
Configuring a Failover Mechanism.. 935
Monitoring the Failover Mechanism .. 939
Implementing Failover Mechanisms on a Windows Platform 941
Limitations for Failover Mechanisms... 944

IEC 61499 Language ... 945
IEC 61499 Program Main Format .. 946
Cycle Execution Time in IEC 61499 Programs ... 948
Debugging IEC 61499 Programs.. 949
IEC 61499 Function Block Main Format ... 950
Basic IEC 61499 Function Blocks.. 952

States ..957
Transitions..959
Sequence Controls ...961

Selection Divergences..962
Selection Convergences ...964
Simultaneous Divergences ...965
Automation Collaborative Platform xiii

Simultaneous Convergences ..966
Jumps to Steps ...967
Coding Action Blocks for Steps ..968

Boolean Actions...970
Pulse Actions ...971
Non-Stored Actions ...973

Coding Conditions for Transitions ..974
Conditions Programmed in ST...975
Conditions Programmed in LD..976

Calling Functions from Transitions ...977
Calling Function Blocks from Transitions ..978

Composite IEC 61499 Function Blocks ... 979
Function Blocks ...980
Variables ..981
Links ..982
Regions ..983
Comments ..984

Execution Control Chart Behavior ... 985
IEC 61499 Keyboard Shortcuts.. 987

FBD Language... 991
FBD Diagram Main Format ... 992
Execution Order of FBD Programs .. 994
Debugging FBD Programs ... 997
FBD Elements .. 1001

Blocks ..1002
Variables ..1005
Vertical Bars ..1007
Labels...1008
Jumps ...1010
Returns...1012
Rungs ...1013
Left Power Rails ..1014
Right Power Rails ..1015
Coils...1016

Direct Coil..1018
Reverse Coil...1019
Set Coil...1020
Reset Coil...1022

Contacts ...1024
xiv Table of Contents

Direct Contact ..1026
Reverse Contact ...1027
Pulse Rising Edge Contact ...1028
Pulse Falling Edge Contact ..1029

Regions ..1030
Comments ..1032

Configuring Function Block Instances ... 1033
FBD Keyboard Shortcuts.. 1036

LD Language ... 1039
Debugging LD Programs.. 1041
LD Elements ... 1045

Rungs ...1046
Blocks ..1048
Coils ...1053

Direct Coil ..1056
Reverse Coil ...1057
Pulse Rising Edge Coil...1058
Pulse Falling Edge Coil..1059
Set Coil...1060
Reset Coil ...1062

Contacts..1064
Direct Contact ..1066
Reverse Contact ...1067
Pulse Rising Edge Contact ...1068
Pulse Falling Edge Contact ..1069

Jumps ...1070
Returns ...1072
Branches...1074

Configuring Function Block Instances ... 1075
LD Keyboard Shortcuts .. 1078

ST Language .. 1081
ST Main Syntax .. 1082
Expressions and Parentheses .. 1086
Calling Functions.. 1088
Calling Function Blocks ... 1089
Debugging ST Programs... 1090
ST Basic Elements and Statements... 1093

Assignments...1094
Automation Collaborative Platform xv

CASE Statement ..1095
EXIT Statement ...1097
FOR Statement ..1098
IF-THEN-ELSIF-ELSE-END_IF Statement.......................................1100
REPEAT Statement ...1102
RETURN Statement ..1103
WHILE Statement ...1104

ST Extensions... 1105
GSTART Statement in SFC Action...1106
GFREEZE Statement in SFC Action...1108
GKILL Statement in SFC Action ..1110
GSTATUS Statement in SFC Action ..1112
GRST Statement in SFC Action ..1114

ST Keyboard Shortcuts .. 1116

SFC Language ... 1121
SFC Main Format ... 1122
SFC Execution Behavior .. 1124
SFC Program Hierarchy ... 1126
Child SFC POUs .. 1128
Debugging SFC Programs.. 1129

Breakpoint on Step Activation...1131
Breakpoint on Step Deactivation ...1132
Breakpoint on Transition ...1134
Transition Clearing Forcing...1135

SFC Elements ... 1136
Steps...1138
Transitions ...1140
Sequence Controls ...1141

Selection Divergences..1142
Selection Convergences ...1144
Simultaneous Divergences...1145
Simultaneous Convergences ..1146

Jumps to Steps ...1147
Coding Action Blocks for Steps ... 1149

Boolean Actions...1151
Pulse Actions ...1152
Non-Stored Actions ...1154
SFC Actions...1156

Coding Conditions for Transitions ... 1158
xvi Table of Contents

Conditions Programmed in ST...1159
Conditions Programmed in LD..1160

Calling Functions from Transitions .. 1161
Calling Function Blocks from Transitions ... 1162
SFC Keyboard Shortcuts .. 1163

SAMA Language ... 1165
SAMA Diagram Main Format.. 1166
Execution Order of SAMA Programs... 1167
Debugging SAMA Programs.. 1168
SAMA Elements... 1169

Alarm Signal ..1170
Averaging...1171
Bias ..1173
Derivative...1175
Difference ..1177
Dividing ...1178
Equal To...1179
Exponential ..1180
Greater Than ..1181
High Selecting..1182
Integral ...1183
IPID ...1185
Lesser Than..1190
Logical AND..1191
Logical OR...1193
Logical Signal ..1195
Low Selecting ..1196
Measuring or Readout..1197
Multiplying ..1198
NOT ...1199
Root Extraction ..1200
SAMA Variable ...1201
Server Monitored Variable ..1202
Signal Monitor ...1203
Summing ..1205
Transfer ..1206
Variable Signal Generator..1208

Mapping Chart of SAMA Elements with IEC 61131-3 Elements 1209
SAMA Keyboard Shortcuts.. 1210
Automation Collaborative Platform xvii

Language Reference .. 1213
Programs... 1214
Functions .. 1216
Function Blocks.. 1217
Execution Rules.. 1218
Reserved Keywords.. 1219
Variables... 1221
Directly Represented Variables.. 1224
Defined Words ... 1226
Data Types.. 1227

Elementary IEC 61131-3 Types ..1228
ANY Data Type ...1230
ANY_ELEMENTARY Data Type ..1231
Boolean Data Type ..1232
Short Integer Data Type...1233
Unsigned Short Integer or BYTE Data Type.................................1234
Integer Data Type ..1235
Unsigned Integer or Word Data Type..1236
Double Integer Data Type..1237
Unsigned Double Integer or Double Word Data Type1238
Long Integer Data Type ...1239
Unsigned Long Integer or Long Word Data Type.........................1240
Real Data Type ..1241
Long Real Data Type ...1242
Time Data Type ...1243
Date Data Type ..1245
String Data Type ..1246

Safety Type..1248
Safety Boolean Data Type ...1249

Derived Types: Arrays...1250
Derived Types: Structures ...1251

Literal Values ... 1252

Operators ... 1253
Multiplication ... 1255
Addition.. 1257
Subtraction.. 1259
Division .. 1261
1 GAIN ... 1263
AND ... 1264
xviii Table of Contents

ANY_TO_BOOL ... 1266
ANY_TO_SINT ... 1268
ANY_TO_USINT... 1270
ANY_TO_BYTE.. 1272
ANY_TO_INT.. 1274
ANY_TO_UINT... 1276
ANY_TO_WORD .. 1278
ANY_TO_DINT... 1280
ANY_TO_UDINT.. 1282
ANY_TO_DWORD ... 1284
ANY_TO_LINT ... 1286
ANY_TO_ULINT .. 1288
ANY_TO_LWORD.. 1290
ANY_TO_REAL.. 1292
ANY_TO_LREAL ... 1294
ANY_TO_TIME... 1296
ANY_TO_DATE.. 1297
ANY_TO_STRING.. 1298
Equal ... 1300
Greater Than or Equal .. 1302
Greater Than ... 1304
Less Than or Equal ... 1306
Less Than.. 1308
NEG .. 1310
NOT .. 1311
Not Equal .. 1312
OR... 1314
XOR.. 1316

Functions.. 1319
ABS .. 1321
ACOS.. 1322
AND_MASK .. 1323
ASCII.. 1324
ASIN... 1325
ATAN ... 1326
CHAR ... 1327
COS .. 1328
CURRENT_ISA_DATE... 1329
DELETE ... 1330
Automation Collaborative Platform xix

EXPT .. 1332
FIND... 1333
INSERT .. 1334
LEFT .. 1336
LIMIT... 1338
LOCK_CPU ... 1339
LOG.. 1340
MAX... 1341
MID .. 1342
MIN .. 1344
MLEN... 1345
MOD... 1347
MUX4... 1348
MUX8... 1350
NOT_MASK .. 1352
ODD ... 1353
OR_MASK... 1354
POW ... 1355
RAND... 1356
REPLACE .. 1357
RIGHT.. 1359
ROL .. 1361
ROR.. 1362
SEL... 1363
SHL .. 1364
SHR .. 1365
SIN.. 1367
SQRT.. 1368
SUB_DATE_DATE... 1369
TAN.. 1370
TRUNC .. 1371
UNLOCK_CPU.. 1372
XOR_MASK .. 1373

Function Blocks ... 1375
AVERAGE... 1376
BLINK.. 1378
CMP.. 1379
CONNECT ... 1381
CTD .. 1384
xx Table of Contents

CTU .. 1386
CTUD ... 1387
DERIVATE .. 1389
F_TRIG... 1391
HYSTER... 1392
INTEGRAL .. 1393
LIM_ALRM ... 1395
R_TRIG .. 1397
RS ... 1398
SR ... 1400
SIG_GEN.. 1402
STACKINT... 1404
TOF... 1406
TON .. 1408
TP.. 1410
URCV_S... 1412
USEND_S... 1414

Normative Function Blocks ... 1419
E_CTU.. 1421
E_CYCLE... 1422
E_D_FF .. 1423
E_DELAY .. 1424
E_DEMUX ... 1425
E_F_TRIG .. 1426
E_MERGE.. 1427
E_N_TABLE .. 1428
E_PERMIT ... 1430
E_R_TRIG.. 1431
E_REND... 1432
E_RESTART .. 1433
E_RS... 1434
E_SELECT ... 1435
E_SPLIT ... 1436
E_SR... 1437
E_SWITCH... 1438
E_TABLE... 1439
E_TABLE_CTRL... 1441
E_TRAIN.. 1442
LocalEventInput 1444
Automation Collaborative Platform xxi

Glossary ... 1445

Licensing ... 1467

Windows Runtime Modules ______________________ 1469
ISAFREE-TGT.. 1471

Target Features ... 1473

Installing Windows Run-time Modules... 1475

Setting Networks and Connections.. 1484
ETCP .. 1485
HSD ... 1487
ISaRSI .. 1488

Configuring I/O Devices ... 1489
Modbus/TCP Client Implementation ... 1490

Target Preparation ...1493
Importation of Drivers in the Workbench ...1494
Properties of Modbus/TCP Client Devices..1495
Modbus/TCP Prefixes..1497
Modbus/TCP Message Descriptions..1498

Modbus/TCP Server Implementation... 1505
Target Preparation ...1509
Importation of Drivers in the Workbench ...1510
Properties of Modbus/TCP Server Devices...1511
Modbus/TCP Prefixes..1512
Modbus/TCP Message Descriptions..1513
Modbus/TCP Exception Codes ...1520

Defining Ports Usage... 1522

Error Messages .. 1523

Functions ... 1567
ABS_LREAL ... 1569
ACOS_LREAL .. 1570
AND_MASK_BYTE ... 1571
AND_MASK_DWORD... 1572
AND_MASK_LWORD ... 1573
AND_MASK_WORD.. 1574
ASIN_LREAL.. 1575
ATAN_LREAL .. 1576
COS_LREAL ... 1577
xxii Table of Contents

EXPT_LREAL ... 1578
GET_TIME_STRING .. 1579
ISA_SERIAL_CLOSE ... 1580
ISA_SERIAL_CONNECT... 1581
ISA_SERIAL_DISCONNECT... 1584
ISA_SERIAL_OPEN ... 1585
ISA_SERIAL_RECEIVE... 1587
ISA_SERIAL_SEND ... 1589
ISA_SERIAL_SET... 1591
ISA_SERIAL_STATUS... 1593
LOG_LREAL ... 1595
NOT_MASK_BYTE .. 1596
NOT_MASK_DWORD ... 1597
NOT_MASK_LWORD.. 1598
NOT_MASK_WORD .. 1599
OR_MASK_BYTE... 1600
OR_MASK_DWORD .. 1601
OR_MASK_LWORD... 1602
OR_MASK_WORD... 1603
POW_LREAL... 1604
ROL_BYTE.. 1605
ROL_DWORD ... 1606
ROL_LWORD.. 1607
ROL_WORD .. 1608
ROR_BYTE.. 1609
ROR_DWORD... 1610
ROR_LWORD ... 1611
ROR_WORD.. 1612
SET_PRIORITY... 1613
SHL_BYTE .. 1614
SHL_DWORD.. 1615
SHL_LWORD .. 1616
SHL_WORD... 1617
SHR_BYTE .. 1618
SHR_DWORD ... 1619
SHR_LWORD.. 1620
SHR_WORD .. 1621
SIN_LREAL... 1622
SQRT_LREAL ... 1623
Automation Collaborative Platform xxiii

TAN_LREAL... 1624
TRUNC_LREAL.. 1625
XOR_MASK_BYTE.. 1626
XOR_MASK_DWORD... 1627
XOR_MASK_LWORD ... 1628
XOR_MASK_WORD.. 1629

Function Blocks ... 1631
GET_TIME_STRUCT ... 1634
NOW .. 1636
ANALOGALARM... 1637
BATCHSWITCH ... 1646
BATCHTOTALIZER .. 1648
BIAS... 1651
BIASCALIBRATION.. 1652
CHARACTERIZER... 1654
COMPARATOR .. 1656
DIGITALALARM ... 1657
FLIPFLOP .. 1662
IPIDCONTROLLER.. 1664
LEADLAGCONTROLLER... 1674
LEADLAGBACONTROLLER ... 1677
LIMITER.. 1681
PID_AL .. 1682
RATELIMITER ... 1685
RATIO.. 1687
RATIOCALIBRATION... 1688
RETENTIVEONTIMER.. 1690
SCALER... 1692
SETPOINT ... 1693
SIGNALSELECTOR ... 1695
TRACKANDHOLD... 1696
TRANSFERSWITCH .. 1697
Matrix2 Operations... 1698

COPY_ROW_MATRIX..1700
COPY_COL_MATRIX...1703
TRANSPOSE_MATRIX...1706
INVERT_MATRIX...1708
ADD_MATRIX...1711
SUBTRACT_MATRIX...1714
xxiv Table of Contents

MULTIPLY_MATRIX..1717
SCALAR_MATRIX..1720
PRINT_MATRIX ..1723
GET_VERSION ..1725

Matrix Operations... 1727
NEW_MATRIX...1729
FREE_MATRIX..1731
GET_I_MATRIX...1733
PUT_I_MATRIX...1735
GET_F_MATRIX..1737
PUT_F_MATRIX..1739
DUP_MATRIX..1741
COPY_MATRIX ...1743
COPY_ROW_MATRIX..1745
COPY_COL_MATRIX ...1747
TYPE_MATRIX..1749
ROWS_MATRIX ..1751
COLS_MATRIX..1753
TRANSPOSE_MATRIX...1755
INVERT_MATRIX ...1757
ADD_MATRIX ...1759
SUBTRACT_MATRIX...1761
MULTIPLY_MATRIX..1763
SCALAR_I_MATRIX...1765
SCALAR_F_MATRIX..1767
PRINT_MATRIX ..1769

Motion Control Function Blocks ... 1771
MC_AbortTrigger... 1780
MC_AccelerationProfile... 1782
MC_CamIn ... 1784
MC_CamOut .. 1787
MC_CamTableSelect.. 1788
MC_DigitalCamSwitch .. 1790
MC_GearIn ... 1792
MC_GearInPos ... 1795
MC_GearOut .. 1798
MC_Halt ... 1799
MC_Home .. 1801
MC_MoveAbsolute .. 1803
Automation Collaborative Platform xxv

MC_MoveAdditive .. 1806
MC_MoveContinuousAbsolute.. 1808
MC_MoveContinuousRelative... 1811
MC_MoveRelative ... 1814
MC_MoveSuperimposed.. 1816
MC_MoveVelocity... 1818
MC_Phasing ... 1820
MC_PositionProfile.. 1823
MC_Power.. 1825
MC_ReadActualPosition.. 1827
MC_ReadActualTorque ... 1828
MC_ReadActualVelocity ... 1830
MC_ReadAxisError.. 1832
MC_ReadBoolParameter.. 1834
MC_ReadDigitalInput .. 1837
MC_ReadDigitalOutput ... 1839
MC_ReadParameter ... 1841
MC_ReadStatus.. 1844
MC_Reset ... 1847
MC_SetOverride .. 1848
MC_SetPosition.. 1850
MC_Stop .. 1852
MC_TorqueControl .. 1854
MC_TouchProbe .. 1857
MC_VelocityProfile ... 1859
MC_WriteBoolParameter... 1861
MC_WriteDigitalOutput .. 1864
MC_WriteParameter .. 1866

SAMA Elements and Functions .. 1869
High Limiting ... 1871
Integrate or Totalize ... 1872
Low Limiting.. 1874
MATransfer .. 1875
MATransferSet ... 1877
Memory (Basic).. 1879
Memory (So Dominant) ... 1881
Memory (Ro Dominant) ... 1883
Proportional .. 1885
Proportional and Integral.. 1886
xxvi Table of Contents

Proportional and Derivative.. 1888
Pulse Duration .. 1890
Pulse Duration Of The Lesser Time ... 1892
Reverse Proportional .. 1894
Time Delay On Initiation.. 1896
Time Delay On Termination... 1898
Tri-State Signal... 1900
Velocity Limiting ... 1902

Safety Function Blocks .. 1903
SF_AND ... 1906
SF_Antivalent ... 1907
SF_EDM... 1909
SF_EmergencyStop .. 1912
SF_EnableSwitch.. 1915
SF_Equivalent .. 1918
SF_ESPE .. 1920
SF_GuardLocking... 1922
SF_GuardMonitoring.. 1925
SF_ModeSelector ... 1928
SF_MutingPar... 1934
SF_MutingPar_2Sensor.. 1938
SF_MutingSeq .. 1942
SF_OutControl.. 1946
SF_SafelyLimitedSpeed ... 1949
SF_SafeStop1 ... 1952
SF_SafeStop2 ... 1954
SF_SafetyRequest... 1956
SF_TestableSafetySensor ... 1958
SF_TwoHandControlTypeII... 1962
SF_TwoHandControlTypeIII ... 1964
Automation Collaborative Platform xxvii

xxviii Table of Contents

Introducing the Automation
Collaborative Platform

The Automation Collaborative Platform is a complete suite for building multi-process control
projects and Human-Machine Interface applications. The Automation Collaborative Platform's
environment includes development tools and other technologies simplifying design,
development, and deployment of applications. You develop projects on a Windows
development platform, from the Workbench and language editors.

The Workbench graphically represents and organizes devices, and networks. The development
process consists of creating projects made up of devices, representing individual target nodes.
The development environment is made up of multiple windows and tools:

� Solution Explorer

� Navigation Window

� Language Editors

� Dictionary

� Block Library

� Deployment View

� Controller Status

� Variable Dependencies

� Properties Window

� Collection Editor

� Locked Variables Viewer

� ISaVIEW
Automation Collaborative Platform 1

� Toolbox

� Variable Selector

� Block Selector

� Parameters View

� Document Generator

� Error list

� Find and Replace Utility

� Output Window

� Spy List

� Add-in Manager

� Description Window
2 Introducing the Automation Collaborative Platform

Solution Explorer
The Solution Explorer is an interface that displays a graphical view of solutions. The Solution
Explorer helps manage two types of conceptual containers used by the workbench, the
solutions and projects. Projects include sets of program source files and related metadata, such
as references and build instructions. Solution contain elements that represent the references,
data connections, folders, and files that are needed to create an application. A solution can
house multiple projects and a project can house multiple programs. From the Solution
Explorer, double-clicking project elements displays their contents in the appropriate editor or
tool.

When creating new projects, the solution is automatically created as the container for your
project. You can create standalone or temporary projects. A stand-alone project is any solution
that contains only one project.

In a multi-project solution, the first project created is designated as the startup project and is
displayed in bold font in the Solution Explorer. When you build or debug the solution, startup
projects are run first. You can choose to set one or multiple start-up projects to run using the
debugger.

The Solution Explorer displays the contents of solutions in a logically organized tree view,
providing access to project elements. The physical locations of project files can differ from that
represented in the tree view structure. From the tree view, you can conduct many project
management tasks using contextual menus for project elements, including adding elements,
cutting or copying elements, deleting or removing elements, moving elements, and renaming
elements. The Solution Explorer toolbar provides access to available commands for selected
elements. You can update the commands available in the toolbar by clicking project elements.
You can select multiple project elements and execute batch commands using toolbar
commands. When selecting multiple elements, the toolbar and contextual menu only display
the options available to all selected files.

Displays the Properties Window for the element selected

Toggles between simple and regular tree view. In simple view, the device, resource
(if supported by the CAM), and library elements are removed from the structure.
Refreshes the selected item
Automation Collaborative Platform 3

The Solution Explorer displays all related commands available for stand-alone or multi-project
solutions. For stand-alone projects, you can choose to display or hide the solution container
within the Solution Explorer.

To access the Solution Explorer

� From the View menu, click Solution Explorer (or press Ctrl+Alt+L).

The Solution Explorer is displayed.

To cut or copy elements

1. Select one or more elements, right-click the selection, then do one of the following:

 To cut the selection, click Cut

 To copy the selection, click Copy.

2. Right-click the required destination, then click Paste.

To move elements

You can move elements using the contextual menus. You can also drag project elements,
changing their order of appearance.

1. To move elements using the contextual menus, perform the following:

a) Select one or more elements, right-click the selection, and then click Cut.

b) Right-click the required destination, then click Paste.

2. To move elements by dragging, select an element, then drag it to the required location.

To delete or remove elements

1. To permanently delete elements, select one or more elements, right-click the selection,
then click Delete.

2. To remove elements, select one or more elements, right-click the selection, then click
Cut.
4 Solution Explorer

To rename elements

� Right-click an element, click Rename, then type a new name in the space provided.

To hide the solution container

For stand-alone projects, you can choose to hide the solution container.

1. From the Tool menu, click Options

The Options dialog box is displayed.

2. Expand Projects, then click General.

3. From the options displayed, clear Always show solution.

The solution container is no longer displayed in the Solution Explorer.

See Also
Creating Projects
Adding New Projects
Automation Collaborative Platform 5

Creating Projects
You can create projects in either the current solution or in a new solution. Project templates
enable creating projects containing one or more devices as well as files and folder appropriate
for the project type. When you select a project type, the available templates are displayed.

When creating a project for a new solution, you provide a name and storage location for the
project. The directory structure for the solution is automatically created. The default solution
name is the same as the project name. You can define unique names for the solution and
project. When creating stand-alone projects, no solution is defined. You create projects based
on templates. When creating a project, you can choose to add it to an existing solution or create
a new solution. When creating a new solution, you can specify to create the directory structure
for the solution. Project names must begin with a letter or underscore followed by letters, digits,
and single underscores. Project names cannot contain the following characters:

You can choose to display templates using small or medium icons.

To create a project

1. From File menu, point to New, then click Project (or press Ctrl+Shift+N).

2. From the New Project dialog box, select the type of project and a template.

3. Define the project name and storage location.

a) In the Name field, type a unique project name.

b) In the Location field, define the project folder by typing the path, selecting from the
drop-down combo-box, or browsing for the require location.

4. Create a folder for the solution and define the solution name (optional).

Pound (#) Double quotation mark (")
Percent (%) Less than (<)
Ampersand (&) Greater than (>)
Asterisk (*) Question mark (?)
Vertical bar (|) Forward slash (/)
Backslash (\) Leading or trailing spaces (' ')
Colon (:) Names reserved for Windows or DOS such as "nul", "aux",

"con", "com1", and "lpt1"
6 Solution Explorer

a) Select Create directory for solution.

b) Type the desired solution name.

5. Click OK.

The project is created.
Automation Collaborative Platform 7

Opening Projects and Solutions
You can open existing projects with their solutions. When opening an existing project within
a solution, you add the project to the solution. You can also add projects using the contextual
menu for the solution item within the Solution Explorer.

When opening solutions, all projects and files associated with the solution are opened.

When opening a project, you can choose to add the project to the solution that is currently open
or close the current solutions and open the projects in a new solution.

To open a project or solution from the Workbench

1. From the File menu, point to Open, then click Project/Solution (or press
Ctrl+Shift+O).

2. In the Open Project dialog box, locate the required project or solution.

3. Specify whether to add the project to the open solution or close the current solution
before opening the project.

4. Click Open.

The project or solution is displayed.

To open a project or solution from the Projects directory

� From the Windows Explorer, access the Projects directory and perform one of the
following:

 Double-click the required *.isasln file.

 Drag the *.acfproj or *.isasln file onto the desktop Workbench icon.

The workbench opens displaying the required project or solution.
8 Solution Explorer

Adding New Projects
You can create new projects for inclusion in open solutions. Project templates enable creating
projects containing one or more devices as well as files and folders appropriate for the project
type. Project templates are organized into types. When selecting a project type, the available
templates are displayed.

When adding a project, you provide a name and storage location for the project. You add
projects based on templates. Project names cannot contain the following characters:

You can choose to display templates using large or small icons.

To add a new project to an existing solution

1. From the File menu, point to Add, then click New Project.

2. From the Add New Project dialog box, select the required project template.

3. In the Name field, type a unique name.

4. In the Location field, define the storage location for the project by typing the path or
browsing to select an existing folder. When browsing, you can choose to make a new
folder.

5. Click OK.

The project is displayed.

Pound (#) Double quotation mark (")
Percent (%) Less than (<)
Ampersand (&) Greater than (>)
Asterisk (*) Question mark (?)
Vertical bar (|) Forward slash (/)
Backslash (\) Leading or trailing spaces (' ')
Colon (:) Names reserved for Windows or DOS such as

"nul", "aux", "con", "com1", and "lpt1"
Automation Collaborative Platform 9

To add a temporary project

1. From the Tool menu, click Options

The Options dialog box is displayed.

2. Expand Projects, then click General.

3. From the options displayed, clear Save new projects when created.

4. From the File menu, point to Add, then click New Project.

5. In the Add New Project dialog box, select a template, type the required information in the
fields provided, and click OK.

The temporary project is added.
10 Solution Explorer

Adding Existing Projects
You can add existing projects to open solutions. When adding projects to solutions, you can
access projects from local or network directories.

To add existing projects to a solution

1. From the File menu, point to Add, then click Existing Project.

2. From the Add Existing Project dialog box, locate and select the required project file, then
click OK.

The project is added to the open solution.
Automation Collaborative Platform 11

Saving Changes to Solutions and Projects
You can save changes to projects and solutions. When closing projects and solutions, you are
prompted to save changes to projects and solutions.

To save changes to solutions

1. From the File menu, click Close Solution.

2. In the save changes dialog box, click Yes.

To save changes to items open in the workspace

1. From the File menu, click Close.

2. In the save changes dialog box, click Yes.
12 Solution Explorer

Solution Properties
You can manage builds using the following options available for solutions:

� Setting the start-up projects

To access the Solution Property Pages

1. In the Solution Explorer, select the solution element.

2. From the View menu, click Property Pages.

The Solution Property Pages dialog box is displayed.
Automation Collaborative Platform 13

Setting Startup Projects

You can set projects to run when you start online debugging. You can also modify the order in
which projects run during debugging. The startup feature is not available for simulation.

� Current selection, enables running only the project currently selected

� Single startup project, enables running a single specified project

� Multiple startup projects, enables running more than one project

Running multiple projects requires building the startup projects. You set the debugging order
of projects by moving them up or down in the list. You also need to specify the action to apply
to individual projects belonging to the solution when the debugger starts:

� None where the project remains in edit mode

� Start where the project runs

� Start without debugging where the project runs without debugging

Projects using startup options must respect the following folder hierarchy structure. This
hierarchy is the default structure when creating projects in a solution.

For projects not using this hierarchy structure, you need to manually build the structure by
manually copying the projects, then adding the existing projects to the solution from the
Solution Explorer using the contextual menu.

To set startup projects

1. In the Solution Explorer, select and right-click the solution element, then click Set
Startup Projects.

2. From the Solution Property Pages dialog box, expand Common Properties, then click
Startup Project.

Solution folder (*.isasln)
Project1 folder (*.isaproj)
Project2 folder (*.isaproj)
Project3 folder (*.isaproj)
14 Solution Explorer

3. Specify which projects to run and debug when the debugger starts, then click OK.

 To run and debug the project currently selected in the Solution Explorer, click
Current selection.

 To run a single project within the solution, click Single startup project, then select
the project from the drop-down combo-box.

 To run multiple projects within the solution, click Multiple startup projects, then
define debug order and action to apply to each project belonging to the solution.

Projects run in the order of appearance in the list.

4. To reorder the projects in the list, select the individual projects, then click or .

5. To save changes, click Apply.
Automation Collaborative Platform 15

Setting Project Dependencies

Note: The Project Dependencies feature is not implemented for use.

For ISaGRAF projects, you add dependencies on libraries. For more information, refer to
"Using a Library in a Project" for the respective Concrete Automation Model (CAM).
16 Solution Explorer

Setting Configuration Properties

You can define how solutions and projects are built and run. For each project in the solution,
you define properties for multiple configurations, including simulation and online
configurations. You can define the build and platform options for individual configurations.
You can also choose to set the options for all configurations.

When setting the configuration properties, you can define the following information:

� Configuration, enables selecting from the list of configurations:

� Platform, enables choosing the development platform on which to run projects and
solutions

ISaGRAF 6 supports the Any CPU platform only.

� Project Contexts, for each project listed, enables defining platforms and build options for
each configuration:

You can also access the Configuration Manager where you can create and edit configurations.

Option Description

Active(configuration) Enables defining the platform and build options for the
configuration type currently selected in the Solution
Configurations drop-down combo-box

Online Enables defining the platform and build options for the online
configuration type

Simulation Enables defining the platform and build options for the
simulation configuration type

All Configurations Enables changing the platform and build options for all
configurations types (simulation and online) for each project in
the solution

Project Configuration Platform Build

Lists of projects
making up the solution

Options for the
configuration type
(simulation or online)

Options for the
development platform
used for each project
when running the
solution

Indication of whether
to build the project
when building the
solution
Automation Collaborative Platform 17

To set configuration properties

1. From the Solution Explorer, click the solution element.

2. From the View menu, click Property Pages.

3. From the Solution Properties Pages dialog box, expand Configuration Properties, then
click Configuration.

4. Define the properties for configurations.

a) In the Configuration drop-down combo-box, select the required configuration.

b) In the Project contexts table, for the required project, verify the configuration and
platform displayed, then click the check box in the Build column.

5. Click Apply, then click OK.

The configuration properties are set for the solution.
18 Solution Explorer

Configuration Manager

You can create and edit solution configurations. Changes made using the Configuration
Manager are reflected in the Solution Property Pages. When creating and editing
configurations, you need to define the following information:

� Active solution configuration, the available configurations. You can create solution
configurations and rename existing ones.

� Active solution platform, the available platforms. ISaGRAF 6 supports the Any CPU
platform only. You can rename the existing solution platform.

ISaGRAF 6 supports the Any CPU platform type only.

� Project Contexts, for each project listed, enables defining platforms and build options for
each configuration:

From the Configuration Manager you can also perform the following tasks:

� Create solution configurations

� Edit solution configurations

� Edit solution platforms

To access the Configuration Manager

1. From the Solution Explorer, click the solution element.

2. From the View menu, click Property Pages.

3. From the Solution Property Pages dialog box, click Configuration Manager.

Project Configuration Platform Build

Lists of projects
making up the solution

Options for the
configuration type
(simulation or online)

Options for the
development platform
used for each project
when running the
solution

Indication of whether
to build the project
when building the
solution
Automation Collaborative Platform 19

The Configuration Manager is displayed.

To set configuration properties

1. From the Configuration Manager, define the properties for configurations.

a) In the Active solution configuration drop-down combo-box, select the required
configuration.

b) In the Project contexts table, for the required project, verify the configuration and
platform displayed, then click the check box in the Build column.

2. Click Close.

The configuration properties are reflected in the Solution property pages.

See Also
Setting Configuration Properties
20 Solution Explorer

Creating Solution Configurations

You can create solution configurations using the Configuration Manager. When creating
solution configurations, you define the name and settings for the solution configurations. You
also choose whether to create project configurations corresponding to the solution
configuration.

To create a solution configuration

1. From the Configuration Manager, in the Active Solution Configuration drop-down
combo-box, select <New...>.

2. From the New Solution Configuration dialog box, do the following:

a) In the Name field, type a name for the build configuration.

b) From the Copy setting from drop-down combo-box, copy the settings from another
build configuration by selecting the configuration name.

c) To create corresponding project configurations, select Create new project
configurations.

3. Click OK.

The solution configuration is ready for use.
Automation Collaborative Platform 21

Editing Solution Configurations

You edit solution configurations from the Configuration Manager. When editing solution
configurations, you choose to rename or remove these.

To edit a configuration name or remove a solution build configuration

1. From the Configuration Manager dialog box, in the Active Solution Configuration
drop-down combo-box, select <Edit...>

2. From the Edit Solution Configurations dialog box, do the following:

 To change the name of a configuration, select the configuration name,
click Rename, then type a new name.

 To remove a configuration, select the configuration name, then click Remove.

3. Click Close.

The solution configuration is ready for use.
22 Solution Explorer

Editing Solution Platforms

You can rename existing solution platforms from the Configuration Manager.

To edit a solution platform name

1. From the Configuration Manager, in the Active solution platform drop-down combo-box,
select <Edit...>

2. From the Edit Solution Platforms dialog box, select the platform name, click Rename,
then type a new name.

3. Click Close.

The solution platform name is displayed in the Solution Property Pages and Configuration
Manager.
Automation Collaborative Platform 23

Specifying Debug Source Files

Note: The Debug Source Files feature is not implemented for use.
24 Solution Explorer

Navigation Window
The Navigation Window is a graphical environment enabling navigation through many aspects
and elements making up projects. The available elements vary on the CAM. The environment
provides a global view listing the devices contained in one or more projects within a solution.
The navigation window consists of vertical links on the left pane and a breadcrumbs trail in the
address field. When you click a specific vertical link, the view for that aspect or element is
displayed in the workspace. For example, clicking a device instance displays the Device View
in the workspace. From the navigation window, you can navigate to the following views:

� Deployment View

� Device View

� Bindings View (if supported by the CAM)

� I/O Device View (if supported by the CAM)

� POU instances

� Parameters View

� Dictionary instances

To access the Navigation Window

1. From the View menu, click Navigation Window.

The Navigation Window is displayed in the workspace.

To access various views from the Navigation Window

The initial aspects and elements displayed vary depending on the item selected in the Solution
Explorer.

1. To access the Deployment View, from the Navigation Window, click Deployment View.

The Deployment View is displayed in the workspace.
Automation Collaborative Platform 25

2. To access the Device View, click the Global arrow in the Navigation View, then click the
required device from the available devices.

The required device is displayed in the Device View.

3. To access the Bindings view, from the Navigation window, in the required Device
section, click Bindings.

The Bindings View is displayed in the workspace.

4. To access the I/O Device view, select the required resource in the Solution Explorer, then
from the resource section in the Navigation Window, click I/O Device.

The I/O Device view is displayed in the workspace.

5. To access a POU instance, from the Navigation Window, click the required POU.

The POU is displayed in the language container.

6. To access the Parameters for a user-defined function or function block, select the required
instance in the Solution Explorer, then click Parameters in the Navigation Window.

The Parameters for the required user-defined function or function block are displayed.

7. To access Dictionary instances, select the required POU in the Solution Explorer, then
from the Navigation Window, click Global Variables or Local Variables.

The Dictionary instance is displayed in the workspace.
26 Navigation Window

Language Editor
The language editor is the environment where you develop the contents of POUs. You develop
these POUs using language containers. Language containers hold elements of a given IEC
61131-3 or IEC 61499 programming language. A POU can only have one language container.
Description containers hold non-semantic information. When building projects, the compiler
excludes information from description and HMI containers.

From the language editor, you can edit multiple POUs simultaneously. Individual POUs are
opened in separate workspaces each having a tab indicating the POU name. The tabs enable
moving from one POU to another.

When working in the language editor, you can choose to expand the workspace to a full-screen
view.

You can edit the contents of language containers in the editor workspace.

The document overview enables focusing on areas within the workspace. When clicking inside
the document overview, the workspace displays the area inside the focus box, indicated with a
blue outline. Using the focus box you can define the area to display, i.e., zoom, in the
workspace. Decreasing the size of the focus box increases the zoom. Whereas, increasing the
size of the focus box decreases the zoom. You can focus on another area within the document
overview by clicking the location.

To expand the workspace to the full-screen view

� From the View menu, click Full Screen.

To use the document overview

1. From the View menu, click Document Overview.

2. To focus on an area of the workspace, click inside the document overview.

The area inside the focus box is displayed within the workspace.

3. To define the focus area, do one of the following:
Automation Collaborative Platform 27

 Increase the zoom by decreasing the size of the focus box.

 Decrease the zoom by increasing the size of the focus box.

 Drag the focus box to another location within the workspace.
28 Language Editor

Editing the Contents of Language Containers
You develop POUs using language containers. When developing POUs, you can only insert
elements from the corresponding language Toolbox into the open language container. POUs
can have only one language container.

� Selecting elements

� Inserting elements

� Inserting identifiers

� Inserting blocks

� Moving elements

� Shifting elements

� Resizing elements

� Deleting elements

For graphical POUs, the workbench displays an error symbol () below elements having
errors in the programming logic. Pausing on this symbol displays a description of the error.

To select elements

In the workspace, you can select individual or multiple elements within a language container.
Selected elements are displayed with a colored handles. When selecting multiple elements, the
handles of the first element are green and subsequent elements are turquoise.

When aligning multiple elements, the reference point differs depending on the programming
language.
Automation Collaborative Platform 29

1. To select one element, click the element in the language container.

2. To select multiple elements, do one of the following:

 Starting from empty workspace, drag the pointer over the elements.

 While pressing SHIFT, use the pointer to select elements individually.

To insert elements

You can insert elements of a given language into its corresponding language container within
the workspace.

� From the Toolbox, drag the element into the language container.

To insert an identifier

You can insert identifiers, i.e., variables, from the Dictionary. You can also create new
variables, enter literal values into a POU, and access the parameters of functions or function
blocks. When creating a new variable, you need to assign a unique name, specify its type, and
define its scope in relation to the POU.

When inserting identifiers, you can choose to insert a constant or variable automatically via the
Variable Selector.

1. From the Toolbox, drag the variable element into the language container.

2. From the Variable Selector, perform one of the following, then click OK.:

 In the Name field, type a literal value.

When inserting literal values that begin with a letter or an underscore, enclose the
variable name in single quotes as follows: 'abc'

 Select the required variable from the lists of variables.

The variable is displayed.
30 Language Editor

To insert a block

You insert blocks into language containers of graphical programs from the Toolbox. Following
insertion, you specify the type of block, i.e., operator, function, or function block, in the Block
Selector accessed by double-clicking the block. For programs, the available items are operators
(OPE), standard functions (SFU), standard function blocks (SFB), user IEC 61131-3
Functions (IFU), user IEC 61131-3 Function Blocks (IFB) and all "C" Functions (CFU) and
Function Blocks (CFB) supported by the target type.

1. From the Toolbox, drag the block element into the language container.

2. In the Block Selector, in the list of blocks, locate the required block:

a) To limit the blocks displayed, you can sort the block list and filter the block list.

b) From the list of available blocks, select a block, then click OK.

To move elements within a language container

You can move elements within a language container.

1. In the language container, select one or more elements.

2. Drag the elements to another position.

To shift elements within an FBD language container

You can shift elements within an FBD language container towards the left, towards the right,
towards the top (up), or towards the bottom (down) by a number of grid spaces. When shifting
elements towards the left or right, you displace all elements located to the right of the cursor
position by a number of grid spaces from their leftmost edge. When shifting elements up or
down, you displace all elements located below the cursor position by a number of grid spaces
from their topmost edge.

The following example shows the location in which to place the cursor and the shift options
enabling the displacement of the block and output variable towards the right by 10 grid spaces,
in reference to the leftmost edge of the block. The input variables to the left of the cursor remain
in the same location following the shift operation.
Automation Collaborative Platform 31

1. In the language container, right click to access the contextual menu at the location from
which to reference the elements to displace.

 To displace elements towards the left or right, place the cursor to the left of the
required elements.

 To displace elements towards the top (up) or the bottom (down), place the cursor
above the required elements.

2. Right-click, point to Shift, then point to the required shift direction, and then click the
number of grid spaces.
32 Language Editor

To resize an element

When developing POUs using certain graphical programming languages, you can change the
dimensions of specific individual elements.

1. In the language container, select an element.

2. Place the cursor over the element handles, then drag to the required size.

To delete elements

You can delete one or more elements from a language container. Deleting a variable element
does not remove the variable from the dictionary.

� In the language container, select one or more elements, then do one of the following:

 Right-click the selection, then click Delete.

 Press DELETE.
Automation Collaborative Platform 33

34 Language Editor

Block Library
The block library provides a graphical view of all operators, functions, and function blocks
available for the POUs of a project. When developing POUs, you can drag and drop blocks
from the library to the language container. You can sort blocks displayed in the library
according to alphabetical order, categories, or scope as well as limit a search based on names.
You can also display the blocks in either tile or list views.

The following types of blocks may be available from the block library:

� Standard operators

� Standard functions

� Standard function blocks

� User IEC 61131 functions

� User IEC 61131 function blocks

� User C functions

� User C function blocks

Target C Scope

Library Scope

Standard Scope
Automation Collaborative Platform 35

� User functions and function blocks from a library

Blocks are sorted by scope:

� Standard blocks

� Library blocks (a scope for each library dependency)

� Target-specific C blocks

To access the block library

The block library displays the blocks applicable to the project template and target.

� From the View menu, click Block Library.

Note: The block library can also be accessed using the keyboard shortcut Ctrl+Alt+T.

To insert a block in a POU

� In the block library, locate the required block, then click and hold the mouse on the block
while dragging to the destination in the POU container.

To sort blocks in the library

� Right-click in the block library window, then click Category or Scope.

To limit searches

You can perform searches for blocks by entering any part a block name. As you type text in the
library search field, the library displays only the blocks containing these characters.

� In the field in the block library window, type the required text.

To toggle the blocks view in the library

� Right-click in the block library window, then click Tile View or List View.
36 Block Library

Deployment View
The deployment of a project constitutes the devices, networks, and connections making up the
project. The Deployment view graphically displays the devices, networks, and connections of
a project. From this view, you can manage the following aspects of a project:

� Devices

� Networks linking devices

� Connections between devices and networks

Devices displayed in the Deployment view are also present in the Solution Explorer. Therefore,
modifications to the devices in the Deployment view are reflected in the Solution Explorer.

To access the Deployment view

� In the View menu, click Deployment View.

The Deployment view is displayed in the workspace.
Automation Collaborative Platform 37

Devices
A device corresponds to a programmable logic controller. A device must be connected to a
network supporting the device’s target type. In the Deployment view, a device is represented
by a rounded rectangle containing the target name, device icon, and device source. The target
name is indicated above the device icon. The device source is displayed as
ProjectName.DeviceName and is indicated below the device icon. The following targets are
supported in ISaGRAF:

While debugging, devices in the Deployment View are displayed using default or user-defined
colors to represent the following different statuses:

Target Device icon

ISaGRAF 3 Concrete
Automation Model

SIMULATE

ISaGRAF 5 Concrete
Automation Model

ISAFREE-TG
T

SIMULATOR
38 Deployment View

To add a new device from template

1. Right-click in the Deployment view, and then click Add New Device From Template.

The Add New Project dialog box appears.

2. From the Add New Project dialog box, select the required project template, then click
OK.

The device belonging to the new project is added to the Deployment view.

3. In the Properties window for the device, define the required properties.

To add a new device

1. Right-click in the Deployment view, point to Add New Device, then point to the required
project, and then click the required target type.

The new device is added to the Deployment view.

2. In the Properties window for the device, define the required properties.

To delete a device

1. In the Deployment view, click the device.

2. From the Edit menu, click Delete.

Break status Displayed when the device encounters a breakpoint (if supported
by the CAM)

Error status Displayed when the device encounters an error

Idle status Displayed when the device is idle

Offline status Displayed when the device is offline

Run status Displayed when the device is running

Stop status Displayed when the device is stopped

Unknown status Displayed when the device status is unknown
Automation Collaborative Platform 39

Networks
Networks provide the means for communication between devices.The target attached to the
device must support the network connected to the device. You define network properties at the
time of creation. These properties are specific to the network type.

A project can have an unlimited number of networks.

In the Deployment view, networks are displayed as horizontal lines.

When multiple networks are defined (or if the target is not defined in the project), the
workbench uses the first default network. When one is not defined, the workbench uses the
second default network. When neither default networks are defined, the first network defined
for the target is used.

To add a network

You define network properties at the time of creation.

1. Right-click in the Deployment view, then point to Add New Network, and then click the
required network.

The network is added to the workspace.

2. In the Properties window for the network, define the required properties.

To delete a network

You can delete networks from the Deployment View.

1. In the Deployment view, click the network element.

2. From the Edit menu, click Delete.
40 Deployment View

Connections
Connections between networks and devices enable communications to flow. You need to
connect each device to one or more networks. Similarly, a network can be linked to many
devices.

In the Deployment view, connections are displayed as vertical lines. After connecting devices
to networks, you can move these by dragging.

To connect a device to a network

You can create connections between devices and networks.

1. In the Deployment view, click on the network and drag to the device.

2. In the Properties window for the connection, define the required IP address for the
connection.

To delete a connection between a device and network

You can remove existing connections between devices and networks.

� In the Deployment view, click the connection line and press DELETE.
Automation Collaborative Platform 41

Deployment View Keyboard Shortcuts
The following keyboard shortcuts are available for use with the Deployment view.

Ctrl+= Zoom in

Ctrl+- Zoom out

Shift+Alt+Enter Toggles between full-screen and windowed modes

Ctrl+Page Up Jumps to the top of the language container

Ctrl+Page Down Jumps to the bottom of the language container

Ctrl+Home Jumps to the top of the language container

Ctrl+End Jumps to the bottom of the language container

Up Arrow Scrolls up

Down Arrow Scrolls down

Left Arrow Scrolls left

Right Arrow Scrolls right

Ctrl+Up Arrow Scrolls up

Ctrl+Down Arrow Scrolls down

Ctrl+Left Arrow Scrolls left

Ctrl+Right Arrow Scrolls right
42 Deployment View

Variable Dependencies
You can view the dependencies of a variable in both ascending and descending directions.
Ascending dependencies display the variables affecting the variable while descending
dependencies display the variables affected by the variable. These dependencies are displayed
as structures leading to the right for ascending dependencies and to the left for descending
dependencies. When viewing the dependencies of a variable, the variable identification
indicates its source such as the program name, device name, and ending with the variable name.

You can view dependencies of variables while editing, debugging, or running online. While
online, you can monitor and force the values of variables from the dependencies.

The following example shows the dependencies of the Alarm_Memo variable where the
variables on the right, ascending, affect its value while the variable affects the values of the
variables to the left, descending.

When viewing the dependencies of a variable, you can perform the following tasks:

� Display the dependencies of variables within the dependencies structures

� Add variables to a Spy list

� Access dictionary instances containing selected variables

� Access the POU where a variable is used

� Adjust the zoom factor for individual dependencies windows

Furthermore, you can also force the values of variables while debugging.

Descending Dependencies Ascending Dependencies
Automation Collaborative Platform 43

To display the dependencies of a variable

You can access the dependencies of variables from graphic programs or dictionary instances.

Note: Before accessing the dependencies of variables, you need to generate the cross
references for a project.

� From a graphic program or a dictionary instance, right-click the variable, then click
Dependencies.

The dependencies structure is displayed for the variable.

To display the dependencies of a variable within the dependencies structures

You can display the dependencies of variables from the ascending or descending structures.

� From the dependencies structure for a variable, double-click the variable from the
ascending or descending structure for which to display the dependencies.

The dependencies structure for the selected variable is displayed in another window.

To add a variable to a Spy List

You can add variables from dependencies structures to a Spy List.

� From the dependencies structure for a variable, select the variable to add to the Spy List,
right-click, and then click Add to Spy List.

The variable is added to the Spy List window.

To force the value of a variable

You can force, i.e., write, the value of a variable from the ascending or descending structures.

1. From the dependencies structure for a variable, select the variable for which to force the
value, right-click, and then click Write Variable.

2. In the Write Logical Value dialog box, write the value for the variable.

3. To lock the value for the variable, click Lock.
44 Variable Dependencies

4. Click Write.

The variable displays the written value within the dependencies structure.

To access the dictionary instance containing a variable

You can access the dictionary instance containing a variable for variables displayed in
dependencies structures.

� From the dependencies structure for a variable, select the variable for which to access the
dictionary instance, right-click, and then click Variables.

The dictionary instance having the variable is displayed.

To access the POUs where a variable is used

For any variable selected in the dependencies structure, you can access all occurrences where
the variable is used.

1. From the dependencies structure for a variable, select the variable for which to access the
POUs where it is used.

2. From the list of the variable usage occurrences below the dependencies structure,
double-click the required occurrence to open its usage location.

To set the zoom of a dependencies window

You can adjust the magnification factor for individual dependencies windows.

� From the dependencies window for a variable, slide the zoom scale to the required
magnification factor.
Automation Collaborative Platform 45

Properties Window
The Properties window enables viewing and editing the properties of items selected within
language containers, ISaVIEW instances, the Solution Explorer, and the Deployment View.
You can also use the Properties window to view and edit file, project, and solution properties.
You can view the common properties for multiple objects and elements. When selecting
multiple objects, the Properties window displays only the properties that are common to all the
objects and elements.

In the Properties window, properties are organized into categories displayed alphabetically.
You can expand the categories to view the property information including property names and
values. For ISavIEW objects, you can also choose to display either basic or extended (all)
properties. Note that properties displayed in gray are read-only.

You edit property values using the plain text fields and drop-down combo-boxes provided.
Where required, links to custom editors or dialogs are displayed in the property value fields.

The Properties window toolbar containing the following:

To access the Properties window

� From the View menu, click Properties Window. The F4 or Alt+Enter keyboard
shortcuts are also available.

Displays the name of the item or group of items selected.

Displays the property names and values organized into categories.

You click to expand categories and to collapse categories.

Displays the properties sorted in alphabetical order

Displays the basic (subset of extended) properties for a selected
ISaVIEW object. You can choose to include individual properties as
basic properties.

Displays the extended (all) properties for a selected ISaVIEW object

Displays the Properties Pages for the Solution
Automation Collaborative Platform 47

Collection Editor

The collection editor enables creating and editing individual members of collections. The
properties available for editing depend on the collection. The collection editor is made up of a
members list and a properties grid. You can perform the following tasks in the collection editor:

� Add members to the list. You add members by selecting a member, then clicking Add.
Clicking the first time adds an initial member.

� Remove members from the list. You remove members by selecting a member, then
clicking Remove.

� Reorder members in the list. You reorder members by selecting the member, then
clicking the up or down arrows.

� Edit the properties of a member. You edit properties by selecting the member, then
editing its properties in the grid.

To access a Collection Editor

� From the Properties window, in the Fill Color Phase property for an ISaVIEW object,

click .

The Collection Editor is displayed.

See Also
Properties Window
48 Properties Window

Locked Variables Viewer
The Locked Variables window enables unlocking locked variables while debugging, running
online, and simulating an application. This window lists all locked variables and their source
throughout an application. When viewing locked variables, the variable identification indicates
its source such as the program name, device name, and ending with the variable name.

From the Locked Variables window, you can perform the following tasks:

� Find variables within the list of locked variables based on any part of their source name

� Unlock variables from the list of locked variables

To access the list of locked variables

You can only access the Locked Variables window while debugging, running online, or
simulating an application. The window lists all locked variables throughout the application.

� From the Debug menu, click Locked Variables.

To find variables from the list of locked variables

You can perform searches based on any part of the variable identification displayed in the
viewer such as the complete or partial variable, resource (if supported by the CAM), device, or
project name. For example, to locate the DEMO_ENERGY.SolarFarm.Solar.Consumption
variable, the following are some possible search entries: Solar, Farm, Consumption.
Automation Collaborative Platform 49

� In the search field, enter text contained in the identification of the required variable, then
do one of the following:

- To find the first instance of the variable, click .

- To find the next instance of the variable, click .

To unlock variables from the list of locked variables

You can unlock one or more variables from the list of locked variables.

� In the list of locked variables, select the variables to unlock or click to select all the

variables in the list, then click to unlock them.
50 Locked Variables Viewer

ISaVIEW
You can create graphical interfaces, i.e., ISaVIEW screens, within the workbench. From these
screens, you can monitor or run control processes on local computers or remote locations using
internet or network connections. You can add ISaVIEW screens to Solutions at the device,
resource (if supported by the CAM), and program level.

You create and develop ISaVIEW screens in the Workbench while editing a project or running
online (simulation or debugging). Developing ISaVIEW screens consists of inserting graphic
objects and defining animation behaviors for execution at run-time.

While running online, you can switch between design mode and animation mode. Design mode
enables editing objects contained in screens. Animation mode launches the execution of
animation effects defined for objects contained in screens.

From the ISaVIEW toolbar, you can perform the following operations:

See Also
Creating ISaVIEW Screens

Design Mode, enables editing objects contained in screens while running online
(simulation or debugging)

Animation Mode, launches the execution of animation effects defined for objects
contained in screens while running online (simulation or debugging)

No Preview, enables graphically editing objects contained in a screen without
displaying any animation effects. You can modify, add, delete, move, group, or
ungroup objects.

Preview Selection, enables visualizing some animation effects defined for selected
objects in a screen

Animation Preview (Editable), enables visualizing and graphically modifying some
animation effects defined for all objects contained in a screen. You cannot modify,
add, delete, move, group, or ungroup objects.

Group Selection, enables grouping selected objects

Ungroup Selection, enables dissociating a selected group of objects
Automation Collaborative Platform 51

Inserting Objects
Defining Animation Effects for Objects
52 ISaVIEW

Creating ISaVIEW Screens
While editing a Workbench project or running online (simulating or debugging), you can create
and develop ISaVIEW screens. While simulating or debugging, you need to switch the
ISaVIEW screen to design mode.

You can create ISaVIEW screens from blank documents or from a template. Developing
screens consists of inserting objects available from the Toolbox. You can define animation
effects for objects by modifying their properties. You can also group objects together, then
define animation effects for the group.

To create an ISaVIEW screen from a blank document

1. From the Solution Explorer, right-click the required device, resource (if supported by the
CAM), or program element, point to Add, then click New ISaVIEW.

An ISaVIEW screen is added in the Solution Explorer.

2. Open the screen by double-clicking in the Solution Explorer.

3. Proceed to inserting objects and defining animation effects.

To create an ISaVIEW screen from a template

ISaVIEW templates have the *.hmi extension.

1. From the Solution Explorer, right-click the required device, resource (if supported by the
CAM), or program element, point to Add, then click ISaVIEW from Template.

2. In the Select the ISaVIEW Template dialog box, browse to locate the required template,
then click Open.

3. In the Import ISaVIEW Template dialog box, specify a screen name and associate the
required variables where required, then click OK.

An ISaVIEW screen is added in the Solution Explorer.

4. Open the screen by double-clicking in the Solution Explorer.

5. Proceed to inserting objects and defining animation effects.
Automation Collaborative Platform 53

See Also
ISaVIEW
Exporting ISaVIEW Screens as Templates
54 ISaVIEW

Exporting ISaVIEW Screens as Templates
ISaVIEW templates are screens that you export as templates. These templates are assigned the
*.hmi extension. When creating a template, you develop an ISaVIEW screen then export the
screen to template. The default names of templates are the same as the screen names. When
adding an ISaVIEW screen from a template, you are automatically prompted to choose from
the available templates.

ISaVIEW templates are stored in the following location:

%PROGRAMFILES(X86)%\ISaGRAF\6.x\ACP\Templates\ItemTemplates

To export an ISaVIEW screen as template

1. Develop an ISaVIEW screen.

2. From the Solution Explorer, right-click the ISaVIEW item, then click Export as
Template.
Automation Collaborative Platform 55

Inserting Objects
You insert objects into an ISaVIEW screen from the Toolbox. The available objects are the
following:

� Arc

� Arrow

� Ellipse

� Rectangle

� Rounded Rectangle

� Triangle

� Image

� Web Container

� Button

� Edit Box

� Gauge

� Slider

� Line

� Bar Meter

� Polygon

You can overlap or superimpose objects and groups of objects. Using the contextual menu
options, you can group objects and move objects to the front or back. Note that web containers
always remain on top of other objects.
56 ISaVIEW

Arc

An arc is any unbroken part of the circumference of a circle. An arc can represent, for example,
a container displaying a changing quantity of liquid as it flows to or from another object. An
arc object is made up of a starting angle and an angle length:

You define the properties for the arc object using the Properties Window. For the arc object,
you can define properties for Action, Color, Displacement, Size, Text, and Visibility. The arc
object also has the following specific properties:

To insert an arc

� From the Toolbox, drag the arc object into the workspace.

See Also
Defining Animation Effects for Objects

Angle Length Length of the arc in degrees

Starting Angle Size of the angle prior to the start of the arc
Automation Collaborative Platform 57

Arrow

The arrow object is a directional shape having a rectangular shaft and triangular head. You
define the properties for the arrow object using the Properties Window. For the arrow object,
you can define properties for Action, Color, Displacement, Rotation, Size, Text, and Visibility.
The arrow also has frame color and width properties.

You define fill color for objects in the Color properties.

To insert an arrow

� From the Toolbox, drag the arrow object into the workspace.

See Also
Defining Animation Effects for Objects

Frame Color Color for the frame of the object. Possible colors are custom, web,
and system colors.

Frame Width Width of the frame for the object. Possible values are literal
values.
58 ISaVIEW

Ellipse

An ellipse can represent items such as a container displaying a changing quantity of liquid as
it flows to or from another object. You define the properties for the ellipse object using the
Properties Window. For the ellipse object, you can define properties for Action, Color,
Displacement, Rotation, Size, Text, and Visibility. The ellipse also has frame color and width
properties.

You define fill color for objects in the Color properties.

To insert an ellipse

� From the Toolbox, drag the ellipse object into the workspace.

See Also
Defining Animation Effects for Objects

Frame Color Color for the frame of the object. Possible colors are custom, web,
and system colors.

Frame Width Width of the frame for the object. Possible values are literal
values.
Automation Collaborative Platform 59

Rectangle

A rectangle can represent, for example, pipes indicating a flow from one object to another with
a change of color or a container displaying a changing quantity of liquid as it flows to or from
another object. You define the properties for the rectangle object using the Properties Window.
For the rectangle object, you can define properties for Action, Color, Displacement, Rotation,
Size, Text, and Visibility. The rectangle also has frame color and width properties.

You define fill color for objects in the Color properties.

To insert a rectangle

� From the Toolbox, drag the rectangle object into the workspace.

See Also
Defining Animation Effects for Objects

Frame Color Color for the frame of the object. Possible colors are custom, web,
and system colors.

Frame Width Width of the frame for the object. Possible values are literal
values.
60 ISaVIEW

Rounded Rectangle

A rounded rectangle is a rectangular shape having its corners rounded. You define the
properties for the rounded rectangle object using the Properties Window. For the rounded
rectangle object, you can define properties for Action, Color, Displacement, Size, and Text,
and Visibility. The rounded rectangle also has frame color and width properties.

You define fill color for objects in the Color properties.

To insert a rounded rectangle

� From the Toolbox, drag the rounded rectangle object into the workspace.

See Also
Defining Animation Effects for Objects

Frame Color Color for the frame of the object. Possible colors are custom, web,
and system colors.

Frame Width Width of the frame for the object. Possible values are literal
values.

Corner Radius Radius of the corners for a rounded rectangle. Possible values are
literal values.
Automation Collaborative Platform 61

Triangle

A triangle object is a triangular shape. You define the properties for the triangle object using
the Properties Window. For the triangle object, you can define properties for Action, Color,
Displacement, Rotation, Size, Text, and Visibility. The triangle also has frame color and width
properties.

You define fill color for objects in the Color properties.

To insert a triangle

� From the Toolbox, drag the triangle object into the workspace.

See Also
Defining Animation Effects for Objects

Frame Color Color for the frame of the object. Possible colors are custom, web,
and system colors.

Frame Width Width of the frame for the object. Possible values are literal
values.
62 ISaVIEW

Image

The image object can hold file formats such as GIF, JPEG, BMP, PNG, and TIFF. You cannot
rotate image objects.

You define the properties for the image object using the Properties Window. For the image
object, you can define properties for Action, Displacement, Size, Text, and Visibility. The
image object also has the Image Path property.

To insert an image

� From the Toolbox, drag the image object into the workspace.

See Also
Defining Animation Effects for Objects

Image Path Path to the image to display
Automation Collaborative Platform 63

Web Container

The web container object has a rectangular shape. You define the properties for the web
container object using the Properties Window. For the web container object, you can define
properties for Action, Displacement, Size, Text, and Visibility. The web container object also
has frame and object-specific properties:

Within a screen, the web container always remains on top of other objects.

To insert a web container

� From the Toolbox, drag the web container object into the workspace.

See Also
Defining Animation Effects for Objects

Link Page Target URI to display in the object

Frame Color Color for the frame of the object. Possible colors are custom, web,
and system colors.
64 ISaVIEW

Button

The button object displays text and has a rectangular shape. You define the properties for the
button object using the Properties Window. For the button object, you can define properties for
Action, Color, Displacement, Size, Text, and Visibility.

To insert a button

� From the Toolbox, drag the button object into the workspace.

See Also
Defining Animation Effects for Objects
Automation Collaborative Platform 65

Edit Box

The edit box object enables displaying and entering text and has a rectangular shape. You
define the properties for the edit box object using the Properties Window. For the edit box
object, you can define properties for Action, Color, Displacement, Size, Text, and Visibility.
You can also choose to display a border outlining the edit box:

To insert an edit box

� From the Toolbox, drag the edit box object into the workspace.

See Also
Defining Animation Effects for Objects

Border Indication of whether the object has a border. Possible values are True
or False.
66 ISaVIEW

Gauge

The gauge object is a circular dial having a needle and range of values representing a traditional
meter or dial. The gauge’s needle moves around the dial indicating the changing value.

You define the properties for the gauge object using the Properties Window. For the gauge
object, you can define properties for Action, Color, Displacement, Size, Text, and Visibility.
The gauge object also has frame and object-specific properties:

Frame Color Color for the frame of the object. Possible colors are custom,
web, and system colors.

Frame Width Width of the frame for the object. Possible values are literal
values.

Background Shape Shape of the measuring object. Possible shapes are rectangle,
ellipse, hexagon, and octagon.

Indicator Value Variable Variable controlling the indicator of the measuring object.
Possible variable data types are SINT, USINT, BYTE, INT,
UINT, WORD, DINT, UDINT, DWORD, LINT, ULINT,

LWORD, REAL, and LREAL. Clicking enables selecting a
variable.

Indicator Color Color for the interior of the indicator. Possible colors are custom,
web, and system colors.

Indicator Constant
Length

Indication of whether the indicator maintains the same length
when traveling along the scale of the measuring object. Possible
values are True or False.

Indicator Frame Color Color for the outline of the indicator. Possible colors are custom,
web, and system colors.

Indicator Frame Width Width of the outline for the indicator. Possible values are literal
values.

Indicator Thickness Width of the indicator. Possible values are literal values.

Indicator Value Initial value of the measuring object. Possible values are literal
values.

Margin Bottom Right Margin from the gauge dial to the bottom and right sides of the
object perimeter. Possible values are literal values.
Automation Collaborative Platform 67

Margin Top Left Margin from the gauge dial to the top and left sides of the object
perimeter. Possible values are literal values.

Maximum Maximum value of the scale on the measuring object. Possible
values are literal values.

Minimum Minimum value of the scale on the measuring object. Possible
values are literal values.

Scale Label Distance Distance between the scale on the measuring object and the
displayed range values, in pixels. Possible values are literal
values.

Scale Label Frequency Frequency of labeling of major divisions on the scale of the
measuring object. For example, a value of two (2) results in
labeling every second major division. Possible values are literal
values.

Scale Label Style Location of the displayed labels in reference to the circular scale.
Possible values are Left, Right, AlternateStartLeft, and
AlternateStartRight. Setting labels on the left places these on the
outside of the scale while labels on the right places these on the
inside of the scale. Setting alternate starts places the lowest range
label respectively then every other label on alternating sides of
the scale.

Scale Label Text Bold Indication of whether the bold style is applied to the label text.
Possible values are True or False.

Scale Label Text Color Color of the label text. Possible colors are custom, web, and
system colors.

Scale Label Text Size Size of the label text. Possible values are literal values.

Scale Frame Color Color of the scale on the measuring object. Possible colors are
custom, web, and system colors.

Scale Frame Width Width of the scale on the measuring object. Possible values are
literal values.

Scale Start Angle Angle at which the circular scale starts in reference to the x-axis.
For example, a start angle of 0° places the beginning of the scale
on the positive x-axis. Possible values are 0 to 360.

Scale Sweep Angle Span of the circular scale. For example, a sweep angle of 180°
indicates a semicircular scale. Possible values are 0 to 360.
68 ISaVIEW

To insert a gauge

� From the Toolbox, drag the gauge object into the workspace.

See Also
Defining Animation Effects for Objects

Scale Tick Major
Frequency

Frequency of major ticks in reference to minor ticks on the scale.
For example, on a scale ranging from 1 to 100 having a Tick Unit
value of 5, a major tick frequency setting of 5 sets a major
division at every 5th minor division, i.e., at each increment of 25.
Possible values are literal values.

Scale Tick Major Width Width of the major tick marks dividing the scale. Possible values
are literal values.

Scale Tick Width Width of the minor tick marks dividing the scale. Possible values
are literal values.

Tick Color Color of the ticks dividing the scale. Possible colors are custom,
web, and system colors.

Tick Unit Value associated to individual tick divisions on the measuring
scale. Possible values are literal values.
Automation Collaborative Platform 69

Slider

The slider object reads the position of the indicator within its perimeter then sends a value
associated to the position to mapped variables. You can define the accuracy of position
readings by increasing or decreasing the number of horizontal and vertical divisions within the
slider.

You define the properties for the slider object using the Properties Window. For the slider
object, you can define properties for Action, Color, Displacement, Size, Text, and Visibility.
The slider also has the following object-specific properties:

Frame Color Color for the frame of the object. Possible colors are custom, web,
and system colors.

Frame Width Width of the frame for the object. Possible values are literal
values.

Indicator Value Variable Variable controlling the indicator of the measuring object.
Possible variable data types are SINT, USINT, BYTE, INT, UINT,
WORD, DINT, UDINT, DWORD, LINT, ULINT, LWORD,

REAL, and LREAL. Clicking enables selecting a variable.

Indicator Color Color for the interior of the indicator. Possible colors are custom,
web, and system colors.

Indicator Dimensions The length and width of the indicator, in pixels. Possible values
are literal values.

Indicator Frame Color Color for the outline of the indicator. Possible colors are custom,
web, and system colors.

Indicator Style Shape of the indicator. Possible shapes are bar and triangles.

Indicator Value Initial value of the measuring object. Possible values are literal
values.

Maximum Maximum value of the scale on the measuring object. Possible
values are literal values.

Minimum Minimum value of the scale on the measuring object. Possible
values are literal values.

Orientation Indication of whether the orientation of the measuring object is
horizontal or vertical
70 ISaVIEW

To insert a slider

� From the Toolbox, drag the slider object into the workspace.

Scale Label Distance Distance between the scale on the measuring object and the
displayed range values, in pixels. Possible values are literal
values.

Scale Label Frequency Frequency of labeling of major divisions on the scale of the
measuring object. For example, a value of two (2) results in
labeling every second major division. Possible values are literal
values.

Scale Label Text Bold Indication of whether the bold style is applied to the label text.
Possible values are True or False.

Scale Label Text Color Color of the label text. Possible colors are custom, web, and
system colors.

Scale Label Text Size Size of the label text. Possible values are literal values.

Scale Frame Color Color of the scale on the measuring object. Possible colors are
custom, web, and system colors.

Scale Frame Width Width of the scale on the measuring object. Possible values are
literal values.

Scale Tick Major
Frequency

Frequency of major ticks in reference to minor ticks on the scale.
For example, on a scale ranging from 1 to 100 having a Tick Unit
value of 5, a major tick frequency setting of 5 sets a major
division at every 5th minor division, i.e., at each increment of 25.
Possible values are literal values.

Scale Tick Major Width Width of the major ticks dividing the scale. Possible values are
literal values.

Scale Tick Width Width of the minor ticks dividing the scale. Possible values are
literal values.

Tick Color Color of the ticks dividing the scale. Possible colors are custom,
web, and system colors.

Tick Unit Value associated to individual tick divisions on the measuring
scale. Possible values are literal values.
Automation Collaborative Platform 71

See Also
Defining Animation Effects for Objects
72 ISaVIEW

Line

The line object is a unbroken linear shape. You define the properties for the line object using
the Properties Window. For the line object, you can define properties for Action,
Displacement, Rotation, Size, and Visibility. The line also has color and width properties.

To insert a line

� From the Toolbox, drag the line object into the workspace.

See Also
Defining Animation Effects for Objects

Line Color Color for the line object. Possible colors are custom, web, and
system colors.

Line Width Width of the line object. Possible values are literal values.
Automation Collaborative Platform 73

Bar Meter

The bar meter object reads the position of the indicator within its perimeter then sends a value
associated to the position to mapped variables. You can define the accuracy of position
readings by increasing or decreasing the number of divisions within the bar meter.

You define the properties for the bar meter object using the Properties Window. For the bar
meter object, you can define properties for Action, Color, Displacement, Size, Text and
Visibility. You can also define properties for the frame color and width. The bar meter object
has the following specific properties:

Frame Color Color for the frame of the object. Possible colors are custom, web,
and system colors.

Frame Width Width of the frame for the object. Possible values are literal
values.

Indicator Value Variable Variable controlling the indicator of the measuring object.
Possible variable data types are SINT, USINT, BYTE, INT, UINT,
WORD, DINT, UDINT, DWORD, LINT, ULINT, LWORD,

REAL, and LREAL. Clicking enables selecting a variable.

Indicator Color Color for the interior of the indicator. Possible colors are custom,
web, and system colors.

Indicator Frame Color Color for the outline of the indicator. Possible colors are custom,
web, and system colors.

Indicator Value Initial value of the measuring object. Possible values are literal
values.

Maximum Maximum value of the scale on the measuring object. Possible
values are literal values.

Minimum Minimum value of the scale on the measuring object. Possible
values are literal values.

Orientation Indication of whether the orientation of the measuring object is
horizontal or vertical

Scale Label Distance Distance between the scale on the measuring object and the
displayed range values. Possible values are literal values.
74 ISaVIEW

To insert a bar meter

� From the Toolbox, drag the bar meter object into the workspace.

See Also
Defining Animation Effects for Objects

Scale Label Frequency Frequency of labeling of major divisions on the scale of the
measuring object, in pixels. For example, a value of two (2)
results in labeling every second major division. Possible values
are literal values.

Scale Label Text Bold Indication of whether the bold style is applied to the label text.
Possible values are True or False.

Scale Label Text Color Color of the label text. Possible colors are custom, web, and
system colors.

Scale Label Text Size Size of the label text. Possible values are literal values.

Scale Frame Color Color of the scale on the measuring object. Possible colors are
custom, web, and system colors.

Scale Frame Width Width of the scale on the measuring object. Possible values are
literal values.

Scale Tick Major
Frequency

Frequency of major ticks in reference to minor ticks on the scale.
For example, on a scale ranging from 1 to 100 having a Tick Unit
value of 5, a major tick frequency setting of 5 sets a major
division at every 5th minor division, i.e., at each increment of 25.
Possible values are literal values.

Scale Tick Major Width Width of the major ticks dividing the scale. Possible values are
literal values.

Scale Tick Width Width of the minor ticks dividing the scale. Possible values are
literal values.

Tick Color Color of the ticks dividing the scale. Possible colors are custom,
web, and system colors.

Tick Unit Value associated to individual tick divisions on the measuring
scale. Possible values are literal values.
Automation Collaborative Platform 75

Polygon

A polygon object is made up of three or more connected straight lines forming a closed figure.
Each line is called a segment. You define the properties for the polygon object using the
Properties Window. For the polygon object, you can define properties for Action, Color,
Displacement, Size, Text, and Visibility. The polygon also has frame color and width
properties.

You define fill color for objects in the Color properties.

To insert a polygon

When creating polygon objects, you need to establish the end of each segment making up the
shape, then establish the end of the shape when all segments are completed. You establish the
end of a segment.

You can use keyboard commands when working with polygon objects: pressing Ctrl+Z undoes
up to the first segment and pressing Escape deletes a polygon object in progress.

1. From the Toolbox, drag the polygon object into the workspace.

2. Click and drag to define each segment making up the shape, then press Enter to complete
the shape.

3. To cancel the shape, press Escape.

See Also
Defining Animation Effects for Objects

Frame Color Color for the frame of the object. Possible colors are custom, web,
and system colors.

Frame Width Width of the frame for the object. Possible values are literal
values.
76 ISaVIEW

Editing Objects
You can perform many editing tasks on objects:

� Selecting Objects

� Editing the Properties of Objects

� Cutting, Copying, and Pasting Objects

� Deleting Objects

� Moving Objects

� Resizing Objects

� Grouping Objects

� Aligning Objects

� Moving Objects to the Front and Back

While running online (simulation and debugging), you can edit objects by switching to design
mode.
Automation Collaborative Platform 77

Selecting Objects

Selecting objects is required as a first step for all editing functions. You can choose to select
one or more objects at the same time. When objects are selected, you can move these by
dragging with the mouse.

To select a single object

� In the workspace, click the desired object

To select multiple objects

You can select multiple objects either by dragging the cursor to enclose them or by selecting
individual objects. When dragging, an invisible rectangle encloses the area.

� Position the cursor to the left and above the desired objects, then drag to enclose them

� Hold down the Ctrl key while clicking the desired objects one after the other. Clicking a
selected object deselects the object while all others remain selected.

� Hold down the Shift key while clicking the desired objects one after the other

Deselecting objects

� Click on an empty space in the workspace

� Press the ESCAPE key
78 ISaVIEW

Editing the Properties of Objects

You can change the properties of objects in the Properties window.

To edit the properties of an object

1. Select the object.

2. In the Properties window, enter the required information for the individual properties.
Automation Collaborative Platform 79

Cutting, Copying, and Pasting Objects

You can cut, copy, and paste objects in screens using the commands from the contextual menu
or from the Edit menu. To access the contextual menu, right-click a selected object.

To cut an object

1. Select the desired object.

2. Do one of the following:

�Right-click, then click Cut.

�From the Edit menu, click Cut.

The object is removed from the workspace and a copy is placed on the clipboard.

To copy an object

1. Select the desired object.

2. Do one of the following:

�Right-click, then click Copy.

�From the Edit menu, click Copy.

�Press the Ctrl key and drag the object.

A copy of the object is placed on the clipboard.

To paste an object

You can insert the contents of the clipboard into the workspace.

� In the workspace, click where you want to insert the object, then do one of the following:

�Right-click, then click Paste.

�From the Edit menu, click Paste.

The content of the clipboard is inserted in the workspace.
80 ISaVIEW

Deleting Objects

Once you select an object, you can choose to delete it using the commands from the contextual
menu or from the Edit menu. To access the contextual menu, right-click the selected object.

To delete objects

1. Select the desired object.

2. Do one of the following:

�Right-click, then click Delete.

�From the Edit menu, click Delete.

The object is removed from the workspace.
Automation Collaborative Platform 81

Moving Objects

You can move objects within the screen.

To move objects

� Select one or more objects then drag to their new position
82 ISaVIEW

Resizing Objects

You can resize objects in screens.

To resize an object

1. Select the desired object.

2. Click a handle (a small square on the outer edge of the selected object) then move it in the
appropriate direction.
Automation Collaborative Platform 83

Grouping Objects

You can group individual objects in a screen to form a unique object. You can also group
individual groups of objects. When objects are grouped, you cannot resize, move, delete, or
copy the individual objects contained in the group. You can change the properties of individual
objects belonging to a group as well as those properties of grouped objects.

You can apply action, size, and visibility animation effects to grouped objects other than those
effects attached to the grouped items.

Once you select objects, you can choose to group and ungroup these using commands from the
contextual menu or icons from the toolbar.

To group objects

1. Select the required objects.

2. Do one of the following:

�Right-click, then click Group Items.

�From the ISaVIEW toolbar, click .

To ungroup objects

1. Select the grouped object.

2. Do one of the following:

�Right-click, then click Ungroup Items.

�From the ISaVIEW toolbar, click .
84 ISaVIEW

Aligning Objects

You can align objects relative to their left side, right side, top edge, or bottom edge. Elements
are aligned relative to the first element you select.

Once you select objects, you can choose to align them using the commands from the Layout
menu available from the contextual menu or using the arrow keys.

To align and position objects

1. Select the objects to align starting with the element to use as reference for the alignment.

2. Right-click the elements, point to Layout, then click the required alignment command:

�Align Left

�Align Center

�Align Right

�Align Top

�Align Middle

�Align Bottom

The objects are aligned in the selected direction in reference to the first selected item.
Automation Collaborative Platform 85

Moving Objects to the Front and Back

You can move objects to the front or to the back of each other. Once you select objects, you
can choose to move these using the commands from the contextual menu.

To bring an object to the front

1. Select the object.

2. Right-click the element, then click Bring to Front.

To send an object to the back

1. Select the object.

2. Right-click the element, then click Send to Back.
86 ISaVIEW

Defining Animation Effects for Objects
You can define animation effects for objects or groups of objects defined in ISaVIEW screens.
The Workbench supports the following animation effects:

� Action

� Color

� Displacement

� Rotation

� Size

� Text

� Visibility

You define animation effects by setting their property values in the Properties window. You
can also graphically modify the rotation, displacement, and size properties by switching to the
animation preview mode.

When setting the properties in the Properties window, all global and local variables are
available for use. The Collection Editor is available when defining the color property Fill Color
Phase and the text property Text Color Phase. You use the Collection Editor to create and edit
the members of a collection and to define the colors (PhaseColors) and numerical values
(PhaseMaximum and PhaseMinimum) for each member. When online, the object or object text
displays the color that corresponds to its current value as defined in the collection. For
example, for the color black, assigning a value of 10 to PhaseMaximum and a value of 0 to
PhaseMinimum enables the object or object text to display as black when its value is between
0 and 10.

See Also
ISaVIEW
Previewing ISaVIEW Screens
Automation Collaborative Platform 87

Action

Any ISaVIEW object or group can act as a push button. The styles and variables of the action
properties enable you to define a push button-like behavior for the object. You define the action
properties using the Properties window. The following properties are available for defining the
action of an object:

Action Property Description

Action Event Operation to perform upon occurrence of Action Type event.
Possible values are None, GoToHTML, GoToPage,
IncrementValue, AutoIncrementValue, and ReverseValue.

Action Link Destination address or path for GoToHTML or GoToPage Action
Event operations. Possible values are ftp://, http://www, and \\.

Action Type Mouse event triggering the Action Event operation. Possible
values are None, MouseClick, MouseDoubleClick, and
MouseAll.

Action Variable Variable controlling the Action Event for IncrementValue,
AutoIncrementValue, and ReverseValue operations. Depending on
the Action Event Type, the expected variable types are the
following:
- IncrementValue: any integer and any real
- AutoIncrementValue: any integer and any real
- ReverseValue: Boolean, any integer and any real

Clicking enables selecting a variable.

Increment Time Interval between increments, in seconds, of the Action Variable
variable where the Action Event is AutoIncrementValue

Increment Value Rate of increase of the Action Variable variable for each Action
Type mouse event where the Action Event is either
IncrementValue or AutoIncrementValue
88 ISaVIEW

To define the action properties of an object

You define action properties for an object from the Properties window while the ISaVIEW
screen is in design mode.

1. Set the ISaVIEW screen to design mode by clicking , in the ISaVIEW toolbar.

2. In the ISaVIEW screen, select the required object or group of objects.

3. In the Properties window, define the required action properties.

See Also
ISaVIEW
Defining Animation Effects for Objects

ActionEvent Operations Description

None Disables Action Event

GoToHTML Jumps to the HTML page defined in Action Link

GoToPage Jumps to the ISaVIEW page defined in Action Link

IncrementValue Increments once the value of the Action Variable variable by the
value of Increment Value

AutoIncrementValue Increments continuously the Action Variable variable by the
Increment Value value using the Increment Time time lapse

ReverseValue Reverses the value of the Action Variable variable

Mouse Event Description

None Disables Action Type

MouseClick Sets a single mouse click to execute Action Event

MouseDoubleClick Sets a double mouse click to execute Action Event

MouseAll Sets any type of mouse click to execute Action Event
Automation Collaborative Platform 89

Color

You can define color properties for the following objects: arcs, arrows, ellipses, rectangles,
rounded rectangles, triangles, buttons, edit boxes, gauges, sliders, and polygons. You define
the color properties using the Properties window. The following properties are available for
defining the color of an object:

To define the color properties of an object

You define color properties for an object from the Properties window while the ISaVIEW
screen is in design mode.

1. Set the ISaVIEW screen to design mode by clicking , in the ISaVIEW toolbar.

2. Select the required object or group of objects.

3. In the Properties window, define the required color properties.

See Also
ISaVIEW

Color Variable Variable defining the phase value during animation mode. Possible

variable data types are DINT and DWORD. Clicking enables
selecting a variable.

Initial Color (Read only) Initial color of the object, while in design mode

Fill Color Actual color of the object. Equal to InitialColor while in design
mode. Possible colors are custom, web, and system colors.

Fill Color Phase List of colors to apply during phases while in animation mode.

Clicking accesses the phase collection editor.

Fill Foreground
Color

Contrast color used for Fill Style. Possible colors are custom, web,
and system colors. Available for all objects except edit boxes.

Fill Style Style applied to the coloring of an object such as a gradient, texture,
or hatch line. Available for all objects except edit boxes. Fill
Foreground Color provides the contrast color used in the style.
Possible styles are available from a drop-down combo-box.
90 ISaVIEW

Defining Animation Effects for Objects
Automation Collaborative Platform 91

Displacement

You can define displacement properties for all ISaVIEW objects. Before displacement occurs,
the starting position is defined by the coordinates of the upper left corner of the object. The
displacement properties enable you to define the linear movement of the object when in
animation mode. You define displacement properties in the Properties window. Also, you can
define the AnimationPosition property within the workspace. The following properties are
available for defining the displacement of an object:

In animation mode, the final position of the object is defined as the following:

Initial Position + (Animation Position - Initial Position) *
[(Displacement Variable - Minimum Displacement) / (Maximum Displacement
- Minimum Displacement)]

To define the displacement properties of an object

You define displacement properties for an object from the Properties window while the
ISaVIEW screen is in design mode.

1. Set the ISaVIEW screen to design mode by clicking , in the ISaVIEW toolbar.

Animation Position Destination coordinates after displacement during animation
mode in reference to the top left corner of the object bounding
box, in pixels (design mode displays InitialPosition coordinates)

Displacement Variable Variable controlling the object displacement. Possible variable
data types are DINT, INT, LINT, SINT, UDINT, UINT, ULINT,

USINT, and STACKINT. Clicking enables selecting a
variable.

Initial Position (Read only) Coordinates of the object prior to displacement

Location Actual coordinates of the object. Equal to Initial Position while
in design mode.

Maximum Displacement Maximum amount of displacement during animation mode. The
default value is 100.

Minimum Displacement Minimum amount of displacement during animation mode. The
default value is 0.
92 ISaVIEW

2. Select the required object or group of objects.

3. In the Properties window, define the required displacement properties.

See Also
ISaVIEW
Defining Animation Effects for Objects
Automation Collaborative Platform 93

Rotation

You can define the rotation properties for the following ISaVIEW objects: arrows, ellipses,
rectangles, triangles, and lines. The rotation properties enable you to define the rotation of the
object when in animation mode. You define rotation properties in the Properties window. Also,
you can define the CenterOfRotation property within the workspace. The following properties
define the rotation of an object:

The final rotation of an object is defined as the following:

{[(Rotation Variable - Minimum Rotation) * 360]/(Maximum Rotation -
Minimum Rotation)}%360

To define the rotation properties of an object

You define displacement properties for an object from the Properties window while the
ISaVIEW screen is in design mode.

1. Set the ISaVIEW screen to design mode by clicking , in the ISaVIEW toolbar.

2. Select the required object or group of objects.

3. In the Properties window, define the required rotation properties.

Center of Rotation Coordinates of the center of rotation for the object in reference to the
top left corner of the object bounding box

Rotation Variable Variable controlling the object rotation. Possible variable data types
are DINT, INT, LINT, SINT, UDINT, UINT, ULINT, USINT, and

STACKINT. Clicking enables selecting a variable.

Maximum Rotation Maximum range of rotation of the object, in degrees. Possible values
are positive or negative; The default value is 360 degrees.

Minimum Rotation Minimum range of rotation of the object, in degrees. Possible values
are positive or negative; The default value is 0 degrees.

Static Angle Initial angle in reference to the right side of the base of the object.
Possible values are 0 to 360.
94 ISaVIEW

See Also
ISaVIEW
Defining Animation Effects for Objects
Automation Collaborative Platform 95

Size

You can modify the size of all ISaVIEW objects. You define size properties in the Properties
window. Also, you can define the AnimationSize property within the workspace. The
following properties are available for defining the size of an object:

To define the size properties of an object

You define size properties for an object from the Properties window while the ISaVIEW screen
is in design mode.

1. Set the ISaVIEW screen to design mode by clicking , in the ISaVIEW toolbar.

2. Select the required object or group of objects.

3. From the Properties window, define the required size properties.

Animation Size Maximum enlargement of the object in percentage (%). This value
must be at least 100%.

Size Variable Variable controlling the resizing of the object. Possible variable
data types are DINT, INT, LINT, SINT, UDINT, UINT, ULINT,

USINT, and STACKINT. Clicking enables selecting a
variable.

Initial Size (Read only) The width and height of the object before resizing
occurs in animation mode

Maximum Size Value used by Size Variable defining the maximum range of
enlargement for the object. Possible values are positive or
negative and must be greater than Minimum Size; The default
value is 100.

Minimum Size Value used by Size Variable defining the minimum range of
enlargement for the object. Possible values are positive or
negative and must be less than Maximum Size; The default value
is 0.

Size Actual size of the object whether in design or animation mode
96 ISaVIEW

See Also
ISaVIEW
Defining Animation Effects for Objects
Automation Collaborative Platform 97

Text

You can define text properties for the following objects: arcs, arrows, ellipses, rectangles,
rounded rectangles, triangles, buttons, edit boxes, web containers, gauges, sliders, bar meters,
and polygons. However, for web containers, only the Text text property is available; All other
text properties are unavailable for this object. You define text properties in the Properties
window. The following properties define the appearance of the text associated with objects:

Text Variable Variable controlling the text displayed on the object. All

variable data types are possible. Clicking enables
selecting a variable. Available for all objects except web
containers.

Text Color Variable Variable controlling the text color. Possible variable data

types are DINT and DWORD. Clicking enables selecting
a variable. Available for all objects except web containers.

Initial Text (Read only) The text prior to animation mode. Equal to Text
while in design mode. Available for all objects except web
containers.

Initial Text Color (Read only) The text color prior to animation mode. Equal to
Text Color while in design mode. Available for all objects
except web containers.

Text Actual text displayed on the object whether in design or
animation mode

Text Color Actual text color whether in design or animation mode.
Possible colors are custom, web, and system colors.
Available for all objects except web containers.

Text Color Phase List of colors to apply to displayed text during phases while

in animation mode. Clicking accesses the phase
collection editor. Available for all objects except web
containers.

Text Size Size of the text displayed on the object. Possible values are
literal values. Available for all objects except web
containers.
98 ISaVIEW

To define the text properties of an object

You define text properties for an object from the Properties window while the ISaVIEW screen
is in design mode.

1. Set the ISaVIEW screen to design mode by clicking , in the ISaVIEW toolbar.

2. Select the required object or group of objects.

3. From the Properties window, define the required text properties.

See Also
ISaVIEW
Defining Animation Effects for Objects
Automation Collaborative Platform 99

Visibility

You can define the visibility property for individual ISaVIEW objects. You define the
visibility property in the Properties window. The following property defines the visibility of an
object:

To define the visibility property of an object

You define the visibility property for an object from the Properties window while the ISaVIEW
screen is in design mode.

1. Set the ISaVIEW screen to design mode by clicking , in the ISaVIEW toolbar.

2. Select the required object or group of objects.

3. From the Properties window, define the visibility property.

See Also
ISaVIEW
Defining Animation Effects for Objects

Visibility Variable Variable controlling the visibility of the object. Possible variable data

type is BOOL. Clicking enables selecting a variable.
100 ISaVIEW

Previewing ISaVIEW Screens
When visualizing ISaVIEW screens, you can choose to display different graphic views of
objects and their properties:

� No preview, displaying the objects defined in a screen where selecting an object exposes
bounding box and dimension lines for the object. You can modify, add, delete, move,
group, or ungroup objects.

� Preview selections, displaying the objects defined in a screen where selecting an object
exposes the bounding box and dimension lines as well as the rotation, displacement, and
size animation effects for the object. You can modify, add, delete, move, group, or
ungroup objects but only visualize animation effects.

� Previewing animation effects (editable), displaying the objects defined in a screen while
exposing the rotation, displacement, and size animation effects for the object. You can
modify animation effects but only visualize objects.

Previewing screens is available while debugging.

To switch to no preview mode

� From the ISaVIEW Toolbar, click .
Automation Collaborative Platform 101

Previewing Selections

You can preview selections where you can modify objects and visualize the rotation,
displacement, and size animation effects defined for selected individual and grouped objects.
While previewing selections, you can modify objects and their properties; you cannot modify
any animation effects. However, since the size animation effect is defined as a percentage, the
boundaries outlining this effect change as you resize an object.

You visualize the animation effects defined for selected individual and grouped objects from
the colored indicators as follows:

� The displacement for the Animation Position property where the broken red line indicates
the end position and path of travel for the object.

� The rotation for the Center of Rotation property where the blue circle indicates the center
of rotation for the object.

� The size for the Animation Size property where the green broken outline indicates the
final size of the object.

Previewing screens is available while debugging.

To switch to preview selection mode

1. From the ISaVIEW Toolbar, click .

2. In the screen workspace, select the required objects.
102 ISaVIEW

Previewing Animation Effects (Editable)

You can graphically modify the rotation, displacement, and size properties for individual and
grouped objects while in animation preview mode. While in animation preview mode, you
cannot add, delete, move, group, or ungroup objects. You graphically modify animation effects
properties by repositioning the displayed indicators as follows:

� The displacement indicator for the Animation Position property where the red dot and
broken line indicate the end position and path of travel for the object.

� The rotation indicator for the Center of Rotation property where the blue dot indicates the
center of rotation for the object.

� The size indicator for the Animation Size property green dot and broken lines indicate the
final size of the object.

Previewing screens is available while debugging.

You access the animation preview mode from the ISaVIEW toolbar.

To switch to animation preview mode

The following procedure details the steps required to modify the properties of the Animation
Position displacement property, the Center of Rotation rotation property, and the Animation
Size size property. In the Properties window, you can view changes to the property values as
you reposition the colored indicators.
Automation Collaborative Platform 103

1. From the ISaVIEW Toolbar, click .

2. In the screen workspace, reposition the indicators as follows:

�To modify the Animation Position property, drag the displacement indicator to the
desired position.

�To modify the Center of Rotation property, drag the rotation indicator to the desired
position.

�To modify the Animation Size property, drag the size indicator to the desired position.

In the Properties window, new values for the Animation Position, Center of Rotation, and
Animation Size properties are displayed.
104 ISaVIEW

See Also
ISaVIEW
Defining Animation Effects for Objects
Automation Collaborative Platform 105

106 ISaVIEW

Toolbox
You can expand the multiple segments or tabs of the Toolbox. You can also scroll though the
entire tree within the Toolbox. To expand Toolbox tabs, click the blank right-pointing arrow
next to the tab name. To collapse expanded Toolbox tabs, click the darkened down-pointing
arrow next to the tab name.

The Toolbox displays icons for elements that you can add to programs. When shifting focus to
a different program, the current selection in the Toolbox shifts to the tab for the corresponding
programming language. You can manipulate the Toolbox in the following ways:

You can customize the Toolbox by rearranging elements within a tab or adding custom tabs
and elements. You can manipulate Toolbox tabs in the following ways:

You can insert elements in language containers displayed in the integrated development
environment (IDE). This action adds the fundamental code to create an instance of the Toolbox
element in the active program file. You can manipulate Toolbox elements in the following
ways:

� Display the Toolbox � Move the Toolbox

� Conceal the Toolbox � Display using tabs

� Close the Toolbox automatically � Restore default Toolbox settings

� Dock the Toolbox

� Expand tabs � Add custom tabs

� Collapse tabs � Remove custom tabs

� Move tabs � Display all tabs

� Rename tabs � Restore default tab settings

� Rename elements � Move elements between Toolbox tabs

� Sort elements � Remove elements

� Conceal element names � Restore default elements settings

� Rearrange elements
Automation Collaborative Platform 107

To display the Toolbox

� From the View menu, click Toolbox (or press Ctrl+Alt+X).

To hide the Toolbox

� From the Window menu, click Hide.

To close the Toolbox automatically

The Toolbox must be docked to enable auto hide.

� From the Window menu, click Auto Hide.

To dock the Toolbox

� From the Window menu, click Dock.

To move the Toolbox to a different location

1. From the Window menu, click Float.

2. Drag the Toolbox to the desired location.

To display the Toolbox as a tabbed document

1. From the Window menu, click Dock as Tabbed Document.

2. To restore the Toolbox to a docked window, from the Window menu, click Dock.

To restore all default tabs and elements to the Toolbox

� Right-click the Toolbox, and then click Reset Toolbox.

To expand a Toolbox tab

� Click the blank right-pointing arrow next to the name of the collapsed Toolbox tab.
108 Toolbox

To collapse a Toolbox tab

� Click the darkened down-pointing arrow next to the name of the expanded Toolbox tab.

To move a Toolbox tab

You can move Toolbox tabs within the Toolbox by performing one of the following:

� Right-click the name of the tab, and then click Move Down or Move Up.

� Drag the tab to the required position in the Toolbox, and release the mouse.

To rename a Toolbox tab

1. From the Toolbox, right-click the required tab, and then click Rename Tab.

2. In the space provided, type a name for the tab, then press ENTER.

To add a custom Toolbox tab

When adding tabs, these are displayed at the bottom of the Toolbox. You can reposition and
add elements to tabs.

1. From the Toolbox, right-click any tab, and then click Add Tab.

2. On the blank tab, in the space provided, type a name for the tab, then press ENTER.

To remove a custom Toolbox tab

When removing custom tabs, move the elements to retain to other tabs before deleting the
custom tabs.

1. From the Toolbox, right-click the tab to remove, then click Delete Tab.

When elements remain on the tab, a message box informs you that those elements will be
deleted.

2. To proceed with the deletion of the selected tab, click OK.
Automation Collaborative Platform 109

To display all available Toolbox tabs

� Right-click the Toolbox, and then click Show All.

To insert an element in the workspace

� From the Toolbox, drag the required element into the workspace.

The element is displayed in the workspace.

To rename an element

1. In the Toolbox, right-click the required element, then click Rename Item.

2. In the space provided, type a name for the element, then press ENTER.

To sort the elements alphabetically

� In the Toolbox, right-click the required tab, then click Sort Items Alphabetically.

To hide element names

� In the Toolbox, right-click the required tab, then click List View.

To rearrange elements

You can reposition elements displayed on Toolbox tabs.

� In the Toolbox, select the required element and perform one of the following:

 Right-click the element, and then click Move Down or Move Up.

 Drag the element to the required position.

To move an element between tabs

� In the Toolbox, select the required element and perform one of the following:
110 Toolbox

 Drag the required element onto another tab.

 Right-click the element and click Cut or Copy, then right-click the required tab and
click Paste.

To remove an element

Note that certain elements cannot be removed, such as the Pointer element.

� In the Toolbox, right-click the required element, and then click Delete.
Automation Collaborative Platform 111

Variable Selector
The Variable Selector displays the variables defined for an open program. From the Variable
Selector, you can create, edit, and delete variables at the global level and local level.

When working in the Variable Selector, you can create variables or limit searches by entering
data and choosing from the available options in the field.

� Name, enables defining variable names and literal values. You can filter the variables
displayed by typing alpha-numeric characters in the field.

� Type, displays a list of the data types available for a project. You can view the variables
having a specific data type by selecting individual data types in the list.

� Global Scope, displays a list of the resources or devices (depending on the CAM) in the
project. You can view the variables defined for each by selecting individual items from
the list.

� Local Scope, displays a list of the programs available for the item specified in the global
scope. You can view the variables defined for each program by selecting individual
programs from the list.

You can also navigate the different variables and defined words through the multiple tabs:

� Global Variables, displays the variables defined for the item selected in Global Scope

� Local Variables, displays the variables defined for the program selected in Local Scope

� System Variables, displays the system variables

� Directly Represented Variables, displays the directly represented variables defined for the
solution

� Defined Words, displays the defined words specified for the solution

When working in the Variable Selector, you can navigate using keyboard and mouse controls.
Automation Collaborative Platform 113

You can customize the Variable Selector environment by arranging the columns to display
and setting the display colors.

You can perform the following tasks from the Variable Selector:

� Creating Variables

� Editing Existing Variables

� Cutting, Copying, and Pasting Variables

� Deleting Variables

� Sorting Columns

� Filtering Variables

Arrow keys Enable moving up, down, left, and right among the cells of the list of
variables. Also enables moving left and right among the tabs.

Tab key Enables moving from left to right between the fields, tab, and list of
variables. Within the list, enables moving left to right between cells of a row.
After exiting the list of variables, enables moving between the command
buttons and back to the fields.

Esc key Enables moving from the list of variables to the command buttons.

Ctrl + PLUS
SIGN on the
numeric
keypad (+)

Expands the fields of complex data types

Ctrl + MINUS
SIGN on the
numeric
keypad (-)

Collapses the fields of complex data types

Enter key Enables closing the Variable Selector and displaying the selected variable in
the workspace.
114 Variable Selector

To access the Variable Selector

The Variable Selector is available while editing language containers for POUs and displays
only the variables available to the POU and the resource or device (depending on the CAM)
containing the POU.

� From the language container of a graphical program, perform one of the following:

 From the Toolbox, drag the variable element into the language container.

 In the language container, double-click an existing variable.

The Variable Selector is displayed.

To arrange the columns to display

1. To move a column, drag the column header to another location.

2. To hide a column, right-click a column header and then click Hide Column.

3. To show a column, right-click any column header, point to Show Column, then click the
required column name.

To set the display colors

To change the colors displayed in the Variable Selector you must apply the changes to the
Dictionary Settings. You can customize the colors applied to the column headers, row headers,
and rows. Note that the Variable Selector automatically alternates colored rows with white
rows. Furthermore, you can adjust the number of consecutive rows used for the alternating
sequence. The default row coloring scheme is one colored row followed by one white row.

1. From the Tools menu, click Options.

2. In the Options dialog box, expand the Grid Settings node, then click Variable Selector.
Automation Collaborative Platform 115

3. In the Misc options, customize the required options:

- To specify the number of consecutive rows for the alternating sequence, click Alternate
row value, then type a value.

- To change the colors applied to headers and rows, select the respective option, then
select a color from the drop-down combo box.
116 Variable Selector

Creating Variables
Using the Variable Selector, you can create variables and insert variables into programs. You
can also insert literal values into programs.

To create a variable

You access the Variable Selector from language containers for opened programs.

1. In the Variable Selector, click the required tab, locate the empty row at the bottom of the
grid.

In the left-most column of the empty row, an asterisk () is displayed.

2. In the cells of the empty row, enter the required information, then click OK.

The variable is displayed in the language container.

To insert a literal value

You can insert literal values using Variable Selector. When inserting literal values that being
with a letter or an underscore, enclose the variable name in single quotes as follows: 'abc'

� From the Variable Selector, in the Name field, type the literal value, then click OK.

The literal value is displayed in the language container.

See Also
Variable Selector
Automation Collaborative Platform 117

Creating Multiple Variables Using Quick
Declaration
Using the Quick Declaration dialog box, you can simultaneously create multiple local or global
variables. Quick Declaration can be accessed using the Variable Selector. A preview of the
variable is available on the top-right of the Quick Declaration dialog box.

The following attributes can be configured for variables in Quick Declaration:

Property Description

Numbering The range of values for the variables. The digits option is set to auto by default
and can be changed to alter the quantity of displayed digits.
118 Variable Selector

To create multiple variables using Quick Declaration

1. In the Variable Selector, select the tab in which you want to create variables.

2. Right click an empty row, and then click Quick Declaration.

3. Configure the variable attributes in the Quick Declaration dialog box.

Name The variable name is separated into a prefix and suffix. The prefix appears
before the number value and can contain letters, digits, and single underscores.
The suffix appears after the number value and can contain letters, digits, and
single underscores. Neither can contain two consecutive underscores.

Attributes The following attributes are available:

Data type: Drop down combo box displaying the variable types. Possible
values are elementary IEC 61131-3 types (BOOL, BYTE, DATE, DINT,
DWORD, INT, LINT, LREAL, LWORD, REAL, SAFEBOOL, SINT,
STRING, TIME, UDINT, UINT, ULINT, USINT, or WORD) or derived types
(arrays, structures, or function blocks).

Direction: Indicates whether the variable is internal, input, or output. Possible
values are Var, VarInput, or VarOutput.

String Length: Defined length only applying to the STRING variable. Possible
values are 1 to 252.

Property Description
Automation Collaborative Platform 119

Editing Existing Variables
You can edit variables from the Variable Selector. The cells of the grid contain drop-down list
boxes or editable text fields. To retain changes made to variables, you must save these changes.

To edit a variable

1. In the Variable Selector grid, locate the variable.

2. Select the grid cell to edit and make the necessary changes, then press ENTER.

See Also
Variable Selector
120 Variable Selector

Cutting, Copying, and Pasting Variables
You can cut, copy, and paste variables between the tabs of the Variable Selector as well as
between the Variable Selector and instances of the Dictionary.

To cut, copy, and paste variables

When selecting variables, an indicator arrow () is displayed in the leftmost column of the
grid.

1. In the grid of the required Variable Selector tab or Dictionary instance, cut or copy the
required variables.

 To remove variables, select the required variable or variables, right-click the
selection, then click Cut.

 To copy variables, select the required variable or variables, right-click the selection,
then click Copy.

2. In the grid of the required Variable Selector tab or Dictionary instance, right-click the
desired location, then click Paste.

The variables are displayed at the desired location.

See Also
Variable Selector
Automation Collaborative Platform 121

Deleting Variables
You can delete variables from the Variable Selector. Deleting variables from the Variable
Selector also removes these variables from the Dictionary.

To delete variables

� From the Variable Selector, in the grid, select the required variable or variables,
right-click the selection, then click Delete record(s).

See Also
Variable Selector
122 Variable Selector

Sorting Columns
You can sort the columns of the Variables selector in an ascending or descending order.

To sort a column

1. In the Variable Selector, select the required column header.

2. Toggle the column header to switch between ascending and descending order.

See Also
Variable Selector
Automation Collaborative Platform 123

Filtering Variables
You can filter the variables by their attributes in the Variable Selector. When filtering, you
create a view displaying only the variables having specific attributes or containing specific
characters.

You can filter the list of blocks by typing alphabetical and numerical characters in the Name
field. The filter row is the top row of the grid. In the filter row, you can type alphabetical and
numerical characters or select from the drop-down-combo-boxes. Variables containing
matching characters are automatically displayed in the grid.

To filter variables

1. To filter using characters in variable names, in the Name field, type the characters to use
in the filtering operation.

2. To filter using the variables attributes, in the filter row of the list of variables, click the
required cell, then do one of the following:

 Type the characters to use in the filtering operation

 Select the required variable or filtering option from the drop-down combo-box
124 Variable Selector

Block Selector
The Block Selector enables the selection of operators, functions, and function blocks for use in
block elements defined in programs. For FBD 61131 programs, you enter blocks and declared
instances.

The Block Selector lists the available operators, functions, and function blocks for the program
type: IEC 61131-3 or IEC 61499. For IEC 61131-3 programs, the available items are operators
(OP), standard functions (SF), standard function blocks (SB), user IEC 61131-3 Functions
(IFU), user IEC 61131-3 Function Blocks (IFB) and all "C" Functions (CFU) and “C” Function
Blocks (CFB) supported by the target. For IEC 61499 programs, the displayed items are basic
IEC 61499 Function Blocks (QFB) and composite IEC 61499 Function Blocks (QCF) for
which instances are defined in the dictionary.

For the block list, the properties are the following:
Automation Collaborative Platform 125

For IEC 61499 programs, after selecting a block, you need to indicate the instance of the
IEC 61499 function block and the resource for which the instance is defined.

When selecting operators such as addition, multiplication, and AND, you need to specify the
number of inputs. You can also force the inclusion of the EN and ENO parameters for blocks
having either one Boolean input, one Boolean output, or no Boolean input and output. You
activate the Enable EN/ENO option from the Ladder Diagram options.

Using the Block Selector, you can refine the list of available blocks by sorting the block list
and limiting searches. You can also choose to display the parameters while viewing the blocks.

When working in the Block Selector, you can navigate using keyboard and mouse controls.

From the Block Selector, you can access help for the displayed operators, functions, and
function blocks.

Column Description

Name Name of the function, function block, or operator

Type Type of function, function block, or operator. Possible types are "C" function
(CFU), "C" function block (CFB) , IEC 61131-3 function (IFU), IEC 61131-3
function block (IFB), operator (OPE), standard function block (SFB), and
standard function (SFU).

Category Category of function, function block, or operator. Possible categories vary
depending on the target definition.

Comment Comment for the function, function block, or operator. Free-format text.

Scope Indicates where the POU is defined

Arrow keys Enable moving up, down, left, and right within the cells of the blocks list

Tab key Enables moving left and right within the cells of each row in the blocks list.
After exiting the blocks list, enables moving from left to right between the
fields, option, command buttons and back to the blocks list.

Esc key Enables moving from the blocks list to the fields

Space bar When the Show Parameters option is selected, opens the Parameters Display.

Enter key Enables closing the Block Selector and displaying the chosen block in the
workspace.
126 Block Selector

To access the Block Selector

The Block Selector is available while editing language containers for POUs and displays only
the operators, functions, and function blocks available to the POU.

� From the language container of a graphical program, perform one of the following:

 From the Toolbox, drag the block element into the language container.

 In the language container, double-click an existing block.

The Block Selector is displayed.

To create a declared instance of a function block

Declared instances are function blocks having assigned instances. For graphical and
non-graphical programs, you declare such instances in the Block Selector. These instances are
considered as variables.

1. From the list of available blocks, select the function block type.

2. In the Instance field, type a name for the instance, then click OK.

A declared instance of a block is displayed in the workspace.

To sort the block list

You can sort the columns of the block list by setting these in ascending or descending order.

� Click the required column header to toggle the sort order between ascending and
descending.

To limit searches

As you type text in the Search field, the list displays only the blocks containing these
characters.

� In the Search field in of the Block Selector, type the required text.
Automation Collaborative Platform 127

See Also
Parameters Display
128 Block Selector

Parameters Display
The parameters display graphically presents the parameters for a POU selected in the Block
Selector. When selecting a POU from the block list, the parameters display automatically
shows the local, input, and output parameters. You can expand all or collapse all parameters
for POUs.

To access the parameter display

� In the Block Selector, click Show Parameters.

The parameters display opens on the right.

To expand or collapse all input and output parameters

You can expand or collapse all input and output parameters for user-defined functions and
function blocks.

1. In the block list, select the required block for which to display the existing parameters.

2. To expand all parameters, right-click in the parameters display, then click Expand All.

3. To collapse all parameters, right-click in the parameters display, then click Collapse All.

See Also
Block Selector
Automation Collaborative Platform 129

130 Block Selector

Parameters View
The Parameters view enables managing parameter and local variables for user-defined POUs.
When defining these POUs, the Parameters view provides a graphic view of the parameters and
local variables. You can manage the parameters and local variables for user-defined POUs.

You can perform the following tasks from the Parameter view:

� Creating parameters or local variables

� Editing parameters or local variables

� Deleting parameters or local variables
Automation Collaborative Platform 131

� Cutting, copying, and pasting parameters and local variables

� Display data types for parameters or local variables

In the Parameters view, the properties of parameters and local variables varies for different
CAMs (Concrete Automation Models):

You can modify the parameters for functions and function blocks. User-defined functions are
limited to one output parameter having modifiable data type.

To access the parameter view for a user-defined function or function block

You access the Parameters view when defining parameters for user-defined functions and
function blocks.

1. From the Solution Explorer, create a user-defined function or function block in the Lib
section.

2. Right-click the function or function block, then click Parameters.

To create parameters and local variables

You create parameters for a currently opened user-defined function or function block.
Functions can only have one output.

Column Description

Name Name of the parameter

Alias The short name used in the graphical language editors for display only.
Limited to four characters.

Data Type Data type of the parameter

Dimension For function blocks, dimension of the block. The dimension is defined as
a positive double integer (DINT) value.

Attribute Property of a parameter indicating its read and write access rights.
Possible values are Read, Write, or ReadWrite.

Comment Comment for the parameter. Free-format text.
132 Parameters View

1. In the Lib section of the Solution Explorer, right-click the required function or function
block, then click Parameters.

The Parameters view is displayed.

2. To add an input parameter, click New Input, then define the properties for the parameter.

3. To add an output parameter, click New Output, then define the properties for the
parameter.

4. To add a local variable, click New Variable, then define the properties for the variable.

To edit parameters and local variables

You edit parameters and local variables for a currently opened user-defined function or
function block.

1. In the Lib section of the Solution Explorer, right-click the required function or function
block, then click Parameters.

The Parameters view is displayed.

2. To edit a parameter, select the parameter, then modify its properties.

3. To edit a local variable, select the variable, then modify its properties.

To delete parameters and local variables

You delete parameters and local variables for a currently opened user-defined function or
function block.

1. In the Lib section of the Solution Explorer, right-click the required function or function
block, then click Parameters.

The Parameters view is displayed.

2. Select the parameter or local variable to delete, right-click, then click Delete.
Automation Collaborative Platform 133

To cut, copy, and paste parameters and local variables

You can cut, copy, and paste parameters and local variables for a currently opened user-defined
function or function block.

1. In the Parameters view for a user-defined function or function block, cut or copy the
required parameter or local variable:

 To remove the parameter or local variable, select the item, right-click and then click
Cut.

 To copy the parameter or local variable, select the item, right-click and then click
Copy.

2. To paste a copied parameter or local variable, right-click in the Parameters view and then
click Paste.

Duplicated parameters or local variables are automatically placed in their respective area,
i.e., input, output, or variable.

To display data types for parameters and local variables

You can expand and collapse the display of data types for all parameters and local variables of
a currently opened user-defined function or function block.

� In the Parameters view, right-click, and then click Expand All.
134 Parameters View

Generating Documentation
While in design mode, you can generate documentation for projects, devices, resources (if
supported by the CAM), POUs, variables, and library elements. The output format of the
documentation is Microsoft Word® 2010 (*.docx). Generating documentation enables
viewing the project information for a specific time. You can also search and edit the generated
documentation.

Note: You need to have Microsoft Word® 2010 (or more recent) or another .docx application
installed to properly view, search, and edit the generated documentation.

The Generate Documentation dialog box is separated into three panes: Document Options,
Sections, and TOC Preview. Selections made in a pane affect what is displayed in the following
pane (from left to right). Therefore, changes made in the Document Options pane affects the
Sections pane and changes made in the Sections pane affects what is displayed in the TOC
Preview pane.

In the Document Options pane you can set the following options:
Automation Collaborative Platform 135

Option Description Possible Values

Sections Template The template in XML format
defining the Sections to be
generated in the documentation
as well as their hierarchy. The
selected Sections Template
affects the items displayed in the
Sections and TOC Preview
panes.

The templates are located in the
following directory:
%ALLUSERSPROFILE%\ISa
GRAF\6.4\ACP\Templates

DefaultTemplate or a user-defined
*.xml template. The default value is
DefaultTemplate.

Orientation The orientation of the page Portrait or Landscape. The default value
is Portrait.

Page size The size of the page Letter, Legal, Statement, Executive, A3,
A4, A5, B4 (JIS), B5 (JIS), 11x17,
Envelope #10, Envelope DL, Envelope
C5, Envelope B5, Envelope Monarch,
Japanese Postcard, A6, Double Japan
Postcard Rotated, Executive (JIS),
Oficio 8.5x13, 12x18, 8k 273x394 mm,
16k 197x273 mm, or Custom. The
default value is Legal.

Margins The left, right, top, and bottom
margins for the page

Narrow, Normal, Moderate, or Custom.
The custom margins range from 0
inches to the maximum size of the page.
The default value is Narrow.
136 Process Safety Workbench 5 Concrete Automation Model

Selecting a Sections Template in the Document Options pane modifies the items listed in the
Sections pane. The Title Page, Table of content, and Deployment View items are always
available for selection in the Sections pane. The button displays the Variable Settings
dialog box and is used to specify how you want the variables to be sorted in the generated
documentation. You can sort variables by Name, Comment, Alias, Data Type, Wiring,
Attribute, Dimension, Initial Value, Direction, or String Size in ascending or descending order.

The items selected in the Sections pane modifies the items displayed in the tree view of the
TOC Preview pane. You can also select or clear items in the TOC Preview pane. The final
selection in the TOC Preview pane displays what will be generated in the documentation.

Microsoft Word®
Template

The Microsoft Word® template
in *.dotx format used to define
the layout for the title page,
table of contents, and tables.

The templates are located in the
following directory:
%ALLUSERSPROFILE%\ISa
GRAF\6.4\ACP\Templates

IsagrafFooter.dotx or a user-defined
*.dotx template. The default template is
IsagrafFooter.dotx.

Diagram Scaling The scaling for all diagrams
displayed in the generated
documentation.

25%, 50%, 75%, 100%, 125%, 150%,
175%, 200%, 300%, 400%, 500%, Fit
to Page, or Custom. When selecting the
Custom scaling, a spin box appears
enabling the user to select the scaling
value. The default value is 100%.

Link Type The type of links in the
documentation.

None, Only Bookmarked, Cross
Reference, or Hyperlink. The default
value is Hyperlink.

Comment Style How comments are displayed in
the documentation. This option
does not affect how comments
are displayed in graphical POU
diagrams.

// comment, /* comment */, or
(* comment *). The default value is /*
comment */.

Option Description Possible Values
Automation Collaborative Platform 137

The items displayed in the Sections and TOC Preview panes also depend on the element
selected in the Workbench when using the Generate Documentation command. For example if
a POU is selected, only associated sections (local variables and the POU diagram) are
displayed in the Documentation Generator dialog box. When the project is selected in the
Solution Explorer, all sections (project, global variables, defined words, structures, arrays,
targets, etc) are displayed in the dialog box. If the Documentation Generator is unable to find
an associated element, the Generate Documentation command does not appear in the File
menu.

The Documentation Generator retains the selections made in the three panes for each element
across project sessions. You can reset the pane selections by clicking Default Settings.

Users can create their own custom templates for the Sections Templates (*.xml) and Microsoft
Word® templates (*.dotx). When creating a custom XML template, you must use the
following syntax:

Section Description

TitlePageSection The title page

TOCPageSection The table of contents

SolutionSection The title of the solution name

ProjectSection The title of the project name

ArraysSection The table displaying arrays

StructuresSection The table displaying structures

DefinedWordsSection The table displaying defined words

ConfigurationSection The title of the controller name as well as the table
displaying network links

ProgramSection The title of the program name

POUContentSection The POU diagrams

VariableSection The tables for local and global variables. Also displays
the extended attributes for global variables.

IOWiringSection The I\O wiring table

TargetSection The table displaying the targets

BindingSection The table displaying the bindings
138 Process Safety Workbench 5 Concrete Automation Model

When creating a custom Microsoft Word® template (*.dotx), you can modify how sections are
displayed, but you must retain the following styles and table styles defined by Microsoft Word
or the workbench:

To generate documentation

You can only generate documentation while in design mode.

1. In the Solution Explorer, select the element (project, device, resource (if supported by the
CAM), POU, library element, etc.) for which to generate documentation.

2. From the File menu, click Generate Documentation.

3. Specify the required options, then click Generate.

The Save As dialog box is displayed.

Style Description

Heading 1 How Header 1 is displayed in the documentation.

Heading 2 How Header 2 is displayed in the documentation.

Heading 3 How Header 3 is displayed in the documentation.

Heading 4 How Header 4 is displayed in the documentation.

Heading 5 How Header 5 is displayed in the documentation.

Heading 6 How Header 6 is displayed in the documentation.

Heading 7 How Header 7 is displayed in the documentation.

Heading 8 How Header 8 is displayed in the documentation.

Heading 9 How Header 9 is displayed in the documentation.

Alias How the Alias section is displayed in the documentation.

Comment How comments are displayed in the documentation.

Table Style Description

IOWiring The tables displaying information for I/O wiring and targets.

NormalStyle The tables displaying information for bindings.

VariableTableStyle The tables displaying information for variables, arrays, structures, and
defined words.
Automation Collaborative Platform 139

4. In the Save As dialog box, specify the file name and save location, then click Save.

 A progress bar shall appear over the Documentation Generator dialog box displaying
the generation progress. The user can click Cancel to abort the documentation
generation process. Any files created during the generation process are deleted.

Once generation is complete, the docx application displays the documentation.
140 Process Safety Workbench 5 Concrete Automation Model

Find and Replace Utility
The Find and Replace utility enables performing the following operations:

� Quick Find

� Quick Replace
Automation Collaborative Platform 141

Quick Find
You can find strings or expressions in files using the Quick Find utility. Quick Find steps from
one search result to the next in sequence, either backwards or forwards from the insertion point.
Upon reaching the end or beginning of a document, Quick Find automatically jumps to
unsearched sections. When the search is complete, a message is displayed.

When all search options are defined, you can choose to find the next instances of the required
string or expression within the specified scope.

� Find What, enables defining the string or expression to find within the open document.
You can type the required string into the field, select one of the last twenty searches from
the Find What drop-down combo-box, and use wildcards or regular expressions in
searches. When using wildcards or regular expressions, the Expression Builder displays a
list of available wildcards or expressions.

� Look in, enables defining the scope for the search. You can select the required scope from
the Look in drop-down combo-box.

� Find Options, enables selecting options that refine the search. You can search for case
sensitive matches using Match Case. You can disregard partial word matches by selecting
Match whole word. You can search for matches from the insertion point to the top of the
file by selecting Search up. You can search collapsed or concealed text by selecting
Search hidden text. You can include special characters, such as wildcards or regular
expressions, in the Find What field by selecting Use.

To find a string or expression in a file

You can perform searches using the Find and Replace utility or you can type the necessary text
in the search field on the toolbar. You can place the cursor in the toolbar search field using the
Ctrl+D keyboard shortcut.

1. From the Edit menu, point to Find and Replace, then click Quick Find (or press
Ctrl+F).

2. In the Quick Find utility, enter the required information, then click Find Next (or press
F3).
142 Find and Replace Utility

To use wildcards or regular expressions

1. From Quick Find, expand Find Options, then select Use.

2. From the Use drop-down combo-box, select the required option, either Wildcards or
Regular expressions.

3. In the Find What field, type the required wildcard or regular expression, or click to
select from the list of available wildcards or regular expressions.

See Also
Quick Replace
Automation Collaborative Platform 143

Quick Replace
You can replace strings or expressions in files using the Quick Replace utility. Quick Replace
steps from one search result to the next in sequence, either backwards or forwards from the
insertion point. Upon reaching the end or beginning of a document, Quick Replace
automatically jumps to unsearched sections. When the search is complete, a message is
displayed.

When all search options are defined, you can choose to find the next instance of the required
string or expression within the specified scope, then replace individual or all instances of
searched items.

� Find What, enables defining the string or expression to find within the open document.
You can type the required string or expression in the field, select one of the last twenty
searches from the Find What drop-down combo-box, and use wildcards or regular
expressions in searches. When using wildcards or regular expressions, the Expression
Builder displays a list of available wildcards or expressions.

� Replace with, enables defining the string or expression that will replace each match
found. You can type the required string or expression in the field provided, or select one
of the last twenty items entered using the drop-down combo-box. You can delete matches
found by leaving the Replace with field empty. You can use wildcards or regular
expressions in the Replace with field.

� Look in, enables defining the scope for the search. You can select the required scope from
the Look in drop-down combo-box.

� Find Options, enables selecting options that refine the search. You can search for case
sensitive matches using Match Case. You can disregard partial word matches by selecting
Match whole word. You can search for matches from the insertion point to the top of the
file by selecting Search up. You can search collapsed or concealed text by selecting
Search hidden text. You can include special characters, such as wildcards or regular
expressions, in the Find What field by selecting Use.

To replace a string or expression in a file

1. From the Edit menu, point to Find and Replace, then click Quick Replace (or press
Ctrl+H).
144 Find and Replace Utility

2. In the Quick Replace utility, enter the required information, then click one of the
following command buttons: Find Next, Replace, or Replace All.

To use wildcards or regular expressions

1. From Quick Replace, expand Find Options, then select Use.

2. From the Use drop-down combo-box, select the required option, either Wildcards or
Regular expressions.

3. In the Find What or Replace with fields, type the required wildcard or regular expression,

or click to select from the list of available wildcards or regular expressions.

See Also
Quick Find
Automation Collaborative Platform 145

Spy Lists
You can choose to spy on selected variables and instances of function blocks, i.e., view
changes in the values for these variables and function blocks. You spy on variables and
instances of function blocks by adding these to spy lists. Before adding these, you need to
create a spy list.

You view spy lists in the Spy List window.

When managing spy lists, you can perform the following tasks:

� Accessing existing spy lists

� Adding items to a list

� Removing items from a list

� Saving spy lists

� Cutting, copying, and pasting items between spy lists

� Dragging items between Spy Lists

For the Spy List, the properties are the following:

Column Description Possible Values

Name Name of the variable or function
block instance

Limited to 128 characters beginning
with a letter or underscore character
followed by letters, digits, and single
underscore characters. These names
cannot have two consecutive underscore
characters.

Alias Any name (for use in LD POUs) Limited to 128 characters beginning
with a letter or underscore character
followed by letters, digits, and single
underscore characters. These cannot
have two consecutive underscore
characters.
Automation Collaborative Platform 147

You can also customize spy lists by arranging the columns to display and setting the display
colors. In the Spy List, you can refine the contents of the grid by grouping items in a list, sorting
items in a list, and filtering items in a list.

For spy lists, the properties are the following:

Logical Value Available when online. The
displayed value differs depending
on the direction of the variable or
function block instance.

Input: Locked
Output: Updated by the running TIC
code
Internal: Locked

Physical Value Available when online. The
displayed value differs depending
on the direction of the variable or
function block instance.

Input: Updated by the field value
Output: Locked
Internal: Updated by the running TIC
code

Lock Available when online. The
indication of whether the value of
the variable or function block
instance is locked. Locking
operates differently for simple
variables, array and structure
elements, and function block
parameters. For simple variables,
individual variables are locked
directly. For structure and array
elements, locking an element locks
all the elements of the structure or
array.

Yes or No

Comment User-defined text Free format

Access Path The location of the variable or
function block instance within the
project.

Name of the project, device, resource (if
supported by the CAM), and program is
displayed, as well as the name of the
variable or function block instance.

Column Description Possible Values
148 Spy Lists

When working in the Spy List, you can navigate using the mouse controls and arrow keys to
move up and down the list.

To create a spy list

� From the Debug menu, point to Spy List, then click Create Spy List.

A spy list having an empty grid is displayed.

To access an existing spy list

� From the Debug menu, point to Spy List, then click the required list from the available
spy lists.

To add items to a list

In a spy list, you add variables and instances of function blocks to the list individually.

� In the name column of the list, double-click the available record row, then select a
variable or function block instance from the drop-down menu.

To remove items from a list

You can delete one or more variables and instances of function blocks from a spy list. When
selecting an item, an indicator arrow is displayed in the left-most column of the list.

� In the list, select the item or items to delete, right-click the selection, then click Delete.

Monitoring Refresh Rate The rate at which the values of variables are refreshed in the
spy list, in milliseconds. You can only change the refresh rate
while in design mode.

Spy List Name Name of the spy list displayed in the spy list title bar and the
menu

Arrow keys Enable moving up or down in the list

Enter key When selecting variables using the Name field, enables saving the selected
variable to the grid.
Automation Collaborative Platform 149

The items are removed from the list.

To save a spy list

Changes to spy lists are saved automatically upon closing.

� From the required spy list, click the Close button at the top-left corner of the Spy List
window.

To cut, copy, and paste items between spy lists

You can cut, copy, and paste variables and instances of function blocks between spy lists.
When selecting these items, an indicator arrow is displayed in the leftmost column of the list.

1. In the grid of the required spy list, cut or copy the required items.

 To remove variables, select the required item or items, right-click the selection, then
click Cut.

 To copy variables, select the required item or items, right-click the selection, then
click Copy.

2. In the grid of the required spy list, right-click the required location, then click Paste.

The items are displayed at the desired location.

To drag items between spy lists

You can drag variables and instances of function blocks from one spy list to another.

1. Access the spy lists containing the required items and their destination.

2. From the spy list containing the required items, select the items.

The selection indicator is displayed in the leftmost column.

3. Drag to the destination, placing it at the required location within the list.

The items are displayed at the destination.
150 Spy Lists

To arrange the columns to display

1. To move a column, drag the column header to another location.

When dragging a column header, arrows indicate the current position of the header.

2. To show or hide a column, right-click on a column header, then click the column name.

To sort items in a spy list

You can sort items in a spy list according to the ascending or descending order for the different
columns.

� Click the required column header to toggle the sort order between ascending and
descending.

To filter items in the grid

You can filter variables and function block instances displayed in a list. When filtering, you
create a view displaying only the entries containing specified characters.

The filter row is the top row of the grid. You can filter variables and function block instances
by typing alphabetical and numerical characters in the cells of the filter row. You can also
select from the drop-down-combo box. Matching variables and function block instances are
automatically displayed.

� In the filter row of the Spy List, click the required cell, then do one of the following:

 Type the characters to use in the filtering operation

 Select the required structure from the drop-down combo-box

To group items in a spy list

You can group items contained in a spy list according to columns.

� Drag the required column header to toggle the sort order between ascending and
descending.
Automation Collaborative Platform 151

Add-in Manager
The Add-in manager enables specifying the loading method of available, i.e., registered,
add-ins. The Add-in manager dialog box lists the available add-ins for which you specify
whether to load at startup or using a command line. The dialog box also displays descriptions
defined for add-ins.

At startup or build time, when add-ins are set to load using command line switches, those
having user interfaces are automatically displayed. Add-ins displaying as toolbar icons or
menu commands are also displayed within the toolbars and menus. When add-ins are set to
load at startup time, you can stop the add-in from loading by pressing and holding SHIFT during
startup. Add-ins having user interfaces remain accessible from toolbars and menus.

For projects containing add-ins, you can avoid errors when moving a project to another
location by updating its paths in the following tag of the respective *.Addin XML file:

<Assembly>C:\MyAddin1.dll</Assembly>

When working in the Add-in Manager dialog box, you can toggle the selection of the loading
options using keyboard shortcuts for a selected add-in: Startup option using ALT+S and
Command Line option using ALT+C.

To access the Add-in Manager

� From the Tools menu, click Add-In Manager.

To set the loading behavior for an add-in

1. From the Add-In Manager, in the Available Add-ins column, click the check-box next to
the add-in name, then perform the following as required:

 To load the add-in at startup, click the check-box in the Startup column.

 To load the add-in using a command line, click the check-box in the
Command Line column.

2. Click OK.
Automation Collaborative Platform 153

External Tools
You can launch external tools and applications by adding items to the Tools menu. You can
also create keyboard shortcuts for external tools added to the Tools menu. Supported file types
include .exe, .bat, .com, .cmd, and .pif.

From the External Tools dialog box, you can perform the following tasks:

� Adding an external tool

� Specifying a tool for handling arguments

� Defining a working directory

When specifying a tool for handling arguments, the required argument is immediately
transferred to the tool when the external tool is launched. At this time, you can also choose to
edit required arguments. Upon subsequent startups of the external tool from the Tools menu,
selected arguments are automatically passed to the tool. When Prompt for Arguments is
selected, the Arguments dialog box is displayed.

You can define a working directory for tools or commands. You can also specify additional
arguments when the command is launched.

To add an external tool

1. From the Tools menu, click External Tools.

2. In the External Tools dialog box, in the Title field, type a name for the menu option. To
include a keyboard shortcut, type an ampersand (&) before the letter in the title to use as
shortcut. For example: "My External Tool", the letter "x" is the keyboard shortcut.

3. In the Command field, type the path to the file, or browse for the file by clicking .

4. Select the Use Output window and Close on exit check boxes (optional).

The Use Output window option is only available for .bat and .com files.

5. Click Add, then click OK.
Automation Collaborative Platform 155

The external tool is available from the Tools menu.

To specify a tool for handling arguments

When the specified tool is launched, the required argument is immediately transferred to the
tool. Selecting the Prompt for Arguments option enables editing the argument at launch time.

1. From the Tools menu, click External Tools.

2. In the External Tools dialog box, in the Menu contents list, select the required tool.

3. In the Arguments field, type the required arguments, or select a predefined argument by

clicking .

4. Select Prompt for arguments (optional), click Apply, then click OK.

To define a working directory

Selecting the Prompt for Arguments option enables adding additional arguments at launch
time.

1. From the Tools menu, click External Tools.

2. In the External Tools dialog box, in the Menu contents list, select the required tool.

3. In the Initial directory field, enter the working directory for the tool, or select a

predefined directory path by clicking .

4. Select Prompt for arguments (optional), click Apply, then click OK.
156 External Tools

Working in the Development
Environment
When working in the development environment, you can use keyboard shortcut combinations
to perform multiple tasks. These tasks include customizing, creating, and renaming toolbars.
You can also customize commands and edit buttons. Navigating in the development
environment is simplified with the use of the Integrated Development Environment (IDE)
Navigator.
Automation Collaborative Platform 157

Displaying the Output Window
You can review messages generated by various features of the Workbench by accessing the
Output window. From the Output window, you can perform the following tasks:

� Reviewing status messages

� Managing the contents of the window

The Output window toolbar contains the following commands:

To access the Output window

1. From the View menu, click Output (or press Ctrl+Alt+O).

The Output window is displayed.

To review the generated status messages

1. In the Output window, from the Show output from drop-down combo-box, click the
required feature.

The status messages are displayed.

Show output from: Enables selecting individual features for which to view
generated status messages

 Go to Previous Message
In the Output window, jumps to the previous build error
message. In the code editor, locates the build error and
automatically moves the insertion point to the error.

 Go to Next Message
In the Output window, jumps to the next build error
message. In the code editor, locates the build error and
automatically moves the insertion point to the error.

 Clear all
In the Output window, deletes all displayed messages.

 Toggle Word Wrap
Wraps text to continue on the next line for messages
extending beyond the viewing area
158 Working in the Development Environment

To manage the contents of the Output window

You can manage the word wrapping and clear the contents of the window.

1. To wrap text to continue on the next line, click .

2. To delete the contents of the window, click .
Automation Collaborative Platform 159

Using the Error List
You can view the errors, warnings, and messages produced when you edit programs and
perform build operations by accessing the Error List window.

From the Error List window, you can navigate from one error to the next using the contextual
menu options. You can also navigate between errors using the keyboard arrows.

The Error List toolbar contains the following commands:

You can sort the contents of the Error List. You can customize the Error List by hiding
columns, resizing columns, and arranging the columns to display.

To display the Error List window

� From the View menu, click Error List (or press Ctrl+\, Ctrl+E).

The error list is displayed.

Column Description

Category Displays an icon identifying the type of error

Default Order Displays an integer indicating the order in which the error occurred
relative to the other errors

Description Displays the error message text

File Displays the program name or the program location and program name

Line Displays the line number

Column Displays the column number

Project Displays the name of the project

Displays the number of generated errors. Click to toggle between
displaying and hiding the errors in the list.

Displays the number of generated warnings. Click to toggle between
displaying and hiding the warnings in the list.

Displays the number of generated messages. Click to toggle between
displaying and hiding the messages in the list.
160 Working in the Development Environment

To sort the errors

You can sort the list of displayed errors.

� In the Error List window, click the required column heading for which to sort. To further
sort the list, click another column heading while pressing SHIFT.

To customize the Error List window

1. To move a column, drag the column heading to the required location.

2. To modify the width of columns, drag the column dividers to the required location.
Automation Collaborative Platform 161

Navigating in the Development Environment
Navigating in the development environment is simplified with the use of the following utilities:

� Integrated Development Environment (IDE) Navigator

� Windows Dialog Box

Integrated Development Environment (IDE) Navigator

The IDE Navigator lists all Active Files and Tool Windows open in the current project. The
navigator enables navigation between Active Files and navigation between Active Tool
Windows. You can only access the IDE Navigator using keyboard shortcuts.

When using the IDE Navigator, the currently selected file is displayed on the top right of the
navigator. The file type is displayed under the file name when applicable. The full path of the
selected window or file is located at the bottom of the navigator.
162 Working in the Development Environment

Active Tool Windows consist of windows docked around the workspace or undocked
windows. Active Files consist of language containers, the deployment view, and other
windows docked in the workspace. You navigate between the different files using keyboard
shortcuts or the arrow keys.

The order in which the Active Files and Active Tool Windows are displayed depends on
activation. The first file is the most recently used/selected while the last file is the least recently
used.

Note: Using a different set of keyboard shortcuts, you can navigate between Active Files and
navigate between Active Tool Windows without displaying the IDE Navigator.

Windows Dialog Box

The Windows dialog box displays the active files open in the current project. Active files
consist of language containers, the deployment view, and other windows docked in the
workspace.

From the Windows dialog box, you can perform the following management tasks for active
files:

� Switch between active files

� Save changes to one or more active files
Automation Collaborative Platform 163

� Close active files

To navigate using the Windows dialog box

1. From the Window menu, click Windows.

The Windows dialog box displays the list of active files.

2. To switch to another active file in the list, select the required file, then click Activate.

3. To save changes to active files, select the required files from the list, then click Save.

4. To close active files, select the required files from the list, then click Close Window(s).

See Also
Development Environment Keyboard Shortcuts
164 Working in the Development Environment

Customizing Toolbars
For toolbars provided with ISaGRAF 6, you can modify docking locations. For custom
toolbars, you can modify docking locations, rename toolbars, and delete toolbars.

To customize a toolbar

The Customize dialog box lists the provided toolbars as well as any custom user toolbars.

1. From the Tools menu, click Customize.

2. From the Customize dialog box, click the Toolbars tab, make the required changes, then
click Close.

 To modify the docking location for a toolbar, select the required toolbar from the
Toolbars list, click Modify Selection, then click the preferred location for docking
the toolbar. Available docking locations are top, left, right, and bottom.

 To rename a custom toolbar, select the required toolbar from the Toolbars list,
click Modify Selection, then type the required name in the text field.

 To delete a custom toolbar, select the required toolbar from the Toolbars list, then
click Delete.

The toolbar is removed from the Toolbars list.

See Also
Creating Toolbars
Automation Collaborative Platform 165

Creating Toolbars
You can create custom toolbars for use in the workbench.

To create a custom toolbar

1. From the Tools menu, click Customize.

2. From the Customize dialog box, click the Toolbars tab, then click New.

3. In the New Toolbar dialog box, type a name for the custom toolbar, then click OK.

The custom toolbar name is added to the Toolbars list.

See Also
Customizing Toolbars
166 Working in the Development Environment

Customizing Commands
You can customize menu bar, toolbar, and contextual menu commands by selecting a set of
commands, then choosing an individual command to modify using the available options. You
can add, rename, reset, delete, and rearrange the order of commands in the menus. You can also
delimit groups of commands in menus and specify display options.

When customizing menus, the following image shows the different levels and options for menu
items.

To add a menu category to the menu bar

1. From the Tools menu, click Customize.

2. From the Customize dialog box, click the Commands tab.

3. Select Menu Bar from the Menu bar drop-down combo-box.

Menu Bar Menu Category

Menu Items

Commands

Submenu
Automation Collaborative Platform 167

4. To add a menu category to the menu bar, click Add New Menu.

The menu category is added to the menu bar.

5. Rename the menu item by clicking Modify Selection, then typing the required name in
the text field.

To add a menu item to an existing menu category, toolbar, or contextual menu.

Menu items are either commands or subcategories leading to submenus. Before adding a menu
item, you need to arrange the required order by selecting the menu item following the location
of the new item in the list or rearranging the menu items after insertion.

1. From the Tools menu, click Customize.

2. From the Customize dialog box, click the Commands tab.

3. Select the required menu from the Menu bar, Toolbar, or Context menu drop-down
combo-boxes.

4. Perform one of the following operations:

 To add a menu item to an existing menu category, toolbar, or contextual menu, select
the item following the location for the new item, then click Add New Menu.

 To add a command to an existing menu category, toolbar, or contextual menu, select
the item following the location for the new item, click Add Command, then select
the category and choose from the available commands in the Commands list.

The menu item is added to the existing menu category, toolbar, or contextual menu.

5. To rename the menu or command, click Modify Selection, then type the required name
in the text field.

To reset menu bars, toolbars, or contextual menus

1. From the Tools menu, click Customize.

2. From the Customize dialog box, click the Commands tab.

3. Perform the required reset operation:
168 Working in the Development Environment

 To reset a command or menu item, select the item from the respective drop-down
combo-box, select the command or menu item from the Controls list, click Modify
Selection, then click Reset.

 To reset a menu, toolbar, or contextual menu, select the item from the respective
drop-down combo-box, then click Reset All.

To delete a menu item, toolbar, or contextual menu

1. From the Tools menu, click Customize.

2. From the Customize dialog box, click the Commands tab.

3. Select the required menu from the Menu bar, Toolbar, or Context menu drop-down
combo-boxes.

4. In the Controls list, select the item to delete, then click Delete.

To create a group of commands

You can create groups of commands by inserting separator bars.

1. From the Tools menu, click Customize.

2. From the Customize dialog box, click the Commands tab.

3. Select the required menu from the Menu bar, Toolbar, or Context menu drop-down
combo-boxes.

4. From the Controls list, select the menu item starting the group, click Modify Selection,
then click Begin a Group.

A separator bar is inserted before the selected menu item.

To rearrange menu items

1. From the Tools menu, click Customize.

2. From the Customize dialog box, click the Commands tab.
Automation Collaborative Platform 169

3. Select the required menu from the Menu bar, Toolbar, or Context menu drop-down
combo-boxes.

4. To place the menu item at a different location in the selected menu or toolbar, select the
menu item in the Controls list, then click Move Up or Move Down to move across the
existing menu items.

To specify the display options for a command

Initially, the display options for commands are set to default. In menus, the default display
option is Image and Text, while in toolbars it is Text Only (in Menus). The Text Only (in
Menus) option displays an image in a toolbar or text in a menu. The Text Only (Always) option
displays text in a menu or toolbar. The Image and Text option displays both image and text in
a menu or toolbar. A command may not have an associated image.

1. From the Tools menu, click Customize.

2. From the Customize dialog box, click the Commands tab

3. Select the menu to modify from the Menu bar, Toolbar, or Context menu drop-down
combo-boxes.

4. To specify the display options, select the required command in the Controls list,
click Modify Selection, then click one of the following:

 Default style

 Text Only (Always)

 Text Only (in Menus)

 Image and Text
170 Working in the Development Environment

Importing and Exporting Settings
You can import or export specific categories of settings, or reset the environment to one of the
default collections of settings. The environment settings include the settings for the various
development views, editors, and tools.

� Export Selected Environment Settings

� Import Selected Environment Settings

� Reset all Settings

To import, export, or reset environment settings

1. From the Tools menu, click Import and Export Settings...

2. Select the required option, then follow the on-screen instructions.
Automation Collaborative Platform 171

Export Selected Environment Settings

When exporting selected environment settings, you need to choose the settings to export from
the list of available environment settings. Environment settings identified with a warning
symbol are not selected by default since these may contain intellectual property or sensitive
information. Some categories may have sub-categories visible upon expanding the arrows to
the left of the category item.

The settings exportation process requires the following operations:

1. Choosing the environment settings to export.

2. Naming a settings file.

During the environment settings export process, a window indicates the progress of the
operation. Upon completion of the environment settings export process, a summary page
indicates the results of the operation.

See Also
Import Selected Environment Settings
Reset all Settings
172 Working in the Development Environment

Naming a Settings File

When exporting selected environment settings, you need to specify a settings file in which to
store the exported settings. The default location of this settings file is the following:

%USERPROFILE%\documents\isagraf 6.4\Settings\ISaGRAF

See Also
Export Selected Environment Settings
Automation Collaborative Platform 173

Settings Export in Progress

During the environment settings export process, a window indicates the progress of the
operation.
174 Working in the Development Environment

Import Selected Environment Settings

When importing selected environment settings, you need to choose a file containing the
settings to import, then select the required settings to import from the list of available
environment settings in the file. Environment settings identified with a warning symbol are not
selected by default since these may contain intellectual property or sensitive information. Some
categories may have sub-categories visible upon expanding the arrows to the left of the
category item.

The settings importation process requires the following operations:

1. Choosing whether to save the current environmental settings or overwriting the current
setting with the settings to import.

2. Choosing a file containing the collection of environmental settings to import.

3. Selecting the individual settings to import from the list of available environment settings
in the settings file.

During the environment settings import process, a dialogue indicates the progress of the
operation. Upon completion of the environment settings import process, a summary page
indicates the results of the operation.

See Also
Export Selected Environment Settings
Reset all Settings
Automation Collaborative Platform 175

Choosing a Collection of Settings to Import

When importing selected environment settings, you need to choose a file containing the
settings to import.

See Also
Choosing Settings to Import
Import Selected Environment Settings
176 Working in the Development Environment

Choosing Settings to Import

When importing selected environment settings, you can select the required settings to import
from the list of available environment settings contained in the settings file. Environment
settings identified with a warning symbol are not selected by default since these may contain
intellectual property or sensitive information. Some categories may have sub-categories visible
upon expanding the arrows to the left of the category item.

See Also
Choosing a Collection of Settings to Import
Import Selected Environment Settings
Automation Collaborative Platform 177

Settings Import in Progress

During the environment settings import process, a window indicates the progress of the
operation.
178 Working in the Development Environment

Reset all Settings

You can revert the environment settings to the initial settings. When resetting the environment
settings, you can choose whether to save the current environment settings to a file.

See Also
Import Selected Environment Settings
Automation Collaborative Platform 179

Settings Reset in Progress

During the environment settings reset process, a window indicates the progress of the
operation.
180 Working in the Development Environment

Operations Summary

When performing one of the following tasks regarding the environment settings, the wizard
informs you of the results (whether successful or unsuccessful) for the operation.

� Export Selected Environment Settings

� Import Selected Environment Settings

� Reset all Settings
Automation Collaborative Platform 181

Development Environment Keyboard Shortcuts
When working in the development environment, keyboard shortcuts are available for the
following tasks:

� AccessingWindows

� Debugging

� Dictionary

� Getting Help

� Saving and Closing

� Working with the Cross Reference Browser and Find utility

� Navigating in the Development Environment

Some keyboard shortcuts do not apply or may differ while debugging.

Note: Keyboard shortcuts specific to the programming languages, deployment view, and
version source control are indicated on their respective keyboard shortcut pages.

Accessing Windows

Ctrl+Alt+T Accesses the Block Library

Ctrl+W, Ctrl+C Accesses the Cross Reference Browser

Ctrl+\, Ctrl+E Accesses the Error List window

Ctrl+Shift+N Accesses the New Project dialog box (not available while debugging)

Ctrl+Shift+O Accesses the Open Project dialog box (not available while debugging)

Ctrl+Alt+O Accesses the Output window

Ctrl+K, C Accesses the Pending Changes window

F4 Accesses the Properties window

Alt+Enter Accesses the Properties window

Ctrl+F Accesses the Quick Find utility

Ctrl+H Accesses the Quick Replace utility
182 Working in the Development Environment

Debugging

Dictionary

Getting Help

Ctrl+K, R Accesses the Repository Explorer

Ctrl+Alt+L Accesses the Solution Explorer

Ctrl+Alt+X Accesses the Toolbox

Ctrl+K, W Accesses the Working Copy Explorer

Ctrl+Shift+B Builds the solution (not available while debugging)

F5 Starts debugging

F10 While debugging, steps over the next rung or line of code

F11 While debugging, steps into the next rung or line of code

Shift+F5 Stops debugging

Ctrl+D Only available in debug mode for the date data type. When the Write
Logical Value dialog box is open, enters the current date.

Up Arrow Moves up the grid between cells

Down Arrow Moves down the grid between cells

Left Arrow Moves left across the grid between cells

Right Arrow Moves right across the grid between cells

Ctrl+PLUS SIGN on
numeric keypad (+)

Expands the fields of complex data types

Ctrl+MINUS SIGN on
numeric keypad (-)

Collapses the fields of complex data types

Ctrl+F1 Accesses the Help Viewer

Shift+F1 Accesses help for the selected window

F1 Accesses help for the selected element
Automation Collaborative Platform 183

Saving and Closing

Working with the Cross Reference Browser and Find utility

Navigating in the Development Environment

Ctrl+S Saves the selected elements (not available while debugging)

Ctrl+Shift+S Saves all files making up a solution (not available while debugging)

Alt+F4 Exits ISaGRAF

Ctrl+F4 Closes files and windows located in the workspace

Shift+Esc Closes selected windows except for programs and the deployment
view

Ctrl+T, Ctrl+R Refreshes the Cross Reference Browser data

F8 Jumps to the selected instance of an element

Shift+F8 Jumps to the selected instance of an element

F3 Finds next text in a selected window

Ctrl+D Goes to the find toolbar. Current text is highlighted/selected.

Alt+- For language containers and the deployment view, displays various
menu options including saving, docking, and tiling.

For other windows, displays docking options.

Ctrl+Alt+Down
Arrow

Displays a drop down list on the top right corner of the workspace
listing all active files tabbed in the workspace.

Ctrl+Tab Displays the IDE Navigator. You can navigate to the next Active File
by holding the Ctrl key and pressing Tab. Releasing the keys selects
the current file.

Ctrl+Shift+Tab Displays the IDE Navigator. You can navigate to the previous Active
File by holding Ctrl+Shift and pressing Tab. Releasing the keys
selects the current file.

Alt+F7 Displays the IDE Navigator. You can navigate to the next Active Tool
Window by holding Alt and pressing F7. Releasing the keys selects
the current window.
184 Working in the Development Environment

Alt+Shift+F7 Displays the IDE Navigator. You can navigate to the previous Active
File by holding Alt+Shift and pressing F7. Releasing the keys selects
the current window.

Ctrl+F6 Navigates to the next Active File

Ctrl+Shift+F6 Navigates to the previous Active File

Alt+F6 Navigates to the next Active Tool Window

Alt+Shift+F6 Navigates to the previous Active Tool Window
Automation Collaborative Platform 185

186 Working in the Development Environment

Options for the Development
Environment
When setting the development options, you can customize the following aspects of the
development environment:

� Setting Environment Options

� Specifying Project Options

� Specifying Source Control Settings

� Specifying Block Library Settings

� Specifying CAM3 Settings

� Specifying Deployment View Settings

� Specifying Device View Options

� Specifying Documentation Generator Options

� Setting Grid Options

� Defining CAM 3 I/O Device Settings

� Defining CAM 5 I/O Device Settings

� Setting IEC Language Options

� Setting ISaVIEW Options

� Defining Spy List Settings
Automation Collaborative Platform 187

Setting Environment Options
You can define the environment options for the following:

You can modify the general settings for the workbench by accessing the general environment
options. Some changes to the general settings take effect after restarting the workbench.

� Recent files, enables defining the number of recently used files displayed in menus. The
items shown in Window menu field defines the number of windows (ranging from 1 to
24) displayed in the Windows list of the Window menu. For the number of items shown
in the Window menu, the default is 10. The items shown in recently used lists field
defines the number of recent projects and files (ranging from 1 to 24) displayed in the
File menu. For the number of items shown in recently used lists, the default is 6.

� Visual experience, specifies whether the visual experience is set automatically or
explicitly. This adjustment may change the display of colors from gradients to flat colors,
or it may restrict the use of animations in menus or popup windows. Enabling the full
visual experience includes gradients and animations. Clear this option when using remote
desktop connections or older graphics adapters because these features may have poor
performance in such cases. Use hardware graphics acceleration if available rather than
software acceleration.

� Show status bar, enables displaying the status bar. The status bar displays progress
information for ongoing operations.

� Close button affects active tool window only, enables the Close button to shut down the
active window only. This option is selected by default.

� Auto Hide button affects active tool window only, enables Auto Hide to hide the active
window only.

� Restore File Associations, registers file types that are normally associated with the
workbench. When uninstalling or reinstalling versions of the workbench, Restore File

Associations enables Microsoft® Windows to display the correct icons in Windows
Explorer, and to recognize the workbench as the default application for editing
workbench related files.

� Find and Replace � International Settings
� Fonts and Colors � Keyboard
� Import and Export Settings � Startup
188 Options for the Development Environment

To access the general environment options

1. From the Tools menu, click Options.

2. In the Options dialog box, expand Environment, then click General.

The general environment options are displayed in the Options dialog box
Automation Collaborative Platform 189

Find and Replace

You can define the display settings for the Find and Replace dialog box. You can choose to
display informational messages and warnings as well as populate the Find What field with text
from an open editor. You can also choose to hide the Find and Replace dialog box once a match
is found.

To define the display settings for the Find and Replace dialog box

1. From the Tools menu, click Options.

2. In the Options dialog box, expand Environment, then click Find and Replace.

3. In the Options dialog box, select the required options, then click OK.
190 Options for the Development Environment

Fonts and Colors

You can define font and color schemes for the various interface items in the workbench.
Scheme changes take effect after restarting the workbench.

� Show settings for, lists all interface elements having items with modifiable fonts and
colors schemes. You can customize the color settings for an item selected from the
Display items list. Clicking Use Defaults resets the font and color settings for the selected
item.

� Font (bold type indicates fixed-width fonts), lists all installed fonts. The current font for a
selected interface element is displayed in the Font field. You can change the font size
using the Size drop-down combo-box.

� Display items, lists items belonging to a selected interface element having modifiable
fonts and color schemes. The Item foreground and Item background drop-down
combo-boxes automatically display the current color settings for the selected item. You
can modify the color setting for the selected item using the drop-down combo-boxes or
by clicking Custom. You can apply bold font to the selected item by clicking the Bold
checkbox.

To define custom fonts and colors for interface items

1. From the Tools menu, click Options.

2. In the Options dialog box, expand Environment, then click Fonts and Colors.

3. In the Options dialog box, define the font and color settings for the required interface
items, then click OK.
Automation Collaborative Platform 191

Import and Export Settings

You can define options for saving settings files. You can choose to save your settings to a
.vssetting file located on your system or to a shared settings files. When saving settings to a
shared .vssettings file, you must provide a UNC path or local path to the shared file.

� Automatically save my settings to this file, displays the name and path to the .vssettings
file currently in use. You can change the setting file used by typing a different path or
browsing to locate the required settings file on your system.

� Use team settings file, enables navigating to a shared .vssettings file. You can browse to
locate the required settings file. This vssettings file is automatically re-applied to the
workbench following each modification.

To define the options for saving the settings file

1. From the Tools menu, click Options.

2. In the Options dialog box, expand Environment, then click Import and Export
Settings.

3. In the Options dialog box, define the required name and location of the settings file, then
click OK.
192 Options for the Development Environment

International Settings

When more than one language version of the workbench is installed on a computer, you can
change the default language setting for the workbench. Changes to the default language take
effect after restarting the workbench.

To change the default language setting

1. From the Tools menu, click Options.

2. In the Options dialog box, expand Environment, then click International Settings.

3. In the Options dialog box, select the required language from the Language drop-down
combo-box, then click OK.

The required language is displayed after restarting the workbench.
Automation Collaborative Platform 193

Shortcut Keyboard Combinations

The keyboard options enable you to perform many tasks regarding the keyboard shortcuts for
the various commands available in the ISaGRAF environment. You can perform the following
tasks:

� Viewing defined keyboard shortcuts

� Defining keyboard shortcuts

� Removing defined keyboard shortcuts

Keyboard shortcuts enable quicker operation of the ISaGRAF environment. The keyboard
options enable viewing the defined keyboard shortcuts mapping schemes available for
commands. In ISaGRAF, only the default keyboard shortcut mapping scheme is available. You
view commands in the Show commands containing section listing all available commands and
their respective keyboard shortcuts. In the text field, you can also type text to find a specific
command. By default, only some commands have pre-defined shortcuts. Users can define
(add) a shortcut to a command or modify an existing shortcut by adding a new shortcut and
removing an unwanted shortcut. You manage keyboard combinations from the following
options:.

� Apply the following additional keyboard mapping scheme, only the default mapping
scheme is available for ISaGRAF.

� Show commands containing, displays all commands available in the ISaGRAF
environment. When typing characters into the textbox, the list displays all entries
containing the specified characters.

� Shortcuts for selected command, lists mapped keyboard shortcuts for the command
selected in the Show commands containing list.

� Use new shortcut in, specifies the scope of the keyboard shortcut. You can use the
shortcut globally in the ISaGRAF environment or only within a specific context (or
window). The default setting is global, meaning the shortcut key works in any active
window. If a global keyboard shortcut and context specific shortcut are identical, the
context specific shortcut takes precedence. For example, commands having the MLGE
editor scope have precedence over commands having the global scope. A context specific
keyboard shortcut remains in effect only while the context (or window) is active.
194 Options for the Development Environment

� Press shortcut keys, enables pressing a key combination to be used for the currently
selected command. You must use one or more modifier keys such as CTRL, ALT, or
SHIFT combined with various keys. SHIFT cannot be combined with letters or numbers.
The F1-F12 keys can be used with or without a modifier. You can enter one or two key
combinations to use as a shortcut. For example, you can enter CTRL+Y, or enter F6,
CTRL+Y. Regardless of their scope, shortcut key combinations cannot contain the
following keys:

� Shortcut currently used by, displays the command assigned to the current keyboard
shortcut combination. The textbox is only activated when you assign a key combination
that is already assigned to another command. To replace the current shortcut keyboard
combination with a custom one you must define a new keyboard shortcut mapping
scheme.

To view existing commands and keyboard shortcuts

1. From the Tools menu, click Options.

2. In the Options dialog box, expand Environment, then click Keyboard.

The keyboard options are displayed in the Options dialog box.

3. In the Show commands containing field, scroll to find a command or type the required
command name without spaces. For example, ShowNextStatement.

4. In the Show commands containing list, select the required command.
For example, Debug.ShowNextStatement.

The drop-down combo-box displays the shortcut key combinations for the selected shortcut.

To define keyboard shortcuts

Clicking Assign permanently saves changes for a selected command.

PRT SCR/SYS RQ Application key
SCRLK NUM LOCK

CAPS LOCK CTRL+ALT+DELETE key combination
ESCAPE
Automation Collaborative Platform 195

1. From the keyboard options, in the Show commands containing field, type the required
command name without spaces. For example, ShowNextStatement.

2. In the Show commands containing list, select the required command.
For example, Debug.ShowNextStatement.

3. In the Use new shortcut in drop-down combo-box, select the scope. For example, MLGE.

4. In the Press shortcut keys field, type the new key combination.

5. Click Assign, then click OK.

The shortcut key combination is saved for the required command.

To remove keyboard shortcuts

1. From the keyboard options, in the Show commands containing field, type the required
command name without spaces. For example, ShowNextStatement.

2. In the Show commands containing list, select the required command.
For example, Debug.ShowNextStatement.

3. In the Shortcuts for selected command field, select the keyboard shortcut to be removed.

4. Click Remove.

The keyboard shortcut is no longer assigned to the command.
196 Options for the Development Environment

Startup

The startup options enable you to specify the Workbench behavior when launching ISaGRAF:

� Open Home Page, where the Workbench automatically displays the ISaGRAF home page

� Load last loaded solution, where the Workbench opens the last opened project

� Show Open Project dialog box, where the Workbench automatically displays the Open
Project dialog box

� Show New Project dialog box, where the Workbench automatically displays the New
Project dialog box

� Show empty environment, where the Workbench opens without displaying any project or
dialog box
Automation Collaborative Platform 197

Specifying Project Options
You can specify the default locations and behavior of project components. You can set default
paths for projects and templates. For the Output window, and Solution Explorer, you can set
the default behavior during project creation and building. You can also set the options for
building and running projects.

� Project location, User project template location, and User item template location, enable
defining the default path to project folders used in workbench dialog boxes. The Project
location path is used in the Open Project dialog box to define the My Projects location.
The User project template location is used in the New Project dialog box to define the My
templates list. The User item template location is used in the Add New Item dialog box to
define the My Templates list. When defining these default paths, you can type directly in
the field or browse for the required location.

� Always show Error List if build finishes with errors, enables opening the Error list
window when errors occur during a build operation. When the build operation is
complete, the Error List is displayed containing the errors generated by the build
operation.

� Track Active Items in Solution Explorer, enables the Solution Explorer to scroll to the
node containing the active item, open the folder containing the active item, and select the
name of the active item

� Show advanced build configurations, not implemented

� Always show solution, enables displaying the solution element and commands that act on
the solution within the Solution Explorer. When this option is cleared, new projects are
created as stand-alone projects.

� Save new projects when created, enables defining the location of projects in the New
Project dialog box. When this option is cleared, new projects are created as temporary
projects.

� Warn user when the project location is not trusted, displays a warning message when
opening projects from an untrusted location

� Show Output window when build starts, enables displaying the Output window when
starting build operations
198 Options for the Development Environment

� Prompt for symbolic renaming when renaming files, enables displaying a message
prompting you to select whether to rename all references in the project or just the selected
file

To specify the default locations and behavior of project components

1. From the Tools menu, click Options.

2. In the Options dialog box, expand Projects, then click General.

3. In the Options dialog box, type the required paths or browse for their locations, select the
required options, then click OK.
Automation Collaborative Platform 199

Build Options

You can specify whether a message is displayed before cleaning operations are executed. After
performing cleaning operations, online changes are unavailable.

� Proceed to cleaning without asking, enables the display of message indicating that online
updates become unavailable after performing a cleaning operation.

To enable the display of messages prior to cleaning operations

1. From the Tools menu, click Options.

2. In the Options dialog box, expand Projects, then click Build.

3. In the Proceed to cleaning without asking drop-down combo-box, select False, then click
OK.
200 Options for the Development Environment

Interrupts Options

When adding or moving programs to the interrupts section of the Solution Explorer, you can
choose to associate the program with an interrupt instance.

� Prompt for interrupt association, enables the display of a message prompting users to
choose whether to associate selected programs with interrupt instances when adding or
moving programs.

To set the option for program interrupts

1. From the Tools menu, click Options.

2. In the Options dialog box, expand Projects, then click Interrupts.

3. In the Prompt for interrupt association drop-down combo-box, select True, then click
OK.
Automation Collaborative Platform 201

Online Settings

When monitoring applications, you can choose to display messages prompting you to confirm
the locking or unlocking of variables. You can also specify the number system and number of
significant digits used for displaying of numerical values of the different data types categories.

� Prompt for Lock or Unlock, enables the display of messages prompting users to confirm
the locking or unlocking of selected variables.

� Bool display format, indication of whether to display boolean values in bool
(TRUE/FALSE), bit (1/0), or mixed (TRUE (1)/FALSE (0)) format.

� Integer, indication of whether to display integer values in decimal, hexadecimal, octal, or
binary format.

� REAL, indication of whether to display REAL values using scientific notation or a
specific number of significant digits after the decimal.

� LREAL, indication of whether to display LREAL values using scientific notation or a
specific number of significant digits after the decimal.

To enable the display of message prompts when locking and unlocking variables

1. From the Tools menu, click Options.

2. In the Options dialog box, expand Projects, then click Online.

3. Select the Prompt for Lock or Unlock option.

To specify the options for displaying numerical values

1. From the Tools menu, click Options.

2. In the Options dialog box, expand Projects, then click Online.

3. In the Numerical Display section, set the required values for the different data type
categories, then click OK.
202 Options for the Development Environment

Specifying Source Control Settings
ISaGRAF includes software developed by * CollabNet (http://www.Collab.Net/) based on the
Subversion AnkhSVN source control plug-in for Visual Studio.

Note: Source control settings are only available for use with the ISaGRAF 5 CAM.

For source control usage, you can specify options for the following aspects:

� Plug-in Selection

� Subversion Environment

� Subversion User Tools
Automation Collaborative Platform 203

Plug-in Selection

For source control, you choose the plug-in to use with the Automation Collaborative
Platform. The following options are available:

� None, source control is deactivated. The Subversion Environment and Subversion User
Tools options for source control are unavailable.

� AnkhSVN - Subversion Support for Visual Studio, source control is activated. The
Subversion Environment and Subversion User Tools options for source control are
available for use.

To specify the source control plug-in

1. From the Tools menu, click Options.

2. In the Options dialog box, expand Source Control, then click Plug-in Selection.

3. Specify the required options and click OK.
204 Options for the Development Environment

Subversion Environment

The Subversion environment enables specifying the use of the following options:

� Directly add new files to subversion, indicates whether files are added to subversion
without displaying messages prompting users to confirm this action

� Automatically lock files on change without user confirmation, indicates whether files are
automatically locked when making a change without displaying messages prompting
users to confirm this action

Note: To prevent mistakenly stealing locks from other users, avoid automatically locking files
on change without user confirmation.

� Flash title bar when a lengthy operation completes, indicates whether to inform users of
completion by flashing the title bar of a lengthy operation

� When double clicking items in the Pending Changes, enables selecting the environment
in which to view the contents of the file

You can also specify Subversion user settings:

� Proxy settings, enabling and identifying the server and port details for the proxy

� Authentication cache, enabling the storage of the repository logon details and other
authentication settings

� Enable client-side hooks, enabling the use of client-side hook scripts

To specify source control environment settings

1. From the Tools menu, click Options.

2. In the Options dialog box, expand Source Control, then click Subversion
Environment.

3. Specify the required options and click OK.
Automation Collaborative Platform 205

See also
Subversion User Tools
206 Options for the Development Environment

Subversion User Tools

For source control, you can specify the following tools for use in various operations:

� External Diff Tool, specifies the comparison utility to use when performing comparison
operations for files

� External Merge Tool, specifies the merging utility to use when performing merging
operations for files

To specify source control user tools

1. From the Tools menu, click Options.

2. In the Options dialog box, expand Source Control, then click Subversion User Tools.

3. Specify the tools to use for the required options and click OK.

See also
Specifying Source Control Settings
Automation Collaborative Platform 207

Specifying Block Library Settings
You can specify the display mode for the Block Library on startup. The block library can be
displayed using expanders or tabs.

To adjust the display mode for the block library

1. From the Tools menu, click Options.

2. In the Options dialog box, expand Block Library Settings, then click General.

3. In the Options dialog box, select the required display mode from the drop-down menu,
then click OK.
208 Options for the Development Environment

Specifying CAM3 Settings
For CAM3 variables, you can specify the display format for the modbus address. The modbus
address can be displayed in hexadecimal or decimal format.

To adjust the modbus address format for variables

1. From the Tools menu, click Options.

2. In the Options dialog box, expand CAM3 Settings, then click General.

3. In the Options dialog box, select the required display type from the drop-down menu,
then click OK.
Automation Collaborative Platform 209

Specifying Deployment View Settings
You can adjust colors for various aspects of the deployment view. You can also adjust layout
aspects such as the number of devices displayed per row and the horizontal offset (in pixels)
between rows of devices.

To adjust settings for aspects of the deployment view

1. From the Tools menu, click Options.

2. In the Options dialog box, expand Deployment View Settings, then click General.

3. In the Options dialog box, adjust the color or layout settings for the view, then click OK.
210 Options for the Development Environment

Specifying Device View Options
You can specify whether to display the navigation window when opening the device view.

To specify displaying the navigation window when opening the device view

1. From the Tools menu, click Options.

2. In the Options dialog box, expand Device View, then click General.

3. the option.

4. In the Options dialog box, select Display the navigation window when opening the device
view, then click OK.
Automation Collaborative Platform 211

Specifying Documentation Generator Options
You can specify the default Sections Template for the generated documentation. The selected
Sections Template modifies the items listed in the Sections pane of the Documentation
Generator.

To specify the default Sections Template

1. From the Tools menu, click Options...

2. In the Options dialog box, expand Document Generator, then click General.

3. Select the required default Sections Template, then click OK.
212 Options for the Development Environment

Word Settings

You can specify the default Microsoft Word® 2010 (or more recent) settings for the generated
documentation. You can specify the following default settings for the generated
documentation: orientation, page size, margins, Microsoft Word® template, diagram scaling,
link type, and comment style.

To specify the default Word settings

1. From the Tools menu, click Options...

2. In the Options dialog box, expand Document Generator, then click Word.

3. Specify the required settings, then click OK.
Automation Collaborative Platform 213

Setting Grid Options
You can customize the colors displayed in the various workbench grids. You can access the
grid options for the following grids:

� Arrays View

� Defined Words View

� Dictionary View

� Parameters Grid

� Structures View

� Variable Groups View

� Variable Selector

To access the grid options

1. From the Tools menu, click Options.

2. In the Options dialog box, expand Grid Settings, then click the required grid type.

The grid options for the selected grid type are displayed in the Options dialog box.
214 Options for the Development Environment

Arrays View

You can customize the colors displayed in the Arrays grid including column headers and rows.
The Arrays grid automatically alternates colored rows with white rows. You can adjust the
number of consecutive rows used for the alternating sequence. The default row coloring
scheme is one colored row followed by one white row. For colored rows, you can define the
colors displayed. You can also define the color used to indicate disabled rows. You can choose
whether to display the filter bar in the Arrays grid.

To customize the colors displayed in the Arrays grid

1. From the Tools menu, click Options.

2. From the Options dialog box, expand Grid Settings, then click Arrays.

3. Customize the required options, then click OK.

 To specify the number of consecutive rows for the alternating sequence,
for Consecutive Rows, indicate the required value.

 To change the colors applied to headers, alternate rows, and disabled rows, for the
respective option, then select a color from the drop-down combo-box.
Automation Collaborative Platform 215

Defined Words View

You can customize the colors displayed in the Defined Words grid including column headers
and rows. The Defined Words grid automatically alternates colored rows with white rows. You
can adjust the number of consecutive rows used for the alternating sequence. The default row
coloring scheme is one colored row followed by one white row. For colored rows, you can
define the colors displayed. You can also define the color used to indicate disabled rows. You
can choose whether to display the filter bar in the Defined Words grid.

To customize the colors displayed in the Defined Words grid

1. From the Tools menu, click Options.

2. From the Options dialog box, expand Grid Settings, then click Defined Words.

3. Customize the required options, then click OK.

 To specify the number of consecutive rows for the alternating sequence,
for Consecutive Rows, indicate the required value.

 To change the colors applied to headers, alternate rows, and disabled rows, for the
respective option, then select a color from the drop-down combo-box.
216 Options for the Development Environment

Dictionary View

You can customize the colors displayed in Dictionary instances including column headers and
rows. The Dictionary grid automatically alternates colored rows with white rows. You can
adjust the number of consecutive rows used for the alternating sequence. The default row
coloring scheme is one colored row followed by one white row. For colored rows, you can
define the colors displayed. You can also define the color used to indicate disabled rows. You
can choose whether to display the filter bar in the Dictionary.

To customize the colors displayed in the Dictionary

1. From the Tools menu, click Options.

2. From the Options dialog box, expand Grid Settings, then click Dictionary.

3. Customize the required options, then click OK.

 To specify the number of consecutive rows for the alternating sequence,
for Consecutive Rows, indicate the required value.

 To change the colors applied to headers, alternate rows, and disabled rows, for the
respective option, then select a color from the drop-down combo-box.
Automation Collaborative Platform 217

Parameters Grid

You can customize the colors displayed in Parameters grid including column headers and rows.
The Parameters grid automatically alternates colored rows with white rows. You can adjust the
number of consecutive rows used for the alternating sequence. The default row coloring
scheme is one colored row followed by one white row. For colored rows, you can define the
colors displayed. You can also define the color used to indicate disabled rows. You can choose
whether to display the filter bar in the Parameters grid.

To customize the colors displayed in the Parameters grid

1. From the Tools menu, click Options.

2. From the Options dialog box, expand Grid Settings, then click Parameters.

3. Customize the required options, then click OK.

 To specify the number of consecutive rows for the alternating sequence,
for Consecutive Rows, indicate the required value.

 To change the colors applied to headers, alternate rows, and disabled rows, for the
respective option, then select a color from the drop-down combo-box.
218 Options for the Development Environment

Structures View

You can customize the colors displayed in Structures grid including column headers and rows.
The Structures grid automatically alternates colored rows with white rows. You can adjust the
number of consecutive rows used for the alternating sequence. The default row coloring
scheme is one colored row followed by one white row. For colored rows, you can define the
colors displayed. You can also define the color used to indicate disabled rows. You can choose
whether to display the filter bar in the Structures grid.

To customize the colors displayed in the Structures grid

1. From the Tools menu, click Options.

2. From the Options dialog box, expand Grid Settings, then click Structures.

3. Customize the required options, then click OK.

 To specify the number of consecutive rows for the alternating sequence,
for Consecutive Rows, indicate the required value.

 To change the colors applied to headers, alternate rows, and disabled rows, for the
respective option, then select a color from the drop-down combo-box.
Automation Collaborative Platform 219

Variable Groups View

You can customize the colors displayed in the Variable Groups view including column headers
and rows. The Variable Groups view automatically alternates colored rows with white rows.
You can adjust the number of consecutive rows used for the alternating sequence. The default
row coloring scheme is one colored row followed by one white row. For colored rows, you can
define the colors displayed. You can also define the color used to indicate disabled rows. You
can choose whether to display the filter bar in the Variable Groups view.

To customize the colors displayed in the Variable Groups view

1. From the Tools menu, click Options.

2. From the Options dialog box, expand Grid Settings, then click Variable Groups.

3. Customize the required options, then click OK.

 To specify the number of consecutive rows for the alternating sequence,
for Consecutive Rows, indicate the required value.

 To change the colors applied to headers, alternate rows, and disabled rows, for the
respective option, then select a color from the drop-down combo-box.
220 Options for the Development Environment

Variable Selector

You can customize the colors displayed in Variable Selector including column headers and
rows. The Variable Selector automatically alternates colored rows with white rows. You can
adjust the number of consecutive rows used for the alternating sequence. The default row
coloring scheme is one colored row followed by one white row. For colored rows, you can
define the colors displayed. You can also define the color used to indicate disabled rows. You
can choose whether to display the filter bar in the Variable Selector. You can also specify
whether the Variable Selector opens displaying the local or global variables tab.

To customize the colors displayed in the Variable Selector

1. From the Tools menu, click Options.

2. From the Options dialog box, expand Grid Settings, then click Variable Selector.

3. Customize the required options, then click OK.

 To specify the number of consecutive rows for the alternating sequence,
for Consecutive Rows, indicate the required value.

 To change the colors applied to headers, alternate rows, and disabled rows, for the
respective option, then select a color from the drop-down combo-box.
Automation Collaborative Platform 221

Defining CAM 3 I/O Device Settings
For CAM 3, you can specify settings for I/O devices.

� Always keep devices expanded, specifies whether devices are expanded to display
information such as the slot order, number of channels, data type, and description

� Show empty device slots, specifies whether empty device slots are displayed when
viewing I/O wiring

� Show full device names, specifies whether I/O devices are displayed with their full
names beside the slot number

� Prompt on device removal, specifies whether to prompt users before removing devices

� Prompt when freeing wired variables, specifies whether to prompt users before freeing
wired variables

To define settings for CAM 3 I/O devices

1. From the Tools menu, click Options.

2. In the Options dialog box, expand I/O Device Settings CAM 3, then click General.

3. In the Options dialog box, define the required settings, then click OK.
222 Options for the Development Environment

Defining CAM 5 I/O Device Settings
For CAM 5 I/O devices, you can specify whether to display alias names for I/O devices. The
device alias is defined when creating or editing an I/O device.

To specify displaying alias names for CAM 5 I/O devices

1. From the Tools menu, click Options.

2. In the Options dialog box, expand I/O Device Settings CAM 5, then click General.

3. In the Options dialog box, select Show alias names for I/O devices, then click OK.
Automation Collaborative Platform 223

Setting IEC Language Options
You can customize the display settings for programs built in different IEC languages:

� Function Block Diagram

� IEC 61499

� Ladder Diagram

� SAMA

� Sequential Function Chart

� Structured Text
224 Options for the Development Environment

Function Block Diagram

You can customize the displayed settings for FBD diagrams. You can choose to display grids
and instance names. You can choose the comment position for variables and literals. You can
define the colors used when displaying FBD elements and text as well as define which variable
information is displayed in FBD diagrams. You can choose the width for FBD elements in the
language container. You can also choose whether to display grid lines inside FBD language
containers. For links, you can choose to display as arrows, present solid, dashed, dotted,
dashed-dotted, dashed-dotted-dotted, or custom line styles, and apply a normal, rounded, or
rounded with jump line types.

The following options are available for customization:

Block Style

Background Color The function and function block background color. The
possible colors are custom, web, and system colors.

Background Gradient Color The function and function block background gradient color.
The possible colors are custom, web, and system colors.

Cell Width The width for a function or function block, in number of grid
cells.

Display Instance Names The indication of whether to display instance names for
function blocks.

In design mode, go to
definition on double click

While in design mode, enables going to the definition on
double click.

Transparency The level of transparency. The possible values range from 0 to
255 where 0 indicates complete transparency.

Comment Style

Background Color The comment background color. The possible colors are
custom, web, and system colors.

Constant Style

Background Color - Events The constant background color. The possible colors are
custom, web, and system colors.

Background Gradient Color -
Events

The constant background gradient color. The possible colors
are custom, web, and system colors.
Automation Collaborative Platform 225

Cell Width The width for a constant, in number of grid cells.

Comment Position The position of the comment in reference to the constant
shape. The possible positions are top, bottom, left, and right.

Transparency The level of transparency. The possible values range from 0 to
255 where 0 indicates complete transparency.

Variable Information The information to display for variables. The possible values
are name, alias, name and alias, or name and wiring.

Container Settings

Auto Resize Elements when
Modifying

When modifying, automatically resize blocks and variables to
accomodate length of text.

Automatically Invoke
Variable/Block Selector

Controls whether the Variable or Block Selector is
automatically displayed when inserting a variable or block in
the language container.

Display Grid The indication of whether to display the grid in the language
container.

Jump

Cell Width The width for a jump, in number of grid cells.

Label

Cell Width The width for a label, in number of grid cells.

Left Power Rail

Background Color The left power rail background color. The possible colors are
custom, web, and system colors.

Background Gradient Color The left power rail background gradient color. The possible
colors are custom, web, and system colors.

Link Style

Is Arrow The indication of whether to display an arrow at the end of the
link.

Line Style The style of the line. The possible values are solid, dash, dot,
dash-dot, dash-dot-dot, and custom.
226 Options for the Development Environment

Line Type The type of line. The normal line type has squared corners and
overlapping link intersections. The rounded line type has
rounded corners and overlapping link intersections. The
rounded with jump line type has rounded corners and link
intersections are jumped over.

Link Color The color of links. The possible colors are custom, web, and
system colors.

Operator Style

Background Color The operator background color. The possible colors are
custom, web, and system colors.

Background Gradient Color The operator background gradient color. The possible colors
are custom, web, and system colors.

Cell Width The width for an operator, in number of grid cells.

Display Instance Names The indication of whether to display instance names for
operators.

Transparency The level of transparency. The possible values range from 0 to
255 where 0 indicates complete transparency.

Region Style

Background Color The region background color. The possible colors are custom,
web, and system colors.

Header Color The header color of a region. The possible colors are custom,
web, and system colors.

Header Transparency The level of transparency of the header section of a region.
The possible values range from 0 to 255 where 0 indicates
complete transparency.

Transparency The level of transparency. The possible values range from 0 to
255 where 0 indicates complete transparency.

Right Power Rail

Background Color The right power rail background color. The possible colors are
custom, web, and system colors.

Background Gradient Color The right power rail background gradient color. The possible
colors are custom, web, and system colors.
Automation Collaborative Platform 227

To customize the display settings for FBD Diagrams

1. From the Tools menu, click Options.

2. From the Options dialog box, expand IEC Languages, then click Function Block
Diagram (FBD).

3. Using the available options, customize the required settings, then click OK.

Variable Style

Background Color The variable background color. The possible colors are
custom, web, and system colors.

Background Gradient Color The variable background gradient color. The possible colors
are custom, web, and system colors.

Cell Width The width for a variable, in number of grid cells.

Comment Position The position of the comment in reference to the variable
shape. The possible positions are none, top, bottom, left, and
right.

Transparency The level of transparency. The possible values range from 0 to
255 where 0 indicates complete transparency.

Variable Information The information displayed for variables. The possible values
are name, alias, name and alias, or name and wiring.
228 Options for the Development Environment

IEC 61499

You can customize the displayed settings for IEC 61499 diagrams. You can choose to display
grids and block instance names. You can define background and gradient colors for IEC 61499
elements. You can choose to display names and aliases for literals, variables, and event
variables. For links, you can choose to display as arrows, present solid, dashed, dotted,
dashed-dotted, dashed-dotted-dotted, or custom line styles, and apply a normal, rounded, or
rounded with jump line types.

The following options are available for customization:

Block Style

Background Color The function and function block background color. The
possible colors are custom, web, and system colors.

Background Gradient Color The function and function block background gradient color.
The possible colors are custom, web, and system colors.

Cell Width The width for a function or function block, in number of grid
cells.

Display Instance Names The indication of whether to display instance names for
function blocks.

In design mode, go to
definition on double click

While in design mode, enables going to the definition on
double click.

Transparency The level of transparency. The possible values range from 0 to
255 where 0 indicates complete transparency.

Comment Style

Background Color The comment background color. The possible colors are
custom, web, and system colors.

Constant Style

Background Color - Events The constant background color. The possible colors are
custom, web, and system colors.

Background Gradient Color -
Events

The constant background gradient color. The possible colors
are custom, web, and system colors.

Cell Width The width for a constant, in number of grid cells.
Automation Collaborative Platform 229

Comment Position The position of the comment in reference to the constant
shape. The possible positions are top, bottom, left, and right.

Transparency The level of transparency. The possible values range from 0 to
255 where 0 indicates complete transparency.

Variable Information The information to display for variables. The possible values
are name, alias, name and alias, or name and wiring.

Container Settings

Auto Resize Elements when
Modifying

When modifying, automatically resize blocks and variables to
accommodate length of text.

Automatically invoke
Variable/Block Selector

Controls whether the Variable or Block Selector is
automatically displayed when inserting a variable or block in
the language container.

Display Grid The indication of whether to display the grid in the language
container.

Event Link Style

Is Arrow The indication of whether to display an arrow at the end of the
link.

Line Style The style of the line. The possible values are solid, dash, dot,
dash-dot, dash-dot-dot, and custom.

Line Type The type of line. The normal line type has squared corners and
overlapping link intersections. The rounded line type has
rounded corners and overlapping link intersections. The
rounded with jump line type has rounded corners and link
intersections are jumped over.

Link Event Color The color of event links. The possible colors are custom, web,
and system colors.

Event Variable Style

Background Color - Events The event variable background color. The possible colors are
custom, web, and system colors.

Background Gradient Color -
Events

The event variable background gradient color. The possible
colors are custom, web, and system colors.

Cell Width The width for an event variable, in number of grid cells.
230 Options for the Development Environment

Comment Position The position of the comment in reference to the event variable
shape. The possible positions are top, bottom, left, and right.

Transparency The level of transparency. The possible values range from 0 to
255 where 0 indicates complete transparency.

Variable Information The information displayed for variables. The possible values
are name, alias, name and alias, or name and wiring.

Link Style

Is Arrow The indication of whether to display an arrow at the end of the
link.

Line Style The style of the line. The possible values are solid, dash, dot,
dash-dot, dash-dot-dot, and custom.

Line Type The type of line. The normal line type has squared corners and
overlapping link intersections. The rounded line type has
rounded corners and overlapping link intersections. The
rounded with jump line type has rounded corners and link
intersections are jumped over.

Link Color The color of links. The possible colors are custom, web, and
system colors.

Region Style

Background Color The region background color. The possible colors are custom,
web, and system colors.

Header Color The header color of a region. The possible colors are custom,
web, and system colors.

Header Transparency The level of transparency of the header section of a region.
The possible values range from 0 to 255 where 0 indicates
complete transparency.

Transparency The level of transparency. The possible values range from 0 to
255 where 0 indicates complete transparency.

Variable Style

Background Color The variable background color. The possible colors are
custom, web, and system colors.

Background Gradient Color The variable background gradient color. The possible colors
are custom, web, and system colors.
Automation Collaborative Platform 231

To customize the display settings for IEC 61499 Diagrams

1. From the Tools menu, click Options.

2. From the Options dialog box, expand IEC Languages, then click IEC 61499.

3. Using the available options, customize the required settings, then click OK.

Cell Width The width for a variable, in number of grid cells.

Comment Position The position of the comment in reference to the variable
shape. The possible positions are none, top, bottom, left, and
right.

Transparency The level of transparency. The possible values range from 0 to
255 where 0 indicates complete transparency.

Variable Information The information displayed for variables. The possible values
are name, alias, name and alias, or name and wiring.
232 Options for the Development Environment

Ladder Diagram

You can customize the displayed settings for LD diagrams. You can choose to display grids
and instance names. You can define the colors used when displaying LD elements and text as
well as define which variable information is displayed in LD diagrams. You can choose the
width and height for LD elements in the language container.

The following options are available for customization:

Block Settings

Display Image The indication of whether to display block images.

Display Instance Names The indication of whether to display instance names for
function blocks.

Enable EN/ENO Forces EN and ENO parameters onto all operators, functions,
and function blocks.

Function Blocks Background
Color

The function block background color. The possible colors are
custom, web, and system colors.

Function Blocks Background
Gradient Color

The function block background gradient color. The possible
colors are custom, web, and system colors.

Functions Background Color The function background color. The possible colors are
custom, web, and system colors.

Functions Background
Gradient Color

The function background gradient color. The possible colors
are custom, web, and system colors.

Go to Definition on
Double-click

While in design mode, enables going to the definition on
double click.

Operators Background Color The operator background color. The possible colors are
custom, web, and system colors.

Operators Background
Gradient Color

The operator background gradient color. The possible colors
are custom, web, and system colors.

Container Settings

Cell Height The height of individual cells making up the grid, in pixels.

Cell Width The width of individual cells making up the grid, in pixels.

Display Grid The indication of whether to display the grid.
Automation Collaborative Platform 233

Element Height The height of elements, in grid cells. Basic elements are
blocks without inputs or outputs, coils, and contacts. For
blocks, each input and output adds a basic element dimension.

Element Width The width of elements, in grid cells. Basic elements are blocks
without inputs or outputs, coils, and contacts. For blocks, each
input and output adds a basic element dimension.

Font The type of font. The definition includes the font name, size,
unit of measure, as well as the indication of whether to apply
bold, italic, strikeout, and underline styles. The GDICharSet
and GDIVerticalFont properties are not editable.

Rung Line Thickness The thickness of the rung line. The possible values range from
1.0 to 3.0.

Editor Settings

Automatically Invoke
Variable/Block Selector

Controls whether the Variable or Block Selector is
automatically displayed when inserting a variable or block in
the language container.

Rung Settings

Coil Alignment Indicates whether to align all coils on the rightmost section of
the rung.

Comment Background Color The comment background color. The possible colors are
custom, web, and system colors.

Comment text color The text color for comments. The possible colors are custom,
web, and system colors.

Display Comment The indication of whether to display comments for rungs.

Display Label The indication of whether to display labels for rungs. When
not displaying labels, an arrow appears in the leftmost section
of the rung indicating the existence of a label.

Label Color The color for rung labels. The possible colors are custom,
web, and system colors.

Power Flow False Color The color displayed when power flow monitoring is false. The
possible colors are custom, web, and system colors.

Power Flow True Color The color displayed when power flow monitoring is true.The
possible colors are custom, web, and system colors.
234 Options for the Development Environment

To customize the display settings for LD Diagrams

1. From the Tools menu, click Options.

2. From the Options dialog box, expand IEC Languages, then click Ladder Diagram
(LD).

3. Using the available options, customize the required settings, then click OK.

Power Rail Color The color for power rails. The possible colors are custom,
web, and system colors.

Rung Header Color The color for rung headers. The possible colors are custom,
web, and system colors.

Variables Settings

Text Color - Design The color of text displayed while in design mode. The possible
colors are custom, web, and system colors.

Text Color - Online The color of text displayed while running online. The possible
colors are custom, web, and system colors.

Transparency The level of transparency. The possible values range from 0 to
255 where 0 indicates complete transparency.

Variable Background Color The variable background color. The possible colors are
custom, web, and system colors.

Variable Background
Gradient Color

The variable background gradient color. The possible colors
are custom, web, and system colors.

Variable Information The indication of whether to display the variable name only,
alias only, name and alias, or name and wiring.
Automation Collaborative Platform 235

SAMA

You can customize the displayed settings for SAMA diagrams. You can choose to display grids
and instance names. You can choose the width of variable elements as well as the variable
comment position. You can define the colors used when displaying SAMA elements and text.
You can also choose which variable information is displayed in SAMA diagrams.

The following options are available for customization:

Block Settings

Display Instance Names The indication of whether to display instance names for
function blocks.

Go to Definition on
Double-click

While in design mode, enables going to the definition on
double click.

Container Settings

Display Grid The indication of whether to display the grid.

Force Normal Line Type The indication of whether all links use the normal line type.

Editor Settings

Automatically invoke
Variable/Block Selector

Controls whether the Variable or Block Selector is
automatically displayed when inserting a variable or block in
the language container.

Variables Settings

Comment Position The position of the comment in reference to the variable
shape. The possible positions are none, top, bottom, left, and
right.

Text Color - Design The color of text displayed while in design mode. The possible
colors are custom, web, and system colors.

Text Color - Online The color of text displayed while running online. The possible
colors are custom, web, and system colors.

Transparency The level of transparency. The possible values range from 0 to
255 where 0 indicates complete transparency.

Variable Background Color The variable background color. The possible colors are
custom, web, and system colors.
236 Options for the Development Environment

To customize the display setting for SAMA Diagrams

1. From the Tools menu, click Options.

2. From the Options dialog box, expand IEC Languages, then click SAMA.

3. Using the available options, customize the required settings, then click OK.

Variable Background
Gradient Color

The variable background gradient color. The possible colors
are custom, web, and system colors.

Variable Information The indication of whether to display the variable name only,
alias only, name and alias, or name and wiring.

Width The variable width, in number of grid cells.
Automation Collaborative Platform 237

Sequential Function Chart

You can customize the displayed settings for SFC diagrams. You can choose the orientation of
the pane splitting when displaying SFC diagram and actions/conditions programming
simultaneously in the language container. You can choose to display grids and sequence
control types as well as diagram background and grid colors for design and online modes. For
action blocks, jumps, and transitions, you can define the background, gradient, and font colors
as well as the font style. For steps, you can define the active and inactive step and step gradient
colors, the font color and style as well as the action list and list gradient colors.

The following options are available for customization:

Action Block Settings

Action Block Color The background color of action blocks. The possible colors
are custom, web, and system colors.

Action Block Font The font definition used for the text displayed in an action
block. The definition includes the font name, size, unit of
measure, as well as the indication of whether to apply bold,
italic, strikeout, and underline styles. The GDI Character Set
and GDI Vertical Font properties are not editable.

Action Block Font Color The color of the font for action blocks. The possible colors are
custom, web, and system colors.

Action Block Gradient Color The background gradient color of action blocks. The possible
colors are custom, web, and system colors.

Container Settings

Background Color - Design The background color for SFC diagrams while is design mode.
The possible colors are custom, web, and system colors.

Background Color - Online The background color for SFC diagrams while online. The
possible colors are custom, web, and system colors.

Container Split Orientation Controls the orientation for the splitting of the container
between the SFC diagram and Actions/Conditions views. The
possible values are vertical or horizontal.

Display Grid The indication of whether to display the grid.

Display Sequence Control
Type

The indication of whether to display the sequence controls
type.
238 Options for the Development Environment

Display Transition Priority The indication of whether to display the transition priority.

Grid Color - Design The color of the grid while in design mode. The possible
colors are custom, web, and system colors.

Grid Color - Online The color of the grid while running online. The possible colors
are custom, web, and system colors.

Jump Settings

Jump Color The background color of jumps. The possible colors are
custom, web, and system colors.

Jump Font The font definition used for the text displayed in a jump. The
definition includes the font name, size, unit of measure, as
well as the indication of whether to apply bold, italic,
strikeout, and underline styles. The GDI Character Set and
GDI Vertical Font properties are not editable.

Jump Font Color The color of the font for jumps. The possible colors are
custom, web, and system colors.

Jump Gradient Color The background gradient color of jumps. The possible colors
are custom, web, and system colors.

Macro Call Settings

Macro Call Color The background color of macro calls. The possible colors are
custom, web, and system colors.

Macro Call Font The font definition used for the text displayed in a macro call.
The definition includes the font name, size, unit of measure, as
well as the indication of whether to apply bold, italic,
strikeout, and underline styles. The GDI Character Set and
GDI Vertical Font properties are not editable.

Macro Call Font Color The color of the font for macro calls. The possible colors are
custom, web, and system colors.

Macro Call Gradient Color The background gradient color of macro calls. The possible
colors are custom, web, and system colors.

Step Settings

Action List Color The background color of action lists. The possible colors are
custom, web, and system colors.
Automation Collaborative Platform 239

To customize the display setting for SFC diagrams

1. From the Tools menu, click Options.

Action List Gradient Color The background gradient color of action lists. The possible
colors are custom, web, and system colors.

Step Color The background color of steps. The possible colors are
custom, web, and system colors.

Step Color - Active The background color of active steps while online. The
possible colors are custom, web, and system colors.

Step Font The font definition used for the text displayed in a step. The
definition includes the font name, size, unit of measure, as
well as the indication of whether to apply bold, italic,
strikeout, and underline styles. The GDI Character Set and
GDI Vertical Font properties are not editable.

Step Font Color The color of the font for steps. The possible colors are custom,
web, and system colors.

Step Gradient Color The background gradient color of steps. The possible colors
are custom, web, and system colors.

Step Gradient Color - Active The background gradient color of active steps while online.
The possible colors are custom, web, and system colors.

Transition Settings

Transition Color The background color of transitions. The possible colors are
custom, web, and system colors.

Transition Font The font definition used for the text displayed in a transition.
The definition includes the font name, size, unit of measure, as
well as the indication of whether to apply bold, italic,
strikeout, and underline styles. The GDI Character Set and
GDI Vertical Font properties are not editable.

Transition Font Color The color of the font for transitions. The possible colors are
custom, web, and system colors.

Transition Gradient Color The background gradient color of transitions. The possible
colors are custom, web, and system colors.
240 Options for the Development Environment

2. From the Options dialog box, expand IEC Languages, then click Sequential Function
Chart.

3. Using the available options, customize the required settings, then click OK.
Automation Collaborative Platform 241

Structured Text

You can define the default display setting for ST elements and text displayed in ST language
containers. You can choose the font used when displaying comments, editor text, identifiers,
numbers, operators, POUs, punctuation, reserved words, and strings. You can choose to
display these in bold, italic, strike-through, or underlined text as well as define their text color
and size.

The following options are available for customization:

Comment

Comment Font The font definition used for comment text. The definition
includes the font name, size, unit of measure, as well as the
indication of whether to apply bold, italic, strikeout, and
underline styles. The GDI Character Set and GDI Vertical
Font properties are not editable.

Comment Text Color The color of the font for comments. The possible colors are
custom, web, and system colors.

Editor

Editor Font The font definition used for the ST editor. The definition
includes the font name, size, unit of measure, as well as the
indication of whether to apply bold, italic, strikeout, and
underline styles. The GDI Character Set and GDI Vertical
Font properties are not editable.

Editor Text Area Background
Color

The color of the ST editor background. The possible colors are
custom, web, and system colors.

Identifier

Identifier Font The font definition used for identifiers. The definition includes
the font name, size, unit of measure, as well as the indication
of whether to apply bold, italic, strikeout, and underline styles.
The GDI Character Set and GDI Vertical Font properties are
not editable.

Identifier Text Color The color of the font for identifiers. The possible colors are
custom, web, and system colors.

Number
242 Options for the Development Environment

Number Font The font definition used for numbers. The definition includes
the font name, size, unit of measure, as well as the indication
of whether to apply bold, italic, strikeout, and underline styles.
The GDI Character Set and GDI Vertical Font properties are
not editable.

Number Text Color The color of the font for numbers. The possible colors are
custom, web, and system colors.

Operator

Operator Font The font definition used for operators. The definition includes
the font name, size, unit of measure, as well as the indication
of whether to apply bold, italic, strikeout, and underline styles.
The GDI Character Set and GDI Vertical Font properties are
not editable.

Operator Text Color The color of the font for operators. The possible colors are
custom, web, and system colors.

POU

POU Font The font definition used for POUs. The definition includes the
font name, size, unit of measure, as well as the indication of
whether to apply bold, italic, strikeout, and underline styles.
The GDI Character Set and GDI Vertical Font properties are
not editable.

POU Text Color The color of the font for POUs. The possible colors are
custom, web, and system colors.

Punctuation

Punctuation Font The font definition used for punctuation. The definition
includes the font name, size, unit of measure, as well as the
indication of whether to apply bold, italic, strikeout, and
underline styles. The GDI Character Set and GDI Vertical
Font properties are not editable.

Punctuation Text Color The color of the font for punctuation. The possible colors are
custom, web, and system colors.

Reserved Word
Automation Collaborative Platform 243

To customize the display setting for ST programs

1. From the Tools menu, click Options.

2. From the Options dialog box, expand IEC Languages, then click Structured Text (ST).

3. Expand the respective category, customize the required settings, then click OK.

Reserved Word Font The font definition used for reserved words. The definition
includes the font name, size, unit of measure, as well as the
indication of whether to apply bold, italic, strikeout, and
underline styles. The GDI Character Set and GDI Vertical
Font properties are not editable.

Reserved Word Text Color The color of the font for reserved words. The possible colors
are custom, web, and system colors.

String

String Font The font definition used for strings. The definition includes
the font name, size, unit of measure, as well as the indication
of whether to apply bold, italic, strikeout, and underline styles.
The GDI Character Set and GDI Vertical Font properties are
not editable.

String Text Color The color of the font for strings. The possible colors are
custom, web, and system colors.
244 Options for the Development Environment

Setting ISaVIEW Options
You can customize the default settings and behavior of various facets of ISaVIEW screens and
objects:

� ISaVIEW Animation Settings

� ISaVIEW Objects Settings

� ISaVIEW Edition Settings
Automation Collaborative Platform 245

ISaVIEW Animation Settings

The animation settings enable customizing the animation settings for ISaVIEW screens
including action, displacement, rotation, and size. You can also define the refresh rate of
ISaVIEW screens as well as their default background color.

To customize the animation settings for ISaVIEW screens

1. From the Tools menu, click Options.

2. From the Options dialog box, expand ISaVIEW Settings, then
click ISaVIEW Animation Settings.

3. Customize the required settings, then click OK.
246 Options for the Development Environment

ISaVIEW Edition Settings

The edition settings enable defining the default settings for ISaVIEW screens and generic
object properties.

To define the default edition settings for ISaVIEW screens and objects

1. From the Tools menu, click Options.

2. From the Options dialog box, expand ISaVIEW Settings, then click ISaVIEW Edition
Settings.

3. Define default display settings, then click OK.
Automation Collaborative Platform 247

ISaVIEW Objects Settings

The object settings enable specifying default values for the individual object properties and
grouping properties.

� Arc Settings

� Arrow Settings

� Bar Meter Settings

� Button Settings

� Edit Box Settings

� Ellipse Settings

� Gauge Settings

� Group Settings

� Image Settings

� Line Settings

� Polygon Settings

� Rectangle Settings

� Rounded Rectangle Settings

� Slider Settings

� Triangle Settings

� Web Container Settings
248 Options for the Development Environment

Arc Settings

The arc settings enable specifying default values for the individual object properties.

To specify the default settings for arc objects

1. From the Tools menu, click Options.

2. From the Options dialog box, expand ISaVIEW Settings, then expand ISaVIEW
Object Settings, and then click Arc Settings.

3. Specify the default values for the required properties, then click OK.

See also
ISaVIEW Objects Settings
Automation Collaborative Platform 249

Arrow Settings

The arrow settings enable specifying default values for the individual object properties.

To specify the default settings for arrow objects

1. From the Tools menu, click Options.

2. From the Options dialog box, expand ISaVIEW Settings, then expand ISaVIEW
Object Settings, and then click Arrow Settings.

3. Specify the default values for the required properties, then click OK.

See also
ISaVIEW Objects Settings
250 Options for the Development Environment

Bar Meter Settings

The bar meter settings enable specifying default values for the individual object properties.

To specify the default settings for bar meter objects

1. From the Tools menu, click Options.

2. From the Options dialog box, expand ISaVIEW Settings, then expand ISaVIEW
Object Settings, and then click Bar Meter Settings.

3. Specify the default values for the required properties, then click OK.

See also
ISaVIEW Objects Settings
Automation Collaborative Platform 251

Button Settings

The button settings enable specifying default values for the individual object properties.

To specify the default settings for button objects

1. From the Tools menu, click Options.

2. From the Options dialog box, expand ISaVIEW Settings, then expand ISaVIEW
Object Settings, and then click Button Settings.

3. Specify the default values for the required properties, then click OK.

See also
ISaVIEW Objects Settings
252 Options for the Development Environment

Edit Box Settings

The edit box settings enable specifying default values for the individual object properties.

To specify the default settings for edit box objects

1. From the Tools menu, click Options.

2. From the Options dialog box, expand ISaVIEW Settings, then expand ISaVIEW
Object Settings, and then click Edit Box Settings.

3. Specify the default values for the required properties, then click OK.

See also
ISaVIEW Objects Settings
Automation Collaborative Platform 253

Ellipse Settings

The ellipse settings enable specifying default values for the individual object properties.

To specify the default settings for ellipse objects

1. From the Tools menu, click Options.

2. From the Options dialog box, expand ISaVIEW Settings, then expand ISaVIEW
Object Settings, and then click Ellipse Settings.

3. Specify the default values for the required properties, then click OK.

See also
ISaVIEW Objects Settings
254 Options for the Development Environment

Gauge Settings

The gauge settings enable specifying default values for the individual object properties.

To specify the default settings for gauge objects

1. From the Tools menu, click Options.

2. From the Options dialog box, expand ISaVIEW Settings, then expand ISaVIEW
Object Settings, and then click Gauge Settings.

3. Specify the default values for the required properties, then click OK.

See also
ISaVIEW Objects Settings
Automation Collaborative Platform 255

Group Settings

The group settings enable specifying default values for the individual object properties.

To specify the default settings for grouped objects

1. From the Tools menu, click Options.

2. From the Options dialog box, expand ISaVIEW Settings, then expand ISaVIEW
Object Settings, and then click Group Settings.

3. Specify the default values for the required properties, then click OK.

See also
ISaVIEW Objects Settings
256 Options for the Development Environment

Image Settings

The image settings enable specifying default values for the individual object properties.

To specify the default settings for image objects

1. From the Tools menu, click Options.

2. From the Options dialog box, expand ISaVIEW Settings, then expand ISaVIEW
Object Settings, and then click Image Settings.

3. Specify the default values for the required properties, then click OK.

See also
ISaVIEW Objects Settings
Automation Collaborative Platform 257

Line Settings

The line settings enable specifying default values for the individual object properties.

To specify the default settings for line objects

1. From the Tools menu, click Options.

2. From the Options dialog box, expand ISaVIEW Settings, then expand ISaVIEW
Object Settings, and then click Line Settings.

3. Specify the default values for the required properties, then click OK.

See also
ISaVIEW Objects Settings
258 Options for the Development Environment

Polygon Settings

The polygon settings enable specifying default values for the individual object properties.

To specify the default settings for polygon objects

1. From the Tools menu, click Options.

2. From the Options dialog box, expand ISaVIEW Settings, then expand ISaVIEW
Object Settings, and then click Polygon Settings.

3. Specify the default values for the required properties, then click OK.

See also
ISaVIEW Objects Settings
Automation Collaborative Platform 259

Rectangle Settings

The rectangle settings enable specifying default values for the individual object properties.

To specify the default settings for rectangle objects

1. From the Tools menu, click Options.

2. From the Options dialog box, expand ISaVIEW Settings, then expand ISaVIEW
Object Settings, and then click Rectangle Settings.

3. Specify the default values for the required properties, then click OK.

See also
ISaVIEW Objects Settings
260 Options for the Development Environment

Rounded Rectangle Settings

The rounded rectangle settings enable specifying default values for the individual object
properties.

To specify the default settings for rounded rectangle objects

1. From the Tools menu, click Options.

2. From the Options dialog box, expand ISaVIEW Settings, then expand ISaVIEW
Object Settings, and then click Rounded Rectangle Settings.

3. Specify the default values for the required properties, then click OK.

See also
ISaVIEW Objects Settings
Automation Collaborative Platform 261

Slider Settings

The slider settings enable specifying default values for the individual object properties.

To specify the default settings for slider objects

1. From the Tools menu, click Options.

2. From the Options dialog box, expand ISaVIEW Settings, then expand ISaVIEW
Object Settings, and then click Slider Settings.

3. Specify the default values for the required properties, then click OK.

See also
ISaVIEW Objects Settings
262 Options for the Development Environment

Triangle Settings

The triangle settings enable specifying default values for the individual object properties.

To specify the default settings for triangle objects

1. From the Tools menu, click Options.

2. From the Options dialog box, expand ISaVIEW Settings, then expand ISaVIEW
Object Settings, and then click Triangle Settings.

3. Specify the default values for the required properties, then click OK.

See also
ISaVIEW Objects Settings
Automation Collaborative Platform 263

Web Container Settings

The web container settings enable specifying default values for the individual object
properties.

To specify the default settings for web container objects

1. From the Tools menu, click Options.

2. From the Options dialog box, expand ISaVIEW Settings, then expand ISaVIEW
Object Settings, and then click Web Container Settings.

3. Specify the default values for the required properties, then click OK.

See also
ISaVIEW Objects Settings
264 Options for the Development Environment

Defining Spy List Settings
You can customize the offline and online behavior options and look and feel of spy lists. The
available behavior options are the following:

� Offline Grid Settings

� Online Grid Settings
Automation Collaborative Platform 265

Offline Grid Settings

You can customize the offline behavior options and look and feel of spy lists. The available
behavior options are the following:

� Filter row, displaying a row below the column heading enabling the filtering of items in
the list

� Grouping drop area, displaying an area at the top of spy lists enabling the grouping of
items in a list according to column types

� Indent sub-items, indenting sub-items of arrays, structures, and function blocks

� Item count rows, displaying rows indicating the item count for complete spy lists as well
as individual arrays, structures, and function block instances

The available look and feel options enable customizing the colors used for the headers, various
rows, and borders as well the text colors.

To customize spy lists for offline usage

You can define different settings for the offline and online options.

1. From the Tools menu, click Options.

2. From the Options dialog box, expand Spy List Settings, then click Offline Grid Settings
and make the required changes.
266 Options for the Development Environment

Online Grid Settings

You can customize the online behavior options and look and feel of spy lists. The available
behavior options are the following:

� Filter row, displaying a row below the column heading enabling the filtering of items in
the list

� Grouping drop area, displaying an area at the top of spy lists enabling the grouping of
items in a list according to column types

� Indent sub-items, indenting sub-items of arrays, structures, and function blocks

� Item count rows, displaying rows indicating the item count for complete spy lists as well
as individual arrays, structures, and function block instances

The available look and feel options enable customizing the colors used for the headers, various
rows, and borders as well the text colors.

To customize spy lists

You can define different settings for the offline and online options.

1. From the Tools menu, click Options.

2. From the Options dialog box, expand Spy List Settings, then click Online Grid Settings
and make the required changes.
Automation Collaborative Platform 267

268 Options for the Development Environment

Description Window
The Description window enables adding descriptions to projects, devices, resources (if
supported by the CAM), and POUs. These descriptions are free-formatted text using rich text
format (RTF). When adding a description, all content is automatically saved. When editing
descriptions, a text editor toolbar provides the means for performing basic formatting
operations such as selecting a font, size, style, and color.

The Description window is dockable and scalable. When clicking the different items in the
Solution Explorer, the contents of the Description window automatically displays the
description for the selected item.

While in debug mode, the content displayed in the Description window is read-only.

To access the description window

You can access the description window from the menus or from the properties for items.

� To access the Description Window, from the View menu, click Description Window.
Automation Collaborative Platform 269

ISaGRAF 3 Concrete
Automation Model

The ISaGRAF 3 Concrete Automation Model enables the creation of ISaGRAF 3
applications supporting multi-process control. Applications consist of virtual machines
running on hardware components, called target platforms. The development process consists
of creating projects made up of a device that is downloaded to a target platform. At runtime,
the device becomes a virtual machine running on the target platform.

Projects can be developed using different programming languages including some from the
IEC 61131-3 standard. When building, a device is compiled to produce very fast "target
independent code" (TIC) or "C" code.

Within devices, you can declare variables using standard IEC 61131-3 data types (i.e., BOOL,
DINT, REAL, MESSAGE, and TIME) or user-defined types such as one-dimensional arrays.

You develop projects on a Windows development platform. The Automation Collaborative
Platform graphically represents and organizes the device, POUs, and networks within a project
from many views.

� Deployment

� Dictionary

� I/O wiring

� Bindings

You can choose to simulate the running of a project, after building a project, using high-level
debugging tools, before actually downloading the device to the target platform.
Automation Collaborative Platform 271

Creating a Project
You can create projects as part of new or existing solutions in the Automation Collaborative
Platform. A solution can hold multiple projects. You can import existing projects created using
previous versions of ISaGRAF 3.

The ISaGRAF 3 Project template is available for ISaGRAF 3 projects. This template enables
creating a project without attaching it to a new or existing solution. Empty projects contain no
device files.

Since the ISaGRAF 3 run-time is a 16-bit application, the quantity of POUs, variables, and I/O
devices are directly dependent upon that environment.

For projects, the following properties are defined:

Projects are stored in the Projects directory, as MS-Access database (.MDB) files:

%USERPROFILE%\My Documents\ISaGRAF 6.x\Projects

To create a project

1. From the File menu, point to New, then click Project (or press Ctrl+Shift+N).

2. In the Installed Templates list, expand the CAM Projects option, then expand ISaGRAF 3,
and click Empty.

CAM

CAM Project The device name for the project

Documentation Free-form text describing the project

Info

Name Name of the project. Project names are recommended to have up to
32 characters

Path Complete path where the Automation Collaborative Platform
(ACP) project file is stored on the computer. The path is
automatically assigned:
%USERPROFILE%\My Documents\ISaGRAF
6.x\Projects\SolutionName\ProjectName
272 ISaGRAF 3 Concrete Automation Model

3. From the list of available project templates, click the ISaGRAF 3 Project template.

4. Specify a name and location for the project, indicate whether to add the project to an
existing solution or create a new solution by defining a solution name, then click OK. For
new solutions, you can choose to create a directory.

See Also
Importing an ISaGRAF 3 Project
Creating a Library
Importing an ISaGRAF 3 Library
Automation Collaborative Platform 273

Devices
A device corresponds to a programmable logic controller. For devices, you can specify the
following properties:

Application Run-time Options

Cycle Timing (ms) The amount of time given to each cycle. If a cycle is completed
within the cycle timing period, the system waits until this period
has elapsed before starting a new cycle. The cycle consists of
scanning the physical inputs of the process to drive, executing the
POUs of the device, then updating physical outputs. The virtual
machine executes the device code according to the execution rules.

Memory The size of the memory space reserved for storing the values of
retained variables. The values of these variables are stored in this
memory at the end of each cycle for use if the target is restarted.

Nb Stored Errors Number of entries, i.e., the size of the queue (FIFO) in which
detected errors are stored

Starting Mode Indication of whether a device executes in real time or
cycle-to-cycle. RealTime mode is the run time normal execution
mode where target cycles are triggered by the cycle timing. In
cycle-to-cycle mode, the virtual machine loads the resource code
but does not execute it until you execute one cycle or activate
real-time mode.

Compiler Options

Build Binary Decision
Diagrams (BDDs)

Indication of whether the optimizer replaces Boolean equations
(mixing AND, OR, XOR and NOT operators) with a reduced list of
conditional jump operations. The translation is performed only
when the expected execution time for the jump sequence is less
than the one expected for the original expression.

Evaluate Constant
Expressions

Indication of whether the compiler evaluates constant expressions.
For example, the numerical expression "2 + 3" is replaced by "5" in
the target code. When this option is not set, constant expressions
are calculated at run-time.

Generate Debug
Information

Indication of whether to generate information required for
debugging using step-by-step execution
274 ISaGRAF 3 Concrete Automation Model

Optimize Arithmetic
Operations

Indication of whether the optimizer simplifies arithmetic
operations according to special operands. For example, the
expression "A + 0" is replaced with "A".

Optimize Booleans Indication of whether the optimizer simplifies Boolean operations
according to special operands. For example, the Boolean
expression "A & A" is replaced with "A".

Optimize Expressions Indication of whether the optimizer re-uses the results of
expressions and sub-expressions which are used more than once in
the program

Optimize Variable
Copying

Indication of whether to optimize the use of temporary variables
(used to store intermediate results). This option is commonly used
with the Optimize expressions option.

Run Two Optimizer
Passes

Indication of whether the code optimizer runs twice. Optimizations
performed during the second pass are generally less significant
than those performed during the first pass.

Suppress Unused Code Indication of whether the optimizer suppresses insignificant code.
For example, if the following statements are programmed: "var :=
1; var := X;", the corresponding generated code is: "var := X;".

Suppress Unused Labels Indication of whether the optimizer simplifies the system of jumps
and labels defined in programs in order to suppress unused target
labels or null jumps.

Use Embedded SFC
Engine

Indication of whether to use the ISaGRAF SFC engine. This mode
leads to higher run-time performance. However, the target engine
may be missing some particular ISaGRAF target implementations
such as those more commonly found on customized targets based
on ISaGRAF code post-processing. In such a case, you may need to
remove this option and let the ISaGRAF compiler translate SFC
charts into low-level instructions. For more information regarding
using the embedded SFC engine, refer to your hardware
documentation.

Serial Port Connection Information

Baud Rate The data transmission speed, defined in bits per second. Possible
values are 0, 600, 1200, 2400, 4800, 9600, and 19200; the default
value is 19200. A value of 0 indicates no change.
Automation Collaborative Platform 275

See Also
Creating a Project

Data Bits The number of data bits in a byte. Possible values are 0, 7, or 8; the
default value is 8. A value of 0 indicates no change.

Hardware Flow Control Indication of whether the workbench controls the CTS and DSR
lines to enable hardware handshaking during exchanges

Parity The parity type. The value of this property is either None or Odd;
the default value is None.

Stop Bits Length of the stop bit. Possible values are 1 or 2.

Shared Connection Information

Network The network used for communication. Possible values are Serial
and TCP/IP. The default value is TCP/IP.

Retry The number of tries for communication using a serial connection

Serial Port or Port
Category

The serial port used for the workbench. Possible values are:
COM1
COM2
COM3
COM4
User (ISDK)
IP

Slave Number identifying the target ISaGRAF task (Isaker or Wisaker).
The value of this property ranges from 1 to 255. Refer to the target
supplier manual for the slave number of the target system used.

Targets Name of the target

Timeout Communication timeout, expressed in seconds

TCP/IP Connection Information

Host Address For TCP/IP connections, specifies the IP address of the host.

Host Socket Port The Internet port number for a TCP-IP connection. The Workbench
uses the WINSOCK.DLL Version 1.1 library for TCP-IP
communications. This file must be correctly installed on the hard
disk. If not specified, the default port number is 1100 when running
the ISaGRAF target.
276 ISaGRAF 3 Concrete Automation Model

Importing an ISaGRAF 3 Project
Creating a Library
Importing an ISaGRAF 3 Library
Automation Collaborative Platform 277

Programs
You define programs in the Programs section of a device in the Solution Explorer. Within the
program hierarchy, sequential programs must be adjacent where their execution is not
interrupted by non-sequential programs; non-sequential programs can be placed before or after
but not between sequential programs. Programs belonging to a same section must have
different names.

To add a program

You define programs for a device.

� In the Solution Explorer, right-click the program element for a device, point to Add, then
click the required programming language.

To rename a program

� In the Solution Explorer, right-click the program, click Rename, and then type a name
for the program.

To delete a program

� In the Solution Explorer, right-click the program, and then click Delete.

Miscellaneous

Comment Text displayed next to the program name in the Solution Explorer

Description Free-form text describing a program

Language Programming language of the POU

Name Name of the program. Program names can have up to eight (8)
characters and must begin with a letter followed by letters, digits,
and single underscores.

Type Type of POU. Possible values are program, user-defined function,
or user-defined function block
278 ISaGRAF 3 Concrete Automation Model

Functions
You define functions in the Functions section of a device in the Solution Explorer.

For functions, you can specify the following properties:

When adding functions, you also need to define parameters. Functions can have a maximum
of 32 parameters (31 inputs and one output). When defining parameters, consider the following
limitations:

� Parameter names are limited to 32 characters and must begin with a letter followed by
letters, digits, and single underscores

� Possible data types for parameters are BOOL, DINT, REAL, TIME, MESSAGE

� For Message type variables, string capacity is limited to 255 characters

� For user defined addresses, the format is hexadecimal and the value ranges from 1 to
FFFF

To add a function

1. In the Solution Explorer, right-click the Functions element, point to Add, then click the
required programming language for the function.

2. To define the parameters for the function, right-click the function, and then
click Parameters.

The Block Selector displays the Parameters section where you define the parameters for
the function.

Comment Text displayed next to the function name in the Solution Explorer

Description Free-form text describing a function

Language Programming language of the POU

Name Name of the function. Function names can have up to eight (8)
characters. Function names must begin with a letter followed by
letters, digits, and single underscores.

Type Type of POU. Possible values are program, user-defined function,
or user-defined function block
Automation Collaborative Platform 279

To rename a function

� In the Solution Explorer, right-click the function, click Rename, and then type a name for
the function.

To delete a function

1. In the Solution Explorer, right-click the function, and then click Delete.
280 ISaGRAF 3 Concrete Automation Model

Function Blocks
You define function blocks in the Function Blocks section of a device in the Solution Explorer.

For function blocks, you can specify the following properties:

When adding function blocks, you also need to define parameters. Function blocks can have a
maximum of 32 parameters (inputs and outputs). When defining parameters, consider the
following limitations:

� Parameter names are limited to 32 characters and must begin with a letter followed by
letters, digits, and single underscores

� Possible data types for parameters are BOOL, DINT, REAL, TIME, MESSAGE

� For Message type variables, string capacity is limited to 255 characters

� For user defined addresses, the format is hexadecimal and the value ranges from 1 to
FFFF

To add a function block

1. In the Solution Explorer, right-click the Function Blocks element, point to Add, and then
click the required programming language for the function block.

Comment Text displayed next to the function block name in the Solution
Explorer

Description Free-form text describing a function block

Language Programming language of the POU

Name Name of the function block. Function block names can have up to
eight (8) characters. Function block names must begin with a letter
followed by letters, digits, and single underscores.

Type Type of POU. Possible values are program, user-defined function,
or user-defined function block
Automation Collaborative Platform 281

2. To define the parameters for the function block, right-click the function block, and then
click Parameters.

The Block Selector displays the Parameters section where you define the parameters for
the function block.

To rename a function block

� In the Solution Explorer, right-click the function block, click Rename, and then type a
name for the function block.

To delete a function block

� In the Solution Explorer, right-click the function block, and then click Delete.
282 ISaGRAF 3 Concrete Automation Model

Variables
You define variables for their scope. For instance, global variables are available for use
throughout the programs, functions, and functions blocks of a device. Whereas, variables
defined for a program, a function, or a function block are local to that element. You define
variables in the Variables grid. For individual variable scopes, you can import and export
variables data having the Microsoft Excel (*.xls) format.

When defining variables data using a spreadsheet you enter each piece of information in a
separate cell, leave cells empty if items are to be omitted, and save the file in XLS format.
These requirements are automatically followed by the export utility; you must respect these
when building a file to be imported.

When defining complex variables such as arrays and structures, the syntax for the variable
name is as follows:

� For arrays: arrayname[index]

Name,Alias,Data Type,StringSize,InitValue,Direction,Wiring,Attribute ...
array1,,BOOL,0,,, ...
"array1[1,1]",,BOOL,0,,, ...
"array1[1,2]",,BOOL,0,,, ...
"array1[1,3]",,BOOL,0,,, ...
"array1[1,4]",,BOOL,0,,, ...
"array1[1,5]",,BOOL,0,,, ...

When managing variables data, you can import and export variables data.
Automation Collaborative Platform 283

Targets
ISaGRAF 3 projects support compiling up to three different target codes during the same build
operation. The following are the standard ISaGRAF 3 targets:

� SIMULATE, used when simulating the application. The compiler generates different
code for simulation than online.

� ISA68M, when selected the compiler produces TIC code for use with Motorola-based
processors. The processor type concerns byte ordering in the generated code.

� ISA86M, when selected the compiler produces TIC code for use with Intel-based
processors. The processor type concerns byte ordering in the generated code.

� CC86M, when selected the compiler produces non-structured "C" source code to be
compiled and linked with ISaGRAF target libraries producing an embedded executable
code. The CC86M target is compatible with ISaGRAF 3.23 and earlier projects not
supporting structured "C" source code.

� SCC, when selected the compiler produces structured "C" source code to be compiled
and linked with ISaGRAF target libraries producing an embedded executable code.
284 ISaGRAF 3 Concrete Automation Model

Networks and Connections
ISaGRAF 3 targets support the following networks:

� TCP/IP

� Serial
Automation Collaborative Platform 285

TCP/IP

The TCP/IP protocol is the network driver used for communication with ISaGRAF on
Ethernet. The following connection properties are available for the TCP/IP network driver:

To specify TCP/IP network connection properties

1. From the View menu, click Deployment View.

The Deployment View is displayed in the workspace.

2. Select the network connection, then from the Properties window specify the required
connection properties.

Shared Connection Information

Retry The quantity of retries attempted when a timeout occurs
during reading. The default value is 1.

Serial Port or Port Category The ISaGRAF 3 communication port. For the TCP/IP
network, select Ip.

Slave The slave number. The default value is 1.

Time out (s) The time delay before a timeout occurs, in milliseconds. The
default value is 2.

TCP/IP Connection Information

Host Address The socket host name or IP address. The default value is
127.0.0.1

Host Socket port The socket port number. The default value is 1100.
286 ISaGRAF 3 Concrete Automation Model

Serial

The network driver used when developing an IXL client using serial communication with ISaGRAF.
The following connection properties are available for the Serial network driver:

To specify Serial network connection properties

1. From the View menu, click Deployment View.

The Deployment View is displayed in the workspace.

2. Select the network connection, then from the Properties window specify the required
connection properties.

Shared Connection Information

Retry The quantity of retries attempted when a timeout occurs during
reading. The default value is 1.

Serial Port or Port Category The ISaGRAF 3 communication port. For the Serial network,
select Com1, Com2, Com3, Com4, Com5, Com6, Com7,
Com8, Com9, Com10, or Com11.

Slave The slave number. The default value is 1.

Time out (s) The time delay before a timeout occurs, in milliseconds. The
default value is 2.

Serial Port Connection Information

Baud Rate The baud data transfer rate. The default value is 0.

Data Bits The quantity of bits used for the smallest unit of data. The
default value is 0.

Hardware Flow Control The control of the flow of data transmission between the
network hardware. Possible values are True or False. The
default value is False.

Parity The type of parity used. Possible values are None, Odd, Even,
Mark, or Space. The default value is None.

Stop Bits The number of stop bits used to indicate the end of a
transmission. Possible values are None, One, Two, or
OnePointFive. The default value is One.
Automation Collaborative Platform 287

Importing an ISaGRAF 3 Project
You can import projects from previous versions of ISaGRAF 3 as part of new or existing
solutions in the Automation Collaborative Platform. A solution can hold multiple projects.

The Import ISaGRAF 3 Project template is available for ISaGRAF 3 projects. This template
enables importing an ISaGRAF 3 project into the ISaGRAF 6.x workbench.

For projects, the following properties are defined:

Projects are stored in the Projects directory, as MS-Access database (.MDB) files:

%USERPROFILE%\My Documents\ISaGRAF 6.x\Projects

To import an ISaGRAF 3 project

You can import projects created using ISaGRAF 3.

1. From the File menu, point to New, then click Project (or press Ctrl+Shift+N).

2. In the Installed Templates list, expand the CAM Projects option, then expand ISaGRAF 3,
and click Import.

3. From the list of available project templates, select the Import ISaGRAF 3 Project
template.

CAM

CAM Project The device name for the project

Documentation Free-formatted text

Info

Name Name of the project. Project names are recommended to have up to
32 characters

Path Complete path where the Automation Collaborative Platform
(ACP) project file is stored on the computer. The path is
automatically assigned:
%USERPROFILE%\My Documents\ ISaGRAF
6.x\Projects\SolutionName\ProjectName
288 ISaGRAF 3 Concrete Automation Model

4. Specify a name and location for the project, indicate whether to add the project to an
existing solution or create a new solution by defining a solution name, then click OK. For
new solutions, you can choose to create a directory.

5. In the Selecting an *.hie File dialog box, locate and select the ISaGRAF 3 project
database (*.hie) file from the previous ISaGRAF version, then click Open.

See Also
Creating a Project
Creating a Library
Importing an ISaGRAF 3 Library
Automation Collaborative Platform 289

Creating a Library
Libraries are special projects containing elements, i.e., functions, function blocks, conversion
functions, I/O boards, I/O configurations, and I/O equipment. However, when creating
ISaGRAF CAM 3 libraries, you can only create functions and function blocks for reuse
throughout ISaGRAF CAM 3 projects. Libraries are available for use in a project after creating
a dependency.

The ISaGRAF 3 Library template is available for ISaGRAF 3 projects. This template enables
creating a library without attaching it to a new or existing solution. Empty libraries contain no
device files.

A project can depend on one library and different projects can call the same library. When
creating a library, it can only contain functions and function blocks. These library elements can
be called from a project once the library is added as a dependency. Functions and function
blocks can be written using the IEC 61131-3 languages (FBD, LD, or ST).

When a library is included in a solution with a project, the library elements are available for
modification.

You create libraries as part of a solution in the Automation Collaborative Platform. A
solution can hold multiple projects and libraries.

You base a library on a library template then develop its functions and function blocks.
Libraries are stored in the same location as projects.
290 ISaGRAF 3 Concrete Automation Model

Library functions and function blocks must have unique names; these must have different
names from those in the project in which they are used. You do not need to compile functions
and function blocks in the library before using them in projects. These are compiled in the
calling project space, in order to take care of the compiling options defined for the project.

When building solutions or projects, libraries included as dependencies are automatically
compiled upon detecting a modification whether the library is part of the solution or external.

To create an empty ISaGRAF 3 library

You can create a library without attaching it to a new or existing solution. Empty libraries
contain no device files.

1. From the File menu, point to New, then click Project (or press Ctrl+Shift+N).

2. In the Installed Templates list, expand the CAM Projects option, then expand ISaGRAF 3,
and click Empty.

3. From the list of available project templates, select the ISaGRAF 3 Library template.

4. Specify a name and location for the project, indicate whether to add the project to an
existing solution or create a new solution by defining a solution name, then click OK. For
new solutions, you can choose to create a directory.

5. To define the compiler properties for the library, right-click the Functions or Function
Blocks elements in the Solution Explorer, and then click Properties.

See Also
Using a Library in a Project
Importing an ISaGRAF 3 Library
Creating a Project
Automation Collaborative Platform 291

Importing an ISaGRAF 3 Library
You can import libraries from ISaGRAF 3.x for use in CAM3 projects or imported ISaGRAF
3.x projects. When importing libraries, all elements from the initial ISaGRAF 3.x library are
available for reuse in projects. These elements include functions, function blocks, conversion
functions, I/O boards, I/O configurations, and I/O equipment.

The Import ISaGRAF 3 Library template is available for ISaGRAF 3 projects. This template
enables importing an ISaGRAF 3 library into the ISaGRAF 6.x workbench.

A project can depend on one library and different projects can call the same library. When
importing a library, it contains all elements defined in the original version. Library elements
can be called from a project once the library is added as a dependency.

You can only add functions and function blocks to imported libraries; you cannot add
conversion functions, I/O boards, I/O configurations, and I/O equipment. Functions and
function blocks can be written using the IEC 61131-3 languages (FBD, LD, or ST).

You import libraries as part of a solution in the Automation Collaborative Platform. A
solution can hold multiple projects and libraries.

Libraries are stored in the same location as projects.

Library functions and function blocks must have unique names; these must have different
names from those in the project in which they are used. You do not need to compile functions
and function blocks in the library before using them in projects. These are compiled in the
calling project space, in order to take care of the compiling options defined for the project.

When building solutions or projects, libraries included as dependencies are automatically
compiled upon detecting a modification whether the library is part of the solution or external.

To import an ISaGRAF 3 library

You can import libraries created using ISaGRAF 3.

1. From the File menu, point to New, then click Project (or press Ctrl+Shift+N).

2. In the Installed Templates list, expand the CAM Projects option, then expand ISaGRAF 3,
and click Import.
292 ISaGRAF 3 Concrete Automation Model

3. From the list of available templates, select the Import ISaGRAF 3 Library template.

4. Specify a name and location for the library, indicate whether to add the library to an
existing solution or create a new solution by defining a solution name, then click OK. For
new solutions, you can choose to create a directory.

5. In the Selecting a *NUMS File dialog box, locate and select the ISaGRAF 3 library
database (*NUMS) file, then click Open.

See Also
Using a Library in a Project
Creating a Library
Creating a Project
Automation Collaborative Platform 293

Using a Library in a Project
Projects can use elements, i.e., functions, function blocks, conversion functions, I/O boards,
I/O configurations, and I/O equipment, from a library. However, when using libraries created
in ISaGRAF CAM 3, only functions and function blocks are available. You need to create
libraries or import libraries before using them. Furthermore, you need to define a project's
dependencies, i.e., the library the project will use, before using a library's defined elements.
Multiple projects can depend on a library.

A library cannot use elements from another library. In other words, you cannot define external
dependencies for a library. However, a function or function block from a library can call other
functions or function blocks from the same library. Furthermore, functions or function blocks
from libraries can call 'C' written functions and function blocks defined for the corresponding
target.

All functions and function blocks within a project, including those coming from libraries, must
have unique names.

You add a dependency onto a library from the Dependencies dialog box. In this dialog box, the
Libraries list displays the library on which a project has a dependency.

Note: When redefining the location of a library dependency you can modify the path in the
library properties; removing the library will result in a loss of all project references.

When building solutions or projects, libraries included as dependencies are automatically
compiled upon detecting a modification whether the library is part of the solution or external.

To use a library in a project

1. In the Solution Explorer, expand the project for which to add a dependency.

2. Right-click the Dependency element, point to Add, and then click Add Dependency....

3. In the Dependencies dialog box, click Browse to locate the library on which to create the
dependency.

The library is displayed in the Libraries list.
294 ISaGRAF 3 Concrete Automation Model

See Also
Creating a Library
Importing an ISaGRAF 3 Library
Creating a Project
Automation Collaborative Platform 295

Importing and Exporting Variables
Data
You can import variables that were previously exported and saved as Microsoft Excel
spreadsheets (.xls). Exporting variables enables management of variables data in Excel,
including adding, removing, and modifying variables. You can import previously exported
Excel files into other programs in the same project or in other projects.

When importing variables, you import the complete contents of the *.xls file. For previously
exported Excel files containing modified content, any additional columns of data using proper
syntax will be imported. The Output window details the progress of import operations,
including the names and location of the variables added.

When exporting variables, you can select the fields of the variables to export. You also specify
the location in which to save the exported files.

You can also import files containing manually defined variables for use in devices and
programs. When importing files created manually, you must include a header row containing
the same syntax used in files exported from ISaGRAF. The Excel file syntax uses the internal
names for the columns of data instead of those displayed in the Variable Export/Import dialog
box. Any rows of data using improper syntax will not be imported.

To import variables

You can only import variables having been previously exported and stored as Excel (.xls) files.

1. In the Solution Explorer, right-click the device or POU, point to Import, then click
Variables from Excel....

2. In the Variable Export/Import dialog box, on the Import Variables tab, click browse to
select the Excel file to import.

� In the Import/Export File dialog box, select the Excel file to import, then click
Open.

3. In the Variable Export/Import dialog box, click Import.
296 ISaGRAF 3 Concrete Automation Model

4. When the import process is complete, in the Variable Export/Import dialog box, click
.

The imported variables are available for use.

To export variables

You can export selected fields of variables data in Excel (.xls) format.

1. In the Solution Explorer, right-click the device or POU containing the variables to export,
point to Export, then click Variables to Excel....

2. In the Variable Export/Import dialog box, on the Export Variables tab, click browse to
select the destination for the exported variables.

3. In the Import/Export File dialog box, specify the name of the Excel file, then click
Save.
Automation Collaborative Platform 297

4. From the Fields to Export check box list, select the variables data to export, then click
Export.

Using the Select All option, you can select all the fields displayed. The Clear All option
enable you to clear all fields, then reselect only those required.

5. When the export process is complete, click .

The variables are exported to the specified file.
298 ISaGRAF 3 Concrete Automation Model

Generating Code
Before downloading code onto your target systems, you need to build the code for the whole
solution. This operation builds the code for all projects within the solution, and builds
information used to recognize your systems on networks. When a solution contains more than
one project, you can build the code for individual projects within the solution. Once a solution
or project has been built, subsequent build operations only regenerate the parts of the solution
or project needing regeneration. You can also choose to build project elements, including
devices and POUs. When building POUs, ISaGRAF only verifies the programming syntax
without producing code.

When managing code, you can perform the following tasks:

� Building Solutions and Project Elements

� Rebuilding Solutions

� Cleaning Solutions and Project Elements
Automation Collaborative Platform 299

Building Solutions and Project Elements
You can choose to compile project files that were modified since the last build. You can build
modified project files belonging to entire solutions. Once a project has been built, subsequent
builds only recompile the parts of the project needing recompiling.

When a solution contains more than one project, you can build the modified project files for
individual projects. You can also choose to build individual project elements including devices
and POUs.

You can rebuild solutions to ensure that the compiled version is up-to-date. When rebuilding
solutions, intermediate and output files are deleted, then a build operation is performed.
Deleting the intermediate and output files ensures that the entire solution is compiled during a
rebuild operation. After rebuilding solutions, online changes become unavailable.

The compiler generates different code for simulation than for targets. Therefore, you need to
specify the applicable target in the properties of devices before building.

When building solutions and project elements, you can view the progress of the build in the
Output window. When the build is complete, you can view generated errors in the Error List.

To build a solution or project element

This operation builds the code for all devices of the projects and builds information used to
recognize your systems on networks. You cannot build projects open in read-only mode.
Before building a project, make sure the applicable target type is specified for the devices.

� In the Solution Explorer, right-click the required solution or project element, then click
Build.

The build process is initiated for the required project element or solution.

To view the build progress and generated errors

1. From the Tools menu, click Options.

2. In the Options dialog box, expand Projects, click General, then select the following
options, and then click OK.
300 ISaGRAF 3 Concrete Automation Model

 Always show Error List if build finishes with errors

 Show Output window when build starts

3. Build the required solution or project element.

The Output and Error List windows are displayed.

See Also
Downloading Code to Targets
Rebuilding Solutions
Automation Collaborative Platform 301

Rebuilding Solutions
You can choose to clean solutions, deleting the intermediate and output files, then rebuild all
project files and components. After rebuilding solutions, online changes become unavailable.

You can view the progress of rebuild operations in the Output window. When the rebuild is
complete, you can view generated errors in the Error List.

To rebuild a solution

1. In the Solution Explorer, click the solution element.

2. From the Build menu, click Rebuild Solution.

The rebuild process is initiated for the solution.

To view the rebuild progress and generated errors

1. From the Tools menu, click Options.

2. In the Options dialog box, expand Projects, click General, then select the following
options, and then click OK.

 Always show Error List if build finishes with errors

 Show Output window when build starts

3. Build the required solution.

The Output and Error List windows are displayed.

See Also
Downloading Code to Targets
302 ISaGRAF 3 Concrete Automation Model

Cleaning Solutions and Project Elements
You can clean solutions, projects, and devices. Cleaning these deletes the intermediate and
output files generated during the last build operation. Performing cleaning operations removes
the capacity to perform online changes for the selected element. For example, after cleaning a
device, online changes become unavailable.

To clean a solution

� In the Solution Explorer, right-click the solution, then click Clean Solution.

The intermediate and output files are deleted for the solution.

To clean a project or device

� In the Solution Explorer, right-click the required project or device then click Clean
Selection.

The intermediate and output files are deleted for the project element.

See Also
Building Solutions and Project Elements
Rebuilding Solutions
Automation Collaborative Platform 303

Running an Application Online
Running online signifies that an application is connected to a target allowing for the normal
execution where target cycles are triggered by the cycle timing. While running online, you can
perform target management, debugging, and monitoring operations. However, you cannot
perform target management and debugging operations at the same time. You can also simulate
the running of an application for debugging purposes.

Before running an application on a target, you need to build the project code and download the
application code onto the target.

To run an application online

1. Specify the applicable target type and IP addresses for the devices in the project.

Note: The compiler generates different code for simulation than for targets.

2. Build the project code.

3. To run an application online, download the application code onto the target.

4. In the Debug toolbar, from the drop-down combo-box, select Online.

5. In Debug menu, click Start Debugging.

See Also
Simulating
Debugging
Monitoring
304 ISaGRAF 3 Concrete Automation Model

Downloading Code to Targets
You perform download operations for projects having devices with code to send to targets.
When simulating a project, you do not need to perform a download operation.

The code (corresponding to the run-time engine capabilities) must first be generated by
building the project. The code type is determined by the target definition.

The Configuration manager must be running on the target platform.

The computer where the Automation Collaborative Platform is installed must be connected
to the hardware equipment through a network supported by the Debugger. The standard
networks used by the Automation Collaborative Platform are TCP/IP and Serial COM port
(ISaRSI).

To download project code to a target

1. Build the project code.

2. In the Solution Explorer, right-click the project element, and then click Download.
Automation Collaborative Platform 305

Debugging
When developing an application, you can choose to debug, i.e., detect and remove errors, from
a project while running the application online, i.e., on a target, or simulating. Before running
an application online, you need to download the application code onto the target.

While in real-time mode, the device is executed by a virtual machine on the real platform. A
download operation is required to download the device code onto the corresponding platform.

A device where real-time mode is activated is in the RUN state.

When debugging, the state of a device is displayed in its icon in the Solution Explorer. The
possible states of a device are the following:

To enable debugging a project, you must first build the project, then download the project code
to the target.

When switching an application to debugging, the Automation Collaborative Platform
verifies the coherency between the current device definitions and the devices' compiled code.
The Automation Collaborative Platform also verifies the coherency between all versions of
the device code.

You can execute a device in one of two execution modes:

� Real-time, the run time normal execution mode where target cycles are triggered by the
programmed cycle timing. While in real-time mode, you can switch the device to
cycle-to-cycle mode.

� Cycle-to-cycle, a cyclical execution mode where the virtual machine loads the device
code but does not execute it until you execute one cycle or activate real-time mode.

The device is running on the target. The device is in the RUN, STOP, or ERROR
state.

The device is not running on the target or no code is available on the target. The
device is in the DISCONNECTED or NO APPLICATION state.
306 ISaGRAF 3 Concrete Automation Model

The state of the device appears next to the device icon in the Solution Explorer.

When running online, a device is activated in the RUN state. When viewing the values of
variables in dictionary instances, the logical and physical values display the following
temporary messages before loading the actual values:

� OFFLINE, indication that the variable is not present in the running application code

� WAIT, indication that the variable is either:

 In online mode and attempting to connect to the target

 In simulation mode and attempting to connect to the simulator

To debug an application

Before debugging an application, you need to build the application code and download the
code to the target.

1. Build the project code.

2. Download the code to the target.

3. In the Debug toolbar, from the drop-down combo-box, select Online.

Device State Description

RUN The device is running in real-time mode

STOP The device is in cycle-to-cycle mode.
Possible operations are:
- switch the device to real-time mode
- execute one cycle

ERROR The device is in error.
Possible operations are:
- switch the device to real-time mode
- switch the device to cycle-to-cycle mode
- execute one cycle

DISCONNECTED Unable to establish communication with the target run-time.

NO APPLICATION The device is not running on the target or no code is available on the
target.
Automation Collaborative Platform 307

4. From the Debug menu, click Start Debugging (or press F5).

See Also
Devices
Forcing the Values of Variables
308 ISaGRAF 3 Concrete Automation Model

Forcing the Values of Variables

While debugging, you can force, i.e., override, the values of variables. These variables can be
user-defined or directly represented. The behavior of a variable is defined by its logical value,
physical value, lock state, and direction. When forcing the values of variables, the value to
overwrite depends on the direction of the variable. You lock, unlock, and force the values of
variables from the Dictionary.

For locked variables, the values displayed in the Logical Value and Physical Value columns
differ depending on their direction. Variable direction is determined from the direct
representation definition for the I/O wiring.

Input Variable (Read) Behavior

Example: To force the temperature reading from a sensor.
Automation Collaborative Platform 309

When forcing the values of unlocked variables, these values may be overwritten by the next
cycle execution.

To force the value of a variable

While debugging, you can force the values of locked directly-represented variables.

1. From the Dictionary instance, double-click the required variable.

The Write dialog box is displayed.

2. To modify the lock on the variable, in the Lock field, click the slider, then click Write.

3. To write the required value for the variable, modify the DataType value field, then click
Write.

When modifying a date in the DataType value field, a calender box is displayed. To select
a date, click within the calender box. You can move between months using the arrow
buttons.

See Also
Debugging

Output Variable (Write) Behavior

Example: To force the closing of an actuator valve.
310 ISaGRAF 3 Concrete Automation Model

Simulating
Simulating the running of an application signifies that virtual machines execute the code of the
device and the Windows platform performs aspects such as POU execution. Virtual machines
ignore inputs and outputs.

The compiler generates different code for simulation than for online.

Before simulating an application on a target, you need to build the project code.

To simulate the running of an application

1. In the Device properties, specify the applicable target type and host address for the
device.

2. Build the project code.

3. In the Debug toolbar, from the drop-down combo-box select Simulation.

4. From the Debug menu, click Start Debugging.
Automation Collaborative Platform 311

Monitoring
While running an application online, debugging, or simulating, you can monitor variables,
updated by the running online (TIC) code or simulation code, in Dictionary instances as well
as graphical programs and function block instances. Generating monitoring information
increases the size of the TIC code created.

For dictionary instances, the logical values, physical values, and lock status of variables are
displayed in their respective columns. For graphical programs and function block instances,
values are displayed differently depending on their type:

� Boolean type variables are displayed using color. The variable color continues to the next
input. The default colors are red when True and blue when False.

� DINT, REAL, MESSAGE, and TIME type variables are displayed as a numeric or textual
value. When the variable is a structure type, the displayed value is the selected member.

When variables are unavailable, in Dictionary instances, the logical and physical values for
variables display the following messages:

� OFFLINE, indication that the variable is not present in the running application code

� WAIT, indication that the variable is either:

 In online mode and attempting to connect to the target

 In simulation mode and attempting to connect to the simulator

See Also
Running an Application Online
Debugging
Simulating
312 ISaGRAF 3 Concrete Automation Model

Error Messages
The following describes the error types:

Possible error messages encountered in ISaGRAF 3 Concrete Automation Model include:

Error Type Source Solution

System Errors Error due to target software or
hardware

Report this type of error to
ISaGRAF Support

Perform a hard reset of your target,
then attempt to run other
applications.

Application Errors Error due to application
parameters, size, or content

Load a previously validated
application

Program errors Error due to a particular
program sequence

Start the application in
cycle-to-cycle mode or stop the
critical program

Message Type Description

Unable to allocate memory for
run-time data base

System Indication that no memory available
Verify your hardware memory

Incorrect application database
or bad CRC

Application Indication that the application file is
incorrect

Occurs when the application is
generated for INTEL and downloaded
on MOTOROLA (and reverse), or if the
file has been altered.

Unable to allocate
communication mailbox

System The communication task is unable to
allocate space 3 for inter-task
communication.

Unable to link kernel database System The communication task cannot find a
kernel running with the slave number
specified in its command line.

Time-out while sending
request to kernel

System The communication task cannot send a
request to the kernel. The kernel is not
running or busy.
Automation Collaborative Platform 313

Time-out while awaiting
response from kernel

System The communication task cannot receive
an answer from the kernel. The kernel is
not running or busy

Unable to initiate
communication

System The communication layer cannot
initialize a physical link or no
communication path is specified.

This error does not interfere with target
function.

Unable to allocate memory for
retain variables

Application ISaGRAF cannot manage retained
variables:

- the string passed as a parameter to the
host target is not syntactically correct

- the size of memory specified for each
block is not sufficient

To resolve, verify the syntax of your
‘retain variable’ parameter or reduce the
number of retained variables.

Application stopped Application The application was stopped from the
debugger.

Unknown TIC instruction Application The kernel has detected a problem in the
Target Independent Code for a program
for one of the following reasons:

- an external program is writing to the
application code. Locate this problem in
cycle-to-cycle mode and verify all I/O
interface parameters.

- the target has a reduced set of
instructions and the application uses a
non-authorized instruction or variable
type.
314 ISaGRAF 3 Concrete Automation Model

Unable to answer read data
request

System A communication error was detected
when answering the specific ISaGRAF
Modbus request function code 18 (file
read).

Verify the connection and system
configuration on the target and master
sides.

Unable to answer write data
request

System A communication error was detected
when answering specific ISaGRAF
Modbus request function code 17 (file
write).

Verify the connection and system
configuration on the target and master
sides.

Unable to answer debugger
session request

System A communication error was detected
when answering a debugger request.

Verify the connection and system
configuration on the target and master
sides.

Unable to answer modbus
request

System A communication error was detected
when answering a Modbus request.

Verify the connection and system
configuration on the target and master
sides.

Unable to answer debugger
application request

System A communication error was detected
when answering a debugger request.

Verify the connection and system
configuration on the target and master
sides.

Unable to answer debugger System A communication error was detected
when answering a debugger request.

Verify the connection and system
configuration on the target and master
sides.
Automation Collaborative Platform 315

Unknown request code System Unable to interpret the debugger request

Ethernet communication error System The connection is closed and the
debugger is closed. Otherwise, an
Ethernet communication error was
detected.

Verify the connection and system
configuration on the target and master
sides.

When a second field is provided, verify
for the following possible errors:

1: error while sending or receiving

2: error while creating the socket

3: error while binding or listening the
socket

4: error while accepting a new client

Communication
synchronization error

System The tasks providing communication
between the target and the master are
not synchronized.

Verify the connection and system
configuration on the target and master.

Unable to allocate memory for
application

System There is insufficient memory available.

Ensure that enough hardware memory is
provided to accommodate the size of the
application.

Unable to allocate memory for
application update

System There is insufficient memory available.

Ensure that enough hardware memory is
provided to accommodate the size of the
application.
316 ISaGRAF 3 Concrete Automation Model

Unknown OEM key code Application A board used in your applications has a
manufacturer code that is not
recognized.

In the workbench, verify the following:
- I/O connections
- locate the board use the 'VIRTUAL'
attribute

Unable to initiate boolean
input board

Application A Boolean input board initialization has
failed.

In the workbench, verify the following:
- I/O connections
- parameters of the Boolean input boards

Unable to initiate analog input
board

Application An analog input board initialization has
failed.

In the workbench, verify the following:
- I/O connections
- parameters of the analog input boards

Unable to initiate message
input board

Application A message input board initialization has
failed.

In the workbench, verify the following:
- I/O connections
- parameters of the message input
boards

Unable to initiate boolean
output board

Application A Boolean output board initialization
has failed.

In the workbench, verify the following:
- I/O connections
- parameters of the Boolean output
boards

Unable to initiate analog
output board

Application An analog output board initialization
has failed.

In the workbench, verify the following:
- I/O connections
- parameters of the analog output boards
Automation Collaborative Platform 317

Unable to initiate message
output board

Application A message output board initialization
has failed.

In the workbench, verify the following:
- I/O connections
- parameters of the message output
boards

Unable to input boolean board Application An error has been detected while
refreshing a Boolean input board.

In the workbench, verify the I/O
connection and the board parameters.

Unable to input analog board Application An error has been detected while
refreshing an analog input board.

In the workbench, verify the I/O
connection and the board parameters.

Unable to input message
board

Application An error has been detected while
refreshing a message input board.

In the workbench, verify the I/O
connection and the board parameters.

Unable to update boolean
output variable

Application An error has been detected while
updating an Boolean output variable.

In the workbench, verify the I/O
connection and the board parameters.

Unable to update analog
output variable

Application An error has been detected while
updating an output analog variable.

In the workbench, verify the I/O
connection and the board parameters.

Unable to update message
output variable

Application An error has been detected while
updating an output message variable.

In the workbench, verify the I/O
connection and the board parameters.
318 ISaGRAF 3 Concrete Automation Model

Unable to perform Operate
call on boolean variable

Application An error has been detected while
executing an OPERATE call to a
Boolean variable.

Verify the OPERATE parameters and
consult the help files for your I/O board.

Unable to perform Operate
call on analog variable

Application An error has been detected while
executing an OPERATE call to a analog
variable.

Verify the OPERATE parameters and
consult the help files for your I/O board.

Unable to perform Operate
call on message variable

Application An error has been detected while
executing an OPERATE call to a
message variable.

Verify the OPERATE parameters and
consult the help files for your I/O board.

Unable to open board Application The application uses a board reference,
which is unknown to the target.

In the workbench, verify the following:
- I/O connections
- ensure that the workbench library
version corresponds to the target version

Unable to close board Application The application uses a board reference,
which is unknown to the target.

In the workbench, verify the following:
- I/O connections

Unknown system request code Program A program is using a SYSTEM call with
an invalid code.
Automation Collaborative Platform 319

Sampling period overflow Program The target cycle period is longer than
specified in the workbench. For a
multitasking system, there is not enough
CPU time to execute a cycle, even when
the ‘current cycle duration’ is less than
the specified period. For a single task
system, there are too many operations in
one target cycle.

To resolve, do the following:
- reduce the number of operations
performed at the instant where the
warning is detected.
- reduce the number of tokens and valid
transitions, and optimize complex
processing, etc.
- reduce the CPU load dedicated to other
tasks
- reduce the communication traffic
- adapt the cycle duration to different
process stages by use dynamic cycle
duration modification
- set cycle duration to zero

User function not
implemented

Application A program is using a C function that is
unknown to the target.

Ensure that the workbench library
version corresponds to the target
version.

Integer divided by zero Program A program has attempted to divide an
integer analog by zero. This type of
event can have unpredictable effects.
When a divide by zero operation occurs,
ISaGRAF places the maximum analog
value as the result. When the operand is
negative, the result is inverted.
320 ISaGRAF 3 Concrete Automation Model

Conversion function not
implemented

Application A program is using a C conversion
function that is unfamiliar to the target.
ISaGRAF has not converted the value.

Ensure that the workbench library
version corresponds to the target
version.

Function block not
implemented

Application A program is using a C function block
that is unfamiliar to the target.

Ensure that the workbench library
version corresponds to the target
version.

Standard function not
implemented

Application A program is using a function block that
is unfamiliar to the target. This function
block is available for most targets.

Please contact your supplier.

Real divided by zero Program A program has attempted to divide a real
analog by zero. This type of event can
have unpredictable effects. When a
divide by zero occurs, ISaGRAF places
the maximum real analog value as the
result. When the operand is negative, the
result is inverted.

Invalid operate parameters Application Your application has used an OPERATE
call with incorrect parameters.

To resolve, do the following:
- verify that the timer parameters are
correct
- verify that all variables are inputs or
outputs

Application symbols cannot
be modified

Application After attempting to perform an update,
ISaGRAF was unable to start the
application. The application symbols
have changed. One or more variables or
instances of function blocks were added,
removed or modified.
Automation Collaborative Platform 321

Unable to update: different set
of boolean variables

Application ISaGRAF is unable to start the modified
application. One or more Boolean
variables have been added or removed.

Unable to update: different set
of analog variables

Application ISaGRAF is unable to start the modified
application. One or more analog
variables have been added or removed.

Unable to update: different set
of timer variables

Application ISaGRAF is unable to start the modified
application. One or more timer variables
have been added or removed.

Unable to update: different set
of message variables

Application ISaGRAF is unable to start the modified
application. One or more message
variables have been added or removed.

Unable to update: cannot find
new application

Application Unable to find the modified application
in memory. An error may have occurred
when downloading.
322 ISaGRAF 3 Concrete Automation Model

Getting Started
The ISaGRAF 3 Concrete Automation Model enables the creation of applications supporting
multi-process control. Applications consist of virtual machines running on hardware
components, called target platforms. The development process consists of creating a project
composed of one device that is downloaded to a target platform. At runtime, the device
becomes a virtual machine running on the target platform.

Projects containing a device and one or more programs are developed in the following
languages of the IEC 61131-3 standard: FBD: Function Block Diagram, LD: Ladder Diagram,
and ST: Structured Text. When building, a device is compiled to produce very fast "target
independent code" (TIC) or "C" code.

Within devices, you can declare variables using standard IEC 61131-3 data types (i.e., BOOL,
DINT, REAL, MESSAGE, and TIME) or user-defined types such as one-dimensional arrays.

You develop projects on a Windows® development platform. The Automation Collaborative
Platform graphically represents and organizes the device, POUs, variables, and networks
within a project from many views:

� Add-in Manager � Block Library

� Block Selector � Customize...

� Data Types � Deployment View

� Description Window � Device View

� Dictionary � Document Overview

� Error List � External Tools

� Find and Replace � I/O Wiring

� ISaVIEW � Language Editors

� Locked Variables Viewer � Navigation Window

� Options... � Output Window

� Parameters View � Properties Window

� Solution Explorer � Spy Lists

� Toolbox � Variable Dependencies

� Variable Selector
Automation Collaborative Platform 323

Libraries are special projects made up of devices enabling the definition of functions and
function blocks for reuse throughout projects.

Projects are downloaded, using the TCP-IP or Serial network driver, onto target platforms
running real-time operating systems. Communication between devices can be implemented
using the default TCP-IP network or proprietary network protocol.

Before downloading project code onto the target platform, you need to build the code for the
entire solution. You can then choose to debug the application while running online or
simulating. You can also monitor variables while running the application online, debugging,
or simulating.

The following information guides you in getting started with the ISaGRAF 3 Concrete
Automation Model:

� System Requirements for Development Platforms

� Naming Conventions and Limitations

� Introducing the Automation Collaborative Platform (ACP)

� Walking Through an Existing Application

� Starting with a Basic Application

� Importing an Existing Application
324 ISaGRAF 3 Concrete Automation Model - Getting Started

System Requirements for Development Platforms

Suggested Requirements

To use ISaGRAF, you need the following hardware and software.

Hardware

� A computer with a 2.2 GHz or faster processor.

� RAM

 1 GB of RAM for x86 operating systems

 2 GB of RAM for x64 operating systems

 When running ISaGRAF on a Virtual Machine, an additional 512 MB of RAM is
necessary

� 4 GB of available hard disk space

� A hard disk running at 5400 RPM

� A CD-ROM drive on the Windows network (for installation from disk)

� A TCP/IP network

� An SVGA monitor having at least 1024 X 768 pixels screen resolution

� A DirectX 9-capable video card that runs at a display resolution of 1024 x 768 or higher

Software

ISaGRAF supports the following operating systems:

� Windows® 7 (x86 and x64)

� Windows® 8 (x86 and x64)
Automation Collaborative Platform 325

Note: If Visual Studio 2010 was previously installed, when running the ISaGRAF installation
the Visual Studio 2010 Service Pack 1 will be installed. This may affect Visual Studio
functionality.
326 ISaGRAF 3 Concrete Automation Model - Getting Started

Naming Conventions and Limitations
Projects

Project names Project names are recommended to have up to 32 characters

Device quantity Projects contain one device

Devices

Device names Device names can have up to eight (8) characters and must begin with
a letter followed by letters, digits, and single underscores.

Networks

Network instance
names

Network instance names can have up to eight (8) characters and must
begin with a letter followed by letters, digits, and single underscores.

POUs (Programs, Functions, and Function Blocks)

POU names POU names can have up to eight (8) characters and must begin with a
letter followed by letters, digits, and single underscores.

POUs per project The maximum number of POUs is directly dependent on the
ISaGRAF 3 run-time 16-bit application.

Hierarchical levels The maximum hierarchical levels for POUs is 20

Function parameters Functions can have a maximum of 32 parameters (31 inputs and one
output)

Function parameter
names

Function parameter names can have up to 32 characters and must
begin with a letter followed by letters, digits, and single underscores.

Function block
parameters

Function blocks can have a maximum of 32 parameters (inputs and
outputs)

Function block
parameter names

Function block parameter names can have up to 32 characters and
must begin with a letter followed by letters, digits, and single
underscores.

Variables

Variable quantity The maximum number of variables is directly dependent on the
ISaGRAF 3 run-time 16-bit application.
Automation Collaborative Platform 327

Variable names Variable names can have up to 32 characters and must begin with a
letter followed by letters, digits, and single underscores.

The names of variables having a defined Modbus address, initial
value, or retained property are calculated by combining the variable
and POU names for a maximum of 32 characters beginning with a
letter followed by letters, digits, and single underscores.

Boolean variables Boolean variables can have the boolean value TRUE (1) or FALSE (0)
and can have an internal, constant, input, or output attribute.

DINT variables DINT variable integer values range from -2147483647 to
+2147483647 and can have an internal, constant, input, or output
attribute. Integer literals must begin with a prefix identifying the base.
There is no prefix for DECIMAL values. For HEXADECIMAL
values the prefix is "16#", for OCTAL values the prefix is "8#", and
for BINARY values the prefix is "2#".

Real variables Real variables have six significant digits. For larger values, the
maximum possible value is ±3.402823466E+38 while for smaller
values, the minimum possible value is ±1.175494351E-38. Real literal
values can be written with either decimal or scientific representation.
The exponent part of a real scientific expression must be a signed
integer value ranging from -37 to +37. The scientific representation
uses the 'E' or 'F' letter to separate the mantissa part and the exponent.
Real variables can have an internal, constant, input, or output attribute.

Time variables Time variables can have positive values ranging from 0 to
23h59m59s999ms. The time literal value must begin with the "T#" or
"TIME#" prefix. Time variables can have an internal or constant
attribute.

MESSAGE variables MESSAGE variable string capacity is limited to 252 characters
excluding the terminating null character (0), a byte for the current
length of the string, and a byte for the maximum length of the string.
Characters must be preceded and followed by single quote (')
characters. When placing single quote (‘) characters within a message
literal, these characters must be preceded by the dollar ($) character.

Modbus Address The Modbus address of a variable consists of four hexadecimal digits
ranging from 0001 to FFFF.

Arrays One-dimensional arrays can have a maximum of 255 elements.
328 ISaGRAF 3 Concrete Automation Model - Getting Started

Defined Words

Defined Word names Defined word names can have up to 32 characters and must begin with
a letter follow by letters, digits, and single underscores.

Defined word
equivalents

Defined word equivalents can have up to 255 characters.

I/O Wiring

I/O devices per
project

The maximum number of I/O device instances is directly dependent
on the ISaGRAF 3 run-time 16-bit application.

Hardware racks A hardware rack can contain up to 255 I/O boards

I/O boards per project The maximum number of single I/O boards in a project is 255.

I/O channels Each I/O board can have up to 128 I/O channels. These channels can
be inputs or outputs.

I/O device order The I/O device order ranges from 0 to 254

Conversion table
names

Conversion table names can have up to 16 characters and must begin
with a letter follow by letters, digits, and single underscores.

FBD Programs

Label elements Label elements can have up to 32 characters and must begin with a
letter follow by letters, digits, and single underscores.

LD Programs

Label elements Label elements can have up to 455 characters and must begin with a
letter follow by letters, digits, and single underscores.

Rung comments Rung comments can have up to 251 characters.

ST Programs

ST statements ST statements (i.e., one line of code) are recommended to have less
than 4096 characters.
Automation Collaborative Platform 329

Introducing the Automation Collaborative Platform (ACP)
The Automation Collaborative Platform (ACP) provides a robust integrated development
environment (IDE) enabling the development of process control applications. The ACP
workbench offers a complete suite of tools for building applications.

To get to know the aspects of the ACP

1. From the Start menu, click All Programs, then ISaGRAF 6.4, and then click
Automation Collaborative Platform.

The ACP is launched displaying the Start Page, Solution Explorer, Navigation Window,
Toolbox, Output window, and Error List.
330 ISaGRAF 3 Concrete Automation Model - Getting Started

The Start Page enables opening new or recent projects, viewing tutorials, as well as
accessing the Getting Started help pages. The Solution Explorer displays open solutions
consisting of projects and their elements. The Navigation Window provides a global
view of the solution and enables accessing the device view and deployment view. The
Toolbox displays the available elements for insertion in programs. The Output window
displays the compilation progress and errors. The Error List displays the errors,
warnings, and messages produced when editing and compiling programs.
Automation Collaborative Platform 331

2. When adding elements in the language container, you can use the following ACP
features:

 To display program-specific elements for insertion in the language container, from
the View menu, click Toolbox.
332 ISaGRAF 3 Concrete Automation Model - Getting Started

 To display variables defined for a program, from the Toolbox, drag the Variable icon
into the language container. The Variable Selector is displayed.
Automation Collaborative Platform 333

 To display the list of blocks available for a program, from the Toolbox, drag the
Block icon into the language container. The Block Selector is displayed. You can
also access the Parameters display from the Block Selector.
334 ISaGRAF 3 Concrete Automation Model - Getting Started

 To display a graphical view of standard operators, as well as standard and
user-defined functions and function blocks available for the POUs of a project, from
the View menu, click Block Library.

 To view, add, or edit the rich text descriptions for ISaGRAF projects, devices, and
POUs, select the required element in the Solution Explorer, then from the View
menu, click Description Window.
Automation Collaborative Platform 335

3. To work in full screen mode, from the View menu, click Full Screen. Full screen mode
enlarges the workspace to fill the screen, hiding other tabbed windows.

4. To display the Properties window, from the View menu, click Properties Window. The
properties window enables viewing and editing the properties of items selected within
language containers, ISaVIEW instances, the Solution Explorer, and the Deployment
View. You can view properties alphabetically or categorically.
336 ISaGRAF 3 Concrete Automation Model - Getting Started

5. You can navigate through program content, including application code, using the
following ACP features:
Automation Collaborative Platform 337

 To find and replace strings and expressions in files, from the Edit menu, point to
Find and Replace, then click the required option. For example, click Quick Find to
display Quick Find options.

 To focus on an area displayed within a program opened for editing, from the View
menu, click Document Overview.

6. You can navigate through the different elements and aspects of projects using the
following ACP features:
338 ISaGRAF 3 Concrete Automation Model - Getting Started

 To navigate through project aspects and elements, from the View menu, click
Navigation Window. The environment provides a global view of the solution and
enables accessing the Device view and Deployment view.

The initial aspects and elements displayed vary depending on the item selected in the
Solution Explorer.
Automation Collaborative Platform 339

 To navigate through project elements, from the Solution Explorer, right-click the
required device and then click Open. The Device View is displayed and enables
accessing device information such as available POUs, function and function block
parameters, and defined words.
340 ISaGRAF 3 Concrete Automation Model - Getting Started

 To navigate through Active Files open in the current project, from the Window
menu, click Windows. Active files consist of language containers, the Deployment
view, and other windows docked in the workspace.

7. When managing elements, you can use the following ACP features:

 To manage local variables, global variables, and defined words, in the Solution
Explorer, double click the required Local Variables, Global Variables, or Defined
Words instance. The Dictionary is displayed.
Automation Collaborative Platform 341

 To manage parameters and local variables for user-defined POUs, right-click the
POU, and then click Parameters.

8. When debugging applications, you can oversee application performance using the
following ACP features:

 To view the build information, from the View menu, click Output.
342 ISaGRAF 3 Concrete Automation Model - Getting Started

 To view the errors, warnings, and messages produced when editing and building
programs, from the View menu, click Error List.

 To view or unlock locked variables while debugging, running online, and simulating,
from the Debug menu, click Locked Variables.

9. To add an ISaVIEW screen, right-click the device or program in the Solution Explorer,
point to Add, and then click New ISaVIEW.

You can monitor or run control processes, locally or remotely, by creating ISaVIEW
screens. You can define animation effects for the objects inserted in the ISaVIEW
screens. Design mode enables editing the screen objects and animation mode executes
the animation effects.
Automation Collaborative Platform 343

10. To graphically display the device, networks, and connections of a project, from the View
menu, click Deployment View.
344 ISaGRAF 3 Concrete Automation Model - Getting Started

11. To view changes in the values of variables and function block instances, from the Debug
menu, point to Spy Lists, then click the required spy list instance.

12. To generate documentation for projects, devices, programs, and variables, from the File
menu, click Generate Documentation.
Automation Collaborative Platform 345

13. You can customize the Workbench using the following ACP features:
346 ISaGRAF 3 Concrete Automation Model - Getting Started

 To customize the environment, project, Source Control, Block Library, Deployment
view, Device view, various grids, I/O device, IEC languages, ISaVIEW, and Spy List
options, from the Tools menu, click Options...
Automation Collaborative Platform 347

 To create or customize toolbars, menu bars, and context menus, from the Tools
menu, click Customize...

14. You can manage add-ins and external tools using the following ACP features:
348 ISaGRAF 3 Concrete Automation Model - Getting Started

 To manage registered add-ins, from the Tools menu, click Add-in Manager...

 To add external tools, from the Tools menu, click External Tools...
Automation Collaborative Platform 349

Walking Through an Existing Application
This section describes a demo project included with the default installation.

To walk through an existing application

1. Launch the ACP and open an existing application.

a) From the Start menu, click All Programs, then ISaGRAF 6.4, and then click
Automation Collaborative Platform.

b) From the File menu, point to Open, then click Project/Solution....
350 ISaGRAF 3 Concrete Automation Model - Getting Started

c) In the Open Project dialog box, select and open the DEMO.isasln solution, located
in the following directory:

%USERPROFILE%\My
Documents\ISaGRAF 6.x\Projects\SMP\DEMO\DEMO.isasln
Automation Collaborative Platform 351

The DEMO project is displayed.

2. Review the application components.

a) From the View menu, click Solution Explorer.

b) To view available programs, expand the project, device, and program elements, then
view the programs by double-clicking the required program instance.
352 ISaGRAF 3 Concrete Automation Model - Getting Started

Opened programs are displayed in the language container.

c) To view the dictionary variables, in the Solution Explorer double-click Global
Variables.

The dictionary is displayed in the workspace. You can add, edit, and remove
variables. You can sort and filter the variables displayed, as well as arrange the
columns to display.
Automation Collaborative Platform 353

d) To view the I/O variables connected to the channels of I/O devices, in the Solution
Explorer, right-click the device, and then click I/O Wiring.

The I/O Wiring view is displayed. You can add I/O devices and set the real or virtual
attribute. You can also wire or free the channels of an I/O device.
354 ISaGRAF 3 Concrete Automation Model - Getting Started

Automation Collaborative Platform 355

3. For the device, set the properties for debugging.

a) From the View menu, click Properties Window.

b) In the Solution Explorer, select the device, then from the Properties window, set
Generate debug information to True.
356 ISaGRAF 3 Concrete Automation Model - Getting Started

c) From the View menu, click Deployment View, then make the following
modifications to the properties:

- In the Deployment view, select the target, then in the Properties window, for the
Targets property, select up to three target types from the drop-down combo box.

- In the Deployment view, select the connection between the target and the network,
then in the Properties window, in the Host Address property, type the required IP
address or socket host name.
Automation Collaborative Platform 357

4. Build the solution, then view any generated errors, warnings, and messages.

a) In the Solution Explorer, right-click the solution element, then click Build Solution.

b) To view the build information, from the View menu, click Output.
358 ISaGRAF 3 Concrete Automation Model - Getting Started

c) To view the errors, warnings, and messages generated during the build, from the
View menu, click Error List.

You can choose to display errors, warnings, or messages in the Error List. You can
also sort the list of errors, warnings, and messages displayed.

5. Debug the project.

You can simulate the running of an application without downloading code onto your
target platform. However, when running an application online, you must download the
project code onto the target before debugging.

a) In the Target Execution toolbar, from the Solution Configurations drop-down
combo-box, select Simulation.

b) To begin the debugging process, from the Debug menu, click Start Debugging.
Automation Collaborative Platform 359

You can monitor the progress of the simulation using the Output window.

6. While in debug mode, view the programs and dictionary variables.

a) From the Solution Explorer, view the individual programs by double-clicking the
required program instance.

The program is displayed in the language container. Boolean variables are displayed
using color: red when True and blue when False. Numerical and textual values are
displayed in red.
360 ISaGRAF 3 Concrete Automation Model - Getting Started

b) From the Solution Explorer, view the dictionary variables by double-clicking Global
Variables.

The dictionary is displayed in the workspace. Note that the logical and physical values
are displayed in red.

7. To stop the debugging process, from the Debug menu, click Stop Debugging.
Automation Collaborative Platform 361

Starting with a Basic Application
This section is a guideline to creating a basic solution and project by following the required
steps. The project detailed in this section uses the ISaGRAF 3 Project template consisting of
one device.

To start a new project having one device

1. To launch the ACP and create a new solution, perform the following:

a) From the Start menu, click All Programs, then ISaGRAF 6.4, and then click
Automation Collaborative Platform.

The Workbench is displayed.

b) From the File menu, point to New, then click Project...
362 ISaGRAF 3 Concrete Automation Model - Getting Started

c) In the New Project dialog box, expand the ISaGRAF 3 projects node, click the
Empty template section, and then click the ISaGRAF 3 Project template. You then
select Create directory for solution and specify a solution name. You must also
specify a name and save location for the project, then click OK.
Automation Collaborative Platform 363

2. In the Solution Explorer, expand the project elements and note the device created from
the ISaGRAF 3 Project template.

3. Specify the properties for the device.

a) In the Solution Explorer, select the device, then from the View menu, click
Properties Window.
364 ISaGRAF 3 Concrete Automation Model - Getting Started

Automation Collaborative Platform 365

b) In the Properties window, note the definitions for the device properties as well as the
application run-time options and compiler options.

c) In the Properties window, expand the Compiler Options and set Generate debug
information to True.
366 ISaGRAF 3 Concrete Automation Model - Getting Started

4. In the Solution Explorer, add a program and define the program name.

a) Right-click the program element, point to Add, then click the desired programming
language.
Automation Collaborative Platform 367

b) Right-click the added program, click Rename, then type the desired name in the
space provided.

Program names can contain a maximum of eight characters.

5. In the Properties window, define the Comment property for the program.

6. In the language container, add elements to the program.

a) From the Solution Explorer, double-click the program instance. The program is
displayed in the language container. By default, the Toolbox is auto-hidden as a tab
on the left edge of the Integrated Development Environment (IDE).

b) To display the Toolbox, click the tab so the Toolbox slides into view. From the
Window menu, click Dock.
368 ISaGRAF 3 Concrete Automation Model - Getting Started

The Toolbox window is docked in the IDE.

c) Add a block in the language container.

i) From the Toolbox, drag the Block element into the language container.
Automation Collaborative Platform 369

The Block Selector is displayed.

ii) In the block list, select the required POU, specify the number of inputs (when
applicable), then click OK.
370 ISaGRAF 3 Concrete Automation Model - Getting Started

The block is displayed in the language container.

d) Add a variable in the language container.

i) From the Toolbox, drag the Variable element into the language container.

The Variable Selector is displayed, with tabs containing lists for Global variables,
Local variables, System variables, Directly Represented Variables, and Defined
Words.

ii) In the Local Variable list, enter the variable name, data type, and other required
information into the cells provided, then click OK.
Automation Collaborative Platform 371

The variable is displayed in the language container.

e) Draw links from output to input points (in the direction of the data flow).

7. From the Solution Explorer, build the solution, then view any generated errors, warnings,
and messages.

a) Right-click the solution element, then click Build Solution.
372 ISaGRAF 3 Concrete Automation Model - Getting Started

b) To view the build information, from the View menu, click Output.

c) To view the errors, warnings, and messages generated during the build, from the
View menu, click Error List.

8. Begin the debugging process, then view the programs and dictionary variables.

a) From the Target Execution toolbar, in the Solution Configuration drop-down
combo-box, select Simulation.
Automation Collaborative Platform 373

b) From the Debug menu, click Start Debugging.

c) From the Solution Explorer, view the program by double-clicking the program
element.

Note the debugging information regarding boolean variables is displayed using color:
red when True and blue when False. Numerical and textual values are displayed in
red.

d) From the Solution Explorer, view the dictionary variables by double-clicking Local
Variables for the required program.
374 ISaGRAF 3 Concrete Automation Model - Getting Started

Note the logical values are displayed in red. Physical values are only displayed when
running online.

9. To stop the debugging process, from the Debug menu, click Stop Debugging.
Automation Collaborative Platform 375

Importing an Existing Application
When importing applications created with ISaGRAF 3, some features of your projects are
converted for use in the current environment.

Warning: The ISaGRAF 3 CAM belonging to ISaGRAF 6 does not support all the
programming languages defined for ISaGRAF 3. The Sequential Function Chart (SFC), Flow
Chart (FC), and Instruction List (IL) programming languages are not supported and therefore
cannot be modified. However, projects containing these programming languages can still be
imported and compiled.

To import an ISaGRAF 3 project into ISaGRAF 6

When importing ISaGRAF 3 projects into ISaGRAF 6, the targets associated with the
ISaGRAF 3 projects must be supported by ISaGRAF 6.

1. Import the ISaGRAF 3 project into ISaGRAF 6.

a) From the File menu, point to New, then click Project.
376 ISaGRAF 3 Concrete Automation Model - Getting Started

b) From the New Project dialog box, expand the ISaGRAF 3 projects node, click the
Import template section, and then click Import ISaGRAF 3 Project. You then enter
the required information in the fields provided and click OK.

c) From the Select an .hie File dialog box, select the ISaGRAF 3 project file, then click
Open.

You may encounter a message asking if you want to update the database to the current
version. To continue the importation process, click OK.
Automation Collaborative Platform 377

The ISaGRAF 3 project is imported.

2. View the project in ISaGRAF 6.

a) In the Solution Explorer, expand the project, device, and program elements, then
view the programs by double-clicking the required program instance.

Opened programs are displayed in the language container.
378 ISaGRAF 3 Concrete Automation Model - Getting Started

Warning: Since the IL programming language is not supported in ISaGRAF 6, the language
editor cannot open the ProgIL program displayed in the previous example.

3. Build the solution, then view any generated errors, warnings, and messages.

a) In the Solution Explorer, right-click the solution element, then click Build Solution.

b) To view the build information, from the View menu, click Output.
Automation Collaborative Platform 379

c) To view the errors, warnings, and messages generated during the build, from the
View menu, click Error List.

4. Debug the project.

a) To download the application code to the target, in the Solution Explorer, right-click
the project element, then click Download.

You can monitor the progress of the download operation using the Output window.
380 ISaGRAF 3 Concrete Automation Model - Getting Started

b) In the Target Execution toolbar, from the drop-down combo-box, select Online.

c) To begin the debugging process, from the Debug menu, click Start Debugging.

5. To stop the debugging process, from the Debug menu, click Stop Debugging.
Automation Collaborative Platform 381

382 ISaGRAF 3 Concrete Automation Model - Getting Started

Dictionary
The Dictionary, i.e., tag editor, is the environment where you manage variables and defined
words. The Dictionary is made up of multiple grids having different purposes.

� Defined Words Grid, enables managing the defined words for a project

� Variables Grid, enables managing the variables for devices and programs. Each device
and program has its instance of the grid. For devices, the grid displays global variables.
For programs, the grid displays local variables.

The grids each display the properties for the type of element. You can open multiple grid
instances simultaneously. When working in a grid, you can navigate the cells using the mouse
controls. For complex data types, you can expand fields using Ctrl+PLUS SIGN on numeric
keypad (+) and collapse fields using Ctrl+MINUS SIGN on numeric keypad (-).

You access Dictionary grids from the Solution Explorer.

You can customize the Dictionary environment by arranging the columns to display and setting
the display colors.

To access a Dictionary grid instance

1. From the Solution Explorer, expand the project and device nodes.

2. For the variables of a device, expand the required device node, then double-click the
Dictionary element.

The Dictionary instance is displayed containing the variables belonging to the device.

3. For the variables of a program, expand the required program node, then double-click the
Dictionary element.

The Dictionary instance is displayed containing the variables belonging to the program.

4. For the defined words of a project, double-click the Defined Words node.

The Defined Words grid is displayed.
Automation Collaborative Platform 383

To arrange the columns to display

To retain customized display settings, you must save the Dictionary instance before closing.

1. To move a column, drag the column header to another location.

When dragging a column header, arrows indicate the current position of the header.

2. To hide a column, right-click a column header, and then click Hide Column.

3. To show a column, right-click any column header, point to Show Column, and then click
the required column name.
384 ISaGRAF 3 Concrete Automation Model - Dictionary

Defined Words Grid
The Defined Words grid of the Dictionary enables managing the defined words for a project.
You can perform the following tasks from the defined words grid:

� Creating defined words

� Editing existing defined words

� Deleting defined words

� Sorting defined words in the grid

� Filtering defined words in the grid

For defined words, the properties are the following:

You can customize the Dictionary environment by arranging the columns to display.

To create a defined word

1. From the Solution Explorer, double-click the Defined Words node for the project.

2. In the Defined Words grid, define the required properties, then press ENTER.

Column Description Possible Values

Name Name of the defined word Limited to 32 characters beginning with
a letter followed by letters, digits, and
underscores. Defined words cannot
contain defined words.

Equivalent String replacing the defined
word during compilation. For
example, the defined word "PI"
is replaced by its equivalent
"3.14159"

Limited to 255 characters

Comment Comment for the defined word Free-format text
Automation Collaborative Platform 385

To edit an existing defined word

1. From the Solution Explorer, double-click the Defined Words node for the project.

2. In the Defined Words grid, make the required changes.

To delete a defined word

You can delete defined words from the Defined Words grid.

1. From the Solution Explorer, double-click the Defined Words node for the project.

2. In the Defined Words grid, right-click the defined word to delete, and then click Delete.

To sort defined words in the grid

You can sort the defined words in the grid using an ascending or descending order for the
individual columns.

1. From the Solution Explorer, double-click the Defined Words node for the project.

2. In the Defined Words grid, select the required column header.

An arrow showing the current order is displayed on the column header.

3. Toggle the column header to switch between ascending and descending order.

To filter defined words in the grid

You can filter defined words in Defined Words grid. When filtering, you create a view
displaying only the defined words containing specified characters.

The filter row is the top row of the grid. You can filter defined words by typing alphabetical
and numerical characters in the cells of the filter row. You can also select from the
drop-down-combo box. Matching defined words are automatically displayed.

1. From the Solution Explorer, double-click the Defined Words node for the project.

2. In the filter row of the Defined Words grid, click the required cell, then do one of the
following:
386 ISaGRAF 3 Concrete Automation Model - Dictionary

 Type the characters to use in the filtering operation

 Select the required defined word from the drop-down combo-box

See Also
Dictionary
Automation Collaborative Platform 387

Variables Grid
The variables grid of the Dictionary enables managing the variables for a device or program.
Each device and program has its instance of the grid. For devices, the grid displays global
variables. For programs, the grid displays the local variables. You can perform the following
tasks from the variables grid:

� Creating variables

� Editing existing variables

� Dragging variables

� Deleting variables

� Sorting variables in the grid

� Filtering variables in the grid

For variables of devices or programs, the properties are the following:

Column Description Possible Values

Name Name of the variable Limited to 32 characters beginning with
a letter followed by letters, digits, and
single underscore characters. These
names cannot have two consecutive
underscore characters.

Logical Value Available while running online,
monitoring, and simulating
applications. Displays the value
used by code being executed on
the virtual machine. You can
force the value of variables.

Values are displayed according to the
variable data type

Physical Value Available while running online
and monitoring applications.
Displays the value sent to and
received from the drivers. You
can force the value of variables.

Values are displayed according to the
variable data type
388 ISaGRAF 3 Concrete Automation Model - Dictionary

Lock Available while running online,
monitoring, and simulating
applications. The indication of
whether the value of the variable
is locked. Locking operates
differently for simple variables,
array elements, and function
block parameters. For simple
variables, individual variables
are locked directly. For array
elements, locking an element
locks all elements of the array.

Yes or No

Data Type Data type of the variable BOOL, DINT, REAL, TIME,
MESSAGE. To create a
one-dimensional array, specify a
dimension.

String Size For String type variables,
indicates the maximum length

String capacity is limited to 252
characters excluding the terminating
null character (0), a byte for the current
length of the string, and a byte for the
maximum length of the string

Dimension The size (number of elements)
of an array.

Arrays are only available for the BOOL,
DINT, REAL, and TIME data types;
these are not available for the
MESSAGE type. Arrays can have a
maximum of 255 elements. For
example, [6] represents a
one-dimensional array containing
elements from 0 to 5.

Wiring Read-only cell, generated by the
I/O wiring tool indicating the
I/O channel to which the
variable is wired

Uses the syntax of Directly Represented
Variables

Column Description Possible Values
Automation Collaborative Platform 389

You can customize the Dictionary environment b y arranging the columns to display.

To create a variable

1. From the Solution Explorer, access the Dictionary instance for the required device or
program.

Attribute The property of a variable
indicating its read and write
access rights.

Read, Write, or Read/Write

Direction For I/O wiring, indicates
whether a variable is an input,
output, or internal.

 VarInput, VarOutput, or Var

Modbus Address Modbus address of the variable Possible variables are Var direction local
to programs and functions, or global
variables; unavailable variables are
input, output, directly represented, and
local to function blocks as well as
arrays. The format is four hexadecimal
digits ranging from 0001 to FFFF.

Retained The indication of whether the
value of the variable is saved by
the virtual machine at each
cycle. For details on retaining,
i.e., backing up, variables, refer
to the SYSTEM operator.

Yes or No

Initial Value Value held by a variable when
the virtual machine starts the
execution of the device code

The initial value of a variable can be the
default value, a value given by the user
when the variable is defined or the value
of the retain variable after the virtual
machine has stopped.

Unit User-defined text indicating the
unit of measure of the logical
and physical values

Free format

Comment User-defined text Free format

Column Description Possible Values
390 ISaGRAF 3 Concrete Automation Model - Dictionary

2. In an empty row of the variables grid, define the required properties for the variable, then
press ENTER.

To edit an existing variable

1. From the Solution Explorer, access the Dictionary instance for the required device or
program.

2. In the variables grid, make the required changes.

To drag a variable

You can drag variables from a Dictionary instance to multiple locations within a project. These
locations include other Dictionary instances as well as elements within a language container.

You drag variables to other locations individually. When dragging a variable to another
Dictionary instance, you can place the variable anywhere in the grid. When dragging a variable
into a language container, you can place the variable anywhere in the language container. To
retain changes made to Dictionary instances and language containers, save the respective
instance or POU before closing.

1. From the Solution Explorer, access the Dictionary instance containing the required
variable and the destination for the variable.

2. From the Dictionary instance containing the required variable, in the variables grid, select
the variable by clicking the cell in the left-most column.

The selection indicator () is displayed in the leftmost column.

3. Drag , placing the variable in the grid or open language container.

The variable is displayed at the destination.

To delete a variable

You can delete variables from Dictionary instances. Deleting variables from an instance
opened for a program element removes the variables from the instance only
Automation Collaborative Platform 391

1. From the Solution Explorer, access the Dictionary instance for the required device or
program.

2. In the variables grid, right-click the variable to delete, then click Delete.

To sort variables in the grid

You can sort the variables in the grid using an ascending or descending order for the individual
columns.

1. From the Solution Explorer, access the Dictionary instance for the required device or
program.

2. In the variables grid, select the required column header.

An arrow showing the current order is displayed on the column header.

3. Toggle the column header to switch between ascending and descending order.

To filter variables in the grid

You can filter variables in variables grid instances. When filtering, you create a view
displaying only the variables containing specified characters.

The filter row is the top row of the grid. You can filter variables by typing alphabetical and
numerical characters in the cells of the filter row.You can also select from the
drop-down-combo box. Matching variables are automatically displayed.

1. From the Solution Explorer, access the Dictionary instance for the required device or
program.

2. In the filter row of the variables grid, click the required cell, then do one of the following:

 Type the characters to use in the filtering operation

 Select the required defined word from the drop-down combo-box

See Also
Dictionary
392 ISaGRAF 3 Concrete Automation Model - Dictionary

Device View
The device view is a graphical environment enabling navigation through project elements such
as POUs. The navigation consists of vertical links on the left pane and a breadcrumbs trail in
the address field. For a device, you can access the following information:

� The programs defined in a device. You can open individual programs by double-clicking
the required instance. You can also view the local defined words.

� The user-defined functions and function blocks defined in a device. You can view the
parameters by single-clicking the instance or open the POU by double-clicking the
instance. You can also view the local defined words.

� Other elements attached to the device including ISaVIEW screens and global defined
words.

To access the Device View

� In the Solution Explorer, right-click the required device, and then click Open.

The device view is displayed in the workspace.

To display device elements

1. For programs, click on the Programs item, then perform the following:

� To open a program in the language container, double-click the required program
instance.

� To display the local defined words for a program, expand the arrow beside the
required program instance, then double-click Defined Words.

2. For functions, click on the Functions item, then perform the following:
Automation Collaborative Platform 393

� To display the Parameters view for a function, click the required function instance.

� To open a function in the language container, double-click the function instance.

� To display the local defined words for a function, expand the arrow beside the
required function instance, then double-click Defined Words.

3. For function blocks, click on the Function Blocks item, then perform the following:

� To display the Parameters view for a function block, click the function block
instance.

� To open a function block in the language container, double-click the function block
instance.

� To display the local defined words for a function block, expand the arrow beside the
required function block instance, then double-click Defined Words.

4. To display global defined words, click on the Others item, then double-click
Defined Words.

5. To display ISaVIEW screens, click on the Others item, then double-click the
required ISaVIEW instance.
394 ISaGRAF 3 Concrete Automation Model - Device View

I/O Wiring
I/O wiring enables the definition of connections between variables defined for a project and
channels of complex equipment or I/O boards existing on a target system. Complex equipment
and I/O boards are available for use in a project when these are defined in a library to which a
dependency exists.

The I/O wiring instance for a device represents a hardware rack having multiple slots for
complex equipment and I/O boards. A rack can contain up to 255 boards where each board can
have up to 128 I/O channels. The total number of single I/O boards (including single equipment
and boards of complex equipment) cannot exceed 255.

The I/O wiring view consists of two sections:

� A rack list, displaying defined complex equipment and I/O boards in the slots. An order
number identifies each slot. Expanding the equipment accesses information and single
devices.

� A channel variables list, enabling the association of channels with variables. This list
displays the name of all variables. When online, the channel variables list also displays
the logical value, physical value, and lock status of all variables.

You define connections from the I/O Wiring view where you add complex equipment and I/O
boards, then wire the channels to variables. When defining I/O wiring for the first time, a
device instance is empty.

The I/O Wiring toolbar enables performing many tasks in device instances:

Adding complex equipment and I/O boards to
the rack list

Deleting complex equipment and I/O boards
from the rack list

Freeing all channels of a complex equipment
or I/O board

Toggles a complex equipment or I/O board
between real and virtual
Automation Collaborative Platform 395

To define connections between complex equipment or I/O board channels and variables

1. From the Solution Explorer, right-click a device, then click I/O Wiring.

2. Add complex equipment and I/O boards to the rack list.

3. Select the individual I/O boards and connect the individual channels to the required
variables, in the channel variables list. To display the channels for complex equipment,
access the individual simple devices by clicking the Devices tab.

See Also
I/O Devices
I/O Channels

Displays the complete names of equipment

Displays the empty slots in the rack list

Expands all complex equipment and I/O
boards to display their information

Reduces all complex equipment and I/O
boards to hide their information
396 ISaGRAF 3 Concrete Automation Model - I/O Wiring

I/O Devices
An I/O device represents a complex equipment or an I/O board. Individual single equipment
and I/O boards can have up to 128 I/O channels. An I/O device contains channels having the
same data type and direction.

When adding I/O devices, the Device Selector enables selecting from complex equipment and
I/O boards available from a library to which a dependency exists. Each device is automatically
assigned a device order number ranging from 0 to 254 and has a defined number of channels.
You can include a comment.

While running online, when devices are set to real, I/O variables are directly linked to the
corresponding I/O devices. Input or output operations in the programs correspond directly to
the input or output conditions of the actual I/O device fields. When devices are set to virtual,
I/O variables are processed and updated in memory. The debugger can read or update these to
enable simulating I/O processing, but no actual connection is made.

When adding complex devices, the number of channels, i.e., device size, of individual simple
devices making up a complex device varies depending on the definition of the complex device
in the library.

You manage I/O devices from the rack list containing the following types:

When selecting I/O devices, you can access their properties by expanding individual devices.

From the I/O Wiring view, you can perform the following tasks when managing I/O devices:

Real complex
equipment

Virtual complex
equipment (indicated
by the flag)

Real I/O board

Virtual I/O board
(indicated by the
flag)
Automation Collaborative Platform 397

� Adding I/O devices

� Freeing the channels of I/O devices

� Toggling I/O devices between real and virtual

� Accessing simple devices of complex equipment

� Displaying I/O device information

� Deleting I/O devices

To add an I/O device

I/O devices are available for use in a project when these are defined in a library to which a
dependency exists.

1. On the I/O Wiring toolbar, click .

2. In the Device Selector, select the required I/O device from the list of available devices.

The device order number and number of channels is defined for the I/O device in the library.
You can add a comment for the I/O device.

To free the channels of an I/O device

1. From the rack list, select the I/O device for which to free all channels.

2. From the I/O Wiring toolbar, click .

To toggle the real/virtual attribute

You can toggle between the real and virtual attribute for a selected I/O device. Virtual I/O
devices are displayed with a red star.

1. From the rack list, select the I/O device for which to change the attribute.
398 ISaGRAF 3 Concrete Automation Model - I/O Wiring

2. From the I/O Wiring toolbar, click .

To access simple devices of complex equipment

1. From the rack list, expand the required I/O device by clicking .

2. To view simple devices of a complex equipment, click Devices.

To display I/O device information

You can toggle between displaying and hiding I/O device information.

1. From the rack list, expand the required I/O device by clicking .

2. To view information about the device, click Info.

To delete an I/O device

You can delete devices. When deleting devices, all variables are unwired from the device.

1. From the rack list, select the I/O device to delete.

2. From the I/O Wiring toolbar, click .

The device is removed from the rack list.

See Also
I/O Wiring
Automation Collaborative Platform 399

I/O Channels
I/O channels represent hardware I/O points. These can be inputs or outputs. A variable is
generally connected to a channel to be used in POUs. Directly represented variables can also
be used in POUs. When adding I/O devices, the number of channels is defined for the device.
All I/O channels of a device have the same type and direction.

You wire variables to channels of an I/O device in the channel variables list. In this list, the
displayed variable names are their direct representations.

You can use direct variable representation (%IX1.1) to access I/O values when I/O channels
have no wiring.

An unwired channel is represented in the Dictionary as a directly represented variable under
the same name. Wiring the channel removes its Dictionary instance.

After wiring channels of a device to variables, you can choose to free all wired channels of a
device.

When debugging, you can choose to lock, unlock, and force the values of I/O variables.

To wire the channels of an I/O device

1. Access the I/O Wiring for the required device.

2. From the rack list, click the I/O device having the I/O channels to wire. For complex
devices, expand the device to access the simple devices, then click Devices.

3. In the channels variable list, double-click the channel to wire.

4. From the Variable Selector, select the variable for the channel, then click OK.

The channel’s Name field indicates the wired variable’s direct representation.

5. To set conversion operations for channels, select the channel in the list, then from the
Conversion Function field, choose the required operation from the drop-down list:
400 ISaGRAF 3 Concrete Automation Model - I/O Wiring

 For Boolean channels, set the direct or reversion operations

 For numerical channels, set a Gain and Offset factor

To free individual channels of an I/O device

You can free individual wired channels.

1. Access the I/O Wiring for the device and select the channel to unwire. To unwire multiple
channels, hold the Ctrl button while clicking each required channel.

2. To unwire individual channels, right-click, and then click Free selected channels.

To lock and unlock an I/O variable

While debugging, you can lock and unlock I/O variables.

1. Access the I/O Wiring for the device and select the channel to lock or unlock. To lock or
unlock multiple channels, hold the Ctrl button while selecting each required channel.

2. To lock or unlock the variable, right-click the variable, and then click Toggle lock on
selected channels.

To force the value of an I/O variable

While debugging, you can force the values of locked I/O variables. Variable direction is
determined from the direct representation definition for the I/O wiring.

1. Access the I/O Wiring for the device and locate the required variable.

2. Write the required value in the respective value column:

 For an input variable, write the value in the Logical Value column.

 For an output variable, write the value in the Physical Value column.

3. To unlock a variable, click the checkbox in the Lock column.

See Also
I/O Devices
Automation Collaborative Platform 401

I/O Wiring
402 ISaGRAF 3 Concrete Automation Model - I/O Wiring

I/O Conversions
You can apply conversion operations to I/O variables. These conversions are possible using
two methods:

� Conversion Tables

� Conversion Functions
Automation Collaborative Platform 403

Conversion Tables

A conversion table is a set of points defining an analog conversion. You can attach a
conversion table to an analog input or output variable to create a proportional relationship
between electrical values (read on input sensor or sent to the output device) and physical values
(used in application programming).

A conversion table enables filtering the values of any input or output analog variable of a
project. You attach a conversion table to a variable from a dictionary instance.

You create conversion tables from the device level before attaching these to variables.

To create a conversion table

1. From the Solution Explorer, right-click the device, and then click Conversion Tables.

The Conversion Tables editor is displayed.

2. In the Conversion Tables section, click Add.

A conversion table is added to the list.

3. In the Details section, specify a name for the conversion table, then define the required
points for the conversion by clicking Add and specifying the electrical and physical
values.

To edit the points of an existing conversion table

1. From the Solution Explorer, right-click the device, and then click Conversion Tables.

2. In the Conversion Tables section, select the conversion table to modify.

3. In the Details section, perform the required modifications:
404 ISaGRAF 3 Concrete Automation Model - I/O Wiring

 To edit the values of existing points, replace the required value then press Enter.

 To add a set of points, click Add, then specify the values for the point.

 To remove a set of points, select the points and click Remove.

To delete a conversion table

1. From the Solution Explorer, right-click the device, and then click Conversion Tables.

2. In the Conversion Tables section, select the conversion table to remove, then click
Remove.
Automation Collaborative Platform 405

Conversion Functions

Conversion functions are "C" functions creating a relationship between an electrical value of a
variable (read on the input sensor or sent to the output device) and its physical value (used in
the application expressions). Such functions are called by the I/O manager each time an analog
variable using the conversion is input to or output from the project. Conversion functions are
divided into two parts: input conversion and output conversion.

You can apply conversion functions to integer or real analog variables since these are always
defined using floating values. You attach a conversion function to a variable from a dictionary
instance.

The interface is the same for all conversion functions. You provide the "C" definition for this
interface in the "TACN0DEF.H" definition file. The library manager enables controlling the
"C" source code of a conversion function.
406 ISaGRAF 3 Concrete Automation Model - I/O Wiring

I/O Wiring Keyboard Shortcuts
The following keyboard shortcuts are available for use with I/O wiring. Some shortcuts do not
apply or may differ while debugging.

Ctrl+N Adds a device (not available while debugging)

Ctrl+F Frees all channels of selected devices (not available while debugging)

Ctrl+R Frees selected channels of a device (not available while debugging)

Ctrl+H Toggles between a real or virtual I/O device (not available while debugging)

Ctrl+L While debugging, toggles between locking and unlocking selected channels
Automation Collaborative Platform 407

408 ISaGRAF 3 Concrete Automation Model - I/O Wiring

FBD Language
The Functional Block Diagram (FBD) is a graphic language enabling programmers to build
complex procedures by taking existing functions from the standard library, function section, or
function block section.

In FBD containers, you can also include LD elements such as coils, contacts, jumps, labels, and
returns. However, in contrast to LD elements usage in LD containers where these elements
follow strict graphical positioning regulations, LD elements within FBD container are
independent of these regulations.

See Also
FBD Diagram Main Format
Debugging FBD Programs
Automation Collaborative Platform 409

FBD Diagram Main Format
FBD diagrams describe a process between input variables and output variables. A process is
described as a set of elementary blocks. Input and output variables are connected to blocks by
connection lines. Outputs of blocks can also be connected to inputs of other blocks.

An entire process represented by an FBD program is built using the available variables,
operators, functions, and function blocks. Each block has either a fixed or defined number of
input and output connection points. A block is represented by a single rectangle. The inputs are
connected on its left border. The outputs are connected on its right border. An elementary block
performs a single function between its inputs and its outputs. The name of the function to be
performed by the block is written inside its rectangular shape. Each input or output of a block
is labeled and has a well defined type.

Function Block

Inputs Outputs
410 ISaGRAF 3 Concrete Automation Model - FBD Language

Input variables of an FBD program must be connected to input connection points of blocks.
The type of each variable must be the same as the type expected for the associated input. An
input for FBD diagram can be a literal, any internal or input variable, an output variable, or a
block output.

Output variables of an FBD program must be connected to output connection points of blocks.
The type of each variable must be the same as the type expected for the associated block output.
An output for FBD diagram can be any internal or output variable, or the name of the function
(for functions only). When an output is the name of the currently edited function, it represents
the assignment of the return value for the function (returned to the calling program).

Input and output variables, inputs and outputs of the blocks are wired together with connection
lines, or links. Single lines can be used to connect two logical points of a diagram:

� An input variable and an input of a block

� An output of a block and an input of another block

� An output of a block and an output variable

Function Name

Inputs Output
Automation Collaborative Platform 411

The connection is oriented, meaning that the line carries associated data from left to right. The
left and right ends of the connection line must be of the same data type.

Vertical bars accept several connections on the left and several connections on the right. Each
connection on the right is equal to the OR combination of the connections on the left. All ends
of the connections must be of the same data type.

See Also
Execution Order of FBD Programs
412 ISaGRAF 3 Concrete Automation Model - FBD Language

Execution Order of FBD Programs
You can show the order of execution in the form of numerical tags for the following elements
in an FBD program: coils, contacts, LD vertical connections, corners, returns, jumps,
functions, operators, function blocks, and variables where a value is assigned in the program.
When the order cannot be determined, the tags display question marks (?). You can perform
this task from the menu bar, the toolbar, or keyboard shortcut (Ctrl+W).

For the execution order of a program, a block is any object in the diagram, a network is a
sequence of connected blocks, and the position of a block is based on its top-left corner. The
following rules apply to the execution order of the program:

� Networks are executed from left to right, top to bottom.

� All inputs must be resolved before executing the block. When the inputs of two or more
blocks are resolved at the same time, the decision for the execution is based on the
position of the block (left to right and top to bottom).

� The outputs of a block are executed recursively from left to right and top to bottom.
Automation Collaborative Platform 413

Debugging FBD Programs
When power flow debugging FBD programs, you can monitor the output values of elements.
These values are displayed using color, numeric, or textual values according to their data type:

� Output values of boolean type are displayed using color. The output value color continues
to the next input. When the output value is unavailable, boolean elements remain black.
The colors are red when True and blue when False.

� Output values of DINT, REAL, TIME, and MESSAGE type are displayed as a numeric
or textual value in the element.

When the output value for a numeric or textual value is unavailable, the WAIT text is displayed
in the output label. Values are also displayed in the corresponding dictionary instance.
414 ISaGRAF 3 Concrete Automation Model - FBD Language

FBD Elements
When programming in FBD, you place elements in the workspace by dragging them from the
Toolbox into the language container. For FBD POUs, the following elements are available:

� Blocks

� Variables

� Vertical Bars

� Labels

� Jumps

� Returns

� Rungs

� Left Power Rails

� Right Power Rails

� Coils

� Contacts

� Regions

� Comments

See Also
FBD Diagram Main Format
Execution Order of FBD Programs
Automation Collaborative Platform 415

Blocks

Block elements can be operators, functions, or function blocks. You connect block inputs and
outputs to variables, contacts or coils, or other block inputs and outputs. You insert block
elements in language containers.

Functions and function blocks are represented by a box displaying the name of the function,
function block, or operator, and the parameter names.

For functions, the return parameter is the only output. For function blocks, multiple return
parameters can provide multiple outputs. The return parameter of a function has the same name
as the function. The return parameters of a function block can have any name.

You define the parameters of POUs in the Parameters view.

For loops in blocks, you need to use local variables since these are initialized with a value.
When using loops, the first execution may produce incorrect outputs due to the execution order
of elements in the diagram or the initial values of temporary variables. For example, the
following diagram produces a warning when compiling since the TON block is executed
before the XOR operator. Whereas, moving the XOR operator to the upper left corner of the
diagram eliminates the warning since the XOR operator becomes first in the execution order.
416 ISaGRAF 3 Concrete Automation Model - FBD Language

You can resize blocks elements.

To access the Parameters view

The Parameters view is available from functions or function blocks located in the Solution
Explorer.

1. In the Solution Explorer, right-click the required function or function block, then click
Parameters in the contextual menu.

The Parameters view is displayed.

2. To define the parameters of a function or function block, select the block, then enter the
required information in the fields provided.

To insert a block element

1. From the Toolbox, drag the block element into the language container.

The block selector is displayed.

2. In the Block Selector, choose the required function block, then click OK. You can sort the
block list according to the columns by setting these in ascending or descending order.

The selected block is displayed in the language container.

See Also
FBD Diagram Main Format
Automation Collaborative Platform 417

Variables

To connect a new symbol to an existing one (another variable, a block input, or a block output)
in the workspace, keep the mouse button depressed (the cursor becomes a "ghost" symbol) and
drag the element until its connecting line on the left (or right) overlaps an existing connecting
point. When the mouse is released, the new symbol is automatically created and linked.

You replace existing variables in POUs by double-clicking them to access the Variable
Selector or single-clicking them to select from a drop-down combo-box containing the global
and local variables. Also, you can single-click a variable, then type a literal value in the text
box provided. When inserting literal values beginning with a letter or an underscore, enclose
these in single quotes as follows: 'abc'.

When selecting items such as local variables, global variables, and defined words from the
drop-down combo-box, typing characters in the text box focuses on the possible items.

Drag to place the existing element: Release the mouse button. The variable is
automatically connected:

Select a variable from the
drop-down combo-box:

Type a literal value in the text
box:
418 ISaGRAF 3 Concrete Automation Model - FBD Language

For input and output variables, you can choose to display comments entered in the dictionary.
From the View menu, you can access the Properties window where you can define the
Comment Position property.

You can resize variables displayed in the workspace.

To insert a variable

1. From the Toolbox, drag the variable element into the language container.

The Variable Selector is displayed.

2. In the Variable Selector, select the required variable, then click OK.

The variable is displayed in the language container.

See Also
FBD Diagram Main Format
Automation Collaborative Platform 419

Vertical Bars

Vertical bars are graphic components of FBD programs enables closing multiple parallel links.
More than one horizontal links on the left side of a vertical bar are connected to one link on the
right side. The Boolean state of the right end is the logical OR between all the left extremities.

To insert a vertical bar

� From the Toolbox, drag the vertical bar element into the language container.

The vertical bar is displayed in the language container.
420 ISaGRAF 3 Concrete Automation Model - FBD Language

Labels

Labels can be placed anywhere in an FBD diagram. These are used as a target for jump
instructions, to change the execution order of the diagram. Labels are not connected to other
elements.

Place labels on the left of the diagram in order to increase diagram readability.

Labels are used to control the execution of the diagram. No other object may be connected on
the right of a label symbol.

If the connection line on the left of the jump symbol has the Boolean state TRUE, the execution
of the program directly jumps to after the corresponding label symbol.

Example

To insert a label

1. From the Toolbox, drag the label element into the language container.

2. In the language container, click the label, then type a label name in the space provided.
Automation Collaborative Platform 421

The label is displayed in the language container.

See Also
Jumps
422 ISaGRAF 3 Concrete Automation Model - FBD Language

Jumps

A Jump symbol must be linked to a Boolean point. When this Boolean (left) connection is
TRUE, the execution of the diagram Jumps directly to the target Label.

Jumps are used to control the execution of the diagram. No other object may be connected on
the right of a jump symbol.

If the connection line on the left of the jump symbol has the Boolean state TRUE, the execution
of the program directly jumps to after the corresponding label symbol.

Example

To insert a jump to a label

Before inserting jumps, define one or more labels within the program.

1. From the Toolbox, drag the jump element into the language container.

2. In the language container, click the jump element, then select the required label name
from the drop-down combo-box.
Automation Collaborative Platform 423

The jump is displayed in the language container with the required label name.

See Also
Labels
424 ISaGRAF 3 Concrete Automation Model - FBD Language

Returns

If the connection line (to the left of the Return symbol) has the Boolean state TRUE, the
Program ends - no further part of the diagram is executed.

No connection can be put on the right of a RETURN symbol.

The "<RETURN>" keyword may occur as a diagram output. It must be connected to a Boolean
output connection point of a block. The RETURN statement represents a Conditional End of
the program: if the output of the box connected to the statement has the Boolean value TRUE,
the end (remaining part) of the diagram is not executed.

Example

(* ST equivalence: *)

If auto_mode OR alarm Then
Return;
End_if;
bo67 := (bi10 AND bi23) OR x_cmd;

To insert a return

� From the Toolbox, drag the return element into the language container.

The return is displayed in the language container.
Automation Collaborative Platform 425

Rungs

Rungs are graphic components of FBD programs and represent a group of circuit elements
leading to the activation of a coil. Dragging the rung element into the workspace inserts a
left power rail linked to a right power rail. Also, the rung contains a direct contact and a
direct coil. Error symbols () indicate that the direct contact and direct coil are undefined.

To insert a rung

� From the Toolbox, drag the rung element into the language container.

The rung is displayed in the language container.
426 ISaGRAF 3 Concrete Automation Model - FBD Language

Left Power Rails

Left Power Rails are graphic components of FBD programs that represent the left boundary of
a rung. Any horizontal link connected to a left power rail has the boolean state TRUE.

You can link left power rails to right power rails as well as many FBD and LD elements,
including variables, blocks, jumps, returns, vertical bars, coils, and contacts.

To insert a left power rail

� From the Toolbox, drag the left power rail element into the language container.

The left power rail is displayed in the language container.
Automation Collaborative Platform 427

Right Power Rails

Right Power Rails are graphic components of FBD programs that represent the right boundary
of a rung.

You can link right power rails to left power rails as well as many FBD and LD elements,
including variables, blocks, vertical bars, coils, and contacts.

To insert a right power rail

� From the Toolbox, drag the right power rail element into the language container.

The right power rail is displayed in the language container.
428 ISaGRAF 3 Concrete Automation Model - FBD Language

Coils

Coils are graphic components of LD programs that you can use in FBD programs representing
the assignment of Boolean outputs. A coil represents an action. It must be connected on the left
to a Boolean symbol, such as a contact or the Boolean output of a block.

The following types of coils are available from the FBD toolbox:

� Direct Coil

� Reverse Coil

� Set Coil

� Reset Coil

You can change the type of a coil at any time following its insertion.

When inserting coils in POUs, you assign variables using the Variable Selector. Names of
assigned variables are displayed above the coil elements within POUs. You replace existing
variables by double-clicking the variable names to access the Variable Selector or by
single-clicking variable names to select from drop-down combo-boxes containing the global
and local variables. Also, you can single-click existing variables, then type literal values in the
text boxes provided. When inserting literal values beginning with a letter or an underscore,
enclose the variable name in single quotes as follows: 'abc'.

To insert a coil

You can insert coils from the Toolbox.

Select a variable from the drop-down
combo-box:

Type a literal value in the text box:
Automation Collaborative Platform 429

1. From the Toolbox, drag the desired coil type into the language container and place it on
the rung.

The Variable Selector is displayed.

2. In the Variable Selector, select the required variable, then click OK.

The coil element and its associated variable name are displayed in the language container.

To insert a parallel coil

1. From the Toolbox, drag a coil element into the language container while placing it
parallel to the existing coil.

2. Drag the left and right connections to the respective connection points on the rung.

The required coil is displayed on the parallel branch.

To change the type of a coil

� In the language container, select the coil, then select the required type in the Modifier
property of the Properties window.
430 ISaGRAF 3 Concrete Automation Model - FBD Language

Direct Coil

Direct Coils enable a Boolean output of a connection line Boolean state.

The associated variable is assigned with the Boolean state of the left connection. The state of
the left connection is propagated into the right connection. The right connection can be
connected to the right vertical power rail.

The associated name can be the name of the program (for functions only). This corresponds to
the assignment of the return value of the function.

Example

(* ST Equivalence: *)

output1 := input1;
output2 := input1;

See Also
Coils

Left
Connection

Right
Connection
Automation Collaborative Platform 431

Reverse Coil

Reverse coils enable a Boolean output according to the Boolean negation of a connection line
state.

The associated variable is assigned with the Boolean negation of the state of the left
connection. The state of the left connection is propagated into the right connection. The right
connection can be connected to the right vertical power rail.

The associated name can be the name of the program (for functions only). This corresponds to
the assignment of the return value of the function.

Example

(* ST Equivalence: *)

output1 := NOT (input1);
output2 := input1;

See Also
Coils

Left
Connection

Right
Connection
432 ISaGRAF 3 Concrete Automation Model - FBD Language

Set Coil

Set coils enable a Boolean output of a connection line Boolean state.

The associated variable is set to TRUE when the boolean state of the left connection becomes
TRUE. The output variable keeps this value until an inverse order is made by a RESET coil.
The state of the left connection is propagated into the right connection. The right connection
can be connected to the right vertical power rail.

Example

(* ST Equivalence: *)

IF input1 THEN
output1 := TRUE;

END_IF;
IF input2 THEN
output1 := FALSE;

END_IF;

Left
Connection

Right
Connection
Automation Collaborative Platform 433

See Also
Coils
434 ISaGRAF 3 Concrete Automation Model - FBD Language

Reset Coil

Reset coils enable Boolean output of a connection line Boolean state.

The associated variable is reset to FALSE when the Boolean state of the left connection
becomes TRUE. The output variable keeps this value until an inverse order is made by a SET
coil. The state of the left connection is propagated into the right connection. The right
connection can be connected to the right vertical power rail.

Example

(* ST Equivalence: *)

IF input1 THEN
output1 := TRUE;

END_IF;
IF input2 THEN
output1 := FALSE;

END_IF;

Left
Connection

Right
Connection
Automation Collaborative Platform 435

See Also
Coils
436 ISaGRAF 3 Concrete Automation Model - FBD Language

Contacts

Contacts are graphic components of LD diagrams that you can use in FBD programs.
Depending on the type of contact, it represents the value or function of an input or internal
variable.

The following contact types are available from the FBD toolbox:

� Direct Contact

� Reverse Contact

� Pulse Rising Edge Contact

� Pulse Falling Edge Contact

You can change the type of a contact at any time following its insertion.

When inserting contacts in POUs, you assign variables using the Variable Selector. Names of
assigned variables are displayed above the contact elements within POUs. You replace existing
variables by double-clicking the variable names to access the Variable Selector or by
single-clicking variable names to select from drop-down combo-boxes containing the global
and local variables. Also, you can single-click existing variables, then type literal values in the
text boxes provided. When inserting literal values that being with a letter or an underscore,
enclose the variable name in single quotes as follows: 'abc'.

Select a variable from the drop-down
combo-box:

Type a literal value in the text box:
Automation Collaborative Platform 437

To insert a contact

You can insert contacts from the Toolbox.

1. From the Toolbox, drag the desired contact type into the language container and place it
on the rung.

The Variable Selector is displayed.

2. In the Variable Selector, select the required variable, then click OK.

The contact and its associated variable name are displayed in the language container.

To insert a parallel contact

1. From the Toolbox, drag the contact element into the language container while placing it
parallel to the existing contact.

2. Drag the left and right connections to the respective connection points on the rung.

The required contact is displayed on the parallel branch.

To change the type of a contact

� In the language container, select the contact, then select the required type in the Modifier
property of the Properties window.
438 ISaGRAF 3 Concrete Automation Model - FBD Language

Direct Contact

Direct contacts enable a Boolean operation between a connection line state and a Boolean
variable.

The state of the connection line on the right of the contact is the logical AND between the state
of the left connection line and the value of the variable associated with the contact.

Example

(* ST Equivalence: *)

output1 := input1 AND input2;

See Also
Contacts

Left
Connection

Right
Connection
Automation Collaborative Platform 439

Reverse Contact

Reverse contacts enable a Boolean operation between a connection line state and the Boolean
negation of a Boolean variable.

The state of the connection line on the right of the contact is the logical AND between the state
of the left connection line and the Boolean negation of the value of the variable associated with
the contact.

Example

(* ST Equivalence: *)

output1 := NOT (input1) AND NOT (input2);

See Also
Contacts

Left
Connection

Right
Connection
440 ISaGRAF 3 Concrete Automation Model - FBD Language

Pulse Rising Edge Contact

Pulse rising edge (positive) contacts enable a Boolean operation between a connection line
state and the rising edge of a Boolean variable.

The state of the connection line on the right of the contact is set to TRUE when the state of the
connection line on the left is TRUE, and the state of the associated variable rises from FALSE
to TRUE. The state is reset to FALSE in all other cases.

Example

(* ST Equivalence: *)

output1 := input1 AND (input2 AND NOT (input2prev));

(* input2prev is the value of input2 at the previous cycle *)

See Also
Contacts

Left
Connection

Right
Connection
Automation Collaborative Platform 441

Pulse Falling Edge Contact

Pulse falling edge (negative) contacts enable a Boolean operation between a connection line
state and the falling edge of a Boolean variable.

The state of the connection line on the right of the contact is set to TRUE when the state of the
connection line on the left is TRUE, and the state of the associated variable falls from TRUE
to FALSE. The state is reset to FALSE in all other cases.

Example

(* ST Equivalence: *)

output1 := input1 AND (NOT (input2) AND input2prev);

(* input2prev is the value of input2 at the previous cycle *)

See Also
Contacts

Left
Connection

Right
Connection
442 ISaGRAF 3 Concrete Automation Model - FBD Language

Regions

Regions delineate and group together areas of an FBD POU. A region consists of a header and
a delineated zone grouping together elements.The header section enables entering free-format
text. After entering text in the header, click elsewhere in the region to exit editing mode. When
moving the location of a region in the language container, you can also move all the content
grouped within. You can resize regions.

To insert a region

� From the Toolbox, drag the region element into the language container.

The region element is displayed in the language container.

To move a region

1. In the language container, left-click the top right corner of the region element and hold
the mouse button.

2. Drag the region element to the required location and release the mouse button.

The region and the elements contained inside have moved location in the language container.

See Also
Comments
Automation Collaborative Platform 443

Comments

Comments are free format text inserted anywhere in the FBD POU, for documentation
purposes only. After entering text, click elsewhere in the workspace to exit editing mode.

You can expand and collapse comment elements displayed in the workspace by clicking the
maximize and minimize buttons. You can also resize comments.

To insert a comment

You can apply text formatting options including bold, italic, underline, strikethrough, and
justify from the Description Editor toolbar. You can also define the foreground color.

1. From the Toolbox, drag the comment element into the language container.

2. In the language container, double-click the comment, then type the required text within
the space provided.

The comment is displayed in the language container.

Minimize Maximize
444 ISaGRAF 3 Concrete Automation Model - FBD Language

FBD Keyboard Shortcuts
The following keyboard shortcuts are available for use with the FBD language. Some shortcuts
do not apply or may differ while debugging.

Ctrl+A Selects all elements (not available while debugging)

Ctrl+C Copies the selected elements to the clipboard (not available while
debugging)

Ctrl+V Pastes elements saved on the clipboard to the insertion point (not
available while debugging)

Ctrl+X Cuts the selected elements to the clipboard (not available while
debugging)

Ctrl+Y Redoes the previous command (not available while debugging)

Ctrl+Z Undoes the previous command (not available while debugging)

Shift+Ctrl+Alt+G Enables/disables the grid in the language container

Shift+Alt+Enter Toggles between full-screen and windowed modes

Ctrl+R Toggles between Auto-Input and Manual-Input. Auto-Input
automatically opens the Block Selector and Variable Selector (not
available while debugging).

Ctrl+B Bolds selected comment text (not available while debugging)

Ctrl+I Italicizes selected comment text (not available while debugging)

Ctrl+U Underlines selected comment text (not available while debugging)

Enter When a function block is selected, opens the Block Selector (not
available while debugging).

When a variable is selected, opens the Variable Selector (not available
while debugging).

When a comment is selected, starts editing it (not available while
debugging).

Ctrl+Enter When a variable is selected, opens the drop-down list of available
variables (not available while debugging).

When editing a comment, confirms the text (not available while
debugging).

Ctrl+- Decreases the magnification
Automation Collaborative Platform 445

Ctrl+= Increases the magnification

Ctrl+0 100% magnification

Ctrl+1 Inserts a variable (not available while debugging)

Ctrl+2 Inserts a function block (not available while debugging)

Ctrl+3 Inserts a comment (not available while debugging)

Shift+Up Arrow Reduces the height of the selected element (not available while
debugging)

Shift+Down Arrow Increases the height of the selected element (not available while
debugging)

Shift+Left Arrow Reduces the width of the selected element (not available while
debugging)

Shift+Right Arrow Increases the width of the selected element (not available while
debugging)

Ctrl+Up Arrow Moves the selection to the next element located higher in the diagram
without keeping the previous element selected. While debugging,
scrolls up.

Ctrl+Down Arrow Moves the selection to the next element located lower in the diagram
without keeping the previous element selected. While debugging,
scrolls down.

Ctrl+Left Arrow Moves the selection to the next element located to the left in the
diagram without keeping the previous element selected. While
debugging, scrolls left.

Ctrl+Right Arrow Moves the selection to the next element located to the right in the
diagram without keeping the previous element selected. While
debugging, scrolls right.

Alt+Shift+Up Arrow When a function block is selected, navigates up the different inputs and
outputs (not available while debugging)

Alt+Shift+Down
Arrow

When a function block is selected, navigates down the different inputs
and outputs (not available while debugging)

Alt+Shift+Left
Arrow

When a function block is selected, navigates left across the different
inputs and outputs (not available while debugging)

Alt+Shift+Right
Arrow

When a function block is selected, navigates right across the different
inputs and outputs (not available while debugging)
446 ISaGRAF 3 Concrete Automation Model - FBD Language

Ctrl+Page Up Jumps to the top of the language container

Ctrl+Page Down Jumps to the bottom of the language container

Alt+Up Arrow Scrolls up

Alt+Down Arrow Scrolls down

Alt+Left Arrow Scrolls left

Alt+Right Arrow Scrolls right

Up Arrow Moves selected elements up the language container. While debugging,
scrolls up.

Down Arrow Moves selected elements down the language container. While
debugging, scrolls down.

Left Arrow Moves selected elements left across the language container. While
debugging, scrolls left.

Right Arrow Moves selected elements right across the language container. While
debugging, scrolls right.

Delete Removes the selected elements (not available while debugging)
Automation Collaborative Platform 447

448 ISaGRAF 3 Concrete Automation Model - FBD Language

LD Language
Ladder Diagram (LD) is a graphic representation of Boolean equations, combining contacts
(input arguments) with coils (output results). The LD language enables the description of tests
and modifications of Boolean data by placing graphic symbols into the program chart. LD
graphic symbols are organized within the chart as an electric contact diagram. Thus, the term
"ladder" coming from the concept of rungs connected to vertical power rails at both ends where
each rung represents an individual circuit.
Automation Collaborative Platform 449

You can adjust editor and view settings for individual or all Ladder Diagrams. When working
in a Ladder Diagram, you set the properties for the diagram from the Container properties in
the Properties window. You set the properties for all Ladder Diagrams using the options
available from the Tools menu. Some of the available properties include the following:

� background and gradient colors for operators, functions, and function blocks

� displaying the grid as well as the height and width of grid cells, in pixels

� the height and width of elements, in grid cells. Basic elements are blocks without inputs
or outputs, coils, and contacts. For blocks, each input and output adds a basic element
dimension. For example, note the contact using the default settings of one grid cell high
by four grid cells wide. The following block uses a basic element width for the inputs,
another for the block, and another for the outputs. The block uses a basic element height
for the EN/ENO level, another for the first input and the output, and another for the
second input.

� the font type, size, style, and color applied to the text displayed in elements

� various options such as displaying comments and labels, aligning coils, and setting the
colors for variables, labels, comments, power rails, and rung headers

See Also
Debugging LD Programs
450 ISaGRAF 3 Concrete Automation Model - LD Language

Debugging LD Programs
When power flow debugging LD programs, you can monitor the output values of elements.
These values are displayed using color, numeric, or textual values according to their data type:

� Output values of boolean type are displayed using color. The output value color continues
to the next input. When the output value is unavailable, boolean elements remain black.
The default colors are red when True and blue when False. You can customize the colors
used for boolean items.

� Output values of DINT, REAL, TIME, and MESSAGE type are displayed as a numeric
or textual value in the element. When the output is a structure type, the displayed value is
the selected member.

When the output value for a numeric or textual value is unavailable, the WAIT text is displayed
in the output label. Transitional elements such as Pulse rising edge (positive) contacts, having
an unstable state, remain black. Values are also displayed in the corresponding dictionary
instance.
Automation Collaborative Platform 451

When the device is in the DEBUGGING state, you can choose to perform one of the following
operations:

� Switch execution to real-time mode

� Switch execution to cycle-to-cycle mode

� Execute one cycle

To switch execution to real-time mode

� From the Target Execution toolbar, click .

The POU executes in real-time mode.

To switch execution to cycle-to-cycle mode

� From the Target Execution toolbar, click .

The POU executes in cycle-to-cycle mode.

To execute one cycle

� From the Target Execution toolbar, click .

The POU executes one device cycle.
452 ISaGRAF 3 Concrete Automation Model - LD Language

LD Elements
When editing an LD POU, you can place elements in a language container by dragging them
from the LD Toolbox. An element is inserted at the current position in the diagram. When
inserting subsequent elements, these are placed to the right of the selected element on the rung,
then onto the next rung. For LD POUs, the following elements are available:

� Rungs

� Blocks

� Coils

� Contacts

� Jumps

� Returns

� Branches
Automation Collaborative Platform 453

Rungs

Rungs are graphic components of LD programs and represent a group of circuit elements
leading to the activation of a coil. Rungs have labels to identify them within the diagram.
Labels along with jumps enable controlling the execution of a diagram. The label and jump
must have the same name. When the connection on the left of the jump element has the TRUE
Boolean state, the diagram execution proceeds at the label element. Comments are free format
text inserted above the rung, for documentation purposes only.

To insert a rung

You can insert rungs from the Toolbox or using keyboard shortcuts.

� From the Toolbox, drag the rung element into the language container.

The rung is displayed in the language container.

To define the label for a rung

1. In the language container, click anywhere, then from the contextual menu, choose Add
Label.

2. In the upper left-hand corner, click in the text area beside the grey square and type the
required label text.
454 ISaGRAF 3 Concrete Automation Model - LD Language

To define the comment for a rung

You place comments in the space above the rung. After entering text, click elsewhere in the
workspace to 'validate' the comment. Text formatting options including bold, italic, underline,
strikethrough, and justify, are available from the Format menu. Using the Format menu, you
can also define the foreground color.

� In the language container, click the rectangular space above the rung, then type the
required text.
Automation Collaborative Platform 455

Blocks

In a language container, you connect blocks to Boolean lines. Blocks can be operators,
functions, or function blocks. Boolean inputs and outputs are not always contained within
blocks. Boolean inputs connecting blocks to rungs are always executed each cycle. Boolean
outputs connecting blocks to rungs control the remaining rung power flow. When inserting
blocks in a diagram, the EN and ENO parameters are added to some block interfaces. You can
also force the inclusion of the EN and ENO parameters for blocks having either one Boolean
input, one Boolean output, or no Boolean input and output. You activate the Enable EN/ENO
option from the Ladder Diagram options.

For functions and function blocks, you set the value of return parameters using coils. The return
parameter of a function has the same name as the function. The return parameters of a function
block can have any name.

You insert blocks from the LD Toolbox. You can set the type of a block using the Block
Selector at any time following insertion. When you set the type of block, variables are
automatically displayed and are connected to the inputs and outputs of the block.

You replace input and output variables by double-clicking them to access the Variable Selector
or single-clicking them to select from a drop-down combo-box containing the global and local
variables. Also, you can single-click a variable, then type a literal value in the text box
provided. When inserting literal values that being with a letter or an underscore, enclose the
variable name in single quotes as follows: 'abc'.

Select a variable from the drop-down
combo-box:

Type a literal value in the text box:
456 ISaGRAF 3 Concrete Automation Model - LD Language

When selecting items such as local variables, global variables, and defined words from the
drop-down combo-box, typing characters in the text box focuses on the possible items.

EN Input

For operators, functions, and function blocks where the first input is not a Boolean data type,
another input called EN is automatically inserted at the first position since the first input is
always connected to the rung. The block is executed only when the EN input is TRUE. The
following example shows a comparison operator and its equivalent code expressed in ST.

ENO Output

For operators, functions, and function blocks where the first output is not a Boolean data type,
another output called ENO is automatically inserted at the first position since the first output is
always connected to the rung. The ENO output always has the same state as the first input of
the block. The following example shows the AVERAGE function block and its equivalent code
expressed in ST.

IF rung_state THEN
q := (value1 > value 2);
ELSE
q := FALSE;
END_IF;

(* continue rung with o1 state *)
Automation Collaborative Platform 457

EN and ENO Parameters

In some cases, both EN and ENO parameters are required. The following example shows an
arithmetic operator and its equivalent code expressed in ST.

To access the Parameters view

The Parameters view is available from functions or function blocks located in the Solution
Explorer.

1. In the Solution Explorer, right-click the required function or function block, then click
Parameters in the contextual menu.

The Parameters view is displayed.

AVERAGE(rung_state, Signal, 100);
OutSignal := AVERAGE.XOUT;
eno := rung_state;

(* continue rung with eno state *)

IF rung_state THEN
result := (value1 + value2);
END_IF;
eno := rung_state;

(* continue rung with eno state *)
458 ISaGRAF 3 Concrete Automation Model - LD Language

2. To define the parameters of a function or function block, enter the required information in
the Parameters view.

To insert a block

You can insert blocks from the Toolbox or using keyboard shortcuts.

1. From the Toolbox, drag the function block element into the language container and place
it on the rung.

The Block Selector is displayed.

2. In the Block Selector, locate the required block. You can sort the block list according to
the columns by setting these in ascending or descending order.

 To force the inclusion of the EN/ENO parameters, select Enable EN/ENO.

3. Click OK.

The selected block is displayed on the rung.

To insert a parallel block

1. From the Toolbox, drag the branch element onto the existing block in the language
container.

2. To place a block element on the branch, do the following:

a) From the Toolbox, drag the block element into the language container, placing it on
the branch.

The Block Selector is displayed.

b) In the Block Selector, locate the required block. You can sort the block list according
to the columns by setting these in ascending or descending order.

 To force the inclusion of the EN/ENO parameters, select Enable EN/ENO.

c) Click OK.

The selected block is displayed on the branch.
Automation Collaborative Platform 459

Coils

Coils are graphic components of LD programs and represent the assignment of Boolean
outputs. In an LD program, a coil represents an action. It must be connected on the left to a
Boolean symbol, such as a contact or the Boolean output of a block.

The following types of coils are available from the LD toolbox:

� Direct Coil

� Reverse Coil

� Pulse Rising Edge Coil

� Pulse Falling Edge Coil

� Set Coil

� Reset Coil

You can change the type of a coil at anytime following its insertion.

When inserting coils in POUs, you assign variables using the Variable Selector. Names of
assigned variables are displayed above the coil elements within POUs. You replace existing
variables by double-clicking the coil to access the Variable Selector or by single-clicking
variable names to select from drop-down combo-boxes containing the global and local
variables. Also, you can single-click existing variables, then type literal values in the text boxes
provided. When inserting literal values beginning with a letter or an underscore, enclose the
variable name in single quotes as follows: 'abc'.
460 ISaGRAF 3 Concrete Automation Model - LD Language

When selecting items such as local variables, global variables, and defined words from the
drop-down combo-box, typing characters in the text box focuses on the possible items.

To insert a coil

You can insert coils from the Toolbox or using keyboard shortcuts.

1. From the Toolbox, drag the desired coil type into the language container and place it on
the rung.

The Variable Selector is displayed.

2. In the Variable Selector, select the required variable, then click OK.

The coil element and its associated variable name are displayed on the rung.

To insert a parallel coil

1. From the Toolbox, drag the branch element into the language container, placing it on the
required element.

2. From the Toolbox, drag a coil element into the language container, placing it on the
branch element.

The Variable Selector is displayed.

3. In the Variable Selector, select the required variable, then click OK.

Select a variable from the drop-down
combo-box:

Type a literal value in the text box:
Automation Collaborative Platform 461

The coil element and its associated variable name are displayed on the branch.

The coil is displayed on the branch.

To change the type of a coil

� In the language container, select the coil, then press the space bar.

To align all coils in a diagram

1. Right-click in the language container, then choose Properties from the contextual menu.

2. In the Properties window, set the Coil Alignment property to True.
462 ISaGRAF 3 Concrete Automation Model - LD Language

Direct Coil

Direct Coils enable a Boolean output of a connection line Boolean state.

The associated variable is assigned with the Boolean state of the left connection. The state of
the left connection is propagated into the right connection. The right connection can be
connected to the right vertical power rail.

The associated name can be the name of the program (for functions only). This corresponds to
the assignment of the return value of the function.

Example

(* ST Equivalence: *)

output1 := input1;
output2 := input1;

See Also
Coils

Left
Connection

Right
Connection
Automation Collaborative Platform 463

Reverse Coil

Reverse coils enable a Boolean output according to the Boolean negation of a connection line
state.

The associated variable is assigned with the Boolean negation of the state of the left
connection. The state of the left connection is propagated into the right connection. The right
connection can be connected to the right vertical power rail.

The associated name can be the name of the program (for functions only). This corresponds to
the assignment of the return value of the function.

Example

(* ST Equivalence: *)

output1 := NOT (input1);
output2 := input1;

See Also
Coils

Left
Connection

Right
Connection
464 ISaGRAF 3 Concrete Automation Model - LD Language

Pulse Rising Edge Coil

Pulse rising edge coils or "Positive" coils enable Boolean output of a connection line Boolean
state.

The associated variable is set to TRUE when the Boolean state of the left connection rises from
FALSE to TRUE. The output variable resets to FALSE in all other cases. The state of the left
connection is propagated into the right connection. The right connection can be connected to
the right vertical power rail.

Example

(* ST Equivalence: *)

IF (input1 and NOT(input1prev)) THEN
output1 := TRUE;

ELSE
output1 := FALSE;

END_IF;

(* input1prev is the value of input1 at the previous cycle *)

See Also
Coils

Left
Connection

Right
Connection
Automation Collaborative Platform 465

Pulse Falling Edge Coil

Pulse falling edge coils or "Negative" coils enable Boolean output of a connection line Boolean
state.

The associated variable is set to TRUE when the Boolean state of the left connection falls from
TRUE to FALSE. The output variable resets to FALSE in all other cases. The state of the left
connection is propagated into the right connection. The right connection can be connected to
the right vertical power rail.

Example

(* ST Equivalence: *)

IF (NOT(input1) and input1prev) THEN
output1 := TRUE;

ELSE
output1 := FALSE;

END_IF;

(* input1prev is the value of input1 at the previous cycle *)

See Also
Coils

Left
Connection

Right
Connection
466 ISaGRAF 3 Concrete Automation Model - LD Language

Set Coil

Set coils enable a Boolean output of a connection line Boolean state.

The associated variable is set to TRUE when the boolean state of the left connection becomes
TRUE. The output variable keeps this value until an inverse order is made by a RESET coil.
The state of the left connection is propagated into the right connection. The right connection
can be connected to the right vertical power rail.

Example

(* ST Equivalence: *)

IF input1 THEN
output1 := TRUE;

END_IF;
IF input2 THEN
output1 := FALSE;

END_IF;

Left
Connection

Right
Connection
Automation Collaborative Platform 467

See Also
Coils
468 ISaGRAF 3 Concrete Automation Model - LD Language

Reset Coil

Reset coils enable Boolean output of a connection line Boolean state.

The associated variable is reset to FALSE when the Boolean state of the left connection
becomes TRUE. The output variable keeps this value until an inverse order is made by a SET
coil. The state of the left connection is propagated into the right connection. The right
connection can be connected to the right vertical power rail.

Example

(* ST Equivalence: *)

IF input1 THEN
output1 := TRUE;

END_IF;
IF input2 THEN
output1 := FALSE;

END_IF;

Left
Connection

Right
Connection
Automation Collaborative Platform 469

See Also
Coils
470 ISaGRAF 3 Concrete Automation Model - LD Language

Contacts

Contacts are graphic components of LD diagrams. Depending on the type of contact, it
represents the value or function of an input or internal variable.

The following contact types are available from the LD toolbox:

� Direct Contact

� Reverse Contact

� Pulse Rising Edge Contact

� Pulse Falling Edge Contact

You can change the type of a contact at any time following its insertion.

When inserting contacts in POUs, you assign variables using the Variable Selector. Names of
assigned variables are displayed above the contact elements within POUs. You replace existing
variables by double-clicking the contact to access the Variable Selector or by single-clicking
variable names to select from drop-down combo-boxes containing the global and local
variables. Also, you can single-click existing variables, then type literal values in the text boxes
provided. When inserting literal values that being with a letter or an underscore, enclose the
variable name in single quotes as follows: 'abc'.

When selecting items such as local variables, global variables, and defined words from the
drop-down combo-box, typing characters in the text box focuses on the possible items.

Select a variable from the drop-down
combo-box:

Type a literal value in the text box:
Automation Collaborative Platform 471

To insert a contact

You can insert contacts from the Toolbox or using keyboard shortcuts.

1. From the Toolbox, drag the desired contact type into the language container and place it
on the rung.

The Variable Selector is displayed.

2. In the Variable Selector, select the required variable, then click OK.

The contact and its associated variable name are displayed on the rung.

To insert a parallel contact

1. From the Toolbox, drag the branch element into the language container, placing it on the
existing contact.

2. From the Toolbox, drag a contact element into the language container, placing it on the
branch.

The Variable Selector is displayed.

3. In the Variable Selector, select the required variable, then click OK.

The contact and its associated variable name are displayed on the branch.

To change the type of a contact

� In the language container, select the contact, then press the space bar.
472 ISaGRAF 3 Concrete Automation Model - LD Language

Direct Contact

Direct contacts enable a Boolean operation between a connection line state and a Boolean
variable.

The state of the connection line on the right of the contact is the logical AND between the state
of the left connection line and the value of the variable associated with the contact.

Example

(* ST Equivalence: *)

output1 := input1 AND input2;

See Also
Contacts

Left
Connection

Right
Connection
Automation Collaborative Platform 473

Reverse Contact

Reverse contacts enable a Boolean operation between a connection line state and the Boolean
negation of a Boolean variable.

The state of the connection line on the right of the contact is the logical AND between the state
of the left connection line and the Boolean negation of the value of the variable associated with
the contact.

Example

(* ST Equivalence: *)

output1 := NOT (input1) AND NOT (input2);

See Also
Contacts

Left
Connection

Right
Connection
474 ISaGRAF 3 Concrete Automation Model - LD Language

Pulse Rising Edge Contact

Pulse rising edge (positive) contacts enable a Boolean operation between a connection line
state and the rising edge of a Boolean variable.

The state of the connection line on the right of the contact is set to TRUE when the state of the
connection line on the left is TRUE, and the state of the associated variable rises from FALSE
to TRUE. The state is reset to FALSE in all other cases.

Example

(* ST Equivalence: *)

output1 := input1 AND (input2 AND NOT (input2prev));

(* input2prev is the value of input2 at the previous cycle *)

See Also
Contacts

Left
Connection

Right
Connection
Automation Collaborative Platform 475

Pulse Falling Edge Contact

Pulse falling edge (negative) contacts enable a Boolean operation between a connection line
state and the falling edge of a Boolean variable.

The state of the connection line on the right of the contact is set to TRUE when the state of the
connection line on the left is TRUE, and the state of the associated variable falls from TRUE
to FALSE. The state is reset to FALSE in all other cases.

Example

(* ST Equivalence: *)

output1 := input1 AND (NOT (input2) AND input2prev);

(* input2prev is the value of input2 at the previous cycle *)

See Also
Contacts

Left
Connection

Right
Connection
476 ISaGRAF 3 Concrete Automation Model - LD Language

Jumps

Conditional and unconditional jump elements enable controlling the execution of diagrams.
You cannot place connections to the right of a jump element. When the connection on the left
of the jump element has the TRUE Boolean state, the diagram execution proceeds at the label.
The label and jump must have the same name.

Example

To insert a jump

Before inserting jumps, define one or more labels within the program. You can insert jumps
from the Toolbox or using keyboard shortcuts.

1. From the Toolbox, drag the jump element into the language container and place it on the
rung.
Automation Collaborative Platform 477

2. In the language container, click the jump element, then select the required label name
from the drop-down combo-box.

The jump is displayed on the rung with the required label name.
478 ISaGRAF 3 Concrete Automation Model - LD Language

Returns

You can use RETURN elements as outputs representing a conditional end of a diagram. You
cannot place connections to the right of a RETURN element.

When the left connection line has the TRUE Boolean state, the diagram ends without executing
the equations located on the next lines of the diagram.

When the LD diagram is a function, its name is associated with an output coil to set the return
value (returned to the calling diagram).

Example

(* ST Equivalence: *)

If Not (manual_mode) Then RETURN; End_if;
result := (input1 OR input3) AND input2;

To insert a return

You can insert returns from the Toolbox or using keyboard shortcuts.

� From the Toolbox, drag the return element into the language container, placing it on the
rung.

The return element is displayed on the rung.
Automation Collaborative Platform 479

See Also
Jumps

Branches

Branches create alternative routing for connections. You can add parallel branches to elements
on a rung.

To insert a branch

You can insert branches from the Toolbox or using keyboard shortcuts.

� From the Toolbox, drag the branch element into the language container and place in on
the rung.

A parallel branch is displayed.
Automation Collaborative Platform 481

LD Keyboard Shortcuts
The following keyboard shortcuts are available for use with the LD language. Some shortcuts
do not apply or may differ while debugging.

Ctrl+A Selects all rungs (not available while debugging)

Ctrl+C Copies the selected elements to the clipboard (not available while
debugging)

Ctrl+V Pastes elements saved on the clipboard to the insertion point (not
available while debugging)

Ctrl+X Cuts the selected elements to the clipboard (not available while
debugging)

Ctrl+Y Redoes the previous command (not available while debugging)

Ctrl+Z Undoes the previous command (not available while debugging)

Shift+Ctrl+Alt+G Enables/disables the grid in the language container

Shift+Alt+Enter Toggles between full-screen and windowed modes

Ctrl+R Toggles between Auto-Input and Manual-Input. Auto-Input
automatically opens the Block Selector and Variable Selector (not
available while debugging).

Ctrl+B Bolds selected comment text (not available while debugging)

Ctrl+I Italicizes selected comment text (not available while debugging)

Ctrl+U Underlines selected comment text (not available while debugging)

Enter Calls the Variable/Block selector depending on the selected element (not
available while debugging)

Space Bar For coils or contacts, toggles between the available types (not available
while debugging)

Ctrl+0 Inserts a rung after a selected rung. When no rung is selected, a rung is
added at the end of the rung list (not available while debugging).

Ctrl+Alt+0 Inserts a rung before a selected rung. When no rung is selected, a rung is
added at the end of the rung list (not available while debugging).

Ctrl+ 1 Inserts a branch after a selected element (not available while debugging)

Ctrl+Alt+ 1 Inserts a branch before a selected element (not available while
debugging)
482 ISaGRAF 3 Concrete Automation Model - LD Language

Ctrl+2 Inserts a block after a selected element. When a branch is selected, a
block is inserted on the branch (not available while debugging).

Ctrl+Alt+2 Inserts a block before a selected element. When a branch is selected, a
block is inserted on the branch (not available while debugging).

Ctrl+3 Inserts a contact after a selected element. When a branch is selected, a
contact is inserted on the branch (not available while debugging).

Ctrl+Alt+3 Inserts a contact before a selected element. When a branch is selected, a
contact is inserted on the branch (not available while debugging).

Ctrl+4 When a rung or the last element on a rung is selected, inserts a coil at the
end of the rung. When the last element selected on a rung is a branch, a
coil is inserted on the branch (not available while debugging).

Ctrl+Alt+4 When a rung or the last element on a rung is selected, inserts a coil at the
end of the rung. When the last element selected on a rung is a branch, a
coil is inserted on the branch (not available while debugging).

Ctrl+5 When a rung or the last element on a rung is selected, inserts a jump at
the end of the rung. When the last element selected on a rung is a
branch, a jump is inserted on the branch (not available while
debugging).

Ctrl+Alt+5 When a rung or the last element on a rung is selected, inserts a jump at
the end of the rung. When the last element selected on a rung is a
branch, a jump is inserted on the branch (not available while
debugging).

Ctrl+6 When a rung or the last element on a rung is selected, inserts a return at
the end of the rung. When the last element selected on a rung is a
branch, a return is inserted on the branch (not available while
debugging).

Ctrl+Alt+6 When a rung or the last element on a rung is selected, inserts a return at
the end of the rung. When the last element selected on a rung is a
branch, a return is inserted on the branch (not available while
debugging).

Ctrl+Page Up Jumps to the top of the language container

Ctrl+Page Down Jumps to the bottom of the language container

Ctrl+Up Arrow Slowly scrolls up.

Ctrl+Down Arrow Slowly scrolls down.
Automation Collaborative Platform 483

Ctrl+Left Arrow Slowly scrolls left.

Ctrl+Right Arrow Slowly scrolls right.

Up Arrow Moves up the elements.

Down Arrow Moves down the elements.

Left Arrow Moves to the left across the elements.

Right Arrow Moves to the right across the elements.

Alt+Up Arrow Selects the previous rung. When no element or rung is selected, selects
the last rung.

Alt+Down Arrow Selects the next rung. When no element or rung is selected, selects the
first rung.

Alt+Left Arrow Selects the rung of the selected element. When no element is selected,
selects the first rung.

Alt+Right Arrow Selects the rung of the selected element. When no element is selected,
selects the first rung.

Shift+Up Arrow Scrolls up

Shift+Down Arrow Scrolls down

Shift+Left Arrow Scrolls left

Shift+Right Arrow Scrolls right

Delete Removes a selected rung or element (not available while debugging)
484 ISaGRAF 3 Concrete Automation Model - LD Language

ST Language
ST (Structured Text) is a high level structured language designed for automation processes.
This language is mainly used to implement complex procedures that cannot be easily expressed
with graphic languages. ST language is also used for the description of the actions within the
Steps and conditions attached to the Transitions of the SFC Language.

See Also
ST Main Syntax
Debugging ST Programs
Automation Collaborative Platform 485

ST Main Syntax
An ST program is a list of ST statements. Each statement ends with a semi-colon (";")
separator. Names used in the source code (variable identifiers, constants, language
keywords...) are separated with inactive separators (space character, end of line or tab stops) or
by active separators, which have a well defined significance (for example, the ">" separator
indicates a "greater than" comparison.

Comments enable the inclusion of non-executed information throughout code. You can insert
comments anywhere in an ST program. Comments can run multiple lines and must begin with
"(*" and end with "*)". You cannot use interleave comments, i.e., comments within comments.

When typing statements, a drop-down combo-box automatically lists the available items such
as identifiers, operators, functions, and function blocks. The listed items are focused by typing
letters, digits, and underscore characters.

The following are basic types of ST statements:

� assignment statement (variable := expression;)

� function call

� function block call

� selection statements (IF, THEN, ELSE, CASE...)

� iteration statements (FOR, WHILE, REPEAT...)

� control statements (RETURN, EXIT...)

� special statements for links with other languages

When entering ST syntax, basic coding is black while other items are displayed using
customizable colors. The default colors for ST elements are the following:

� Comments are green

� The Editor background is white

� Identifiers are black
486 ISaGRAF 3 Concrete Automation Model - ST Language

� Numbers are firebrick

� Operators are black

� POUs are blueviolet

� Punctuation marks are black

� Reserved words are fuchsia

� Strings of text are gray

Inactive separators between active separators, literals, and identifiers increase ST program
legibility. ST inactive separators are the following: space (blank), tabs and end of line. You can
place end of lines anywhere in a program. The following rules apply to using inactive
separators:

� Write one statement on one line

� Use tabs to indent complex statements

� Insert comments to increase legibility of lines or paragraphs

Example

Low Readability

imax := max_ite; cond := X12;

if not(cond (* alarm *)

then return; end_if;

for i (* index *) := 1 to max_ite

do if i <> 2 then Spcall();

end_if; end_for;

(* no effect if alarm *)
Automation Collaborative Platform 487

To customize the default display settings for ST programs

1. From the Tools menu, click Options.

2. From the Options dialog, expand IEC Languages, then click Structured Text (ST).

3. Expand the respective category, customize the required setting, then click OK.

The customized settings are now the default values for ST programs.

To customize the display settings for the current ST program

1. From the View menu, click Properties Window.

The Properties Window is displayed.

2. Select the ST Container.

3. From the Properties Window you can:

High Readability

(* imax : number of iterations *)
(* i: FOR statement index *)
(* cond: process validity *)

imax := max_ite;

cond := X12;

if not (cond) then

return;

end_if;

(* process loop *)

for i := 1 to max_ite do

if i <> 2 then

Spcall ();

end_if;

end_for;
488 ISaGRAF 3 Concrete Automation Model - ST Language

 Customize the font for the required item by clicking . The Font dialog box is
displayed enabling customization of the font, text size, bold, italic, strikeout, and
underline styles.

 Customize the text color for the required items. The possible colors are custom, web,
and system colors.

The customized settings only affect the current ST program.
Automation Collaborative Platform 489

Expressions and Parentheses
ST expressions combine ST operators and variable or constant operands. For each single
expression (combining operands with one ST operator), the type of the operands must be the
same. This single expression has the same data type as its operands, and can be used in a more
complex expression. For example:

Parentheses are used to isolate sub parts of an expression and to explicitly order the priority of
operations. When no parentheses are given for a complex expression, the operation sequence
is implicitly given by the default priority between ST operators.

(boo_var1 AND boo_var2) has BOOL type

not (boo_var1) has BOOL type

(sin (3.14) + 0.72) has DINT type

(t#1s23 + 78) is an invalid expression

Precedence Operators Symbols

1 (Highest) Function evaluation identifier(arguement list)
For example: MAX(X,Y)

2 Negation -

Complement NOT

3 Multiplication *

Division /

4 Addition +

Subtraction -

5 Comparison <, >, <=, >=

6 Equality =

Inequality <>

7 Boolean AND &, AND

8 Boolean Exclusive OR XOR

9 (Lowest) Boolean OR OR
490 ISaGRAF 3 Concrete Automation Model - ST Language

Examples:

2 + 3 * 6 equals 2+18=20 because multiplication operator has a higher priority

(2 + 3) * 6 equals 5*6=30 priority is given by parenthesis
Automation Collaborative Platform 491

Calling Functions
The ST programming language enables calling functions. Function calls can be used in any
expression.

When setting the value of the return parameter in the body of a function, assign the return
parameter using the same name as the function:
FunctionName := <expression>;

Example

Example1: IEC 61131-3 function call

(* Main ST program *)
(* gets an integer value and converts it into a limited time value *)
dint_timeprog := SPlimit (tprog_cmd);
appl_timer := TMR (dint_timeprog * 100);

(* Called FBD function named 'SPlimit' *)

Example2: "C" function call – same syntax as for IEC 61131-3 function calls

(* Functions used in complex expressions: min, max, right, mlen and
left are standard "C" functions *)
limited_value := min (16, max (0, input_value));
rol_msg := right (message, mlen (message) - 1) + left (message, 1);

Name: name of the called function written in IEC 61131-3 language or in "C"

Meaning: calls a ST, LD or FBD functions or a "C" function and gets its return value

Syntax: <variable> := <funct> (<par1>, ... <parN>);

Operands: The type of return value and calling parameters must follow the interface
defined for the function.

Return value: value returned by the function
492 ISaGRAF 3 Concrete Automation Model - ST Language

Calling Function Blocks
The ST programming language enables calling function blocks. Function block calls can be
used in any expression.

When setting the value of the return parameter in the body of a function block, assign the return
parameter using its name concatenated with the function block name:
FunctionBlockName.OutputParaName := <expression>;

Example

(* ST program calling a function block *)

(* declare the instance of the block in the dictionary: *)
(* trigb1 : block R_TRIG - rising edge detection *)

(* Function block activation from ST language *)
trigb1 (b1);
(* return parameters access *)
If (trigb1.Q) Then nb_edge := nb_edge + 1; End_if;

Name: name of the function block instance

Meaning: calls a ST, LD, or FBD function block or a "C" function block and gets its
return parameters

Syntax: (* call of the function block *)
<blockname> (<p1>, <p2> ...);
(* gets its return parameters *)
<result> := <blockname>. <ret_param1>;
...
<result> := <blockname>. <ret_paramN>;

Operands: parameters are expressions which match the type of the parameters
specified for that function block

Return value: See Syntax to get the return parameters.
Automation Collaborative Platform 493

Debugging ST Programs
When debugging ST programs, you can monitor the output values of elements by viewing the
dictionary instances. When the program is debugging you can choose to perform one of the
following operations:

� Switch execution to real-time mode

� Switch execution to cycle-to-cycle mode

� Execute one cycle

To switch execution to real-time mode

� From the Target Execution toolbar, click .

The POU executes in real-time mode.

To switch execution to cycle-to-cycle mode

� From the Target Execution toolbar, click .

The POU executes in cycle-to-cycle mode.

To execute one cycle

� From the Target Execution toolbar, click .

The POU executes one device cycle.
494 ISaGRAF 3 Concrete Automation Model - ST Language

ST Basic Elements and Statements
The basic elements and statements of the ST language are the following:

� Assignments

� CASE Statement

� EXIT Statement

� FOR Statement

� IF-THEN-ELSIF-ELSE-END_IF Statement

� REPEAT Statement

� RETURN Statement

� WHILE Statement

See Also
ST Main Syntax
Automation Collaborative Platform 495

Assignments

The expression can be a call to a function.

Example

(* ST program with assignments *)

(* variable <<= variable *)
bo23 := bo10;

(* Variable <<= expression *)

bo56 := bx34 OR alrm100 & (level >= over_value);
result := (100 * input_value) / scale;

(* assignment with function call *)
limited_value := min (16, max (0, input_value));

To insert an Assignment

� In the language container, type :=.

Name: :=

Meaning: Assigns a variable to an expression

Syntax: <variable> := <any_expression> ;

Operands: Variable must be an internal or output variable and the expression must have
the same type
496 ISaGRAF 3 Concrete Automation Model - ST Language

CASE Statement

CASE values must be integer constant expressions. Several values, separated by commas, can
lead to the same list of statements. The ELSE statement is optional.

Example

(* ST program using CASE statement *)

CASE error_code OF
255: err_msg := 'Division by zero';

fatal_error := TRUE;
1: err_msg := 'Overflow';
2, 3: err_msg := 'Bad sign';

ELSE
err_msg := 'Unknown error';

END_CASE;

To insert a CASE

� From the Toolbox, drag the CASE element into the language container.

Name: CASE ... OF ... ELSE ... END_CASE

Meaning: executes one of several lists of ST statements
selection is made according to an integer expression

Syntax: CASE <integer_expression> OF
<value> : <statements> ;
<value> , <value> : <statements> ;
...

ELSE
<statements> ;

END_CASE;
Automation Collaborative Platform 497

EXIT Statement

The EXIT is commonly used within an IF statement, inside a FOR, WHILE or REPEAT block.

Example

(* ST program using EXIT statement *)
(* this program searches for a character in a string *)

length := mlen (message);
found := NO;
FOR index := 1 TO length BY 1 DO
code := ascii (message, index);
IF (code = searched_char) THEN

found := YES;
EXIT;

END_IF;
END_FOR;

To insert an EXIT

� In the language container, type EXIT.

Name: EXIT

Meaning: exit from a FOR, WHILE or REPEAT iteration statement

Syntax: EXIT;
498 ISaGRAF 3 Concrete Automation Model - ST Language

FOR Statement

The [BY step] statement is optional. If not specified, the increment step is 1

Warning: Because the virtual machine is a synchronous system, input variables are not
refreshed during FOR iterations.

This is the "WHILE" equivalent of a FOR statement:

index := mini;
while (index <= maxi) do
<statement> ;
<statement> ;
index := index + step;

end_while;

Example

(* ST program using FOR statement *)
(* this program extracts the digit characters of a string *)

length := mlen (message);
target := ''; (* empty string *)
FOR index := 1 TO length BY 1 DO
code := ascii (message, index);
IF (code >= 48) & (code <= 57) THEN

target := target + char (code);
END_IF;

END_FOR;

Name: FOR ... TO ... BY ... DO ... END_FOR

Meaning: executes a limited number of iterations, using an integer index variable

Syntax: FOR <index> := <mini> TO <maxi> BY <step> DO
<statement> ;
<statement> ;

END_FOR;

Operands: index: internal integer variable increased at each loop
mini: initial value for index (before first loop)
maxi: maximum allowed value for index
step: index increment at each loop
Automation Collaborative Platform 499

To insert a FOR

� From the Toolbox, drag the FOR element into the language container.
500 ISaGRAF 3 Concrete Automation Model - ST Language

IF-THEN-ELSIF-ELSE-END_IF Statement

The ELSE and ELSIF statements are optional. If the ELSE statement is not written, no
instruction is executed when the condition is FALSE. You can use the ELSIF statement more
than once. The ELSE statement, if used, must appear only once at the end of the ‘IF, ELSIF...’
sequence.

Example

(* ST program using IF statement *)

IF manual AND not (alarm) THEN
level := manual_level;
bx126 := bi12 OR bi45;

ELSIF over_mode THEN
level := max_level;

ELSE
level := (lv16 * 100) / scale;
END_IF;

Name: IF ... THEN ... ELSIF ... THEN ... ELSE ... END_IF

Meaning: executes one of several lists of ST statements
selection is made according to the value of a Boolean expression

Syntax: IF <Boolean_expression> THEN
<statement> ;
<statement> ;
...

ELSIF <Boolean_expression> THEN
<statement> ;
<statement> ;
...

ELSE
<statement> ;
<statement> ;
...

END_IF;
Automation Collaborative Platform 501

(* IF structure without ELSE *)
If overflow THEN
alarm_level := true;

END_IF;

To insert an IF-THEN-ELSIF-ELSE-END_IF

� From the Toolbox, drag the IF THEN ELSE element into the language container.
502 ISaGRAF 3 Concrete Automation Model - ST Language

REPEAT Statement

Warning: Because the virtual machine is a synchronous system, input variables are not
refreshed during REPEAT iterations. The change of state of an input variable cannot be used
to describe the ending condition of a REPEAT statement.

Example

(* ST program using REPEAT statement *)

(* this program uses specific "C" functions to read characters *)
(* on a serial port *)

str := ''; (* empty string *)
nbchar := 0;
IF ComIsReady () THEN
REPEAT

str := str + ComGetChar ();
nbchar := nbchar + 1;

UNTIL ((nbchar >= 16) OR NOT (ComIsReady ()))
END_REPEAT;

END_IF;

To insert a REPEAT

� From the Toolbox, drag the REPEAT element into the language container.

Name: REPEAT ... UNTIL ... END_REPEAT

Meaning: iteration structure for a group of ST statements
the "continue" condition is evaluated AFTER any iteration

Syntax: REPEAT
<statement> ;
<statement> ;

...
UNTIL <Boolean_condition>
END_REPEAT ;
Automation Collaborative Platform 503

RETURN Statement

In an SFC action block, the RETURN statement indicates the end of the execution of that block
only.

Example

(* FBD specification of the program: programmable counter *)

(* ST implementation of the program, using RETURN statement *)

If NOT (CU) then
Q := false;
CV := 0;
RETURN; (* terminates the program *)

end_if;

if RESET then
CV := 0;

else
if (CV < PV) then

CV := CV + 1;
end_if;

end_if;
Q := (CV >= PV);

To insert a RETURN

� In the language container, type RETURN.

Name: RETURN

Meaning: terminates the execution of the current program

Syntax: RETURN ;

Operands: (none)
504 ISaGRAF 3 Concrete Automation Model - ST Language

WHILE Statement

Warning: Since the virtual machine is a synchronous system, input variables are not refreshed
during WHILE iterations. The change of state of an input variable cannot be used to describe
the condition of a WHILE statement.

Example

(* ST program using WHILE statement *)

(* this program uses specific "C" functions to read characters *)
(* on a serial port *)

str := ''; (* empty string *)
nbchar := 0;

WHILE ((nbchar < 16) & ComIsReady ()) DO
str := str + ComGetChar ();
nbchar := nbchar + 1;

END_WHILE;

To insert a WHILE

� From the Toolbox, drag the WHILE element into the language container.

Name: WHILE ... DO ... END_WHILE

Meaning: iteration structure for a group of ST statements
the "continue" condition is evaluated BEFORE any iteration

Syntax: WHILE <Boolean_expression> DO
<statement> ;
<statement> ;

...
END_WHILE ;
Automation Collaborative Platform 505

ST Extensions
The following statements and functions are extensions of the ST language:

The following statements and functions are available to control the execution of SFC child
programs. You can use these within action blocks written in ST for SFC steps.

Warning: These functions are not part of the IEC 61131-3 standard.

Simple equivalents for the GSTART and GKILL statements are available using the following
syntax in an SFC step:

� child_name with the S qualifier (* equivalent to GSTART(child_name); *)

� child_name with the R qualifier (* equivalent to GKILL(child_name); *)

The following fields enable accessing the status of an SFC step or child (from its parent):

TSTART starts a timer

TSTOP stops a timer

GSTART starts an SFC program or function block

GFREEZE freezes an SFC program

GKILL terminates an SFC program

GSTATUS gets current status of an SFC program

GRST restarts a frozen SFC program or function block

StepName.x Boolean value that represents the activity of the Step

StepName.t time elapsed since the last activation of the step: activity duration
("StepName" represents the name of the SFC step)

ChildName.__S1.x Boolean value that represents the activity of the child

ChildName.__S1.t time elapsed since the last activation of the step: activity duration
("ChildName" represents the name of the SFC child)
506 ISaGRAF 3 Concrete Automation Model - ST Language

TSTART Statement

Example

(* SFC program using TSTART and TSTOP statements)

Name: TSTART

Meaning: Starts the counting of a timer variable. The timer value is not
modified by the TSTART command, i.e., the counting starts from the
current value of the timer.

Syntax: TSTART (<timer_variable>);

Operands: Any inactive timer variable

Return value: (none)
Automation Collaborative Platform 507

To insert a TSTART Statement

� In the language container, type TSTART.
508 ISaGRAF 3 Concrete Automation Model - ST Language

TSTOP Statement

Example

(* SFC program using TSTART and TSTOP statements)

Name: TSTOP

Meaning: Stops updating a timer variable. The timer value is not modified by
the TSTOP command.

Syntax: TSTOP (<timer_variable>);

Operands: Any active timer variable

Return value: (none)
Automation Collaborative Platform 509

To insert a TSTOP Statement

� In the language container, type TSTOP.
510 ISaGRAF 3 Concrete Automation Model - ST Language

GSTART Statement in SFC Action

Children of the child program are not automatically started by the GSTART statement. Since
GSTART is not part of the IEC 61131-3 standard, it is preferable to use the S qualifier attached
to the child name.

To insert a GSTART

� In the language container, type GSTART.

Name: GSTART

Meaning: Starts an SFC child program or function block by placing a token into
each of its initial steps. The abbreviated syntax is equivalent to an
SFC Child action block having the S qualifier. The extended syntax
only applies to SFC child function blocks.

Syntax: GSTART (<child_name>);
or
GSTART (<child_name,step_name,input1,input2,...inputn>)
where
child_name represents the name of the SFC child POU
step_name represents the name of the active step. step_name must be
preceded by two underscore characters (e.g., __S1)
input1,input2,...inputn indicate the values of the input parameters of
the SFC child POU

Operands: the specified SFC program must be a child of the one in which the
statement is written

Return value: (none)
Automation Collaborative Platform 511

GFREEZE Statement in SFC Action

Children of the child program are automatically frozen along with the specified program.

GFREEZE is not part of the IEC 61131-3 standard.

Example

To insert a GFREEZE

� In the language container, type GFREEZE.

Name: GFREEZE

Meaning: freezes a child SFC (program or function block); suspends its execution. The
suspended SFC POU can then be restarted using the GRST statement.

Syntax: GFREEZE (<child_name>);
where
child_name represents the name of the SFC child POU

Operands: the specified SFC program must be a child of the one in which the statement
is written

Return value: (none)
512 ISaGRAF 3 Concrete Automation Model - ST Language

GKILL Statement in SFC Action

Children of the child program are automatically terminated with the specified program.

Since GKILL is not part of the IEC 61131-3 standard, it is preferable to use the R qualifier
attached to the child name.

To insert a GKILL

� In the language container, type GKILL.

Name: GKILL

Meaning: Terminates a child SFC program by removing the Tokens currently existing
in its Steps. The syntax is equivalent to an SFC Child action block having the
R qualifier.

Syntax: GKILL (<child_name>);
where
child_name represents the name of the SFC child POU

Operands: the specified SFC program must be a child of the one in which the statement
is written

Return value: (none)
Automation Collaborative Platform 513

GSTATUS Statement in SFC Action

GSTATUS is not part of the IEC 61131-3 standard.

Example

Name: GSTATUS

Meaning: returns the current status of an SFC program

Syntax: <var> := GSTATUS (<child_name>);
where
child_name represents the name of the SFC child POU

Operands: the specified SFC program must be a child of the one in which the statement
is written

Return value: 0 = Program is inactive (killed)
1 = Program is active (started)
2 = Program is frozen
514 ISaGRAF 3 Concrete Automation Model - ST Language

To insert a GSTATUS

� In the language container, type GSTATUS.
Automation Collaborative Platform 515

GRST Statement in SFC Action

The GRST statement automatically restarts children of the child program.

GRST is not part of the IEC 61131-3 standard.

To insert a GRST

� In the language container, type GRST.

Name: GRST

Meaning: restarts a child SFC program frozen by the GFREEZE statement: all the
tokens removed by GFREEZE are restored. The extended syntax only applies
to SFC child function blocks.

Syntax: GRST (<child_name>);
or
GRST (<child_name,input1,input2,...inputn>);
where
child_name represents the name of the SFC child POU
input1,input2,...inputn indicate the value of the input parameter of the SFC
child POU

Operands: the specified SFC program must be a child of the one in which the statement
is written

Return value: (none)
516 ISaGRAF 3 Concrete Automation Model - ST Language

ST Keyboard Shortcuts
The following keyboard shortcuts are available for use with the ST language. Some shortcuts
do not apply or may differ while debugging.

Ctrl+A Selects the entire document (not available while debugging)

Ctrl+C Copies the selected text to the clipboard (not available while
debugging)

Ctrl+Insert Copies the selected text to the clipboard (not available while
debugging)

Ctrl+V Pastes text saved on the clipboard to the insertion point (not
available while debugging)

Shift+Insert Pastes text saved on the clipboard to the insertion point (not
available while debugging)

Ctrl+X Cuts the selected text to the clipboard (not available while
debugging)

Shift+Delete Cuts the selected text to the clipboard (not available while
debugging)

Ctrl+L Cuts the current line to the clipboard (not available while
debugging)

Ctrl+Z Undoes the previous command (not available while
debugging)

Ctrl+Y Redoes the previous command (not available while
debugging)

Ctrl+Shift+Z Redoes the previous command (not available while
debugging)

Shift+Alt+Enter Toggles between full-screen and windowed modes

Insert Toggles between the overwrite/insert typing mode

Shift+Enter Inserts a line break. While debugging, when the insertion point
is on a variable it opens the Write Logical Value dialog box.

Ctrl+Enter Inserts a line above the current line. While debugging, when
the insertion point is on a variable it opens the Write Logical
Value dialog box.
Automation Collaborative Platform 517

Ctrl+Shift+Enter Inserts a line below the current line. While debugging, when
the insertion point is on a variable it opens the Write Logical
Value dialog box.

Ctrl+Shift+T Transposes the current and previous word (not available while
debugging)

Ctrl+Shift+Alt+T Transposes the current and next line (not available while
debugging)

Ctrl+Space Displays a drop-down combo-box listing available items such
as variables, operators, functions, and function blocks. You can
filter displayed items by typing letters, digits, and underscore
characters. (not available while debugging)

Ctrl+Shift+Space Displays a drop-down combo-box listing available items such
as variables, operators, functions, and function blocks. You can
filter displayed items by typing letters, digits, and underscore
characters. (not available while debugging)

Ctrl+Shift+U Changes the selected text into uppercase (not available while
debugging)

Ctrl+U Changes the selected text into lowercase (not available while
debugging)

Up Arrow Moves up lines and characters

Down Arrow Moves down lines and characters

Left Arrow Moves left across lines and characters

Right Arrow Moves right across lines and characters

Ctrl+Left Arrow Moves to the previous statement or word

Ctrl+Right Arrow Moves to the next statement or word

Home Jumps to the start of the line

End Jumps to the end of the line

Ctrl+Home Jumps to the start of the document

Ctrl+End Jumps to the end of the document

Page Up Jumps to the top of the visible code

Page Down Jumps to the bottom of the visible code

Ctrl+Page Up Jumps to the top of the visible code
518 ISaGRAF 3 Concrete Automation Model - ST Language

Ctrl+Page Down Jumps to the bottom of the visible code

Ctrl+Up Arrow Scrolls up

Ctrl+Down Arrow Scrolls down

Shift+Up Arrow Selects up

Shift+Down Arrow Selects down

Shift+Left Arrow Selects left

Shift+Right Arrow Selects right

Ctrl+Shift+Left Arrow Selects to the previous statement or word

Ctrl+Shift+Right Arrow Selects to the next statement or word

Shift+Home Selects from the insertion point until the start of the line

Shift+End Selects from the insertion point until the end of the line

Ctrl+Shift+Home Selects from the insertion point until the start of the document

Ctrl+Shift+End Selects from the insertion point until the end of the document

Ctrl+Shift+Page Up Selects from the insertion point until the top of the visible code

Ctrl+Shift+Page Down Selects from the insertion point until the end of the visible
code

Ctrl+Shift+W Selects the next word

Shift+Alt+Up Arrow Selects the current and previous lines

Shift+Alt+Down Arrow Selects the current and next lines

Shift+Alt+Left Arrow Selects left on the current line

Shift+Alt+Right Arrow Selects right on the current line

Ctrl+Shift+Alt+Left Arrow Selects available columns in lines of code from the left to right

Ctrl+Shift+Alt+Right Arrow Selects available columns in lines of code from the right to left

Escape Deselects the selected text

Ctrl+I Opens the Variable Selector. While debugging, opens the
Variable Monitoring dialog box.

Ctrl+Shift+I Opens the Variable Selector. While debugging, opens the
Variable Monitoring dialog box.

Ctrl+R Opens the Block Selector. When the insertion point is on a
variable during debugging, it is selected.
Automation Collaborative Platform 519

Ctrl+Alt+R Opens the Block Selector. When the insertion point is on a
variable during debugging, it is selected.

Ctrl+Shift+Alt+R Opens the Block Selector. When the insertion point is on a
variable during debugging, it is selected.

Delete Removes the character on the right (not available while
debugging)

Ctrl+Shift+L Removes the current line (not available while debugging)

Ctrl+Delete Removes the next word in the current line (not available while
debugging)

Ctrl+Backspace Removes the previous word in the current line (not available
while debugging)

Backspace Removes the character on the left (not available while
debugging)

Shift+Backspace Removes the character on the left (not available while
debugging)
520 ISaGRAF 3 Concrete Automation Model - ST Language

Language Reference
The language reference includes information about the usage and limitations of various project
elements and other aspects:

� Programs

� Functions

� Function Blocks

� Execution Rules

� Reserved Keywords

� Variables

� Directly Represented Variables

� Defined Words

� Data Types
Automation Collaborative Platform 521

Programs
Programs, also known as POUs, are logical programming units describing operations between
variables of a process. Programs describe either sequential or cyclic operations. Cyclic
programs are executed at each target system cycle. Sequential programs, representing
sequential operations, are grouped together. The execution of sequential programs has a
dynamic behavior.

Programs before and after sequential programs describe cyclic operations. Cyclic programs are
not time-dependent. Cyclic programs are systematically executed at the beginning of each
run-time cycle. Main sequential programs (at the top of the hierarchy) are executed according
to their respective dynamic behavior.

Programs located at the beginning of a cycle (before sequential programs) typically describe
preliminary operations on input devices to build high level filtered variables. Sequential
programs frequently use these variables. Programs located at the end of the cycle (after
sequential programs) typically describe security operations on the variables operated on by
sequential programs, before sending values to output devices.

Programs are described using the available graphic or literal languages. You specify the
programming language when creating a program; you cannot change the programming
language for an existing program.

POUs defined as programs are executed on the target system respecting the order shown in the
Programs section.

Programs are linked together in a hierarchical tree. Those placed at the top of the hierarchy are
activated by the system. Child-programs (lower level of the hierarchy) are activated by their
parent.

POUs (programs, functions, and function blocks) within a project and dependency libraries
must have unique names. These names can have up to eight (8) characters and must begin with
a letter followed by letters, digits, and single underscores.

Projects can contain up to 255 programs.

Begin Cyclic operations (FDB, LD, ST)

Sequential Sequential operations (SFC, SFC child)

End Cyclic operations (FDB, LD, ST)
522 ISaGRAF 3 Concrete Automation Model - Language Reference

See Also
Execution Rules
Automation Collaborative Platform 523

Functions
Functions are POUs having one or more input parameters and one output parameter. A function
can be called by a program, a function or a function block. A function has no instance meaning
that local data is not stored and is usually lost from one call to the other.

The execution of a function is driven by its parent program. Therefore, the execution of the
parent program is suspended until the function ends:

Any POU of any section can call one or more functions. A function can have local variables.

ISaGRAF does not support recursivity during function calls. When a function of the Functions
section is called by itself or one of its called functions, a build error occurs. Furthermore,
functions do not store the local values of their local variables. Since functions are not
instantiated, these cannot call function blocks.

The interface of a function must be explicitly defined with a type and a unique name for each
of its calling (input) parameters or return (output) parameter. Functions can have up to 31
calling parameters and one return parameter. Return parameters can only have Boolean, Real,
or Time data types.

POUs (programs, functions, and function blocks) within a project and dependency libraries
must have unique names. Function names can have up to eight (8) characters and must begin
with a letter followed by letters, digits, and single underscores. Functions can have a maximum
of 32 parameters (31 inputs and one output). Parameter names have a maximum of 32
characters and must begin with a letter followed by letters, digits, and single underscores.
524 ISaGRAF 3 Concrete Automation Model - Language Reference

Function Blocks
Function blocks are POUs having multiple input and output parameters. These are instantiated
meaning local variables of a function block are copied for each instance. When calling a
function block in a program, you actually call the instance of the block where the same code is
called but the data used is that which has been allocated to the instance. The values of the
variables of an instance are stored from one cycle to the other.

Function blocks can be called by any POU in the project. Function blocks can call functions or
other function blocks.

The interface of a function block must be explicitly defined with a type and a unique name for
each of its calling (input) parameters or return (output) parameters. Function blocks can have
more than one output parameter. The value of a return parameter for a function block differs
for the various programming languages.

POUs (programs, functions, and function blocks) within a project and dependency libraries
must have unique names. Function block names can have up to eight (8) characters and must
begin with a letter followed by letters, digits, and single underscores. Function blocks can have
a maximum of 32 parameters. Parameter names have a maximum of 32 characters and must
begin with a letter followed by letters, digits, and single underscores.
Automation Collaborative Platform 525

Execution Rules
The execution of a control application is a synchronous system where a clock triggers all
operations for a device. The basic duration of the clock is called the cycle timing for a device.

1. Scan input variables.

2. Process "Begin" section programs.

3. Process "Sequential" section programs according to execution rules.

4. Process "End" section rules.

5. Process Modbus messages.

6. Update output devices.

7. Save retained values.

8. Sleep until next cycle.

When a cycle time is specified, a device waits until this time has elapsed before starting the
execution of a new cycle. The POUs execution time varies depending on the size of the
application. When a cycle exceeds the specified time, the loop continues to execute the cycle
but sets an overrun flag. In such a case, the application no longer runs in real time.

When a cycle time is not specified, a device performs all programs then restarts a new cycle
without waiting.
526 ISaGRAF 3 Concrete Automation Model - Language Reference

Reserved Keywords
Reserved keywords are unavailable for use as names of POUs or variables.

A ABS, ACOS, ADD, ANA, AND, AND_MASK, ANDN, ARRAY, ASIN, AT,
ATAN,

B BCD_TO_BOOL, BCD_TO_INT, BCD_TO_REAL, BCD_TO_STRING,
BCD_TO_TIME, BOO, BOOL, BOOL_TO_BCD, BOOL_TO_INT,
BOOL_TO_REAL, BOOL_TO_STRING, BOOL_TO_TIME, BY, BYTE,

C CAL, CALC, CALCN, CALN, CALNC, CASE, CONCAT, CONSTANT, COS,

D DATE, DATE_AND_TIME, DATE_AND_TIME_TO_DATE,
DATE_AND_TIME_TO_TIME_OF_DATE, DELETE, DINT, DIV, DO, DT,
DWORD,

E ELSE, ELSIF, EN, END_CASE, END_FOR, END_FUNCTION, END_IF,
END_PROGRAM, END_REPEAT, END_RESOURCE, END_STRUCT,
END_TYPE, END_VAR, END_WHILE, ENO, EQ, EXIT, EXP, EXPT,

F FALSE, FEDGE, FIND, FOR, FUNCTION,

G GE, GFREEZE, GKILL, GRST, GSTART, GSTATUS, GT,

I IF, INSERT, INT, INT_TO_BCD, INT_TO_BOOL, INT_TO_REAL,
INT_TO_STRING, INT_TO_TIME,

J JMP, JMPC, JMPCN, JMPN, JMPNC,

L LD, LDN, LE, LEFT, LEN, LIMIT, LINT, LN, LOG, LREAL, LT, LWORD,

M MAX, MID, MIN, MOD, MOVE, MSG, MUL, MUX,

N NE, NOT,

O OF, ON, OPERATE, OR, OR_MASK, ORN,

P PROGRAM

R R, READ_ONLY, READ_WRITE, REAL, REAL_TO_BCD, REAL_TO_BOOL,
REAL_TO_INT, REAL_TO_STRING, REAL_TO_TIME, REDGE, REPEAT,
REPLACE, RESOURCE, RET, RETAIN, RETC, RETCN, RETN, RETNC,
RETURN, RIGHT, ROL, ROR,
Automation Collaborative Platform 527

S S, SEL, SHL, SHR, SIN, SINT, SQRT, ST, STN, STRING, STRING_TO_BCD,
STRING_TO_BOOL, STRING_TO_INT, STRING_TO_REAL,
STRING_TO_TIME, STRUCT, SUB, SYS_ERR_READ, SYS_ERR_TEST,
SYS_INITALL, SYS_INITANA, SYS_INITBOO, SYS_INITTMR,
SYS_RESTALL, SYS_RESTANA, SYS_RESTBOO, SYS_RESTTMR,
SYS_SAVALL, SYS_SAVANA, SYS_SAVBOO, SYS_SAVTMR,
SYS_TALLOWED, SYS_TCURRENT, SYS_TMAXIMUM,
SYS_TOVERFLOW, SYS_TRESET, SYS_TWRITE, SYSTEM,

T TAN, TASK, THEN, TIME, TIME_OF_DAY, TIME_TO_BCD,
TIME_TO_BOOL, TIME_TO_INT, TIME_TO_REAL, TIME_TO_STRING,
TMR, TO, TOD, TRUE, TSTART, TSTOP, TYPE,

U UDINT, UINT, ULINT, UNTIL, USINT,

V VAR, VAR_ACCESS, VAR_EXTERNAL, VAR_GLOBAL, VAR_IN_OUT,
VAR_INPUT, VAR_OUTPUT

W WHILE, WITH, WORD

X XOR, XOR_MASK, XORN
528 ISaGRAF 3 Concrete Automation Model - Language Reference

Variables
The scope of variables can be local to a POU or global to a device. Local variables are available
for use within one POU only. Global variables are available for use within any POU of the
device.

� Name, limited to 32 characters beginning with a letter followed by letters, digits, and
single underscore characters. These names cannot have two consecutive underscore
characters.

� Data Type, possible values are Boolean, Double Integer, Real, Time, Message, function
blocks, and one-dimensional arrays. Arrays are only available for the BOOL, DINT,
REAL, and TIME data types; these are not available for the MESSAGE type.

� Logical Value, available when online. The displayed value differs depending on the
direction of the variable: inputs are locked values and outputs are updated by the running
TIC code.

� Physical Value, available when online. The displayed value differs depending on the
direction of the variable: inputs are updated by the field value and outputs are locked.

� String Size, for message type variables, indicates the maximum length. String capacity is
limited to 252 characters excluding the terminating null character (0), a byte for the
current length of the string, and a byte for the maximum length of the string.

� Dimension, the size (number of elements) of an array. Arrays can ony have one
dimension. Arrays can have a maximum of 255 elements. For example, [6] represents a
one-dimensional array containing elements from 0 to 5.

� Wiring, (read-only cell) generated by the I/O wiring tool indicating the I/O channel to
which the variable is wired. You can only wire global variables. Uses the syntax of
Directly Represented Variables.

� Attribute, property of a variable indicating its read and write access rights. Possible
values are read, write, and read-write.

� Direction, for I/O wiring, wired variables can only be global. The direction of a variable
affects the logical value and physical value.
Automation Collaborative Platform 529

� Modbus Address, modbus address of the variable. The format is hexadecimal and the
value ranges from 0001 to FFFF.

� Retained, the indication of whether the value of the variable is saved by the virtual
machine at each cycle. For details on retaining, i.e., backing up, variables, refer to the
SYSTEM operator. Possible values are Yes or No.

� Initial Value, value held by a variable when the virtual machine starts the execution of the
device. The initial value of a variable can be the default value, a value given by the user
when the variable is defined or the value of the retain variable after the virtual machine
has stopped. You can set initial values for POU variables and global variables.

� Unit, string identifying the physical unit at debug time. Free-format text.

� Comment, user-defined free format text

Although function block instances are declared using variables, these variables do not follow
rules applying to elementary or derived type variables. These variables can only have the var
direction and the read-write attribute.
530 ISaGRAF 3 Concrete Automation Model - Language Reference

Directly Represented Variables
The system enables the use of directly represented variables in the source of programs to
represent a free channel. Free channels are those not linked to a declared I/O variable. The
identifier of a directly represented variable always begins with the "%" character.

The naming conventions of a directly represented variable for a channel of a single board. "s"
is the slot number of the board. "c" is the number of the Channel:

The naming conventions of a directly represented variable for a channel of a complex
equipment. "s" is the slot number of the equipment. "b" is the index of the single board within
the complex equipment. "c" is the number of the channel:

Example

%QX1.6 6th channel of the board #1 (Boolean output)
%ID2.1.7 7th channel of the board #1 in the equipment #2 (integer input)

%IXs.c free channel of a Boolean input board

%IDs.c free channel of an integer input board

%ISs.c free channel of a message input board

%QXs.c free channel of a Boolean output board

%QDs.c free channel of an integer output board

%QSs.c free channel of a message output board

%IXs.b.c free channel of a Boolean input board

%IDs.b.c free channel of an integer input board

%ISs.b.c free channel of a message input board

%QXs.b.c free channel of a Boolean output board

%QDs.b.c free channel of an integer output board

%QSs.b.c free channel of a message output board
Automation Collaborative Platform 531

Defined Words
ISaGRAF supports the use of identifier names, called defined words. When building, defined
words are replaced by the variables and expressions these represent. Defined words can have
the following:

� common scope, i.e., available for use in any project on the computer

� global scope, i.e., available for use in any POU of a project

� local scope, i.e., available for use in only one POU of a project

For POUs, a defined word can replace literal expressions, boolean expressions, reserved
keywords, or complex ST expressions.

The following are examples of defined words:

When such an equivalence is defined, its identifier is available anywhere in an ST program to
replace the attached expression. The following ST programming example uses defined words:

If OK Then
angle := PI / 2.0;
isdone := YES;
End_if;

When the same identifier is defined twice with different ST equivalencies, the last defined
expression is used:
532 ISaGRAF 3 Concrete Automation Model - Language Reference

Programs can contain up to 255 defined words. Names of defined words can have up to 32
characters and must begin with a letter followed by letters, digits, and single underscore
characters. The last character can be either a letter or a digit.

The definition of a defined word cannot contain a defined word. Note the invalid definition
(with strikethrough mark) in the following defined word examples:

Define: OPEN is FALSE

OPEN is TRUE

means: OPEN is TRUE

PI is 3.14159
PI2 is PI*2

PI2 is 6.28318
Automation Collaborative Platform 533

Data Types
Any literal, expression, or variable used in a POU (written in any language) must be
characterized by a data type. Data type coherence must be followed in graphic operations and
literal statements. You can program objects using the following elementary IEC 61131-3 types:

� BOOL: logic (true or false) value

� DINT - Integer: integer value-32 bit

� REAL - Real: real (floating) value 32-bit

� TIME: time values less than one day; these value types cannot store dates (32 bit)

� MESSAGE: character string having a defined size, representing the maximum number of
characters the string can contain. For example, to define MyString as a string containing
10 characters, enter MyString(10).

For global and local variables other than MESSAGE type, you can create arrays having one
dimension. Upon creation of such arrays, you can choose to retain the values and specify initial
values. The following example shows the MyVar variable of type BOOLEAN having a
dimension defined as follows:

[10]

FOR i = 0 TO 9 DO
MyVar[i] := FALSE;
END_FOR;
534 ISaGRAF 3 Concrete Automation Model - Language Reference

Boolean Data Type

Boolean variables (BOOL) can take one of the Boolean values: TRUE or FALSE. Boolean
variables are typically used in Boolean expressions. Boolean variables can have one of the
following attributes:

� Internal: memory variable updated by the program

� Constant: read-only memory variable with an initial value

� Input: variable connected to an input device (refreshed by the system)

� Output: variable connected to an output device

For Boolean literal expressions, ISaGRAF targets evaluate all parts of such expressions.
Whereas, the IEC 61131-3 standard states that Boolean expressions may be evaluated only to
the extent necessary to determine the resultant value. In the following example according to the
IEC 61131-3 standard, if B is zero then the first expression (B <> 0) is false and the second
expression (A/B > 0) is not performed.

if ((B <> 0) and (A/B > 0)) then

GREATER := true;

else

GREATER := false;

end_if;

Boolean literal expressions are the following:

� TRUE is equivalent to the integer value 1

� FALSE is equivalent to the integer value 0
Automation Collaborative Platform 535

Double Integer Data Type

Double integer variables are 32-bit signed integer values ranging from -2147483647 to
+2147483647. Double Integer variables can have one of the following attributes:

� Internal: memory variable updated by the program

� Constant: read-only memory variable with an initial value

� Input: variable connected to an input device (refreshed by the system)

� Output: variable connected to an output device

Warning: A double integer expression cannot contain integer and real variables or literal
expressions.

A bit of an integer variable can be accessed using the following syntax:

MyVar.i
If MyVar is an Integer.
MyVar.i is a Boolean. "i" must be a literal value from 0 to 31.

Integer literal values represent signed long integer (32-bit) values ranging from -2147483647
to +2147483647. Integer literals may be expressed with one of the following bases. Integer
literals must begin with a prefix identifying the base used:

The underscore character ('_') may be used to separate groups of digits. The underscore
character has no particular significance other than to improve literal value readability.

Base Prefix Example

DECIMAL (none) -908

HEXADECIMAL "16#" 16#1A2B3C4D

OCTAL "8#" 8#1756402

BINARY "2#" 2#1101_0001_0101_1101_0001_0010_1011_1001
536 ISaGRAF 3 Concrete Automation Model - Language Reference

Real Data Type

Real variables are standard IEEE 32-bit floating values (single precision) composed of 1 sign
bit + 23 mantissa bits + 8 exponent bits. A real variable has six significant digits. For larger
values, the maximum possible value is ±3.402823466E+38 while for smaller values, the
minimum possible value is ±1.175494351E-38. Therefore, values greater than
±3.402823466E+38 and greater than 0.0 but less than ±1.175494351E-38 are not supported.
The following example shows the value ranges including 0.0 that are supported for real
variables:

Real variables can have one of the following attributes:

� Internal: memory variable updated by the program

� Constant: read-only memory variable with an initial value

� Input: variable connected to an input device (refreshed by the system)

� Output: variable connected to an output device

When a real variable is connected to an I/O device, the corresponding I/O driver operates the
equivalent integer value.

Real literal values can be written with either decimal or scientific representation. The decimal
point ('.') separates the integer and decimal parts. The decimal point differentiates a real literal
value from an integer value. The scientific representation uses the 'E' or 'F' letter to separate the
mantissa part and the exponent. The exponent part of a real scientific expression must be a
signed integer value ranging from -37 to +37.
Automation Collaborative Platform 537

Example

The expression "123" does not represent a Real literal value. Its correct real representation is
"123.0".

3.14159 -1.0E+12

+1.0 1.0E-15

-789.56 +1.0E-37
538 ISaGRAF 3 Concrete Automation Model - Language Reference

Time Data Type

Time variables are typically used in Time expressions. A Time value represents positive values
from 0 to 23h59m59s999ms. Time variables are stored in 32 bit words. The internal
representation is a positive number of milliseconds. Time variables can be used with timer
function blocks such as TOF and TON. Timer variables can have one of the following
attributes:

� Internal: memory variable managed by the program, refreshed by the system

� Constant: read-only memory variable with an initial value

Warning: Time variables cannot have the INPUT or OUTPUT attributes.

When a timer is active, its value is automatically increased according to the target system
real-time clock. The following ST- language statements can be used to control a timer:

� TSTART, starts automatic refresh of a timer

� TSTOP, stops automatic refresh of a timer

Time literal values represent time values from 0 to 23h59m59s999ms. The lowest allowed unit
is a millisecond. Standard time units used in literal values are:

The time literal value must begin with "T#" or "TIME#" prefix. Prefixes and unit letters are not
case sensitive. Some units may not appear.

Example

T#1H450MS 1 hour, 450 milliseconds
time#1H3M 1 hour, 3 minutes

Hours The "h" letter must follow the number of hours

Minutes The "m" letter must follow the number of minutes

Seconds The "s" letter must follow the number of seconds

Milliseconds The "ms" letters must follow the number of milliseconds
Automation Collaborative Platform 539

Message Data Type

Message variables contain character strings. The length of the string can change during process
operations. The length of a string variable cannot exceed the capacity (maximum length)
specified when the variable is declared. String capacity is limited to 252 characters excluding
the terminating null character (0), a byte for the current length of the string, and a byte for the
maximum length of the string.

Message variables can contain any character of the standard ASCII table (ASCII code from 0
to 255). The null character (0) can exist in a character string, however, it indicates the end of
the string.

Message literal values represent character strings. Characters must be preceded and followed
by single quote (') characters. For example:

'THIS IS A MESSAGE'

Warning: When placing single quote (‘) characters within a message literal, these characters
must be preceded by the dollar ($) character. In the following message literal, note the dollar
character preceding the single quote character.

'THIS IS $' A MESSAGE'

A message literal value must be expressed on one line of the program source code. Its length
cannot exceed 252 characters, including spaces.

Empty message literal values are represented two single quote (') characters, with no space or
tab character between them:

'' (* this is an empty string *)

The dollar ('$') special character, followed by other special characters, can be used in a message
literal value to represent a non-printable character:

Sequence Meaning ASCII (hex) Example

$$ '$' character 16#24 'I paid $$5 for this'

$' apostrophe 16#27 'Enter $'Y$' for YES'

$L line feed 16#0a 'next $L line'
540 ISaGRAF 3 Concrete Automation Model - Language Reference

(*) "hh" is the hexadecimal value of the ASCII code for the expressed character.

$R carriage return 16#0d ' llo $R He'

$N new line 16#0d0a 'This is a line$N'

$P new page 16#0c 'lastline $P first line'

$T tabulation 16#09 'name$Tsize$Tdate'

$hh (*) any character 16#hh 'ABCD = $41$42$43$44'
Automation Collaborative Platform 541

542 ISaGRAF 3 Concrete Automation Model - Language Reference

Operators
The following are Operators of the IEC 61131-3 languages:

Arithmetic operations Addition Adds two or more variables

Division Divides two variables

Multiplication Multiplies two or more variables

Subtraction Subtracts a variable from another

1 GAIN Assigns one variable into another

NEG Integer negation

Boolean operations AND Boolean AND

OR Boolean OR

XOR Boolean exclusive OR

Comparator Less Than Tests if one value is less than another

Less Than or Equal Tests if one value is less than or equal to
another

Greater Than Tests if one value is greater than another

Greater Than or Equal Tests if one value is greater than or equal
to another

Equal Tests if one value is equal to another

Not Equal Tests if one value is not equal to another

Concatenation CAT Concatenates multiple messages into one

Data conversion BOO Converts to Boolean

ANA Converts to real

REAL Converts to real

MSG Converts to message

OPERATE Varies depending on the implementation
of the treated I/O

TMR Converts to time

SYSTEM Accesses the system parameters
Automation Collaborative Platform 543

Multiplication

Note: For this operator, the number of inputs can be extended to more than two.

Arguments:

Description:

Multiplication of two or more integer or real variables.

Example

(* FBD example with Multiplication Operators *)

(* ST equivalence *)

ao10 := ai101 * ai102;

(inputs) DINT - REAL can be INTEGER or REAL
(all inputs must have the same format)

output DINT - REAL multiplication of the input terms
544 ISaGRAF 3 Concrete Automation Model - Operators

Addition

Note: For this Operator, the number of inputs can be extended to more than two.

Arguments:

Description:

Addition of two or more integer or real variables.

Example

(* FBD example with Addition Operators *)

(* ST equivalence: *)

ao10 := ai101 + ai102;

(inputs) DINT - REAL can be INTEGER or REAL
(all inputs must have the same format)

output DINT - REAL addition of the input terms
Automation Collaborative Platform 545

Subtraction

Arguments:

Description:

Subtraction of two integer or real variables (first - second).

Example

(* FBD example with Subtraction Operators *)

(* ST equivalence: *)

ao10 := ai101 - ai102;

IN1 DINT - REAL can be integer or real format

IN2 DINT - REAL (IN1 and IN2 must have the same
format)

Q DINT - REAL subtraction (first - second)
546 ISaGRAF 3 Concrete Automation Model - Operators

ao5 := (ai51 - 1) - ai53;
Automation Collaborative Platform 547

Division

Arguments:

Description:

Division of two integer or real variables (the first divided by the second).

Example

(* FBD example with Division Operators *)

IN1 DINT - REAL can be integer or real format
(operand)

IN2 DINT - REAL non-zero integer or real value
(divisor)
(IN1 and IN2 must have the same
format)

Q DINT - REAL integer or real division of IN1 by
IN2
548 ISaGRAF 3 Concrete Automation Model - Operators

(* ST Equivalence: *)

ao10 := ai101 / ai102;

ao5 := (ai5 / 2) / ai53;
Automation Collaborative Platform 549

1 GAIN

Arguments:

Description:

The assignment of one variable into another

This Block is very useful to directly link a diagram input and a diagram output. It can also be
used (with a Boolean negation line) to invert the state of a line connected to a diagram output.

Example

(* FBD example with assignment Operators *)

(* ST equivalence: *)

ao23 := ai10;

bo100 := NOT (bi1 AND bi2);

IN DINT - BOOL - MESSAGE - REAL -
TIME

Q DINT - BOOL - MESSAGE - REAL -
TIME

IN and Q must have the same format
550 ISaGRAF 3 Concrete Automation Model - Operators

AND

Note: For this Operator, the number of inputs can be extended to more than two.

Arguments:

Description:

Boolean AND between two or more terms.

In the text editor, the ’&’ character can be used as well as typing AND.

Example

(* FBD example with "AND" Operators *)

(* ST equivalence 1: *)

bo10 := bi101 AND NOT (bi102);

(inputs) BOOL

output BOOL Boolean AND of the input terms
Automation Collaborative Platform 551

(* ST equivalence 2: *)

bo10 := bi101 & NOT (bi102);
552 ISaGRAF 3 Concrete Automation Model - Operators

BOO

Arguments:

Description:

Converts a non-boolean variable to a boolean variable.

Example

(* FBD example with "BOO" operators *)

(* ST equivalence: *)

ares := BOO (10);(* ares is TRUE *)

tres := BOO (t#0s);(* tres is FALSE *)

mres := BOO ('false');(* mres is FALSE *)

IN DINT- MESSAGE -
REAL - TIME

A non-boolean value

Q BOOL TRUE for non-zero numerical value
FALSE for zero numerical value
TRUE for 'TRUE' message
FALSE for 'FALSE' message
Automation Collaborative Platform 553

CAT

Arguments:

Description:

Concatenates multiple messages into one message.

Example

(* FBD example with "CAT" Operator *)

(* ST equivalence: *)

myname := ('Mr' + ' ') + 'Jones';

(* means: MyName := 'Mr Jones' *)

(inputs) MESSAGE The number of inputs can be extended to more than
two. However, the addition of all message lengths
must not exceed output message capacity.

output MESSAGE Concatenation of the input messages
554 ISaGRAF 3 Concrete Automation Model - Operators

Equal

Arguments:

Description

Test if one value is EQUAL TO another one (on integer, real, bool, and message variables)

Example

(* FBD example with "Is Equal to" Operators *)

(* ST Equivalence: *)

aresult := (10 = 25); (* aresult is FALSE *)

mresult := ('ab' = 'ab'); (* mresult is TRUE *)

IN1 DINT - BOOL - MESSAGE - REAL Both inputs must have the same format.

IN2 DINT - BOOL - MESSAGE - REAL

Q BOOL TRUE if IN1 = IN2
Automation Collaborative Platform 555

Greater Than or Equal

Arguments:

Description:

Test if one value is GREATER THAN or EQUAL TO another one (on integer, real, bool, and
message variables)

Example

(* FBD example with "Greater or Equal to" Operators *)

(* ST Equivalence: *)

aresult := (10 >= 25); (* aresult is FALSE *)

mresult := ('ab' >= 'ab'); (* mresult is TRUE *)

IN1 DINT - BOOL - MESSAGE - REAL Both inputs must have the same type.

IN2 DINT - BOOL - MESSAGE - REAL

Q BOOL TRUE if IN1 >= IN2
556 ISaGRAF 3 Concrete Automation Model - Operators

Greater Than

Arguments:

Description:

Test if one value is GREATER THAN another one (on integer, real, bool, time, and message
variables)

Example

(* FBD example with "Greater than" Operators *)

(* ST Equivalence: *)

aresult := (10 > 25); (* aresult is FALSE *)

mresult := ('ab' > 'a'); (* mresult is TRUE *)

IN1 DINT - BOOL - MESSAGE - REAL -
TIME

Both inputs must have the same type

IN2 DINT - BOOL - MESSAGE - REAL -
TIME

Q BOOL TRUE if IN1 > IN2
Automation Collaborative Platform 557

ANA

Arguments:

Description:

Converts a non-integer variable to an integer variable.

Example

(* FBD example with "ANA" operators *)

(* ST equivalence: *)

bres := ANA (true);(* bres is 1 *)

tres := ANA (t#1s46ms);(* tres is 1046 *)

mres := ANA ('0198');(* mres is 198 *)

IN BOOL - MESSAGE
- REAL - TIME

A non-integer value

Q DINT 0 if IN is FALSE / 1 if IN is TRUE
Number of milliseconds for a timer
Integer part for real
Decimal number represented by a string
558 ISaGRAF 3 Concrete Automation Model - Operators

REAL

Arguments:

Description:

Converts a non-real variable to a real variable.

Example

(* FBD example with "REAL" operators *)

(* ST Equivalence: *)

IN DINT - BOOL -
MESSAGE - TIME

A non-real value (no message)

Q REAL 0.0 if IN is FALSE / 1.0 if IN is TRUE
Number of milliseconds for a timer
Equivalent number for integer

bres := REAL (true); (* bres is 1.0 *)

tres := REAL (t#1s46ms); (* tres is 1046.0 *)

ares := REAL (198); (* ares is 198.0 *)
Automation Collaborative Platform 559

SYSTEM

Arguments:

Description:

Accesses the system parameters to enable performing the following tasks:

� Reading various cycle timing information and changing cycle timing

� Resetting timing counters

� Checking for and reading run-time errors

� Backing up, saving, and restoring variables

The following are the available commands (pre-defined keywords) and expected arguments for
the SYSTEM operator:

MODE DINT Identifies the system parameter and the
access mode

ARG DINT New value for a "write" access

PARAM DINT Value of the accessed parameter

Command Meaning Argument Value Return Value

SYS_TALLOWED reads allowed cycle timing 0 1 allowed cycle timing

SYS_TCURRENT reads current cycle timing 0 2 current cycle timing

SYS_TMAXIMUM reads maximum cycle timing 0 3 maximum detected
timing

SYS_TOVERFLOW reads cycle timing overflows 0 4 number of timing
overflows
560 ISaGRAF 3 Concrete Automation Model - Operators

SYS_TWRITE changes cycle timing new
allowed
cycle
timing

5 written time

SYS_TRESET resets timing counters 0 6 0

SYS_ERR_TEST checks for run time errors 0 16 0 if no error detected

SYS_ERR_READ reads oldest run time error 0 17 oldest error code

SYS_INITBOO backs up init Boolean memory
address

32 next free address

SYS_SAVBOO saves Booleans 0 33 zero if OK

SYS_RESTBOO restores Booleans 0 34 zero if OK

SYS_INITANA backs up init analog memory
address

36 next free address

SYS_SAVANA saves analogs 0 37 zero if OK

SYS_RESTANA restores analogs 0 38 zero if OK

SYS_INITTMR backs up init timer memory
address

40 next free address

SYS_SAVTMR saves timers 0 41 zero if OK

SYS_RESTTMR restores timers 0 42 zero if OK

SYS_INITALL backs up init all types memory
address

44 next free address

SYS_SAVALL saves all types 0 45 zero if OK

SYS_RESTALL restores all types 0 46 zero if OK

Command Meaning Argument Value Return Value
Automation Collaborative Platform 561

When backing up variables for a specific type or for all types, you need to define the memory
backup location using the following syntax:

<new_address> := SYSTEM(SYS_INITxxx,<address>);

where:

<address> is the memory backup address location (16# value for Hexadecimal format). The
location must be an even address or the operation fails.

SYS_INITxxx can be one of the following:
SYS_INITBOO to define memory backup location for all Boolean variables.
SYS_INITANA to define memory backup location for all analog variables.
SYS_INITTMR to define memory backup location for all timer variables.
SYS_INITALL to define memory backup location for all Boolean, analog, and timer variables.

<new_address> gets the next free address, i.e., <address> + size of backed up variables (in
bytes) according to SYS_INITxxx. This enables verifying the size of the required memory
backup. If the operation fails, <new_address> gets a zero value.

After having defined the backup memory location, you can perform backups of the variables
at any time during the application. The backup is performed once only at the end of the current
cycle. If the hardware delivers a Boolean input or a C function to inform of a power failure and
allows at least one cycle delay before closing down, the backup may only be performed after
detecting the power failure.

<error> :=SYSTEM(SYS_SAVxxx,0);

where:

SYS_SAVxxx can be one of the following:
SYS_SAVBOO to ask for all Boolean variables backup.
SYS_SAVANA to ask for all analog variables backup.
SYS_SAVTMR to ask for all timer variables backup.
SYS_SAVALL to ask for all Boolean, analog and timer variables backup.

<error> gets an error status other than zero when the operation fails (SYS_INITxxx is not
called).

You can restore variables at any time during the application. The restoration is performed once
only at the end of the current cycle. To ensure that the backed up data is valid, an analog
562 ISaGRAF 3 Concrete Automation Model - Operators

variable should be set to a constant value used as a signature.

<error> := SYSTEM(SYS_RESTxxx,0);

where:

SYS_RESTxxx can be one of the following:
SYS_RESTBOO to restore all Boolean variables.
SYS_RESTANA to restore all analog variables.
SYS_RESTTMR to restore all timer variables.
SYS_RESTALL to restore all Boolean, analog and timer variables.

<error> gets an error status other than zero when the operation fails (SYS_INITxxx is not
performed).

Example

(* FBD example with "SYSTEM" operators *)
Automation Collaborative Platform 563

(* ST Equivalence: *)

alarm := (SYSTEM (SYS_TOVERFLOW, 0) <> 0);

If (alarm) Then

nb_err := nb_err + 1;

rc := SYSTEM (SYS_TRESET, 0);

End_If;
564 ISaGRAF 3 Concrete Automation Model - Operators

Less Than or Equal

Arguments:

Description:

Tests if one value is LESS THAN or EQUAL TO another one (on integer, real, bool, and
message variables)

Example

(* FBD example with "Less or equal to" Operators *)

(* ST Equivalence: *)

aresult := (10 <= 25); (* aresult is TRUE *)

mresult := ('ab' <= 'ab'); (* mresult is TRUE *)

IN1 DINT - BOOL - MESSAGE - REAL Both inputs must have the same type.

IN2 DINT - BOOL - MESSAGE - REAL

Q BOOL TRUE if IN1 <= IN2
Automation Collaborative Platform 565

Less Than

Arguments:

Description:

Test if one value is LESS THAN another one (on integer, real, bool, time, and message
variables)

Example

(* FBD example with "Less than" Operators *)

(* ST Equivalence: *)

aresult := (10 < 25); (* aresult is TRUE *)

mresult := ('z' < 'B'); (* mresult is FALSE *)

IN1 DINT - BOOL - MESSAGE - REAL -
TIME

Both inputs must have the same type

IN2 DINT - BOOL - MESSAGE - REAL -
TIME

Q BOOL TRUE if IN1 < IN2
566 ISaGRAF 3 Concrete Automation Model - Operators

MSG

Arguments:

Description:

Converts an integer, real, boolean, or time variable to a string variable.

Example

(* FBD example with "Convert to Message" blocks *)

(* ST Equivalence: *)

IN DINT - BOOL - REAL - TIME A non-string value

Q MESSAGE ''false' or 'true' if IN is a boolean value
decimal representation if IN is an integer or real

bres := MSG (TRUE); (* bres is 'TRUE' *)

ares := MSG (125); (* ares is '125' *)
Automation Collaborative Platform 567

NEG

Arguments:

Description:

Assignment of the negation of a variable.

Example

(* FBD example with Negation Operators *)

(* ST equivalence: *)

ao23 := - (ai10);

ro100 := - (ri1 + ri2);

IN DINT - REAL Input and output must have the same
format

Q DINT - REAL
568 ISaGRAF 3 Concrete Automation Model - Operators

Not Equal

Arguments:

Description:

Test if one value is NOT EQUAL TO another one (on integer, real, boolean, and message
variables)

Example

(* FBD example with "Is Not Equal to" Operators *)

(* ST Equivalence: *)

aresult := (10 <> 25); (* aresult is TRUE *)

mresult := ('ab' <> 'ab'); (* mresult is FALSE *)

IN1 DINT - BOOL - MESSAGE - REAL both inputs must have the same type

IN2 DINT - BOOL - MESSAGE - REAL

Q BOOL TRUE if first <> second
Automation Collaborative Platform 569

OPERATE

Arguments:

Description:

Accesses an IO channel

Note: The meaning of OPERATE arguments differs from one I/O interface implementation to
another.

IO DINT - BOOL - MESSAGE - REAL -
TIME

Input or output variable

FUNCT DINT Action to be performed

ARG DINT Argument for I/O action

Q DINT Return check
570 ISaGRAF 3 Concrete Automation Model - Operators

OR

Note: For this Operator, the number of inputs can be extended to more than two.

Arguments:

Description:

Boolean OR of two or more terms.

Example

(* FBD example with "OR" Operators *)

(* ST equivalence: *)

bo10 := bi101 OR NOT (bi102);

bo5 := (bi51 OR bi52) OR bi53;

(inputs) BOOL

output BOOL Boolean OR of the input terms
Automation Collaborative Platform 571

TMR

Arguments:

Description:

Converts an integer or real variable to a time one.

Example

(* FBD example with "Convert to Timer" Operators *)

(* ST Equivalence: *)

IN DINT - REAL A non-TIME value
IN (or integer part of IN if it is real)
is the number of milliseconds

Q TIME Time value represented by IN

ares := TMR (1256); (* ares := t#1s256ms *)

rres := TMR (1256.3); (*rres := t#1s256ms *)
572 ISaGRAF 3 Concrete Automation Model - Operators

XOR

Arguments:

Description:

Boolean exclusive OR between two terms.

Example

(* FBD example with "XOR" operators *)

(* ST equivalence: *)

bo10 := bi101 XOR NOT (bi102);

bo5 := (bi51 XOR bi52) XOR bi53;

IN1 BOOL

IN2 BOOL

Q BOOL Boolean exclusive OR of the two input terms
Automation Collaborative Platform 573

574 ISaGRAF 3 Concrete Automation Model - Operators

Functions
The following are the functions supported by the system:

Arithmetic
Operations

ABS Absolute value of a real value

EXPT, POW Exponent, power calculation of real
values

LOG Logarithm of a real value

MOD Modulo

SQRT Square root of a real value

RAND Random value

TRUNC Truncate decimal part of a real value

ACOS, ASIN, ATAN Arc cosine, Arc sine, Arc tangent of
a real value

COS, SIN, TAN Cosine, Sine, Tangent of a real value

Array manipulation ARCREATE Creates an array of integers

ARREAD Reads an element in an array of
integers

ARWRITE Stores (writes) a value in an array of
integers

Binary operations AND_MASK Integer bit-to-bit AND mask

OR_MASK Integer bit-to-bit OR mask

XOR_MASK Integer bit-to-bit Exclusive OR mask

NOT_MASK Integer bit-to-bit negation

ROL, ROR Rotate Left, Rotate Right an integer
value

SHL, SHR Shift Left, Shift Right an integer
value

Boolean operations ODD Odd parity
Automation Collaborative Platform 575

Data manipulation MIN, MAX, LIMIT Minimum, Maximum, Limit

MUX4, MUX8 Multiplexer (4 or 8 entries)

SEL Binary selector

File management (for
ISaGRAF 3
configurations only)

F_CLOSE Closes a binary file

F_EOF Tests if end of a file has been reached

F_ROPEN Opens a binary file in read mode

F_WOPEN Opens a binary file in write mode

FA_READ Reads integer and real variables from
a binary file

FA_WRITE Writes integer and real variables to a
binary file

FM_READ Reads MESSAGE variables from a
binary file

FM_WRITE Writes MESSAGE variables to a
binary file

String manipulation ASCII Character -> ASCII code

CHAR ASCII code -> Character

MLEN Get string length

DELETE, INSERT Delete sub-string, Insert string

FIND, REPLACE Find sub-string, Replace sub-string

LEFT, MID, RIGHT Extract left, middle or right of a
string

Time operations DAY_TIME Gives date or time of the day
576 ISaGRAF 3 Concrete Automation Model - Functions

ABS

Arguments:

Description:

Gives the absolute (positive) value of a real value.

Example

(* FBD Program using "ABS" Function *)

(* ST Equivalence: *)

over := (ABS (delta) > range);

IN IN REAL Any signed real value

ABS Q REAL Absolute value (always positive)
Automation Collaborative Platform 577

ACOS

Arguments:

Description:

Calculates the Arc cosine of a real value.

Example

(* FBD Program using "COS" and "ACOS" Functions *)

(* ST Equivalence: *)

cosine := COS (angle);

result := ACOS (cosine); (* result is equal to angle *)

IN IN REAL Must be in set [-1.0 .. +1.0]

ACOS Q REAL Arc-cosine of the input value (in set [0.0 .. PI])
= 0.0 for invalid input
578 ISaGRAF 3 Concrete Automation Model - Functions

AND_MASK

Arguments:

Description:

Integer AND bit-to-bit mask.

Example

(* FBD example with AND_MASK Operators *)

(* ST Equivalence: *)

parity := AND_MASK (xvalue, 1); (* 1 if xvalue is odd *)

result := AND_MASK (16#abc, 16#f0f); (* equals 16#a0c *)

IN IN DINT Must have integer format

MSK MSK DINT Must have integer format

AND_MASK Q DINT Bit-to-bit logical AND between IN and MSK
Automation Collaborative Platform 579

ARCREATE

Arguments:

Description:

Creates an array of integers.

Warning: There are at most 16 arrays in an application. Arrays contain integer analog values.
As dynamic memory allocation is performed, this function may cause a system error if the
array size is too close to the size of the available memory.

Example

(* FBD Program creating an array of integers*)

ID DINT Identifier of the array (must be in set [0..15])

SIZE DINT Number of elements in the array

OK DINT execution status :
1 = if array has been successfully created
2 = invalid array identifier or array already created
3 = invalid size
4 = not enough memory
580 ISaGRAF 3 Concrete Automation Model - Functions

(* ST Equivalence: *)

array_error := (ARCREATE (ident, 16) <> 1));
Automation Collaborative Platform 581

ARREAD

Arguments:

Description:

Reads an element in an array of integers.

Example

(* FBD program using an array management function*)

(* ST Equivalence: *)

If (array_error) Then Return; End_if;

read_value := ARREAD (ident, index);

(* array_error comes from the ARCREATE call *)

ID DINT Identifier of the array (must be in set [0..15])

POS DINT Position of the element in the array must be in set [0 .. size-1]

Q DINT value of the element read
0 if the arguments are not valid
582 ISaGRAF 3 Concrete Automation Model - Functions

ARWRITE

Arguments:

Description:

Stores (writes) a value in an array of integers.

Example

(* FBD program using an array management function*)

ID DINT Identifier of the array (must be in set [0..15])

POS DINT Position of the element in the array; must be in set [0 .. size-1]

IN DINT New value for the element

OK DINT Execution status:
1 = writing has succeeded
2 = invalid array identifier
3 = invalid index
Automation Collaborative Platform 583

(* ST Equivalence: *)

If (array_error) Then Return; End_if;

write_status := ARWRITE (Ident, Index, value);

(* array_error comes from the ARCREATE call *)
584 ISaGRAF 3 Concrete Automation Model - Functions

ASCII

Arguments:

Description:

Gives the ASCII code of one character in a message string.

Example

(* FBD Program using "ASCII" Function *)

(* ST Equivalence: *)

FirstChr := ASCII (message_input, 1);

(* FirstChr is the ASCII code of the first character of the string *)

IN IN MESSAGE Any non-empty string

Pos Pos DINT Position of the selected character in set [1.. len] (len is the
length of the IN message)

ASCII Code DINT Code of the selected character (in set [0 .. 255])
returns 0 is Pos is out of the string
Automation Collaborative Platform 585

ASIN

Arguments:

Description:

Calculates the Arc sine of a real value.

Example

(* FBD Program using "SIN" and "ASIN" Functions *)

(* ST Equivalence: *)

sine := SIN (angle);
result := ASIN (sine); (* result is equal to angle *)

IN IN REAL Must be in set [-1.0 .. +1.0]

ASIN Q REAL Arc-sine of the input value (in set [-PI/2 .. +PI/2])
= 0.0 for invalid input
586 ISaGRAF 3 Concrete Automation Model - Functions

ATAN

Arguments:

Description:

Calculates the arc tangent of a real value.

Example

(* FBD Program using "TAN" and "ATAN" Function *)

(* ST Equivalence: *)

tangent := TAN (angle);

result := ATAN (tangent); (* result is equal to angle*)

IN IN REAL Any real value

ATAN Q REAL Arc-tangent of the input value (in set [-PI/2 .. +PI/2])
= 0.0 for invalid input
Automation Collaborative Platform 587

CHAR

Arguments:

Description:

Gives a one character message string from a given ASCII code.

Example

(* FBD Program using "CHAR" Function *)

(* ST Equivalence: *)

Display := CHAR (value + 48);

(* value is in set [0..9] *)

(* 48 is the ascii code of '0' *)

(* result is one character string from '0' to '9' *)

Code Code DINT Code in set [0 .. 255]

CHAR Q MESSAGE One character string
the character has the ASCII code given in input Code
(ASCII code is used modulo 256)
588 ISaGRAF 3 Concrete Automation Model - Functions

COS

Arguments:

Description:

Calculates the cosine of a real value.

Example

(* FBD Program using "COS" and "ACOS" Functions *)

(* ST Equivalence: *)

cosine := COS (angle);

result := ACOS (cosine); (* result is equal to angle *)

IN IN REAL Any REAL value

COS Q REAL Cosine of the input value (in set [-1.0 .. +1.0])
Automation Collaborative Platform 589

DAY_TIME

Arguments:

Description:

Gives date or time of the day as a message string.

Example

(* FBD Program using "DAY_TIME" function *)

(* ST Equivalence: *)

Display := Day_Time (0) + ' ; ' + Day_Time (1);

(* Display text format is: 'YYYY/MM/DD ; HH:MM:SS' *)

SEL DINT output selection
0= get current date
1= get current time
2= get day of week

Q MESSAGE time/date expressed on a character string
''YYYY/MM/DD' if SEL = 0
''HH:MM:SS' if SEL = 1
day name if SEL = 2 (ex: 'Monday')
590 ISaGRAF 3 Concrete Automation Model - Functions

DELETE

Arguments:

Description:

Deletes a part of a message string.

Example

(* FBD Program using "DELETE" Function *)

IN IN MESSAGE Any non-empty string

NbC NbC DINT Number of characters to be deleted

Pos Pos DINT Position of the first deleted character
(first character of the string has position 1)

DELETE Q MESSAGE modified string
empty string if Pos < 1
initial string if Pos > IN string length
initial string if NbC <= 0
Automation Collaborative Platform 591

(* ST Equivalence: *)

complete_string := 'ABCD' + 'EFGH'; (* complete_string is 'ABCDEFGH' *)

sub_string := DELETE (complete_string, 4, 3); (* sub_string is 'ABGH'*)
592 ISaGRAF 3 Concrete Automation Model - Functions

EXPT

Arguments:

Description:

Gives the real result of the operation: (base exponent) 'base' being the first argument and
'exponent' the second one.

Example

(* FBD Program using "EXPT" Function *)

(* ST Equivalence: *)

tb_size := ANY_TO_DINT (EXPT (2.0, range));

IN IN REAL Any signed real value

EXP EXP DINT Integer exponent

EXPT Q REAL (IN EXP)
Automation Collaborative Platform 593

F_CLOSE

Arguments:

Description:

Closes a binary file open with functions F_ROPEN or F_WOPEN.

This function is not included in the ISaGRAF simulator.

Example

(* FBD program using file management blocks *)

(* ST Equivalence: *)

file_id := F_ROPEN('data.bin');

ok := F_CLOSE(file_id);

ID DINT File number returned by F_ROPEN or F_WOPEN

OK BOOL return status
TRUE if file close is OK
FALSE if an error occurred
594 ISaGRAF 3 Concrete Automation Model - Functions

F_EOF

Arguments:

Description:

Tests if end of file has been reached.

This function is not included in the ISaGRAF simulator.

Example

(* FBD program using file management blocks *)

ID DINT File number returned by F_ROPEN or F_WOPEN

OK BOOL End of file indicator.
TRUE if end of file has been reached at the last read
or write procedure call.
With FM_READ, the last message read from a file
may not be correct, if the last character is not a string
terminator.
Automation Collaborative Platform 595

(* ST Equivalence: *)

file_id := F_ROPEN('data.bin');

WHILE not(F_EOF(file_id))

VAL := FA_READ(file_id);

END_WHILE;

message_input:= 'last val = ' + msg(VAL);

ok := F_CLOSE(file_id);
596 ISaGRAF 3 Concrete Automation Model - Functions

F_ROPEN

Arguments:

Description:

Opens a binary file in read mode. To be used with FA_READ, FM_READ, and F_CLOSE.

This function is not included in the ISaGRAF simulator.

Example

(* FBD program using file management blocks *)

(* ST Equivalence: *)

file_id := F_ROPEN('c:\data \data.bin');

error := (file_id=0);

PATH MESSAGE May include the access path to the file using the \
or / symbol to specify a directory. To ease
application portability, / or \ is equivalent.

ID DINT File number
0 if an error occurs: file does not exist
Automation Collaborative Platform 597

F_WOPEN

Arguments:

Description:

Opens a binary file in write mode. To be used with FA_WRITE, FM_WRITE, and F_CLOSE.

This function is not included in the ISaGRAF simulator.

Example

(* FBD program using file management blocks *)

(* ST Equivalence: *)

file_id := F_WOPEN('c:\data\data.bin');

error := (file_id=0);

PATH MESSAGE May include the access path to the file using the \
or / symbol to specify a directory. To ease
application portability, / or \ is equivalent.

ID DINT File number
0 if an error occurs. If the file already exists, it is
overwritten
598 ISaGRAF 3 Concrete Automation Model - Functions

FA_READ

Arguments:

Description:

Reads integer variables from a binary file. To be used with F_ROPEN and F_CLOSE. This
procedure makes a sequential access to the file, from the previous position. The first call after
F_ROPEN reads the first four bytes of the file, each call pushes the reading pointer. To check
if the end of file is reached, use F_EOF.

This function is not included in the ISaGRAF simulator.

Example

(* FBD program using file management blocks *)

ID DINT File number: returned by F_ROPEN

Q DINT Integer value read from file
Automation Collaborative Platform 599

(* ST Equivalence: *)

file_id := F_ROPEN('voltramp.bin');

vstart := FA_READ(file_id);

vend := FA_READ(file_id);

vinc := FA_READ(file_id);

delta_tim := tmr(FA_READ(file_id));

ok := F_CLOSE(file_id);
600 ISaGRAF 3 Concrete Automation Model - Functions

FA_WRITE

Arguments:

Description:

Writes integer variables to a binary file. This procedure makes a sequential access to the file,
from the previous position. The first call after F_WOPEN writes the first four bytes of the file,
each call pushes the writing pointer.

This function is not included in the ISaGRAF simulator.

Example

(* FBD program using file management blocks*)

ID DINT File number: returned by F_WOPEN

IN DINT Integer value to be written in the file

OK BOOL Execution status: TRUE if ok
Automation Collaborative Platform 601

(* ST Equivalence: *)

file_id := F_WOPEN('voltramp.bin');

nb_written := 0;

nb_written := nb_written + dint(FA_WRITE(file_id,vstart));

nb_written := nb_written + dint(FA_WRITE(file_id,vend));

nb_written := nb_written + dint(FA_WRITE(file_id,vinc));

nb_written := nb_written + dint(FA_WRITE(file_id,dint(delta_tim)));

ok := F_CLOSE(file_id);

IF (nb_written <> 4) THEN

ERROR := ERR_FILE;
602 ISaGRAF 3 Concrete Automation Model - Functions

END_IF;
Automation Collaborative Platform 603

FM_READ

Arguments:

Description:

Reads message variables from a binary file. To be used with F_ROPEN and F_CLOSE. This
procedure makes a sequential access to the file, from the previous position. The first call after
F_ROPEN reads the first string of the file, each call pushes the reading pointer. A string is a
terminated by null (0), end of line ('\n') or return ('\r'); To check if the end of file is reached, use
F_EOF.

This function is not included in the ISaGRAF simulator.

Example

(* FBD program using file management blocks *)

ID DINT file number: returned by F_ROPEN

Q MESSAGE message value read from file
604 ISaGRAF 3 Concrete Automation Model - Functions

(* ST Equivalence: *)

file_id := F_ROPEN('voltramp.bin');

status1 := FM_READ(file_id);

status2 := FM_READ(file_id);

IF (F_EOF(file_id)) THEN

error := err_file;

unused_eof_mes := FM_READ(file_id);

END_IF;

ok := F_CLOSE(file_id);
Automation Collaborative Platform 605

FM_WRITE

Arguments:

Description:

Writes message variables to a binary file. To be used with F_WOPEN and F_CLOSE. A
message is written in the file as a null terminated string. This procedure makes a sequential
access to the file, from the previous position. The first call after F_WOPEN writes the first
string to the file, each call pushes the writing pointer.

This function is not included in the ISaGRAF simulator.

Example

(* FBD program using file management blocks*)

ID DINT File number: returned by F_WOPEN

IN MESSAGE Message value to be written in the file

OK BOOL Execution status: TRUE if successful
606 ISaGRAF 3 Concrete Automation Model - Functions

(* ST Equivalence: *)

file_id := F_WOPEN('trace.txt');

ok := FM_WRITE(file_id,'First message');

ok := FM_WRITE(file_id,'Last message');

ok := F_CLOSE(file_id);
Automation Collaborative Platform 607

FIND

Arguments:

Description:

Finds a sub-string in a message string. Gives the position in the string of the sub-string.

Example

(* FBD Program using "FIND" Function *)

(* ST Equivalence: *)

complete_string := 'ABCD' + 'EFGH'; (* complete_string is 'ABCDEFGH' *)

found := FIND (complete_string, 'CDEF'); (* found is 3 *)

In In MESSAGE Any message string

Pat Pat MESSAGE Any non-empty string (Pattern)

FIND Pos DINT = 0 if sub string Pat not found
= position of the first character of the first occurrence of the
sub-string Pat
(first position is 1)
this function is case sensitive
608 ISaGRAF 3 Concrete Automation Model - Functions

INSERT

Arguments:

Description:

Inserts a sub-string in a message string at a given position.

Example

(* FBD Program using "INSERT" Function *)

(* ST Equivalence: *)

IN IN MESSAGE Initial string

Str Str MESSAGE String to be inserted

Pos Pos DINT Position of the insertion
the insertion is done before the position
(first valid position is 1)

INSERT Q MESSAGE Modified string
empty string if Pos <= 0
concatenation of both strings if Pos is greater than the length
of the IN string
Automation Collaborative Platform 609

MyName := INSERT ('Mr JONES', 'Frank ', 4);

(* MyName is 'Mr Frank JONES' *)
610 ISaGRAF 3 Concrete Automation Model - Functions

LEFT

Arguments:

Description:

Extracts the left part of a message string. The number of characters to be extracted is given.

Example

(* FBD Program using "LEFT" and "RIGHT" Functions *)

(* ST Equivalence: *)

complete_string := RIGHT ('12345678', 4) + LEFT ('12345678', 4);

(* complete_string is '56781234'

IN IN MESSAGE Any non-empty string

NbC NbC DINT Number of characters to be extracted. This number cannot be
greater than the length of the IN string.

LEFT Q MESSAGE Left part of the IN string (its length = NbC)
empty string if NbC <= 0
complete IN string if NbC >= IN string length
Automation Collaborative Platform 611

the value issued from RIGHT call is '5678'

the value issued from LEFT call is '1234'

*)
612 ISaGRAF 3 Concrete Automation Model - Functions

LIMIT

Arguments:

Description:

Limits an integer value into a given interval. Whether it keeps its value if it is between
minimum and maximum, or it is changed to maximum if it is above, or it is changed to
minimum if it is below.

Example

(* FBD Program using "LIMIT" Function *)

(* ST Equivalence: *)

new_value := LIMIT (min_value, value, max_value);

(* bounds the value to the [min_value..max_value] set *)

MIN MIN DINT Minimum allowed value

IN IN DINT Any signed integer value

MAX MAX DINT Maximum allowed value

LIMIT Q DINT Input value bounded to allowed range
Automation Collaborative Platform 613

LOG

Arguments:

Description:

Calculates the logarithm (base 10) of a real value.

Example

(* FBD Program using "LOG" Function *)

(* ST Equivalence: *)

xpos := ABS (xval);

xlog := LOG (xpos);

IN IN REAL Must be greater than zero

LOG Q REAL Logarithm (base 10) of the input value
614 ISaGRAF 3 Concrete Automation Model - Functions

MAX

Arguments:

Description:

Gives the maximum of two integer values.

Example

(* FBD Program using "MIN" and "MAX" Function *)

(* ST Equivalence: *)

new_value := MAX (MIN (max_value, value), min_value);

(* bounds the value to the [min_value..max_value] set *)

IN1 IN1 DINT Any signed integer value

IN2 IN2 DINT (cannot be REAL)

MAX Q DINT Maximum of both input values
Automation Collaborative Platform 615

gth of
MID

Arguments:

Description:

Extracts a part of a message string. The number of characters to be extracted and the position
of the first character are given.

Example

(* FBD Program using "MID" Function *)

(* ST Equivalence: *)

IN IN MESSAGE Any non-empty string

NbC NbC DINT Number of characters to be extracted cannot be greater than the len
the IN string

Pos Pos DINT Position of the sub-string
the sub-string first character will be the one pointed to by Pos
(first valid position is 1)

MID Q MESSAGE Middle part of the string (its length = NbC)
empty string if parameters are not valid
616 ISaGRAF 3 Concrete Automation Model - Functions

sub_string := MID ('abcdefgh', 2, 4);

(* sub_string is 'de' *)
Automation Collaborative Platform 617

MIN

Arguments:

Description:

Gives the minimum of two integer values.

Example

(* FBD Program using "MIN" and "MAX" Function *)

(* ST Equivalence: *)

new_value := MAX (MIN (max_value, value), min_value);

(* bounds the value to the [min_value..max_value] set *)

IN1 IN1 DINT Any signed integer value

IN2 IN2 DINT (cannot be REAL)

MIN Q DINT Minimum of both input values
618 ISaGRAF 3 Concrete Automation Model - Functions

MLEN

Arguments:

Description:

Calculates the length of a message string.

Example

(* FBD Program using "MLEN" Function *)

(* ST Equivalence: *)

nbchar := MLEN (complete_string);

If (nbchar < 3) Then Return; End_if;

prefix := LEFT (complete_string, 3);

(* This program extracts the three characters on the left of the string and places the result in the
prefix string variable.

IN IN MESSAGE Any message string

MLEN NbC DINT Number of characters in the IN string
Automation Collaborative Platform 619

Nothing is done if the string length is less than three characters. *)
620 ISaGRAF 3 Concrete Automation Model - Functions

MOD

Arguments:

Description:

Calculates the modulo of an integer value.

Example

(* FBD Program using "MOD" Function *)

(* ST Equivalence: *)

division_result := (value / divider); (* integer division *)

rest_of_division := MOD (value, divider); (* rest of the division *)

IN IN DINT Any signed integer value

Base Base DINT Must be greater than zero

Q DINT Modulo calculation (input MOD base)
returns -1 if Base <= 0
Automation Collaborative Platform 621

MUX4

Arguments:

Description:

Multiplexer with four entries: selects a value between four integer values.

Example

(* FBD Program using "MUX4" Function *)

SEL SEL DINT Selector integer value (must be in set [0..3])

IN1...IN4 IN1..IN4 DINT Any integer values

MUX4 Q DINT = value1 if SEL = 0
= value2 if SEL = 1
= value3 if SEL = 2
= value4 if SEL = 3
= 0 for all other values of the selector
622 ISaGRAF 3 Concrete Automation Model - Functions

(* ST Equivalence: *)

range := MUX4 (choice, 1, 10, 100, 1000);

(* select from 4 predefined ranges, for example, if choice is 1, range will be 10 *)
Automation Collaborative Platform 623

MUX8

Arguments:

Description:

Multiplexer with eight entries: selects a value between eight integer values.

Example

(* FBD Program using "MUX8" Function *)

SEL SEL DINT Selector integer value (must be in set [0..7])

IN1...IN8 IN1..IN8 DINT Any integer values

MUX8 Q DINT = value1 if selector = 0
= value2 if selector = 1
...
= value8 if selector = 7
= 0 for all other values of the selector
624 ISaGRAF 3 Concrete Automation Model - Functions

(* ST Equivalence: *)

range := MUX8 (choice, 1, 5, 10, 50, 100, 500, 1000, 5000);

(* select from 8 predefined ranges, for example, if choice is 3, range will be 50 *)
Automation Collaborative Platform 625

NOT_MASK

Arguments:

Description:

Integer bit-to-bit negation mask.

Example

(* FBD example with NOT_MASK Operators *)

(*ST equivalence: *)

result := NOT_MASK (16#1234);

(* result is 16#FFFF_EDCB *)

IN IN DINT Must have integer format

NOT_MASK Q DINT Bit-to-bit negation on 32 bits of IN
626 ISaGRAF 3 Concrete Automation Model - Functions

ODD

Arguments:

Description:

Tests the parity of an integer: result is odd or even.

Example

(* FBD Program using "ODD" Function *)

(* ST Equivalence: *)

If Not (ODD (value)) Then Return; End_if;

value := value + 1;

(* makes value always even *)

IN IN DINT Any signed integer value

Odd Q BOOL TRUE if input value is odd
FALSE if input value is even
Automation Collaborative Platform 627

OR_MASK

Arguments:

Description:

Integer OR bit-to-bit mask.

Example

(* FBD example with OR_MASK Operators *)

(* ST Equivalence: *)

parity := OR_MASK (xvalue, 1); (* makes value always odd *)

result := OR_MASK (16#abc, 16#f0f); (* equals 16#fbf *)

IN IN DINT Must have integer format

MSK MSK DINT Must have integer format

OR_MASK Q DINT Bit-to-bit logical OR between IN and MSK
628 ISaGRAF 3 Concrete Automation Model - Functions

POW

Arguments:

Description:

Gives the real result of the operation: (base exponent) 'base' being the first argument and
'exponent' the second one. The exponent is a real value.

Example

(* FBD Program using "POW" Function *)

(* ST Equivalence: *)

result := POW (xval, power);

IN IN REAL Real number to be raised

EXP EXP REAL Power (exponent)

POW Q REAL (IN EXP)
1.0 if IN is not 0.0 and EXP is 0.0
0.0 if IN is 0.0 and EXP is negative
0.0 if both IN and EXP are 0.0
0.0 if IN is negative and EXP does not correspond to an integer
Automation Collaborative Platform 629

RAND

Arguments:

Description:

Gives a random integer value in a given range.

Example

(* FBD Program using "RAND" function *)

(* ST Equivalence: *)

selected := MUX4 (RAND (4), 1, 4, 8, 16);

(*

random selection of 1 of 4 pre-defined values

the value issued of RAND call is in set [0..3],

so 'selected' issued from MUX4, will get 'randomly' the value

base base DINT Defines the allowed set of number

RAND Q DINT Random value in set [0..base-1]
630 ISaGRAF 3 Concrete Automation Model - Functions

1 if 0 is issued from RAND,

or 4 if 1 is issued from RAND,

or 8 if 2 is issued from RAND,

or 16 if 3 is issued from RAND,

*)
Automation Collaborative Platform 631

REPLACE

Arguments:

Description:

Replaces a part of a message string by a new set of characters.

Example

(* FBD program using "REPLACE" function *)

IN IN MESSAGE Any string

Str Str MESSAGE String to be inserted (to replace NbC chars)

NbC NbC DINT Number of characters to be deleted

Pos Pos DINT Position of the first modified character
(first valid position is 1)

REPLACE Q MESSAGE Modified string:
- NbC characters are deleted at position Pos
- then substring Str is inserted at this position
returns empty string if Pos <= 0
returns strings concatenation (IN+Str) if Pos is greater than
the length of the IN string
returns initial string IN if NbC <= 0
632 ISaGRAF 3 Concrete Automation Model - Functions

(* ST Equivalence: *)

MyName := REPLACE ('Mr X JONES, 'Frank', 1, 4);

(* MyName is 'Mr Frank JONES' *)
Automation Collaborative Platform 633

RIGHT

Arguments:

Description:

Extracts the right part of a message string. The number of characters to be extracted is given.

Example

(* FBD Program using "LEFT" and "RIGHT" Functions *)(* ST Equivalence: *)

complete_string := RIGHT ('12345678', 4) + LEFT ('12345678', 4);

(* complete_string is '56781234'

the value issued from RIGHT call is '5678'

IN IN MESSAGE Any non-empty string

NbC NbC DINT Number of characters to be extracted. This number cannot be
greater than the length of the IN string.

RIGHT Q MESSAGE Right part of the string (length = NbC)
empty string if NbC <= 0
complete string if NbC >= string length
634 ISaGRAF 3 Concrete Automation Model - Functions

the value issued from LEFT call is '1234'

*)
Automation Collaborative Platform 635

ROL

Arguments:

Description:

Make the bits of an integer rotate to the left. Rotation is made on 32 bits:

Example

(* FBD Program using "ROL" Function *)

(* ST Equivalence: *)

result := ROL (register, 1);

(* register = 2#0100_1101_0011_0101*)

(* result = 2#1001_1010_0110_1010*)

IN IN DINT Any integer value

NbR NbR DINT Number of 1 bit rotations (in set [1..31])

ROL Q DINT Left rotated value
no effect if NbR <= 0
636 ISaGRAF 3 Concrete Automation Model - Functions

ROR

Arguments:

Description:

Make the bits of an integer rotate to the right. Rotation is made on 32 bits:

Example

(* FBD Program using "ROR" Function *)

(* ST Equivalence: *)

result := ROR (register, 2);

(* register = 2#0011_0011_0010_1011_0011_0010_1001_1001 *)

(* result = 2#0100_1100_1100_1010_1100_1100_1010_0110 *)

IN IN DINT Any integer value

NbR NbR DINT Number of 1 bit rotations (in set [1..31])

ROR Q DINT Right rotated value
no effect if NbR <= 0
Automation Collaborative Platform 637

SEL

Arguments:

Description:

Binary selector: selects a value between two integer values.

Example

(* FBD Program using "SEL" Function *)

(* ST Equivalence: *)

ProCmd := SEL (AutoMode, ManuCmd, InpCmd);

(* process command selection *)

SEL SEL BOOL Indicates the chosen value

IN1,IN2 IN1, IN2 DINT Any integer values

SEL Q DINT = IN1 if SEL is FALSE
= IN2 if SEL is TRUE
638 ISaGRAF 3 Concrete Automation Model - Functions

SHL

Arguments:

Description:

Shifts the 32 bits of an integer to the left and places a 0 in the least significant bit.

Example

(* FBD Program using "SHL" Function *)

(* ST Equivalence: *)

result := SHL (register,1);

(* register = 2#0100_1101_0011_0101 *)

(* result = 2#1001_1010_0110_1010 *)

IN IN DINT Any integer value

NbS NbS DINT Number of 1 bit shifts (in set [1..31])

SHL Q DINT Left shifted value
no effect if NbS <= 0
0 replaces the least significant bit
Automation Collaborative Platform 639

SHR

Arguments:

Description:

Shifts the 32 bits of an integer to the right and replicates the leftmost bit (significant bit) to fill
the vacant bits.

Example

(* FBD Program using "SHR" Function *)

(* ST Equivalence: *)

result := SHR (register,1);

(* register = 2#1100_1101_0011_0101 *)

IN IN DINT Any integer value

NbS NbS DINT Number of 1 bit shifts (in set [1..31])

SHR Q DINT Right shifted value
no effect if NbS <= 0
the leftmost bit is replicated if NbS >=1
640 ISaGRAF 3 Concrete Automation Model - Functions

(* result = 2#1110_0110_1001_1010 *)
Automation Collaborative Platform 641

SIN

Arguments:

Description:

Calculates the Sine of a real value.

Example

(* FBD Program using "SIN" and "ASIN" Functions *)

(* ST Equivalence: *)

sine := SIN (angle);

result := ASIN (sine); (* result is equal to angle *)

IN IN REAL Any REAL value

SIN Q REAL Sine of the input value (in set [-1.0 .. +1.0])
642 ISaGRAF 3 Concrete Automation Model - Functions

SQRT

Arguments:

Description:

Calculates the square root of a real value.

Example

(* FBD Program using "SQRT" Function *)

(* ST Equivalence: *)

xpos := ABS (xval);
xroot := SQRT (xpos);

IN IN REAL Must be greater than or equal to zero

SQRT Q REAL Square root of the input value
Automation Collaborative Platform 643

TAN

Arguments:

Description:

Calculates the Tangent of a real value.

Example

(* FBD Program using "TAN" and "ATAN" Functions *)

(* ST Equivalence: *)

tangent := TAN (angle);

result := ATAN (tangent); (* result is equal to angle*)

IN IN REAL Cannot be equal to PI/2 modulo PI

TAN Q REAL Tangent of the input value
= 1E+38 for invalid input
644 ISaGRAF 3 Concrete Automation Model - Functions

TRUNC

Arguments:

Description:

Truncates a real value to have just the integer part.

Example

(* FBD Program using "TRUNC" Function *)

(* ST Equivalence: *)

result := TRUNC (+2.67) + TRUNC (-2.0891);

(* means: result := 2.0 + (-2.0) := 0.0; *)

IN IN REAL Any REAL value

TRUNC Q REAL If IN>0, biggest integer less or equal to the input
If IN<0, least integer greater or equal to the input
Automation Collaborative Platform 645

XOR_MASK

Arguments:

Description:

Integer exclusive OR bit-to-bit mask

Example

(* FBD example with XOR_MASK functions *)

(* ST Equivalence: *)

crc32 := XOR_MASK (prevcrc, nextc);

result := XOR_MASK (16#012, 16#011); (* equals 16#003 *)

IN IN DINT Must have integer format

MSK MSK DINT Must have integer format

XOR_MASK Q DINT Bit-to-bit logical Exclusive OR between IN and MSK
646 ISaGRAF 3 Concrete Automation Model - Functions

Function Blocks
The following function blocks are supported:

Note: When new function blocks are created, they can be called from any language.

Alarms
management

LIM_ALRM High/low limit alarm with hysteresis

Boolean operations SR Set dominant bistable

RS Reset dominant bistable

R_TRIG Rising edge detection

F_TRIG Falling edge detection

Comparator CMP Full comparison function block

Counters CTU Up counter

CTD Down counter

CTUD Up-down counter

Data manipulation AVERAGE Running average over N samples

Process control DERIVATE Differentiation according to time

HYSTER Boolean hysteresis on difference of reals

INTEGRAL Integration over time

STACKINT Stack of integer

Semaphore
manipulation

SEMA Manipulates a software semaphore

Signal generation BLINK Blinking Boolean signal

SIG_GEN Signal generator

Time operations TON On-delay timing

TOF Off-delay timing

TP Pulse timing
Automation Collaborative Platform 647

AVERAGE

Arguments:

Description:

Stores a value at each cycle and calculates the average value of all stored values. Only the latest
N values are stored.

The maximum number of samples N is 128. When N exceeds 128, the number of samples is
truncated to 128.

If the "RUN" command is FALSE (reset mode), the output value is equal to the input value.

Upon reaching the maximum N of stored values, the first stored value is overwritten with the
latest value.

Example

(* FBD program using the AVERAGE block: *)

RUN BOOL TRUE=run / FALSE=reset

XIN REAL Any real Variable

N DINT Application defined number of samples

XOUT REAL Running average of XIN value

Note: When setting or changing the value for N, you need to set RUN to FALSE, then set it
back to TRUE.
648 ISaGRAF 3 Concrete Automation Model - Function Blocks

(* ST Equivalence: AVERAGE1 instance of AVERAGE block *)

AVERAGE1((auto_mode & store_cmd), sensor_value, 100);

ave_value := AVERAGE1.XOUT;
Automation Collaborative Platform 649

BLINK

Arguments:

Description:

Generates a blinking signal.

Timing diagram:

RUN BOOL Mode: TRUE=blinking / FALSE=reset the output to false

CYCLE TIME Blinking period. Possible values range from 0ms to 23h59m59s999ms.

Q BOOL Output blinking signal
650 ISaGRAF 3 Concrete Automation Model - Function Blocks

CMP

Arguments:

Description:

Compare two values: tell if they are equal, or if the first is less or greater than the second one.

Example

(* FBD program using the CMP block *)

(* ST Equivalence: We suppose CMP1 is an instance of CMP block *)

CMP1(level, max_level);

VAL1 DINT Any signed integer value

VAL2 DINT Any signed integer value

LT BOOL TRUE if val1 is less than val2

EQ BOOL TRUE if val1 is equal to val2

GT BOOL TRUE if val1 is greater than val2
Automation Collaborative Platform 651

pump_cmd := CMP1.LT OR CMP1.EQ;

alarm := CMP1.GT AND NOT(manual_mode);
652 ISaGRAF 3 Concrete Automation Model - Function Blocks

CTD

Arguments:

Warning: The CTD block does not detect the rising edges or falling edges of the counting
input (CD). The block must be associated with an "R_TRIG" or "F_TRIG" block to create a
pulse counter.

Description:

Count (integer) from a given value down to 0 1 by 1

Example

(* FBD program using the CTD block *)

CD BOOL Counting input
(down-counting when CD is TRUE)

LOAD BOOL Load command (dominant)
(CV = PV when LOAD is TRUE)

PV DINT Programmed initial value

Q BOOL Underflow: TRUE when CV <= 0

CV DINT Counter result
Automation Collaborative Platform 653

(* ST Equivalence: We suppose F_TRIG1 is an instance of F_TRIG block and CTD1 is an
instance of CTD block*)

F_TRIG1(command);

CTD1(F_TRIG1.Q,load_cmd,100);

underflow := CTD1.Q;

result := CTD1.CV;
654 ISaGRAF 3 Concrete Automation Model - Function Blocks

CTU

Arguments:

Warning: The CTU block does not detect the rising edges or falling edges of the counting
input (CU). The block must be associated with an "R_TRIG" or "F_TRIG" block to create a
pulse counter.

Description:

Count (integer) from 0 up to a given value 1 by 1

Example

(* FBD program using the CTU block *)

CU BOOL Counting input (counting when CU is TRUE)

RESET BOOL Reset command (dominant)

PV DINT Programmed maximum value

Q BOOL Overflow: TRUE when CV >= PV

CV DINT Counter result
Automation Collaborative Platform 655

(* ST Equivalence: We suppose R_TRIG1 is an instance of R_TRIG block and CTU1 is an
instance of CTU block*)

R_TRIG1(command);

CTU1(R_TRIG1.Q,NOT(auto_mode),100);

overflow := CTU1.Q;

result := CTU1.CV;
656 ISaGRAF 3 Concrete Automation Model - Function Blocks

CTUD

Arguments:

Warning: The CTUD block does not detect the rising edges and falling edges of the counting
inputs (CU and CD). The block must be associated with an R_TRIG or F_TRIG block to create
a pulse counter.

Description:

Count (integer) from 0 up to a given value 1 by 1 or from a given value down to 0 1 by 1

Example

(* FBD program using the CTUD block *)

CU BOOL Up-counting (when CU is TRUE)

CD BOOL Down-counting (when CD is TRUE)

RESET BOOL Reset command (dominant)
(CV = 0 when RESET is TRUE)

LOAD BOOL Load command (CV = PV when LOAD is TRUE)

PV DINT Programmed maximum value

QU BOOL Overflow: TRUE when CV >= PV

QD BOOL Underflow: TRUE when CV <= 0

CV DINT Counter result
Automation Collaborative Platform 657

(* ST Equivalence: We suppose R_TRIG1 and R_TRIG2 are two instances of R_TRIG block
and CTUD1 is an instance of CTUD block*)

R_TRIG1(add_elt);

R_TRIG2(sub_elt);

CTUD1(R_TRIG1.Q, R_TRIG2.Q, reset_cmd, load_cmd,100);

full := CTUD1.QU;

empty := CTUD1.QD;

nb_elt := CTUD1.CV;
658 ISaGRAF 3 Concrete Automation Model - Function Blocks

DERIVATE

Arguments:

Description:

Differentiation of a real value.

If the "CYCLE" parameter value is less than the real duration of the cycle time in the virtual
machine, the sampling period will use the real duration of the cycle time.

Example

(* FBD program using the DERIVATE block: *)

(* ST Equivalence: DERIVATE1 instance of DERIVATE block *)

DERIVATE1(manual_mode, sensor_value, t#100ms);

RUN BOOL Mode: TRUE=normal / FALSE=reset

XIN REAL Input: any real value

CYCLE TIME Sampling period. Possible values range from 0ms to
23h59m59s999ms.

XOUT REAL Differentiated output
Automation Collaborative Platform 659

derivated_value := DERIVATE1.XOUT;
660 ISaGRAF 3 Concrete Automation Model - Function Blocks

F_TRIG

Arguments:

Description:

Detects a falling edge of a Boolean variable

Example

(* FBD program using the F_TRIG block *)

(* ST Equivalence: We suppose F_TRIG1 is an instance of F_TRIG block *)

F_TRIG1(cmd);

nb_edge := ANY_TO_DINT(F_TRIG1.Q) + nb_edge;

CLK BOOL Any Boolean Variable

Q BOOL TRUE when CLK changes from TRUE to FALSE
FALSE if all other cases
Automation Collaborative Platform 661

HYSTER

Arguments:

Description:

Hysteresis on a real value for a high limit.

Example

Example of a timing diagram:

XIN1 REAL Any real value

XIN2 REAL To test if XIN1 has overpassed XIN2+EPS

EPS REAL Hysteresis value (must be greater than zero)

Q BOOL TRUE if XIN1 has overpassed XIN2+EPS and is not yet below
XIN2-EPS
662 ISaGRAF 3 Concrete Automation Model - Function Blocks

INTEGRAL

Arguments:

Description:

Integration of a real value.

If the "CYCLE" parameter value is less than the real duration of the cycle time in the virtual
machine, the sampling period will use the real duration of the cycle time.

When using the Enable EN/ENO option for INTEGRAL blocks in LD POUs, you must
reinitialize the internal variables for the R1 input. To reinitialize the R1 input, toggle the value
from False to True then back to False.

Example

(* FBD program using the INTEGRAL block: *)

RUN BOOL Mode: TRUE=integrate / FALSE=hold

R1 BOOL Overriding reset

XIN REAL Input: any real value

X0 REAL Initial value

CYCLE TIME Sampling period. Possible values range from 0ms to
23h59m59s999ms.

Q BOOL Not R1

XOUT REAL Integrated output
Automation Collaborative Platform 663

(* ST Equivalence: INTEGRAL1 instance of INTEGRAL block *)

INTEGRAL1(manual_mode, NOT(manual_mode), sensor_value, init_value,
t#100ms);

controlled_value := INTEGRAL1.XOUT;
664 ISaGRAF 3 Concrete Automation Model - Function Blocks

LIM_ALRM

Arguments:

Description:

Hysteresis on a real value for high and low limits.

A hysteresis is applied on high and low limits. The hysteresis delta used for either the high or
low limit is equal to the EPS parameter.

Example

Example of timing diagram:

H REAL High limit value

X REAL Input: any real value

L REAL Low limit value

EPS REAL Hysteresis value (must be greater than zero)

QH BOOL "high" alarm: TRUE if X above high limit H

Q BOOL Alarm output: TRUE if X out of limits

QL BOOL "low" alarm: TRUE if X below low limit L
Automation Collaborative Platform 665

666 ISaGRAF 3 Concrete Automation Model - Function Blocks

R_TRIG

Arguments:

Description:

Detects a rising edge of a Boolean variable

Example

(* FBD program using the R_TRIG block *)

(* ST Equivalence: We suppose R_TRIG1 is an instance of the R_TRIG block *)

R_TRIG1(cmd);

nb_edge := ANY_TO_DINT(R_TRIG1.Q) + nb_edge;

CLK BOOL Any Boolean Variable

Q BOOL TRUE when CLK rises from FALSE to TRUE
FALSE in all other cases
Automation Collaborative Platform 667

RS

Arguments:

Description:

Reset dominant bistable:

Example

(* FBD Program using the RS block *)

SET BOOL If TRUE, sets Q1 to TRUE

RESET1 BOOL If TRUE, resets Q1 to FALSE (dominant)

Q1 BOOL Boolean memory state

Set Reset1 Q1 Result Q1

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 1

1 0 1 1

1 1 0 0

1 1 1 0
668 ISaGRAF 3 Concrete Automation Model - Function Blocks

(* ST Equivalence: We suppose RS1 is an instance of RS block *)

RS1(start_cmd, (stop_cmd OR alarm));

command := RS1.Q1;
Automation Collaborative Platform 669

SEMA

Note: This operator is only available for ISaGRAF 3 configurations.

Arguments:

Description:

Manipulates a software semaphore.

(* "x" is a Boolean variable initialized to FALSE *)

busy := x;

If claim Then

x := True;

Else

If release Then

busy := False;

x := False;

End_if;

End_if;

CLAIM BOOL "test and set" command

RELEASE BOOL Releases the semaphore

BUSY BOOL State of the semaphore
670 ISaGRAF 3 Concrete Automation Model - Function Blocks

SR

Arguments:

Description:

Set dominant bistable:

Example

(* FBD Program using the SR block *)

SET1 BOOL If TRUE, sets Q1 to TRUE (dominant)

RESET BOOL If TRUE, resets Q1 to FALSE

Q1 BOOL Boolean memory state

Set1 Reset Q1 Result Q1

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 1
Automation Collaborative Platform 671

(* ST Equivalence: We suppose SR1 is an instance of SR block *)

SR1((auto_mode & start_cmd), stop_cmd);

command := SR1.Q1;
672 ISaGRAF 3 Concrete Automation Model - Function Blocks

SIG_GEN

Arguments:

Description:

Generates various signal: blink on a boolean, a integer counter-up, and real sine wave.

When counting reaches maximum value, it restarts from 0 (zero). So END keeps the TRUE
value only during 1 PERIOD.

Timing diagram:

RUN BOOL Mode: TRUE=running / FALSE=reset to false

PERIOD TIME Duration of one sample. Possible values range from 0ms to
23h59m59s999ms.

MAXIMUM DINT Maximum counting value

PULSE BOOL Inverted after each sample

UP DINT Up-counter, increased on each sample

END BOOL TRUE when up-counting ends

SINE REAL Sine signal (period = counting duration)
Automation Collaborative Platform 673

674 ISaGRAF 3 Concrete Automation Model - Function Blocks

STACKINT

Arguments:

Description:

Manage a stack of integer values.

The STACKINT function block includes a rising edge detection for both PUSH and POP
commands. The maximum size of the stack is 128. The application defined stack size N cannot
be less than 1 or greater than 128.

Note: The OFLO value is valid only after a reset (R1 has been set to TRUE at least once and
back to FALSE).

PUSH BOOL Push command (on rising edge only)
add the IN value on the top of the stack

POP BOOL Pop command (on rising edge only)
delete in the stack the last value pushed (top of the stack)

R1 BOOL Resets the stack to its empty state

IN DINT Pushed value

N DINT Application defined stack size

EMPTY BOOL TRUE if the stack is empty

OFLO BOOL Overflow: TRUE if the stack is full

OUT DINT Value at the top of the stack
Automation Collaborative Platform 675

Example

(* FBD program using the STACKINT block: error management *)

(* ST Equivalence: We suppose STACKINT1 is an instance of STACKINT block *)

STACKINT1(err_detect, acknowledge, manual_mode, err_code, max_err);

appli_alarm := auto_mode AND NOT(STACKINT1.EMPTY);

err_alarm := STACKINT1.OFLO;

last_error := STACKINT1.OUT;
676 ISaGRAF 3 Concrete Automation Model - Function Blocks

TOF

Arguments:

Description:

Increase an internal timer up to a given value.

While using the Enable EN/ENO option for LD POUs, execution disregards the TOF function
block when EN is FALSE. When EN toggles from FALSE to TRUE, the function block is not
reinitialized if IN is TRUE. To reinitialize the TOF function block, make sure IN is FALSE
before setting EN to TRUE.

Timing diagram:

IN BOOL If falling edge, starts increasing internal timer
If rising edge, stops and resets internal timer

PT TIME Maximum programmed time

Q BOOL If TRUE: total time is not elapsed

ET TIME Current elapsed time
Automation Collaborative Platform 677

TON

Arguments:

Description:

Increase an internal timer up to a given value.

While using the Enable EN/ENO option for LD POUs, execution disregards the TON function
block when EN is FALSE. When EN toggles from FALSE to TRUE, the function block is not
reinitialized if IN is TRUE. To reinitialize the TON function block, make sure IN is FALSE
before setting EN to TRUE.

Timing diagram:

IN BOOL If rising edge, starts increasing internal timer
If falling edge, stops and resets internal timer

PT TIME Maximum programmed time

Q BOOL If TRUE, programmed time is elapsed

ET TIME Current elapsed time. Possible values range from 0ms to 23h59m59s999ms.
678 ISaGRAF 3 Concrete Automation Model - Function Blocks

TP

Arguments:

Description:

Increase an internal timer up to a given value.

While using the Enable EN/ENO option for LD POUs, execution disregards the TP function
block when EN is FALSE. When EN toggles from FALSE to TRUE, the function block is not
reinitialized if IN is TRUE. To reinitialize the TP function block, make sure IN is FALSE
before setting EN to TRUE.

Timing diagram:

IN BOOL If rising edge, starts increasing internal timer (if not already increasing)
If FALSE and only if timer is elapsed, resets the internal timer
Any change on IN during counting has no effect.

PT TIME Maximum programmed time

Q BOOL If TRUE: timer is counting

ET TIME Current elapsed time. Possible values range from 0ms to 23h59m59s999ms.
Automation Collaborative Platform 679

680 ISaGRAF 3 Concrete Automation Model - Function Blocks

Glossary
The Glossary contains terms used in ISaGRAF and their definitions.

To optimize a search for a definition, click one of the following letter groups in which you want
to search.

A - C D - H I - N O - R S - Z

A - C

AAM Abstract Automation Model. Common interfaces used to
access Concrete Automation Model data represented by IEC
61131 elements and concepts, as well as device management.

Access Control The use of password-protection to control access to projects,
devices, and POUs. For projects, devices, and POUs, access
control can also limit access to read mode.

ACP Automation Collaborative Platform. A set of software
components and services through which plug-ins
communicate.

Action A collection of operations to perform whose execution differs
for each programming language.

Add-in Also known as a plug-in, it is a utility, driver, or other software
added to a primary application. In the Visual Studio Integrated
Development Environment (IDE), an add-in is an
Automation-based application that extends the capabilities of
the IDE.

Address Optional hexadecimal address freely defined for each variable.
This address can be used by an external application to access
the value of the variable when the application is executed by
the virtual machine.

Alias The property of a variable indicating a short name for a
variable.

Application Built project using the Application Builder.
Automation Collaborative Platform 681

Application Builder An integrated development environment used to build control
applications, i.e. the workbench.

Array Set of elements of the same type referenced by one or more
indexes enclosed in square brackets and separated by commas.
The index is an integer. Examples: tabi[2] or tabij[2,4].

Attribute The property of a variable indicating whether a variable is
read, write, or read-write.

Boolean (BOOL) Basic type that can be used to define a variable, a Parameter
(POU) or an I/O board. A Boolean can be TRUE (1) or FALSE
(0).

C Function Function written with the "C" language, called from POUs, in
a synchronous manner.

C Language High level literal language used to access particularities of the
target device. C language can be used to program functions,
function blocks and conversion functions.

CAM (Concrete Automation Model) Concrete project model
enabling the creation of applications supporting multi-process
control.

Cell Elementary area of the graphic matrix for graphic languages or
for the Dictionary. A cell is defined as one box in the grid.

CFB Indicates a C function block

CFU Indicates a C function

Channel A channel of an I/O board represents a hardware I/O point. A
channel is either an input or output. A variable is wired to a
channel to be used in POUs. Directly represented variables can
also be used in POUs.

Child A POU which is activated by its parent. The child POU has
only one parent. Only the parent can start or stop the child
program. A parent can have more than one child.
See also Parent Program.
682 ISaGRAF 3 Concrete Automation Model - Glossary

Clearing a Transition The forcing of the clearing of a transition where one of the
previous steps is active. Tokens are moved and actions are
executed as for a usual transition clearing. All tokens existing
in the preceding steps are removed. A token is created in each
of the following steps.

Coil A graphic component representing the assignment of an output
or an internal variable.

Common Scope Scope of a declaration applying to all POUs and common to all
projects within a specific installation of the workbench. Only
defined words can have common scope. The following file
contains all defined words having the common scope:
%ALLUSERSPROFILE%\ISaGRAF\6.x\CAM ISaGRAF
3\Standard 3.55\COMMON.EQV

Complex Equipment Element grouping multiple I/O boards. This provides the
means for manufacturers to mix data types and directions. The
implementation of the I/O driver for complex equipment
corresponds to the implementation of the drivers of all
contained I/O boards. OEM parameters enable providing
parameters to complex equipment.

Connection The link between networks and devices.

Constant Expression Literal expression used to describe a constant value.

Contact Depending on the type of contact, a graphic component
representing the value of an input or an internal variable.

Contextual Menu Menu that is displayed under the mouse cursor by
right-clicking the mouse.

Conversion Function "C" written Function which implements a conversion. Such a
conversion can be attached to any input or output channel. The
conversion is applied each time the input variable is read or the
output variable is written.

CRC The virtual machine compares the Cyclic redundancy
checking (CRC) values for compiled, running, and stored
versions of code to detect possible mismatches.
Automation Collaborative Platform 683

CSV File Format (Comma Separated Values) A delimited data format having
each piece of information separated by commas, where text
strings, including comments, are surrounded by quotation
marks ("), and each line ending with a carriage return. The
CSV file format can be used for importing or exporting
variable properties.

Cycle The virtual machine executes the programs of a device as a
cycle. All programs of the device are executed following the
order defined by the user, from the first program to the last and
again and again. Before the execution of the first program,
inputs are read. After the execution of the last program, the
outputs are refreshed.

Cycle Timing The amount of time given to each virtual machine cycle. The
cycle consists of scanning the physical inputs, executing the
POUs of the device, then updating physical outputs. If a cycle
is completed within the specified cycle timing period, the
system waits until this period has elapsed before starting a new
cycle. The cycle time can differ for each cycle when no cycle
timing is specified. When the cycle timing is shorter, the
virtual machine waits until this time has elapsed. When the
cycle time is longer, the virtual machine immediately scans the
inputs but signals with the "overflow" that the programmed
time has been exceeded. When the trigger cycles property is
false or the cycle time is 0, the virtual machine does not wait to
start a new cycle.

Cycle-to-cycle Mode Execution mode of a device where cycles are executed one by
one, according to commands given by the user during
debugging. Another execution mode for the virtual machine is
real-time.

Cyclic Program A time independent program that is executed during each
cycle. A cyclic program can be executed before and after
sequential programs.

D - H
684 ISaGRAF 3 Concrete Automation Model - Glossary

Data Type Data types are defined for many items in ISaGRAF projects:
- variables
- function or function block parameters
- I/O boards
See also Standard IEC 61131 Types, User Types.

Database The collection of definitions making up an ISaGRAF project.

Debugging The process of detecting defects in a project that includes
cycle-to-cycle debugging, setting and clearing breakpoints.

Declared Instance (of a
function block)

A function block having assigned instances, i.e., declared in
the dictionary. A declared instance is only available in ST.

Defined Word Equivalent expression for use in POUs. At compiling time the
word is replaced by the expression. A defined word cannot use
a defined word.

Dependency (on a
library)

The state where a project uses, i.e., depends, on functions or
function blocks defined in a library.

Design (mode) An editing mode during which the Application Builder is not
connected to the device.

Device An instance of a target platform in the application builder.
See also Target Platform.

Device Management Provides the communication infrastructure with the target
platform.

Dictionary The grid view displaying the variables, function and function
block parameters, types, and defined words used in the
programs of a project.

Dimension The size (number of elements) of an array. For example:
[1..3,1..10] - represents a two-dimensional array containing a
total of 30 elements.

DINT Signed double integer 32-bit format. Basic type that can be
used to define a variable, a Parameter (POU) or an I/O Device.

Direction Variables and I/O devices have a direction. For the property of
a variable, direction indicates whether a variable is an input,
output, or internal. The direction of an I/O device can be input
or output.
Automation Collaborative Platform 685

Directly Represented
Variable

A variable is generally declared before its use in one POU. A
directly represented variable is used in a program to represent
a channel for an I/O device. Example: %QX1.6, %ID8.2

Dynamic Behavior Continuous and sequential execution of the steps and
operations of an SFC program during an execution cycle.

Edge See Falling Edge, Rising Edge.

Execution Mode The mode in which a device is executed: real-time and
cycle-to-cycle.

Expression Set of operators and identifiers.

Falling Edge A falling edge of a boolean variable corresponds to a change
from TRUE (1) to FALSE (0).

FBD Function Block Diagram. Programming language.

Function POU which has input parameters and one output parameter. A
function can be called by a program, a function or a function
block. A function has no instance. This signifies that local data
is not stored and is generally lost from one call to the other.

Function Block POU which has input and output parameters and works on
internal data (parameters). A program can call an instance of a
function block. A function block instance cannot be called by a
function (no internal data for a function). A function block can
call another function block (instantiation mechanism is
extended to the function blocks called).

Global Scope Scope of a declaration applying to all POUs of the current
project.

Global Variable A variable whose scope is global.

Hidden Parameter Input parameters of a function block that are not displayed in
programs.

Hierarchy Architecture of a project, divided into several POUs. The
hierarchy tree represents the links between parent programs
and children programs.
See also Parent Program.

I - N
686 ISaGRAF 3 Concrete Automation Model - Glossary

I/O Board An I/O board corresponds to a piece of equipment having
inputs or outputs. OEM parameters enable providing
parameters to I/O boards. Integrators define I/O boards.

I/O Channel See Channel.

I/O Device Element grouping several channels of the same data type and
direction. These can be either an I/O board or a complex
equipment.

I/O Driver "C" code which makes the interface between a virtual machine
and the devices. The driver can be statically linked to the
virtual machine or in a separate DLL (such as for the Windows
NT target).

I/O Variable Variable connected to a channel of an I/O device. An array can
be connected to an I/O device if all elements are connected to
contiguous channels, the type of the array must be the same
type as the I/O device.

I/O Wiring Definition of the links between the variables of the project and
the channels of the I/O devices existing on the target platform.

Identifier Unique word used to represent a variable or a constant
expression in the programming.

IFB Indicates an IEC 61131 user-defined function block

IFU Indicates an IEC 61131 user-defined function

Initial Situation Set of the initial steps which represents the context of the
program when it is started.

Initial Step A Step that is activated when the program starts.

Initial Value Value which has a variable when the virtual machine starts the
execution of the application. The initial value of a variable can
be the default value, a value given by the user when the
variable is defined or the value of the retain variable after the
virtual machine has stopped.

Input Direction of a variable or an I/O device. An input variable is
connected to an input channel of an input device.
Automation Collaborative Platform 687

Input Parameter Input argument of a function or a function block. These
parameters can only be read by function or function block. A
parameter is characterized by a type.

Instance (of a Function
Block)

A variable containing a copy of the internal data of a function
block persisting from one call to the other. This word is used,
by extension, to say that a program calls a function block
instance and not the function block itself.

Instruction An elementary operation of a program, entered on one line of
text.

Internal Attribute of a variable, which is not linked to an I/O device.
Such a variable is called an internal variable.

Label The identifier for an instruction within a program. Labels can
also be used for jump operations.

Language Container A workspace enabling the development of graphic or textual
POUs programmed using one of the available programming
languages. Individual language containers can only use one
programming language. When editing a container, the toolbox
displays the corresponding elements for the specific
programming language. The multi-language editor (MLGE)
enables the creation of language containers.

LD Ladder Diagram. Programming language.

Library Special projects made up of devices in which you define
functions and function blocks for reuse throughout ISaGRAF
projects. Libraries also enable you to modularize projects and
to isolate functions and function blocks so that these can be
validated separately.

Link A graphic component connecting elements in a network
diagram.

Literal A lexical unit that directly represents a value.

Local scope Scope of a declaration applying to only one POU.

Maximum time Time of the longest cycle since the virtual machine has started
the execution of the application.

MESSAGE Character string. Basic type available for defining a variable, a
parameter (POU) or a device.
688 ISaGRAF 3 Concrete Automation Model - Glossary

MLGE Multi-language Editor.

Modbus A communications protocol using programmable logic
controllers (PLCs).

Monitoring A process by which the user views virtual machine running
states, system events, target capability, network card status,
and various online statistics in a read format.

MSI Windows installers (.msi) used to install applications and files
typically used by the end user of the application.

Network The term network is used in different contexts:
- The means of communication between the target platform
and their clients.
- For the execution order of graphic programs, a sequence of
connected blocks.

Network Driver "C" code which makes the interface between the vitual
machine network layer and the physical network.

Non-stored Action A list of statements, executed at each target cycle, when the
corresponding step is active.

O - R

OEM Original Equipment Manufacturer

OEM Parameter Parameters attached to an IO device. A parameter is
characterized by a type. An OEM parameter is defined by the
designer of the device. It can be a constant, or a variable
parameter entered by the user during the I/O connection.

Online Mode Mode in which the Application Builder is connected to a target
enabling target management, monitoring and debugging.

OPE Indicates an operator.

Operator Basic logical operation such as arithmetic, boolean,
comparator, and data conversion.

Output Direction of a variable or an I/O device. An output variable is
connected to an output channel of an output device.
Automation Collaborative Platform 689

Output Parameter Output argument of a function or function block. These
parameters can only be written by a function or function block.
A function has only one output parameter. A parameter is
characterized by a type.

Overflow Integer value which corresponds to the number of times the
cycle time has been exceeded. Always 0 if cycle time is 0.

Package The Target Definition Builder enables OEMs to provide
packages containing the drivers of several I/O devices and/or
"C" functions and function blocks available for a specific
target.

See also Plug-in

Parameter (POU) See Input Parameter, Output Parameter, and Hidden Parameter

Parent Program A program which controls other programs, called its children.
See also Child.

PLC Programmable Logic Controller

Plug-in A Visual Studio-based add-in or package integrated into a
broad platform enabling the extension of the Workbench or the
Automation Collaborative Platform.

POU Program Organization Unit: set of instructions that are
programs, functions or function blocks.

Power Rail Main left and right vertical rails at the extremities of a ladder
rung.

Program See POU. A program belongs to a project. It is executed by the
Virtual Machine, depending on its location (order) in the
device.

Project Set of programs making up an application.

Project Updater A program allowing to convert projects developed using
previous versions for use within the latest version. Each time
you upgrade to a newer version, you need to update projects.

Pulse Action A list of statements executed only once when the
corresponding step is activated.

Qualifier Determines the way the action of a step is executed. The
qualifier can be N, S, R, P0 or P1.
690 ISaGRAF 3 Concrete Automation Model - Glossary

REAL Type of a variable, stored in a floating IEEE single precision
32-bit format. Basic type that can be used to define a variable,
a parameter (POU) or a device.

Real I/O Device I/O device physically connected to an I/O driver on the target.
See also Virtual I/O Device.

Real-time Mode The virtual machine normal execution mode of an application
where execution cycles are triggered by the cycle timing.
Another execution mode for applications is cycle-to-cycle.

Reserved Keyword Reserved identifier of the languages unavailable for use as
names of POUs or variables.

Retain Attribute of a variable. The value of a retain variable is saved
by the Virtual Machine at each cycle. The value stored is
restored if the Virtual Machine stops and restarts.

Return Graphic component of a program representing the conditional
end of a program.

Return Parameter See Output Parameter.

Rising Edge A rising edge of a Boolean variable corresponds to a change
from FALSE (0) to TRUE (1).

Rung Graphic component of a program representing a group of
circuit elements leading to the activation of a coil in an
LD diagram. A rung is situated between left and right power
rails.

Run-time Error Application error detected by the virtual machine.

S - Z

Scope See Global Scope, Common Scope, Local scope.

Section Program, Function and Function block sections are where are
located the POUs of a device. POUs located in the Program
section are executed by the virtual machine.

Security State The indication of the level of access control that is applied to a
device, a POU, or a project.
Automation Collaborative Platform 691

Selection List Also known as a 'combo-box'.

When a selection list is provided for a particular cell, clicking
on its right part (down arrow), displays the available choices.
To make a selection, perform one of the following operations:
- click on the item (use the scroll bar first if the required choice
is not visible)
- move in the list using the cursor keys and press Enter
- type the first letter (if more than one item starts with this
letter, press the letter again to select the next occurrence).

Separator Special character (or group of characters) used to separate the
identifiers in a literal language.

Sequential Program A program that is executed according to the dynamic behavior
of the programming language and where the time variable
explicitly synchronizes operations.

Server The part of the target that receives Modbus requests to retrieve
information about the device run by the virtual machine.

SFB Indicates a function block

SFU Indicates a function

Shape The spatial form or appearance of an object.

Simulation Mode Mode in which virtual machines execute the code of the device
and the Windows platform performs aspects such as POU
execution.

Solution A container holding projects and libraries. A solution contains
elements that represent the references, data connections,
folders, and files needed to make up an application.

Solution Explorer A view with a tree-like structure enabling the management of
items such as devices, programs, functions, function blocks
and dictionaries.

ST Structured Text. Programming language.

Standard IEC 61131
Types

Double integer (DINT), Boolean (BOOL), REAL, TIME, and
MESSAGE.
See also Data Type.

Statement Basic ST complete operation.
692 ISaGRAF 3 Concrete Automation Model - Glossary

Step A basic graphic component representing a steady situation of
the process. A step is referenced by a name. The activity of a
step is used to control the execution of the corresponding
actions.
See also Action.

Sub-program A program called by a Parent Program. A sub-program is also
called a Child program. To call sub-programs written in
another language, use a function. A function can be called by
any POU.

Symbol Table The appli.txt text file corresponding to the variables defined
for an application. This file is downloaded onto the target
platform.

Target Management Operations that control the application of a target including
downloading, uploading, starting, stopping, and discovering.

Target Platform The hardware platform on which virtual machines run.

TIC Target Independent Code produced by the ISaGRAF compiler
for execution on virtual machines.

Timer (TIME) Unit of a timer is the millisecond. Basic type that can be used
to define a Variable, a Parameter (POU) or an I/O Device.

Token (SFC) Graphical marker used to identify the active steps of an SFC
program.

Tool Window A Microsoft Visual Studio control that enables application
creation and editing.

Toolbox The utility containing the elements and shapes available for
language and ISaVIEW containers. For language containers,
the available elements differ for the individual programming
languages.

Top Level Program Program put at the top of the hierarchy tree. A top level
program is activated by the system.
See also Parent Program.

Transition A basic graphic component representing the condition
between different steps. A transition is referenced by a name.
A Boolean condition is attached to each transition.
Automation Collaborative Platform 693

Trigger Cycles Application property indicating whether a virtual machine
cycle executes according to a defined cycle timing.

User Data User data is any data of any format (file, list of values) which
have to be merged with the generated code of the device in
order to download them into the target platform. Such data is
not directly operated by the virtual machine and is commonly
dedicated to other software installed on the target platform.

User Types Types that the user can define using basic types or other user
types. User types can be arrays.

User-Defined Function
Block

A custom function block. You create user-defined function
blocks in the Function Blocks section for a device.

Validity of a Transition Attribute of a transition. A transition is validated (or enabled)
when all the preceding steps are active.

Variable Unique identifier of elementary data used as information
placeholders within POUs. Variables also include function
block instances.

Variable Name A unique identifier, defined in ISaGRAF, for a storage location
containing information used in exchanges between devices.

Virtual I/O Device I/O Device which is not physically connected to an I/O driver
on the target platform.

Virtual Machine The compiled ISaGRAF software running on the target
platform.

VS2010 Microsoft Visual Studio 2010.

Wiring The property of a variable indicating the I/O channel to which
the variable is wired.
See also I/O Wiring
694 ISaGRAF 3 Concrete Automation Model - Glossary

Licensing
ISaGRAF enables the creation of virtual machines running on hardware components, called
targets.

ISaGRAF is available in two types of software licenses:

� Demo version, delivered with the product and available for testing the product. This is a
60 day trial of the fully operational version of ISaGRAF.

� Integrated license, included in the installation of the ISaGRAF software. The product is
licensed upon installation. The Integrated license is available as a Full license or a
Limited license. A Full license is a fully operational version of the product while a
Limited license can only have one device.

� Engineering license, obtained by manually activating an unlicensed version of the
product. The Engineering license is available as a Full license or a Limited license. A Full
license is a fully operational version of the product while a Limited license can only have
one device.

The Integrated and Engineering licenses are available for the following activation periods:

� Lifetime (does not expire)

� 1 month

� 6 months

� 12 months

To access Licensing

1. From the Help menu, click Licensing CAM 3.

The Licensing for the ISaGRAF 3 Concrete Automation Model is displayed.
Automation Collaborative Platform 695

To obtain an authorized Engineering license

1. From the Help menu, click Licensing CAM 3.

The Licensing for the ISaGRAF 3 Concrete Automation Model is displayed along with
three User Codes.

2. Send an e-mail containing the desired activation period and the three User Codes to the
support team:
support@ISaGRAF.com

3. The support team will email you back Registration Keys 1 and 2.

4. Insert the Registration Keys in their appropriate regions and click Validate.

ISaGRAF is now licensed.

To remove an authorized license

1. From the Help menu, click Licensing CAM 3.

The Licensing for the ISaGRAF 3 Concrete Automation Model is displayed along with
three User Codes.

2. Send an email containing the three User Codes to the support team:
support@ISaGRAF.com

3. The support team will email you back Registration Keys 1 and 2.

4. Insert the Registration Keys in their appropriate regions and click Validate.

A confirmation code appears.

5. Send an email containing the confirmation code to the support team:
support@ISaGRAF.com

ISaGRAF is no longer licensed.
696 ISaGRAF 3 Concrete Automation Model - Licensing

ISaGRAF 5 Concrete
Automation Model

The ISaGRAF 5 Concrete Automation Model enables the creation of ISaGRAF 5
applications supporting multi-process control. Applications consist of virtual machines
running on hardware components, called targets. The development process consists of creating
projects made up of devices, representing individual target platforms, on which one or more
instances of resources are downloaded. At runtime, instances of resources become individual
virtual machines running on these target platforms.

Projects can be developed using different programming languages including some from the
IEC 61131-3 standard. When building, resources are compiled to produce very fast "target
independent code" (TIC) or "C" code.

Within resources, you can declare variables using standard IEC 61131-3 data types (i.e.,
Boolean, integer, real, etc.) or user-defined types such as arrays or structures.

You develop projects on a Windows development platform. The Automation Collaborative
Platform graphically represents and organizes devices, resources, POUs, and networks within
a project from many views.

You can choose to simulate the running of a project, after building a project, using high-level
debugging tools, before actually downloading the resources making up devices to the target
platforms.
Automation Collaborative Platform 697

Creating a Project
You can create projects as part of new or existing solutions in the Automation Collaborative
Platform. A solution can hold multiple projects and libraries. You can import ISaGRAF 6
projects that were previously exported in the 7-Zip (.7z) compressed file format.

The following templates are available for ISaGRAF 6 projects:

For projects, you can specify the following properties:

� Import ISaGRAF 5 Project � Library

� Import ISaGRAF Zip Project � PRJ61499_TPL

� ISaFREE_TPL � Simulator

CAM

CAM Project Type of project consisting of the CAM name and version. For
example, ISaGRAF 5.23.

Comment Text displayed next to the project name in the Solution Explorer

Description Free-form text describing a project

Is Password Protected Indication that the project is protected by a password controlling its
access

Name Name of the project. Project names can have up to 128 characters.

Online Behavior Behavior of the project when switching to online or simulation
mode. Possible options are the following:
- Design where the project remains in design mode when switching
to online or simulation mode
- Debug Only where the project remains in design mode until
switching to online mode; switching to simulation mode does not
affect the project
- Simulate Only where the project remains in design mode until
switching to simulation mode; switching to online mode does not
affect the project
- Always where the project switches to either online or simulation
mode
698 ISaGRAF 5 Concrete Automation Model

You can add devices and add resources to existing projects.

Projects are stored in the Projects directory, as MS-Access database (.MDB) files:

%USERPROFILE%\My Documents\ISaGRAF 6.x\Projects

To create a project

1. From the File menu, point to New, and then click Project (or press Ctrl+Shift+N).

2. In the Project Types list, expand the CAM Projects option, then click ISaGRAF 5.

3. From the list of available project templates, click the required template.

4. Specify a name and location for the project, indicate whether to add the project to an
existing solution or create a new solution by defining a solution name, then click OK. For
new solutions, you can choose to create a directory.

To import an ISaGRAF project

You can import ISaGRAF 6 projects that were previously exported in the 7-Zip (.7z)
compressed file format.

1. From the File menu, point to New, and then click Project.

Path Complete path where the Concrete Automation Model (CAM)
project file stored on the computer. The path is automatically
assigned:
%USERPROFILE%\My Documents\ ISaGRAF
6.x\Projects\SolutionName\ProjectName\ProjectName

Info

Name Name of the project. Project names can have up to 128 characters.

Path Complete path where the Automation Collaborative Platform
(ACP) project file stored on the computer. The path is automatically
assigned:
%USERPROFILE%\My Documents\ ISaGRAF
6.x\Projects\SolutionName\ProjectName
Automation Collaborative Platform 699

2. In the Project Types list, expand the CAM Projects option, then click ISaGRAF 5.

3. In the ISaGRAF installed templates list, click Import ISaGRAF 5 Project.

4. Specify a name and location for the project, indicate whether to add the project to an
existing solution or create a new solution by defining a solution name, then click OK. For
new solutions, you can choose to create a directory.

5. In the Choose an *.mdb File dialog box, locate and select the ISaGRAF 5 project
database file (*.mdb) from the previous ISaGRAF version, then click Open.

To import a compressed project

You can import projects created using previous versions of ISaGRAF 5 and saved in the 7-Zip
(.7z) compressed file format.

1. From the File menu, point to New, then click Project.

2. In the Project Types list, expand the CAM Projects option, then click ISaGRAF 5.

3. In the ISaGRAF installed templates list, click Import ISaGRAF Zip Project.

4. Specify a name and location for the project, indicate whether to add the project to an
existing solution or create a new solution by defining a solution name, then click OK. For
new solutions, you can choose to create a directory.

5. In the Choose a File dialog box, locate and select the compressed ISaGRAF 5 project file
from the previous ISaGRAF version, then click Open.

To create a library project

You can create a library project.

1. From the File menu, point to New, and then click Project.

2. In the Project Types list, expand the CAM Projects option, then click ISaGRAF 5.

3. In the ISaGRAF installed templates list, click Library.
700 ISaGRAF 5 Concrete Automation Model

4. Specify a name and location for the project, indicate whether to add the project to an
existing solution or create a new solution by defining a solution name, then click OK. For
new solutions, you can choose to create a directory.

See Also
Creating a Library
Automation Collaborative Platform 701

Devices
A device corresponds to a programmable logic controller. Devices contain one or more
resources. You can perform the following tasks for devices from the Solution Explorer:

� Adding devices

� Renaming devices

� Deleting devices

For devices, you need to specify the following properties:

Hardware

Enhanced Target Indication of whether the device supports the enhanced target
including motion control function blocks, safety function blocks,
and cycle time in microseconds.

Memory Size Memory allocated by the compiler for hidden temporary variables
used while solving complex expressions

Support IEC 61850 Indication of whether the device supports the IEC 61850 standard
for the design of electrical substation automation. Using this
feature requires importing a structure related to the standard.

Target Target type to which is attached the device. Changing targets for a
device affects all resources attached to the device.

Info

Comment Text displayed next to the device name in the Solution Explorer

Description Free-form text describing a device

Full Name Full name of device using the following syntax:
ProjectName.DeviceName

Is Password Protected Indication that the device is protected by a password controlling its
access

Name Name of the device. Device names can have up to 128 characters.
702 ISaGRAF 5 Concrete Automation Model

To add a device

� In the Solution Explorer, right-click the project element, point to Add, and then click
New Device.

To rename a device

� In the Solution Explorer, right-click the device, click Rename, and then type a name for
the device.

To delete a device

Deleting a device also removes all resources belonging to the device.

� In the Solution Explorer, right-click the device, and then click Delete.

Path Complete path where the device files are stored on the computer.
The path is automatically assigned to a device folder within the
project folder:
%USERPROFILE%\My Documents\
ISaGRAF 6.x\Projects\SolutionName\ProjectName\ProjectName\
DeviceName

Settings

Online Behavior Behavior of the device when switching to online or simulation
mode. Possible options are the following:
- Design where the device remains in design mode when switching
to online or simulation mode
- Debug Only where the device remains in design mode until
switching to online mode; switching to simulation mode does not
affect the device
- Simulate Only where the device remains in design mode until
switching to simulation mode; switching to online mode does not
affect the device
- Always where the device switches to either online or simulation
mode
Automation Collaborative Platform 703

See Also
Creating a Project
Creating a Library
704 ISaGRAF 5 Concrete Automation Model

Resources
Resources contain the POUs (programs, functions, and function blocks) and definitions within
devices. You can create user-defined functions and user-defined function blocks in the Lib
section of the Solution Explorer. You can perform the following tasks for resources from the
Solution Explorer:

� Adding resources

� Renaming resources

� Deleting resources

For resources, you need to specify the following properties:

Code

Code For Simulation Indication of whether to produce code for simulation for an
application
Automation Collaborative Platform 705

Compiler Options Check Array Index - Indication of whether to verify array indices

Dump Configuration Files - Indication of whether to generate of
resource level files containing debugging information and place
them at the root of the resource folder. The files are named using
the resource name as a prefix with .ttc and .tws as extensions.

Dump Network - Indication of whether to generate network and
device level files containing debugging information. The files are
placed at the root of the network folder and at the root of the device
folder. The files placed in the network folder are named
"NetworkConf" and have the extensions .ttc and .tws. The files
placed in the device folder are named using the resource name as a
prefix and have .ttc and .tws as extensions.

Dump POU Files - Indication of whether to generate resource level
files containing debugging information and place these at root of
the resource folder. Some of the files are named using the resource
name as a prefix, the POU name as a suffix, and have the
extensions .ttc and .tws. Other files are named using the POU name
with .lst and .unc as extensions.

Enable Code Optimization - Indication of whether to optimize
common expressions in a linear part of code and set the code
generator to optimize the TIC code. Optimization performs many
tasks: removes unused temporary variables, replaces each constant
expression with its result, replaces repeated expressions and
subexpressions with their equivalent values, suppresses unused and
surplus target labels and null jumps, and simplifies arithmetic
operations.

Function Internal State Enable - Indication of whether to produce
internal state information for functions. Functions containing no
internal state information denote that the invocation of a function
with the same arguments always yields the same values. When set
to True, local variables having the var direction are initialized
using their initial values only at run-time startup. When set to
False, function calls only initialize local variables, having the var
direction, at every call.

Generate Map File - Indication of whether to generate resource
level files containing debugging information. The files are placed
at the root of the resource folder and are named using the resource
706 ISaGRAF 5 Concrete Automation Model

name as a prefix with .ttc, .tws, and .map as extensions.

Embed Symbol Table Indication of whether to embed, on the target, the symbol table
specified as the type to embed

Embedded Table Type The type of symbol table to download to the virtual machine with
the resource code: None, Reduced, and Complete. The symbol
table groups the variable names of the resource. The reduced
symbol table contains only names of variables having a defined
address.

Embedded Zip Source Indication of whether to embed an exchange file (compressed
7-Zip format) holding all data from a project, device, or resource
on the target. This exchange file is the same as the file created
when exporting an element.

Structured C Source
Code

Indication of whether structured C source code is produced by the
compiler. Structured C source code can then be compiled and
linked with libraries to produce embedded executable code.

TIC Code Indication of whether Target Independent Code is produced by the
compiler. TIC code can be executed on virtual machines.

Hardware

Target The hardware platform on which Virtual Machines run resources of
a project

Info

Comment Text displayed next to the resource name in the Solution Explorer

Description Free-form text describing a resource

Extended Parameters OEM-defined parameters for resources enabling the customization
instances of individual ISaVM tasks. These parameters are sent to
virtual machines with the resource code.

Full Name Full name of resource using the following syntax:
ProjectName.DeviceName.ResourceName

Is Password Protected Indication that the resource is protected by a password controlling
its access

Memory Usage (Code) Indication of the amount of memory used by the code for the
programs of the resource (in bytes)

Memory Usage (Data) Indication of the amount of memory used by the variables of the
resource (in bytes)
Automation Collaborative Platform 707

Memory Usage (Retain
Space)

Indication of the amount of memory used by the retain variables of
the resource (in bytes)

Name Name of the resource. Resource names can have up to 128
characters.

Number Unique number identifying a resource within the project. This
number is automatically assigned. When changing this number,
you need to assign a number that is unique within the project. The
resource number identifies the virtual machine that will run the
resource code.

Path Complete path where the resource files are stored on the computer.
%USERPROFILE%\My Documents\
ISaGRAF 6.x\Projects\SolutionName\ProjectName\ProjectName\
DeviceName\ResourceName

Memory Size for Online Changes

Code Size For online changes, the amount of memory reserved for code
sequence changes

Maximum Extra POUs The maximum number of POUs that can be added during online
changes

SFC States Mem Size The memory space allocated for step and transition structures. A
step requires 40 bytes and a transition requires 20 bytes.

User Variable Size For online changes, the amount of memory reserved for adding
variables data. When generating symbol monitoring information
for a POU, the same amount of memory is also reserved for the
POU.

Settings

Cycle Time The amount of time given to each cycle. If a cycle is completed
within the cycle timing period, the system waits until this period
has elapsed before starting a new cycle. The cycle consists of
scanning the physical inputs of the process to drive, executing the
POUs of the resource, then updating physical outputs. The virtual
machine executes the resource code according to the execution
rules.
708 ISaGRAF 5 Concrete Automation Model

Cycle Time Units Unit of measure for the cycle time. Possible values are ms
(milliseconds) or µs (microseconds). To use µs, the target must
support this unit of measure.

Detect Errors Indication of whether to store errors. You need to define Nb Stored
Errors.

Execution Mode Indication of whether a resource executes in real time or
cycle-to-cycle. RealTime mode is the run time normal execution
mode where target cycles are triggered by the cycle timing. In
cycle-to-cycle mode, the virtual machine loads the resource code
but does not execute it until you execute one cycle or activate
real-time mode.

Memory For Retain Location where retained values are stored (the required syntax
depends on the implementation)

Nb Stored Errors Number of entries, i.e., the size of the queue (FIFO) in which
detected errors are stored

Online Behavior Behavior of the resource when switching to online or simulation
mode. Possible options are the following:
- Design where the resource remains in design mode when
switching to online or simulation mode
- Debug Only where the resource remains in design mode until
switching to online mode; switching to simulation mode does not
affect the resource
- Simulate Only where the resource remains in design mode until
switching to simulation mode; switching to online mode does not
affect the resource
- Always where the resource switches to either online or simulation
mode

Trigger Cycles Indication of whether a resource cycle executes according to the
defined Cycle Time

SFC Dynamic Behavior Limits
Automation Collaborative Platform 709

For bindings, resources use the HSD network.

To add a resource

� In the Solution Explorer, right-click the device element, point to Add, and then click New
Resource.

A resource is added to the device.

To rename a resource

� In the Solution Explorer, right-click the resource, click Rename, and then type a name
for the resource.

Gain Factor For SFC, specifies factor of dynamic behavior limits determining
the amount of memory, allocated by a target at initialization time,
designated to manage token moving. The amount of allocated
memory is calculated as a linear relation with the number of SFC
POUs:

Alloc Mem (bytes) = N * NbElmt * sizeof(typVa)

NbElmt = GainFactor * NbOfSFC + OffsetFactor

Where:

N = 5 (constant linked to SFC engine design)
NbElmt = The maximum number of transitions that can be valid for
each executed cycle, i.e., transitions with at least one of their
previous steps being active.
typVa = 16 bits in the medium memory model (32 bits in the large
memory model)
GainFactor and OffsetFactor = the linear parameters of the linear
relation
NbOfSFC = the number of SFC POUs in the project

Offset Factor Same as Gain Factor
710 ISaGRAF 5 Concrete Automation Model

To delete a resource

Deleting a resource also removes all programs, functions, function blocks, and variables
defined for the resource.

� In the Solution Explorer, right-click the resource, and then click Delete.

See Also
Debugging
Automation Collaborative Platform 711

Programs
You define programs in the Programs section of a resource in the Solution Explorer. Within a
Programs section, sequential programs must be adjacent. Programs belonging to a same section
must have different names.

For programs, you need to specify the following properties:

Code Generation

Generate Debug Info Indication of whether to generate information required for
debugging using step-by-step execution

Generate Monitoring
Symbols

For graphical POUs, indication of whether to generate information
required for graphically displaying the output values of elements
when debugging or simulating

Info

Comment Text displayed next to the program name in the Solution Explorer

Description Free-form text describing a program

Full Name Full name of program using the following syntax:
ProjectName.DeviceName.ResourceName.ProgramName

Is Password Protected Indication that the program is protected by a password controlling
its access

Language Programming language of the POU

Name Name of the program. Program names must begin with a letter and
can have up to 128 characters.

Order Position of the program within the execution order

Path Complete path where the program files are stored on the computer.
%USERPROFILE%\My Documents\
ISaGRAF 6.x\Projects\SolutionName\ProjectName\ProjectName\
DeviceName\ResourceName\ProgramName
712 ISaGRAF 5 Concrete Automation Model

To add a program

You define programs for a resource.

� In the Solution Explorer, right-click the program element for a resource, point to Add,
and then click the required programming language.

To rename a program

� In the Solution Explorer, right-click the program, click Rename, and then type a name
for the program.

To configure an interrupt for a program

1. In the Solution Explorer, select the program.

2. In the Properties window, set the Interrupt Enabled property to True.

The program moves to the Interrupts section.

3. In the Interrupts section, select the program, then expand the Interrupt Parameters
properties and configure the interrupt settings.

Settings

Interrupt Enabled For targets supporting interrupts, you can configure interrupts to
control the moment of execution of cyclic programs (ST, LD, FBD,
and SAMA). Such programs are executed independently of the
execution order applied to other programs. Interrupts can be called
from code to execute a program. When enabled for a program, the
program moves to the Interrupts section of the Solution Explorer.
When enabling an interrupt for a program, you need to define
interrupt parameters:

- Interrupt Data Type, the data type of the interrupt

- Interrupt Initial Value, the initial value of the interrupt

- Interrupt Selection, enables selecting from available interrupt
definitions.
Automation Collaborative Platform 713

To delete a program

� In the Solution Explorer, right-click the program, then click Delete.
714 ISaGRAF 5 Concrete Automation Model

Functions
You define functions in the Functions section of a resource in the Solution Explorer.

For functions, you can specify the following properties:

When adding functions, you also need to define parameters. Functions can have a maximum
of 128 parameters (inputs and outputs). When defining parameters, consider the following
limitations:

� Parameter names are limited to 128 characters and can begin with a letter followed by
letters, digits, and single underscores

Code Generation

Generate Debug Info Indication of whether to generate information required for
debugging using step-by-step execution.

Info

Comment Text displayed next to the function name in the Solution Explorer

Description Free-form text describing a function

Full Name Full name of function using the following syntax:
ProjectName.DeviceName.ResourceName.FunctionName

Is Password Protected Indication that the function is protected by a password controlling
its access

Language Programming language of the POU

Name Name of the function. Function names are limited to 128 characters
beginning with a letter followed by letters, digits, and single
underscore characters. These names cannot have two consecutive
underscore characters.

Order Position of the function within the execution order

Path Complete path where the function files are stored on the computer:
%USERPROFILES%\My Documents\
ISaGRAF 6.x\Projects\SolutionName\ProjectName\ProjectName\
DeviceName\ResourceName\FunctionName
Automation Collaborative Platform 715

� Possible data types for parameters are BOOL, SINT, USINT, BYTE, INT, UINT, WORD,
DINT, UDINT, DWORD, LINT, ULINT, LWORD, REAL, LREAL, TIME, DATE,
STRING, Array types, Structure types, Function blocks

� For String type variables, string capacity is limited to 252 characters excluding the
terminating null character (0), a byte for the current length of the string, and a byte for the
maximum length of the string

� For user defined addresses, the format is hexadecimal and the value ranges from 1 to
FFFF

� For dimensions, example: [1..10] for a one dimensional array, [1..4,1..7], for a two
dimensional array

To add a function

1. In the Solution Explorer, right-click the Functions element, point to Add, and then click
the required programming language for the function.

2. To define the parameters for the function, right-click the function and then
click Parameters.

The Block Selector displays the Parameters section where you define the parameters for
the function.

To rename a function

� In the Solution Explorer, right-click the function, click Rename, and then type a name for
the function.

To delete a function

� In the Solution Explorer, right-click the function, and then click Delete.
716 ISaGRAF 5 Concrete Automation Model

Function Blocks
You define function blocks in the Function Blocks section of a resource in the Solution
Explorer.

For function blocks, you can specify the following properties:

Code Generation

Generate Debug Info Indication of whether to generate information required for
debugging using step-by-step execution.

Generate Monitoring
Symbol

For graphical POUs, indication of whether to generate information
required for graphically displaying the output values of elements
when debugging or simulating

Instance Symbols Extra
Bytes

Size of memory reserved for each function block instance for
adding symbols monitoring information during online changes.
Note that a string-type output takes up to 260 bytes.

Info

Comment Text displayed next to the function block name in the Solution
Explorer

Description Free-form text describing a function block

Full Name Full name of function block using the following syntax:
ProjectName.DeviceName.ResourceName.FunctionBlockName

Is Password Protected Indication that the function block is protected by a password
controlling its access

Language Programming language of the POU

Name Name of the function block. Function block names are limited to
128 characters beginning with a letter followed by letters, digits,
and single underscore characters. These names cannot have two
consecutive underscore characters.

Order Position of the function block within the execution order

Path Complete path where the function block files are stored on the
computer:
%USERPROFILES%\My Documents\
ISaGRAF 6.x\Projects\SolutionName\ProjectName\ProjectName\
DeviceName\ResourceName\FunctionBlockName
Automation Collaborative Platform 717

When adding function blocks, you also need to define parameters. Function blocks can have a
maximum of 128 parameters (inputs and outputs). When defining parameters, consider the
following limitations:

� Parameter names are limited to 128 characters and can begin with a letter followed by
letters, digits, and single underscores

� Possible data types for parameters are BOOL, SINT, USINT, BYTE, INT, UINT, WORD,
DINT, UDINT, DWORD, LINT, ULINT, LWORD, REAL, LREAL, TIME, DATE,
STRING, Array types, Structure types, Function blocks

� For String type variables, string capacity is limited to 252 characters excluding the
terminating null character (0), a byte for the current length of the string, and a byte for the
maximum length of the string

� For user defined addresses, the format is hexadecimal and the value ranges from 1 to
FFFF

� For dimensions, example: [1..10] for a one dimensional array, [1..4,1..7], for a two
dimensional array

For instances of function blocks, you can reset the initial values defined for individual
instances.

To add a function block

1. In the Solution Explorer, right-click the Function Blocks element, point to Add, and then
click the required programming language for the function.

Settings

Tokens Limit For SFC and basic IEC function blocks, the maximum number of
tokens for a POU is equal to the number of parallel steps below a
transition plus one. For example, when there are four parallel steps
below a transition, the tokens limit must be set to a minimum of
five.
718 ISaGRAF 5 Concrete Automation Model

2. To define the parameters for the function block, right-click the function block, and then
click Parameters.

The Block Selector displays the Parameters section where you define the parameters for
the function block.

To reset the initial values of function block instances

1. From the Solution Explorer, right-click the function block, point to Refactor, and then
click Reset Initial Values of Instances.

2. In the Refactoring dialog box, select the required instances of the function block for
which to reset the initial values, and then click OK.

To rename a function block

� In the Solution Explorer, right-click the function block, click Rename, and then type a
name for the function block.

To delete a function block

� In the Solution Explorer, right-click the function block, and then click Delete.
Automation Collaborative Platform 719

Variables
Variables are defined for their scope. For instance, global variables are available for use
throughout the programs, functions, and functions blocks of a resource. Whereas, variables
defined for a program, a function, or a function block are local to that element. You define
variables in the Variables grid. You can create groups to which you add existing variables.
Variables can belong to multiple groups. For individual variable scopes, you can import and
export variables data having the Microsoft Excel (*.xls) format.

When defining variables data using a spreadsheet you enter each piece of information in a
separate cell, leave cells empty if items are to be omitted, and save the file in XLS format.
These requirements are automatically followed by the export utility; you must respect these
when building a file to be imported.

When defining complex variables such as arrays and structures, the syntax for the variable
name is as follows:

� For arrays: arrayname[index]

Name,Alias,Data Type,StringSize,InitValue,Direction,Wiring,Attribute ...
array1,,BOOL,0,,, ...
"array1[1,1]",,BOOL,0,,, ...
"array1[1,2]",,BOOL,0,,, ...
"array1[1,3]",,BOOL,0,,, ...
"array1[1,4]",,BOOL,0,,, ...
"array1[1,5]",,BOOL,0,,, ...

� For structures: structurename.membername

Name,Data Type,Dimension,Alias,Comment,InitValue,Direction ...
structure1,,T9K_DI_FULL,0,, ...
structure1.DI,,BOOL,0,, ...
structure1.LF,,BOOL,0,, ...
structure1.DIS,,BOOL,0,, ...
structure1.CF,,BOOL,0,, ...
structure1.V,,UINT,0,, ...
structure1.STA,,USINT,0,, ...

When managing variables data, you can perform the following tasks:
720 ISaGRAF 5 Concrete Automation Model

� Import and export variables data

� Creating groups for variables data

To create a variable group

When adding variables to a group, you can add these to the group from the variables grid or
you can drag these between the variables grid and the group grid.

1. In the Solution Explorer, right-click Variable Groups item, and then click Add New
Variable Group.

The group is added.

2. To add variables to the group using the contextual menu options:

� Open the variables grid, select one or more variables, then right-click the selection,
point to Add to Group, and then click the required group name.

3. To add variables to the group by dragging:

a) Open the variables grid and the group grid by double-clicking and place both grids
side-by-side.

b) In the variables grid, select the consecutive variables, then drag the selected variables
from the cell having the arrow in the left most column to within the variables group
grid.
Automation Collaborative Platform 721

Choosing Project Templates for
Targets
When creating projects, you select a project template depending on the operating system, target
type, and features required to develop your application. Each template has different features
and is designed for use with a corresponding target type. The following describes the templates,
their compatible targets, and available features.
.

Template Name, Target Name Description

Import ISaGRAF 5 Project Enables importing a multi-resource ISaGRAF 4 or
ISaGRAF 5 project into the ISaGRAF 6 workbench.

Import ISaGRAF Zip Project Enables importing a compressed ISaGRAF 6
multi-resource project into the ISaGRAF 6 workbench.

ISaFREE_TPL,
ISAFREE-TGT

Enables creating a single-resource project for use with
the ISaGRAF Free Windows target. Projects can have a
maximum size of 3200 bytes.

Features: C functions and function blocks, enhanced
target features (microsecond cycle timing, motion
control and safety function blocks), password
protection, TIC code optimization, online changes,
bindings, retain values, interrupts, flexible arrays and
function block parameters by reference, multiple
network instances of the same type, set priority for SFC
transitions, wiring for complex variable members.

Library Enables creating a library project starting with one
resource in one device.
722 ISaGRAF 5 Concrete Automation Model

See Also
Creating a Project

PRJ61499_TPL, SIMULATOR Enables creating a project using the IEC 61499
distributed method.

Features: Enhanced target features (microsecond cycle
timing, motion control and safety function blocks),
password protection, TIC code optimization, bindings,
online changes, retain values, microsecond cycle
timing, flexible arrays and function blocks passed by
reference, POUs of 64 KB and greater, multiple
network instances of the same type, setting of SFC
transition priority, and wiring on complex variable
members.

Simulator, SIMULATOR Enables creating a project starting with one resource in
one device for use with the Simulator target.

Features: Enhanced target features (microsecond cycle
timing, motion control and safety function blocks),
password protection, TIC code optimization, bindings,
online changes, retain values, microsecond cycle
timing, flexible arrays and function block parameters by
reference, POUs of 64 KB and greater, multiple
network instances of the same type, setting of SFC
transition priority, and wiring on complex variable
members.
Automation Collaborative Platform 723

Creating a Library
Libraries are special projects made up of devices and resources in which you define functions,
function blocks, global variables, arrays and structures for reuse throughout ISaGRAF projects.
Libraries also enable you to modularize projects and to isolate functions and function blocks
so that these can be validated separately.

A project can depend on more than one library and different projects can call the same library.
When creating a library, it can contain functions, function blocks, defined words, arrays and
structures. These library elements can be called from a project once the library is added as a
dependency. Functions and function blocks can be written using the IEC 61131-3 languages
(FBD, LD, SAMA, SFC, or ST).

You create libraries as part of a solution in the Automation Collaborative Framework. A
solution can hold multiple projects and libraries.

You base a library on a Library template then develop its elements, i.e., devices, resources,
programs, functions, and function blocks. Libraries are stored in the same location as projects
and are also MS-Access database (.MDB) files.
724 ISaGRAF 5 Concrete Automation Model

The target type of a library resource affects the usability of functions and function blocks
throughout projects using the library. A library can only have one device target type. Functions
and function blocks can only be used in resources referring to the same target type, except
when they use the SIMULATOR target type. When library resources use the SIMULATOR
target type, all of their functions and function blocks can be used in any project resource
regardless of its target type.

Library functions and function blocks must have unique names. When they have the same
names as those defined in a project in which they are used, only those from the project are
recognized. Furthermore, you do not need to compile functions and function blocks in the
library before using them in projects. These are compiled in the calling project space, in order
to take care of the compiling options defined for the project.

To create a library

1. From the File menu, point to New, and then click Project.

2. In the Project Types list, expand the CAM Projects option, then click ISaGRAF 5.

3. From the list of available project templates, click the Library template.

4. Specify a name and location for the library, indicate whether to add the library to an
existing solution or create a new solution by defining a solution name, then click OK. For
new solutions, you can choose to create a directory.

See Also
Using a Library in a Project
Creating a Project
Automation Collaborative Platform 725

Using a Library in a Project
Projects can use functions and function blocks from one or more libraries. You need to create
libraries before using them. Furthermore, you need to define a project's dependencies, i.e., the
set of libraries the project will use, before using a library's defined elements. A project can
depend on more than one library.

Library functions and function blocks can refer to some global defined words or data types
defined in the library. In such a case, these defined words and data types from the library can
also be used in the project.

A library cannot use functions and function blocks from another library. In other words, you
cannot define external dependencies for a library. However, a function or function block from
a library can call other functions or function blocks from the same library. Furthermore,
functions or function blocks from libraries can call 'C' written functions and function blocks
defined for the corresponding target.

All functions and function blocks within a project, including those coming from libraries, must
have unique names. When more than one uses the same name, the following conditions apply:

� If the functions or function blocks come from different libraries, warnings are generated
at compilation and only the first definition is recognized.

� If one function or function block is defined in the project and the other from a library,
only the one defined in the project is recognized. The other is ignored.

Furthermore, when the same name is used for several types or several defined words having
different definitions in a project and attached libraries, an error is generated at compilation
time. However, when a data type or defined word is defined several times with the same
contents or definition, a warning is reported but the project can be compiled.

You add dependencies onto libraries from the Dependencies dialog box. In this dialog box, the
Libraries list displays the libraries on which a project has dependencies while the Solution list
displays all libraries contained in the solution.

Note: When redefining the location of a library dependency you can modify the path in the
library properties; removing the library will result in a loss of all project references.
726 ISaGRAF 5 Concrete Automation Model

To use a library in a project

1. Right-click the project for which to add a dependency, point to Add, and then click Add
Dependency.

2. In the Dependencies dialog box, click Browse to locate the library on which to create the
dependency.

The library is displayed in the Libraries list.

See Also
Creating a Library
Automation Collaborative Platform 727

Setting Project Access Control
For project security, you can set access control using a password for projects, resources,
devices, POUs, and library functions and function blocks. Password definitions are limited to
eight characters and can consist of letters, digits, and symbols. When projects are
password-protected they cannot be opened for editing. Project sub-elements, can have their
own level of access control. For example, a POU having its own password remains locked and
cannot be modified without entering its password.

Note: Since POUs are encrypted, you need to retain password definitions.

In the Solution Explorer, the following indicate the security state for elements:

When opening a project having password-protected elements, you are only prompted to enter
the password once for each element. Password-protected elements have the following
modification restrictions:

You can edit existing passwords for projects and project sub-elements. You can also remove
existing passwords. When copying, pasting, importing, and exporting elements having access
control, password definitions are retained.

To set a password

1. In the Solution Explorer, right-click the required element, and then click Password.

Indicates that a lock is applied to the element

Password-Protected Element Modification Restrictions

Project Opening the project

Device Adding, editing, and deleting a resource, program, library
function, or library function block

Resource Adding, editing, and deleting a program, library function, or
library function block

Program Viewing the program

Library Function Viewing the function

Library Function Block Viewing the function block
728 ISaGRAF 5 Concrete Automation Model

2. In the Set Password dialog box, enter the required information, then click OK.

a) In the Password field, type the required password.

b) In the Confirm Password field, re-type the required password.

To edit a password

1. In the Solution Explorer, right-click the required element, and then click Password.

2. In the Set Password dialog box, enter the required information, then click OK.

a) In the Old Password field, type the current password.

b) In the Password field, type the required password.

c) In the Confirm Password field, re-type the required password.

To remove a password

1. In the Solution Explorer, right-click the required element, and then click Password.

2. In the Set Password dialog box, enter the required information, then click OK.

� In the Old Password field, type the current password.

� The Password and Confirm Password fields must remain blank.

See Also
Setting Target Access Control
Automation Collaborative Platform 729

Setting Target Access Control
For device target security, you can set access control by defining a password for the device
target. Password definitions are limited to eight characters and can consist of letters, digits, and
symbols. Target access control prevents the connection of all IXL clients not having the
password for the target. Users having the password can attach the target to devices in different
projects.

Note: The password definitions for device targets are saved on target platforms.

You can edit existing passwords for device targets. You can also remove existing passwords
for device targets. When setting, editing, and deleting the password for a device target, the
attached target must be running.

To set a target password

1. In the Solution Explorer, right-click the device element, and then click Target Password.

2. In the Set Password dialog box, enter the required information, then click OK.

a) In the Password field, type the required password.

b) In the Confirm Password field, re-type the required password.

To edit a target password

1. In the Solution Explorer, right-click the required device element, and then click Target
Password.

2. In the Set Password dialog box, enter the required information, then click OK.

a) In the Old Password field, type the current password.

b) In the Password field, type the required password.

c) In the Confirm Password field, re-type the required password.
730 ISaGRAF 5 Concrete Automation Model

To remove a target password

1. In the Solution Explorer, right-click the required device element, and then click Target
Password.

2. In the Set Password dialog box, enter the required information, then click OK.

� In the Old Password field, type the current password.

� The Password and Confirm Password fields must remain blank.

See Also
Setting Project Access Control
Automation Collaborative Platform 731

Importing Target Definitions
You can import target definitions into a project. These target definitions are *.tdb files.

To import a target definition file into a project

1. From the Solution Explorer, right-click the project and point to Import, and then click
Import Target Definitions.

2. In the Open window, browse to locate the target definitions (*.tdb) file to import into the
project, then click Open.

When the importation process is completed, the features from the target definition are available
for use in the project.
732 ISaGRAF 5 Concrete Automation Model

Importing and Exporting Elements
You can import elements, i.e., projects, devices, resources, and POUs, having been previously
exported. Exporting an element creates a copy in XML format of the element definitions,
including sub-elements, and stores this information in a compressed 7-Zip (.7z) exchange file.
You can import elements into devices, resources, and programs in the same project or in other
projects.

When importing elements, you can select individual sub-elements to import or choose to
import all sub-elements. ISaGRAF places imported elements at the proper location within a
project. For example, when importing a resource element into a POU, the resource is added to
the device containing the POU. The Output window details the progress of import operations.

When exporting definitions for elements, the resulting exchange file contains all sub-element
definitions as well as global and local variables. You can also choose to export only the
variables for certain elements. For devices and resources, you can export global variables. For
POUs, you can export local variables.

You specify the location in which to save exchange files. You can also choose to set a password
for an exported exchange file. When importing and exporting elements having access control,
password definitions are retained.

To import elements

You can only import elements having been previously exported and stored as compressed
exchange files.

1. In the Solution Explorer, right-click the destination element for the exchange file, point to
Import, and then click Import Exchange File.

2. In the Import Export dialog box, on the Import Exchange File tab, browse to select the
exchange file to import.

� In the Select Import Exchange File dialog box, select the exchange file to import,
and then click Open.

3. From the Select Elements to Import display, select the elements to import, and then click
Import.
Automation Collaborative Platform 733

Using the Select All option, you can select all the elements displayed. The Clear All
option enable you to deselect all elements, then reselect only those required.

4. When the imported element name exists at the destination, you need to choose one of the
following actions to resolve the conflict.

� Skip imported element and use existing one instead.

� Create a new copy of the element from the imported one.

� Replace existing element with the imported one.

5. When the import process is complete, in the Import Export dialog box, click .

The imported elements are available for use.
734 ISaGRAF 5 Concrete Automation Model

To export elements

When exporting elements, these are saved as exchange files having a 7-Zip (.7z) compressed
format.

1. In the Solution Explorer, right-click the element to export, point to Export, and then click
Export Item.

2. In the Import Export dialog box, specify the options for the exchange file (optional), then
click Export.

� To export only the variables associated with the element, select the
Export Variables Only option.

� To set a password for the exported exchange file, select the Set Password option,
then define and confirm the password by typing in the fields provided.

3. On the Save As dialog box, specify a name and location in which to save the exported
file, then click Save.

4. When the export process is complete, in the Import Export dialog box, click .

The exchange file containing the exported element is placed at the specified location.
Automation Collaborative Platform 735

Importing and Exporting Variables
Data
You can import variables that were previously exported and saved as Microsoft Excel
spreadsheets (.xls). Exporting variables enables management of variables data in Excel,
including adding, removing, and modifying variables. You can import previously exported
Excel files into other resources and programs in the same project or in other projects.

When importing variables, you import the fields selected during the export process. For
previously exported Excel files containing modified content, any additional columns of data
using proper syntax will be imported. The Output window details the progress of import
operations, including the names and location of the variables added.

When exporting variables, you can select the fields of the variables to export. You also specify
the location in which to save the exported files.

You can also import files containing manually defined variables for use in resources and
programs. When importing files created manually, you must include a header row containing
the same syntax used in files exported from ISaGRAF. The Excel file syntax uses the internal
names for the columns of data instead of those displayed in the Variable Export/Import dialog
box. Any rows of data using improper syntax will not be imported.

The following table displays the syntax used in Excel files and the associated dictionary
properties:

 File Column Dictionary
Property

Description

Name Name Name of the variable

Data Type Data Type Data type of the variable

Dimension Dimension The number of elements defined for an array

String Size String Size The maximum character length for string-type
variables

Initial Value Initial Value The value held by a variable when the virtual machine
begins executing the resource. The format is comma
separated values (CSV).
736 ISaGRAF 5 Concrete Automation Model

To import variables

You can only import variables having been previously exported and stored as Excel (.xls) files.

1. In the Solution Explorer, right-click the destination element for the Excel file, point to
Import, then click Variables from Excel.....

2. In the Variable Export/Import dialog box, on the Import Variables tab, click browse to
select the Excel file to import.

Direction Direction For I/O wiring, indicates whether a variable is an input,
output, or internal.

Attribute Attribute Indicates the read and write access rights

Retained Retained Indicates whether the value of the variable is saved by
the virtual machine at each cycle

Comment Comment User-defined free-format text for variables

Alias Alias Any name

Wiring Wiring Indicates the I/O channel wired to the variable

Address Address User-defined address of the variable

Retained Flags Retained Enables retaining specific elements of a variable and
indicates whether to use the initial value of a variable or
the value previously retained on the target. The format
is comma separated values (CSV).

Groups Groups Variable group containing the variables listed in
alphabetical order

Comment Fields Comment User-defined free-format text for array elements. Each
array element of the same type can have a different
comment. The format is comma separated values
(CSV).

 File Column Dictionary
Property

Description
Automation Collaborative Platform 737

� In the Import/Export File dialog box, select the Excel file to import, then click
Open.

3. In the Variable Export/Import dialog box, click Import.

4. When the import process is complete, click .

The imported variables are available for use.

To export variables

You can export selected fields of variables data in Excel (.xls) format.

1. In the Solution Explorer, right-click the resource or POU containing the variables to
export, point to Export, then click Variables to Excel....

2. In the Variable Export/Import dialog box, on the Export Variables tab, browse to select
the destination for the exported variables.
738 ISaGRAF 5 Concrete Automation Model

3. In the Import/Export File dialog box, specify the name of the Excel file, and then click
Save.

4. From the Fields to Export check box list, select the variables data to export, then click
Export.

Using the Select All option, you can select all the fields displayed. The Clear All option
enable you to deselect all fields, then reselect only those required.

5. When the export process is complete, click .

The variables are exported to the specified file.
Automation Collaborative Platform 739

Generating Code
Before downloading code onto your target systems, you need to build the code for the whole
solution. This operation builds the code for all projects within the solution, and builds
information used to recognize your systems on networks. When a solution contains more than
one project, you can build the code for individual projects within the solution. Once a solution
or project has been built, subsequent build operations only regenerate the parts of the solution
or project needing regeneration. You can also choose to build project elements, including
devices, resources, and POUs. When building POUs, ISaGRAF only verifies the programming
syntax without producing code.

When managing code, you can perform the following tasks:

� Building Solutions and Project Elements

� Rebuilding Solutions

� Cleaning Solutions and Project Elements
740 ISaGRAF 5 Concrete Automation Model

Building Solutions and Project Elements
You can choose to compile project files that were modified since the last build. You can build
modified project files belonging to entire solutions. Once a project has been built, subsequent
builds only recompile the parts of the project needing recompiling.

When a solution contains more than one project, you can build the modified project files for
individual projects. You can also choose to build individual project elements including
devices, resources, and POUs.

You can rebuild solutions to ensure that the compiled version is up-to-date. When rebuilding
solutions, intermediate and output files are deleted, then a build operation is performed.
Deleting the intermediate and output files ensures that the entire solution is compiled during a
rebuild operation. After rebuilding solutions, online changes become unavailable.

The compiler generates different code for simulation than for targets. Therefore, you need to
specify the applicable target in the properties of devices before building.

When building solutions and project elements, you can view the progress of the build in the
Output window. When the build is complete, you can view generated errors in the Error List.

To build a solution or project element

This operation builds the code for all resources of the projects and builds information used to
recognize your systems on networks. You cannot build projects open in read-only mode.
Before building a project, make sure the applicable target type is specified for the devices.

� In the Solution Explorer, right-click the required solution or project element, then click
Build (or press Ctrl+Shift+B).

The build process is initiated for the required project element or solution.

To view the build progress and generated errors

1. From the Tools menu, click Options.

2. In the Options dialog box, expand Projects, click General, then select the following
options, and then click OK.
Automation Collaborative Platform 741

� Always show Error List if build finishes with errors

� Show Output window when build starts

3. Build the required solution or project element.

The Output and Error List windows are displayed.

See Also
Downloading Code to Targets
Rebuilding Solutions
Cleaning Solutions and Project Elements
742 ISaGRAF 5 Concrete Automation Model

Rebuilding Solutions
You can choose to clean solutions, deleting the intermediate and output files, then rebuild all
project files and components. After rebuilding solutions, online changes become unavailable.

You can view the progress of rebuild operations in the Output window. When the rebuild is
complete, you can view generated errors in the Error List.

To rebuild a solution

1. In the Solution Explorer, click the solution element.

2. From the Build menu, click Rebuild Solution.

The rebuild process is initiated for the solution.

To view the rebuild progress and generated errors

1. From the Tools menu, click Options.

2. In the Options dialog box, expand Projects, click General, then select the following
options, and then click OK.

� Always show Error List if build finishes with errors

� Show Output window when build starts

3. Build the required solution.

The Output and Error List windows are displayed.

See Also
Downloading Code to Targets
Cleaning Solutions and Project Elements
Automation Collaborative Platform 743

Cleaning Solutions and Project Elements
You can clean solutions, projects, devices, and resources. Cleaning these deletes the
intermediate and output files generated during the last build operation. Performing cleaning
operations removes the capacity to perform online changes for the selected element. For
example, after cleaning a device, online changes become unavailable for that equipment.

To clean a solution

� In the Solution Explorer, right-click the solution, then click Clean Solution.

The intermediate and output files are deleted for the solution.

To clean a project, device, or resource

� In the Solution Explorer, right-click the required project, device, or resource, then click
Clean Selection.

The intermediate and output files are deleted for the project element.

See Also
Building Solutions and Project Elements
Rebuilding Solutions
744 ISaGRAF 5 Concrete Automation Model

Running an Application Online
Running online signifies that an application is connected to a target allowing for the normal
execution where target cycles are triggered by the cycle timing. While running online, you can
perform target management, debugging, and monitoring operations. However, you cannot
perform target management and debugging operations at the same time. You can also simulate
the running of an application for debugging purposes.

Before running an application on a target, you need to build the project code and download the
application code onto the target.

To run an application online

1. Specify the applicable target type and IP addresses for the devices in the project.

Note: The compiler generates different code for simulation than for targets.

2. Build the project code.

3. To run an application online, download the application code onto the target.

4. In the Debug toolbar, from the drop-down combo-box, select Online.

5. In Debug menu, click Start Debugging.

See Also
Simulating
Debugging
Target Management
Monitoring
Automation Collaborative Platform 745

Target Management
Target management operations affecting target behavior include downloading resource code to
targets, uploading code from targets, stopping and starting resources as well as performing
online changes.

See Also
Debugging
746 ISaGRAF 5 Concrete Automation Model

Downloading Code to Targets

You perform download operations for projects having resources with code to send to targets.
When simulating a project, you do not need to perform a download operation. When
performing download operations, you can also choose to send custom files to the target except
when using failover mechanisms. Such files are placed at the root of the target folder on the
target platform.

Each time you perform a download operation, the Automation Collaborative Platform
verifies the coherency between the current resource definitions and the resources' code to
download. The Workbench also verifies the coherency between all versions of the resource
code.

The code (corresponding to the run-time engine capabilities) must first be generated by
building the project. The code type is determined by the target definition.

The Configuration manager must be running on the target platform.

The computer where the Automation Collaborative Platform is installed must be connected
to the hardware device through a network supported by the Debugger. The standard networks
used by the Automation Collaborative Platform are Ethernet (ETCP) and Serial COM port
(ISaRSI).

You can choose to store resource, device, and project code on targets. When setting up a
resource's properties, you select the required element to download to the target from the
EmbeddedZipSource options.

To download project code to a target

1. To store code on the target, from the Solution Explorer, select the required resource, then
from the Properties window, perform one of the following:
Automation Collaborative Platform 747

� To store code for the resource, from the EmbeddedZipSource drop-down combo-box,
select Resource

� To store code for the device, from the EmbeddedZipSource drop-down combo-box,
select Device.

� To store code for the project, from the EmbeddedZipSource drop-down combo-box,
select Project.

2. To send custom files to the target, place the required files in the To Download folder
located in the device directory.

Note: Custom files are placed at the root of the target folder on the target platform. When using
a failover mechanism, you cannot send custom files to a target.

3. Build the project code.

4. In the Solution Explorer, right-click the project element, and then click Download.
748 ISaGRAF 5 Concrete Automation Model

Uploading Code from Targets

You can upload code for projects, devices, and resources when the code has been stored on the
target (if non-volatile storage exists for the platform). When uploading, a copy of the element
is added to the Solution Explorer.

Before uploading an element's source file, you need to download its source code onto the
target. When setting up the resource's properties, you select the required element to download
to the target in the EmbeddedZipSource option.

To upload an element from sources on a target

� From the Solution Explorer, right-click the resource, device, or project for which to
upload source code, and then click Upload.

A copy of the element is added to the Solution Explorer.

See Also
Downloading Code to Targets
Automation Collaborative Platform 749

Stopping and Starting Resources

You can stop and start a virtual machine. Stopping a resource terminates the virtual machine,
changing the resource state to CODE. The resource state appears next to the resource icon in
the Solution Explorer. Starting a resource launches the kernel process, producing the same
result as downloading a resource. Once the resource is running online, you can apply the
necessary execution mode, affecting the resource state.

Note: The STOP resource state indicates the cycle-to-cycle execution mode.

To stop a resource running on a target

1. In the Solution Explorer, select the resource to stop.

2. From the Target Execution toolbar, click .

To start a resource on a target

1. In the Solution Explorer, select the resource to start.

2. From the Target Execution toolbar, click .

See Also
Downloading Code to Targets
Debugging
750 ISaGRAF 5 Concrete Automation Model

Performing Online Changes

You can modify a resource while it runs. This is sometimes necessary for chemical processes
where any interruption may jeopardize production or safety. When performing online changes,
you can choose to update a running resource at the time of download or at a later time. Note
that sending custom files located in the To Download folder to a target is only available when
performing a download operation; sending custom files is not possible when performing online
changes.

Warning: Online changes should be used with care. ISaGRAF may not detect all possible
conflicts generated by user-defined operations as a result of these online changes.

The initial values of variables are applied upon starting resources. Online changes do not start
resources.

For all ISaGRAF versions, the following limitations exist for online changes:

The following tasks are available for various ISaGRAF versions when performing online
changes:

Declared, i.e., user-defined, arrays and structures cannot be modified. Declared arrays and
structures are defined as data types.

I/O device instances cannot be added or deleted; these instances can be modified.

Device and resource properties cannot be modified.

Undeclared arrays cannot be added or deleted. Undeclared arrays are defined as variables in
a dictionary instance.

ISaGRAF 4.X
targets or later

Internal
Variables

Adding, deleting, and relocating internal variables.

Modifying the body of POUs.
Automation Collaborative Platform 751

ISaGRAF 5.10
targets or later

Bindings To enable online changes for legacy bindings, set the
LegacyBindingDefault property to 0 in the diamond.ini
file. This file is installed at the following location:
%ALLUSERSPROFILE%\ISaGRAF\6.x\CAM
ISaGRAF 5\5.3\Bin

Adding, deleting, and editing.

Creating and deleting bindings between variables.

Changing the consumer error variable and consumption
behavior of a binding. Changing the producing variable,
consuming variable, or network for a binding creates a
new one.

Adjusting the update timeout period in the resource
network parameters. The update timeout period is the
maximum time during which the consumer can remain in
the update state.

I/O Variables Wiring, unwiring, and swapping I/O variables whose data
type (scalar type for arrays), length (string variables),
dimension (arrays), and address remains unchanged. For
these I/O variables, you can modify the direction (input
or output only), scope, attribute (read, write, or free),
retain flag, alias, and comment. When modifying the
direction, I/O variables cannot change to or from the
internal type. Note that modifying the I/O wiring causes
the values of new and removed output I/O variables to be
reinitialized.

I/O Channels Changing the wired variable as well as the reverse/direct,
gain, offset, and conversion settings.
752 ISaGRAF 5 Concrete Automation Model

ISaGRAF 5.23
targets or later

Internal
Variables

When renaming or changing the data type of internal
variables, the Workbench creates new variables.
Therefore, variables are initialized.

Changing the alias, initial value, group, scope, direction,
retain setting, address, and comment of variables. When
changing the initial value of a read-only internal variable,
the Workbench reinitializes the variable. When changing
the scope of a variable, the Workbench reinitializes the
variable.

Modifying the length of string variables. When
decreasing the length, the contents of the string is
truncated to the new length.

Switching a variable attribute between the input and
output attribute. You cannot switch variables between the
internal and input/output attribute.

Adding and removing elements in arrays for internal
variables. For multi-dimensional arrays, you can only add
elements to the first dimension. The Workbench
initializes these new elements. Adding elements to other
dimensions causes the Workbench to initialize a new
array.

Programs Adding, deleting, renaming, and reordering (for
execution within the programs section) programs. When
renaming programs, the Workbench detects a CRC
mismatch and updates the code on the target for the
program and reinitializes all local variables. When
renaming SFC programs, instance data and local
variables are not preserved, i.e, elements are reset to their
initial state.

When planning to add programs (other than SFC) using
online changes, you need to allocate a sufficient number
of maximum extra POUs.

When planning to add SFC programs using online
changes, you need to allocate sufficient memory space
for SFC programs.
Automation Collaborative Platform 753

Adding, deleting, renaming steps and transitions as well
as modifying the initial step or the flow between
elements. When modifying SFC programs, instance data
and local variables is preserved, i.e., elements are not
reset to their initial state.

Addi d l ti d i ti bl k ithi t

To perform an online change

You can perform online changes after building a project. Online changes are unavailable after
cleaning projects, cleaning solutions, and rebuilding solutions.

� From the Solution Explorer, right-click the project for which to perform the online
change, then click Online Change.

ISaGRAF 5.50
targets or later

Functions and
Function
Blocks

Adding and deleting "C" function block instances having
initialization or exit functionality implemented.
754 ISaGRAF 5 Concrete Automation Model

Debugging
When developing an application, you can choose to debug, i.e., detect and remove errors, from
a project while running the application online, i.e., on a target, or simulating. Before running
an application online, you need to download the application code onto the target.

While in real-time mode, each resource is executed by a virtual machine on the real platform.
A download operation is required to download the code of each resource onto the
corresponding platform. You can also switch a resource to cycle-to-cycle mode.

A resource where real-time mode is activated is in the RUN state.

When debugging, the state of a resource is displayed in its icon in the Solution Explorer. The
possible states of a resource are the following:

To enable debugging a project, you must first build the project, then download the project code
to the target.

When switching an application to debugging, the Automation Collaborative Platform
verifies the coherency between the current resource definitions and the resources' compiled
code. The Automation Collaborative Platform also verifies the coherency between all
versions of the resource code.

You can execute a resource in one of two execution modes:

� Real-time, the run time normal execution mode where target cycles are triggered by the
programmed cycle timing. While in real-time mode, you can switch the resource to
cycle-to-cycle mode. When debug information is generated for POUs in a resource, the
resource automatically switches to step-by-step mode when the application encounters a
breakpoint.

The resource is running on the device. The resource is in the RUN, STOP,
ERROR, STEPPING, or STEPPING_ERROR state.

The application running on the virtual machine does not match the project.

The virtual machine is unable to establish communication with the target
run-time or unable to locate the code. The resource is in the CODE or NOCODE
state.
Automation Collaborative Platform 755

� Cycle-to-cycle, a cyclical execution mode where the virtual machine loads the resource
code but does not execute it until you execute one cycle or activate real-time mode. When
debug information is generated for POUs in a resource, the resource automatically
switches to step-by-step mode when the application encounters a breakpoint. You can
also switch to step-by-step mode by stepping.

The state of the resource appears next to the resource icon in the Solution Explorer.

Resource State Description

RUN The resource is running in real-time mode. You can switch the
resource to cycle-to-cycle mode.

STOP The resource is in cycle-to-cycle mode.
Possible operations are:
- switch the resource to real-time mode
- execute one cycle
- step into or step over the next line of code (when step-by-step
mode is instantiated)

ERROR The resource is in error.
Possible operations are:
- switch the resource to real-time mode
- execute one cycle
- step into or step over the next line of code (when step-by-step
mode is instantiated)

STEPPING The resource is in step-by-step mode.
Possible operations are:
- switch the resource to real-time mode
- switch the resource to cycle-to-cycle mode returning the resource
to the start of its cycle without executing the remaining code
- execute one cycle
- step into or step over the next line of code (when step-by-step
mode is instantiated)

STEPPING_ERROR The resource is in stepping error mode. This state is caused when an
invalid operation occurs such as a division by 0 or a bound check
error. You can switch the resource to cycle-to-cycle mode returning
the resource to the start of its cycle without executing the remaining
code.
756 ISaGRAF 5 Concrete Automation Model

When running online, a resource is activated in the RUN state. A resource where cycle-to-cycle
mode is activated can be in one of three states: STOP, BREAK, and ERROR. When viewing
the values of variables in dictionary instances, the logical and physical values display the
following temporary messages before loading the actual values:

� OFFLINE, indication that the variable is not present in the running application code

� WAIT, indication that the variable is either:

� In online mode and attempting to connect to the target

� In simulation mode and attempting to connect to the simulator

While debugging, you can lock and unlock I/O channels of an I/O device.

To debug an application

Before debugging an application, you need to build the application code and download the
code to the target.

1. Build the project code.

2. Download the code to the target.

3. In the Debug toolbar, from the drop-down combo-box, select Online.

4. From the Debug menu, click Start Debugging (or press F5).

See Also
Resources
Forcing the Values of Variables

CODE The virtual machine is unable to execute the resource. Verify that the
virtual machine matches the target definition in the Workbench.

NOCODE The virtual machine is unable to locate the application code.

Resource State Description
Automation Collaborative Platform 757

Accessing Diagnostic Information (System Variables)

You can access diagnostic information for individual resources while running an application
in simulation mode.

System variables hold the values of resource variables relating to cycle count, timing, kernel
bindings, and resource information. You can view system variables from the dictionary
instances for resources. You can read from and write to system variables. The available system
variables are the following:

Variable Name Type Read/Write Description

__SYSVA_CYCLECNT DINT Read Cycle counter

__SYSVA_CYCLEDATE TIME Read Timestamp of the
beginning of the cycle
in milliseconds

__SYSVA_KVBPERR BOOL Read/Write Kernel variable binding
producing error
(production error)
This system variable is
not available for use.

__SYSVA_KVBCERR BOOL Read/Write Kernel variable binding
consuming error
(consumption error)

__SYSVA_MICROCYCLEDATE UDINT Read Timestamp of the
beginning of the current
cycle in microseconds
(µs)

__SYSVA_MICROTCYMAXIMUM UDINT Read Maximum cycle time
since last start in
microseconds (µs)

__SYSVA_MICROTCYCURRENT UDINT Read Current cycle time in
microseconds (µs)

__SYSVA_MICROTCYCYCTIME UDINT Read/Write Programmed cycle time
in microseconds (µs)

__SYSVA_RESNAME STRING Read Resource name (max
length=255)
758 ISaGRAF 5 Concrete Automation Model

__SYSVA_SCANCNT DINT Read Input scan counter

__SYSVA_TCYCYCTIME TIME Read/Write Programmed cycle time

__SYSVA_TCYCYCTIMEBASE UDINT Read/Write Current cycle base time
in milliseconds (ms) or
microseconds (µs)

__SYSVA_TCYCURRENT TIME Read Current cycle time

__SYSVA_TCYMAXIMUM TIME Read Maximum cycle time
since last start

__SYSVA_TCYOVERFLOW DINT Read Number of cycle
overflows

Variable Name Type Read/Write Description
Automation Collaborative Platform 759

Warning: For the _SYSVA_CCEXEC system variable, its use in an ST program is not
significant since resources run in cycle-to-cycle mode. Therefore, programs are not executed.

To view system variables

� From the Solution Explorer, double-click the Global Variables instance for the
required resource.

__SYSVA_RESMODE SINT Read Resource execution
mode. Possible modes
are:
-4: Stopped in stepping
mode after bound check
exception
-3: Stopped in stepping
mode after division by
zero exception
-2: Stopped in stepping
mode after exception
-1: Fatal error
0: No resource available
1: Stored resource
available NOT USED
(CMG)
2: Ready to run
3: Running in real time
4: Running in cycle by
cycle
5: Stopped from
encountering an SFC
breakpoint
7: Stopped while in
stepping mode

__SYSVA_CCEXEC BOOL Write Execute one cycle when
application is in cycle to
cycle mode

Variable Name Type Read/Write Description
760 ISaGRAF 5 Concrete Automation Model

The system variables are displayed in the grid.
Automation Collaborative Platform 761

Logging Target Execution Events

You can log target execution events received from ISaGRAF targets. Logged events are stored
in a log file, in Unicode format, located in the Events Logger folder of the current project’s
directory. A new log file is automatically created each day at 00:00:00 hours.

You can view log files in text format using a text editor.

When logging events from the workbench, the workbench automatically points towards the
application’s project and the logger is started. You can also choose to start logging events from
a command line.

To log target execution events

When logging events, the application must be online.

1. From the Target Execution toolbar, click .

2. In the Output window, select the Events Logger option from the drop-down combo-box.

The Output window displays the events in real-time and a copy of the events is saved in
the log file.

3. To stop logging events, in the Target Execution toolbar, click .

To view a log file

The default location of the log file is in the Events Logger folder of the project’s directory. The
name of the log file is Events_YYYYMMDD.txt where YYYY is the year, MM is the month, and
DD is the day on which the file is created.
762 ISaGRAF 5 Concrete Automation Model

� In the Events Logger folder, double-click the .txt file.
Automation Collaborative Platform 763

Forcing the Values of Variables

While debugging, you can force, i.e., override, the values of variables. These variables can be
user-defined or directly represented. The behavior of a variable is defined by its logical value,
physical value, lock state, and direction. When forcing the values of variables, the value to
overwrite depends on the direction of the variable. You lock, unlock, and force the values of
variables from the Dictionary.

Locking and unlocking operates differently for simple variables, array and structure elements,
and function block parameters. For simple variables, individual variables are locked and
unlocked directly. For simple-type members of a complex variable such as a structure or array,
locking or unlocking any member affects the entire complex variable. For array and structure
elements, locking and unlocking an element affects all members. For function block
parameters, locking a parameter affects only that parameter. For function blocks, you need to
instantiate these before locking their parameters.

For locked variables, the values displayed in the Logical Value and Physical Value columns
differ depending on their direction:

Internal Variable (Read) Behavior

Example: To force a counter for a function block.
764 ISaGRAF 5 Concrete Automation Model

Internal Variable (Write) Behavior

Example: To force the result of an internal calculation.

Input Variable (Read) Behavior

Example: To force the temperature reading from a sensor.
Automation Collaborative Platform 765

When forcing the values of unlocked variables, these values may be overwritten by the next
cycle execution.

To force the value of a variable

While debugging, you can force the values of locked user-defined or directly-represented
variables.

1. From the Dictionary instance, double-click the required variable.

The Write dialog box is displayed.

2. To modify the lock on the variable, in the Lock field, click the slider, then click Write.

3. To write the required value for the variable, modify the DataType value field, then click
Write.

When modifying a date in the DataType value field, a calender box is displayed. To select
a date, click within the calender box. You can move between months using the arrow
buttons.

Output Variable (Write) Behavior

Example: To force the closing of an actuator valve.
766 ISaGRAF 5 Concrete Automation Model

See Also
Debugging
Automation Collaborative Platform 767

Simulating
Simulating the running of an application signifies that virtual machines execute the code of
individual resources and the Windows platform performs aspects such as POU execution.
Virtual machines ignore inputs and outputs.

The compiler generates different code for simulation than for online.

Before simulating an application on a target, you need to build the project code.

To simulate the running of an application

1. From the Deployment view, specify the applicable target type and IP addresses for the
devices in the project.

a) Click the target, then from the Properties window, expand the Hardware node and in
the Target property, select the required target from the drop-down combo-box.

b) Click the connection between the target and the network, then from the Properties
window, expand the Info node and type the required IP address in the field provided.

2. Build the project code.

3. In the Debug toolbar, from the drop-down combo-box select Simulation.

4. From the Debug menu, click Start Debugging.
768 ISaGRAF 5 Concrete Automation Model

Monitoring
While running an application online, debugging, or simulating, you can monitor variables,
updated by the running online (TIC) code or simulation code, in Dictionary instances as well
as graphical programs and function block instances. For individual graphical POUs, you enable
monitoring by generating symbols monitoring for each. Generating monitoring information
increases the size of the TIC code created.

For dictionary instances, the logical values, physical values, and lock status of variables are
displayed in their respective columns. For graphical programs and function block instances,
values are displayed differently depending on their type:

� Boolean type variables are displayed using color. The variable color continues to the next
input. The default colors are red when True and blue when False.

� SINT, USINT, BYTE, INT, UINT, WORD, DINT, UDINT, DWORD, LINT, ULINT,
LWORD, REAL, LREAL, TIME, DATE, and STRING type variables are displayed as a
numeric or textual value. When the variable is a structure type, the displayed value is the
selected member.

When variables are unavailable, in Dictionary instances, the logical and physical values
display the following messages:

� OFFLINE, indication that the variable is not present in the running application code

� WAIT, indication that the variable is either:

� In online mode and attempting to connect to the target

� In simulation mode and attempting to connect to the simulator

To generate symbols monitoring information for a graphical POU

When debugging graphical POUs, you can monitor the output values of functions and
operators by enabling the Generate Symbols Monitoring property.

1. In the Solution Explorer, select the graphical POU for which to generate symbols
monitoring.

2. In the Properties window, set the Generate Symbols Monitoring property to True.
Automation Collaborative Platform 769

See Also
Running an Application Online
Debugging
Simulating
770 ISaGRAF 5 Concrete Automation Model

Getting Started
The ISaGRAF 5 Concrete Automation Model enables the creation of applications supporting
multi-process control. Applications consist of virtual machines running on hardware
components, called target platforms. The development process consists of creating projects
made up of devices representing individual target platforms, on which one or more instances
of resources are downloaded. At runtime, instances of resources become individual virtual
machines running on these target platforms.

Solutions containing one or more projects are developed in the following languages of the IEC
61131-3 standard: SFC: Sequential Function Chart, FBD: Function Block Diagram, LD:
Ladder Diagram, SAMA (Scientific Apparatus Makers Association) diagrams, and ST:
Structured Text. Using the IEC 61499 language, i.e., distribution method, enables the
distribution of function blocks across multiple resources. When building, resources are
compiled to produce very fast "target independent code" (TIC) or "C" code.

Within resources, you can declare variables using standard IEC 61131-3 data types (i.e.,
Boolean, integer, real, etc.) or user-defined types such as arrays or structures. Resources can
share variables using external bindings. For IEC 61499 programs, bindings between function
blocks declared in different resources are automatically created.

You develop projects on a Windows® development platform. The Automation Collaborative
Platform graphically represents and organizes devices, resources, POUs, variables, and
networks within a solution from many views:

� Add-in Manager � Bindings

� Block Library � Block Selector

� Controller Status � Customize...

� Data Types � Deployment View

� Description Window � Device View

� Dictionary � Document Overview

� Error List � External Tools

� Find and Replace � I/O Wiring

� ISaVIEW � Language Editors

� Locked Variables Viewer � Navigation Window
Automation Collaborative Platform 771

Libraries made up of devices and resources enable defining functions, function blocks, global
variables, arrays, and structures for reuse throughout projects.

Individual resources, from the devices making up a project, are downloaded, using the ETCP
(TCP-IP), HSD, or ISARSI (Windows COM port) network, onto target nodes running
real-time operating systems. Communication between devices can be implemented using the
default TCP-IP network or proprietary network protocol.

You can choose to simulate the running of a project, after building a project, using high-level
debugging tools, before actually downloading the resources making up devices to the target
nodes.

When getting started, the following information guides you through the different facets:

� System Requirements for Development Platforms

� Differences with Previous Versions

� Naming Conventions and Limitations

� Introducing the Automation Collaborative Platform (ACP)

� Walking Through an Existing Application

� Starting with a Basic Application

� Importing an Existing Application

� Options... � Output Window

� Parameters View � Properties Window

� Solution Explorer � Spy Lists

� Toolbox � Variable Dependencies

� Variable Selector
772 ISaGRAF 5 Concrete Automation Model - Getting Started

System Requirements for Development Platforms

Suggested Requirements

To use ISaGRAF, you need the following hardware and software.

Hardware

� A computer with a 2.2 GHz or faster processor.

� RAM

 1 GB of RAM for x86 operating systems

 2 GB of RAM for x64 operating systems

 When running ISaGRAF on a Virtual Machine, an additional 512 MB of RAM is
necessary

� 4 GB of available hard disk space

� A hard disk running at 5400 RPM

� A CD-ROM drive on the Windows network (for installation from disk)

� A TCP/IP network

� An SVGA monitor having at least 1024 X 768 pixels screen resolution

� A DirectX 9-capable video card that runs at a display resolution of 1024 x 768 or higher

Software

ISaGRAF supports the following operating systems:

� Windows® 7 (x86 and x64)

� Windows® 8 (x86 and x64)
Automation Collaborative Platform 773

Note: If Visual Studio 2010 was previously installed, when running the ISaGRAF installation
the Visual Studio 2010 Service Pack 1 will be installed. This may affect Visual Studio
functionality.
774 ISaGRAF 5 Concrete Automation Model - Getting Started

Differences with Previous Versions
For users of previous versions of ISaGRAF, the following list compares different aspects of the
workbench:

ISaGRAF 6.x Workbench ISaGRAF 5.x Workbench

Provides a tab-oriented environment enabling
navigation between multiple POUs and
Dictionary instances

Provides a window/editor-based environment
requiring closing the Dictionary before using
newly-defined variables in a POU.

Supports the FBD, LD, SFC, and ST IEC
61131-3 programming languages as well as
SAMA diagrams using the FBD programming
language. Also supports the IEC 61499
programming language.

Supports the FBD, LD, SFC, LD, FC, and IL
IEC 61131-3 programming languages.

The Solution Explorer provides an organized
view of projects and their elements. The
Solution Explorer can display multiple
projects. You can also perform many tasks
from this view.

The Project Tree view displays the project
structure and enables accessing most aspects
of a currently opened project.

The dictionary displays variables in
contextual instances for individual resources
and POUs.

In accordance with the IEC 61131-3 standard,
the available options for dictionary variables
are the following:

1) For Attribute: Read/Write, Write, and
Read.

2) For Direction: Var (replacing Internal),
VarOutput (replacing Output), VarInput
(replacing Input), VarDirectlyRepresented,
and VarGlobal.

The dictionary displays all variables for
individual resources.

The available options for dictionary variables
are the following:

1) For Attribute: Free, Read, and Write

2.) For Direction: Internal, Output, and Input

Opening projects in Read-Only mode is not
available.

Can open an existing project in Read-Only
mode.
Automation Collaborative Platform 775

Supports external bindings. Internal bindings
are automatically converted to external
bindings.

Supports external and internal bindings

Devices represent target definitions; devices
replace configurations

Configurations represent target definitions

Elements are imported/exported in
compressed 7-zip (.7z) exchange files

Elements are imported/exported in
compressed .PXF exchange files

POUs are displayed and edited using language
containers in the language editor. POUs are
also displayed in the Solution Explorer.

POUs are displayed in the link architecture
view. POUs are editable using various
language editors.

In the language editor, a document overview
and zooming enables focusing on areas of the
workspace

In the language editor, zooming enables
focusing on POUs displayed in the workspace

You define the properties of projects, devices,
resources, and POUs by selecting the element
in the Solution Explorer and entering the
required information in the Properties
window.

You define the properties of project elements
from various dialog boxes accessed from the
menus.

After rebuilding the solution, online changes
are not permitted

You can perform online changes after
rebuilding projects

You can download code for resources,
devices, or projects and store it on the target

You can download code for resources and
store it on a disk or use another storage
method

You can set a password for devices (sets the
access control for the target), projects, POUs,
and library functions and function blocks

You can set a password for resources,
projects, POUs, and targets

The Toolbox displays the language-specific
elements for a selected POU.

The Toolbar displays the language-specific
elements for a selected POU.

I/O wiring is performed from the I/O Device
View, which is accessed from the contextual
menu for the resource within the Solution
Explorer.

I/O wiring is performed from the I/O wiring
tool

ISaGRAF 6.x Workbench ISaGRAF 5.x Workbench
776 ISaGRAF 5 Concrete Automation Model - Getting Started

The Deployment View graphically displays
the devices, networks, and connections of
projects and solutions in a separate window.

The hardware architecture view graphically
displays the configurations, networks, and
connections of a project in the workspace.

You can generate documentation for projects,
devices, resources, POUs, and variables. You
can specify the following options:

� Choose the Sections template, modifying
the items listed in the Sections pane.

� Set the page orientation for the generated
documentation

� Set the page size for the generated
documentation

� Set the margins for the generated
documentation

� Select the Microsoft Word® template,
includes whether footers are included

� Set the POU diagram scaling

� Set the link type

� Set the comment style

� Define the output file name and location

You can build and print documentation for
open projects. You can specify the following
options:

� Set the page orientation for printing. You
can choose to print FBD and LD
diagrams differently from the rest of the
document. Diagrams are automatically
scaled to fit the paper

� Enable displaying headers/footers on
each page and on cover pages

� Choose the image displayed and select
the format for headers/footers

� Specify the page numbering method

� Choose to include printing history on
cover pages

� Enable displaying margins and define
margin width

� Define the font used to print text

Description window enables displaying and
editing text descriptions for projects, devices,
resources, and POUs. Clicking items within
the Solution Explorer refreshes the contents of
the Description window, enabling the
exploration of projects.

Descriptions are accessed via contextual
menus for programs and resources displayed
in the link architecture and hardware
architecture views, respectively. Descriptions
contain editable text only.

ISaGRAF 6.x Workbench ISaGRAF 5.x Workbench
Automation Collaborative Platform 777

Error List window displays warnings, errors,
and messages generated when building
projects and solutions, projects, devices,
resources, or POUs. Errors in the code are
accessed directly from the Error List view.

Error List window displays warning, errors,
and messages generated by building solutions,
projects, configurations, resources, or POUs.
Errors in the code are accessed from the
Output window.

Cross Reference Browser displays
information including names, properties,
locations, and comments associated with the
variables, programs, functions, function
blocks, and defined words used within
projects.

The Browser displays information including
names and locations associated with the
variables, programs, functions, function
blocks, and defined words used in projects.

Add-in Manager enables specifying the
loading method of registered add-ins
displayed in the dialog box. You can define
whether add-ins loads at start-up time, using
command line prompts, or both. You can also
enable and disable add-ins displayed in the
Add-in Manager dialog box.

ProHook dynamic link library enables the
usage of user-programmed functions (i.e.
hook functions) with the ISaGRAF
workbench. At start-up time, the library is
loaded and the hook functions are enabled.

External Tools option enables launching other
applications from inside ISaGRAF.

Tools contained in external applications are
launched from outside ISaGRAF.

Renumbering addresses is not available Renumbering addresses automatically
generates contiguous addresses in the
variables grid

Default fonts and colors are modified in the
Options dialog box.

Fonts and colors are customized using the
options available in the customization editor.

ISaGRAF 6.x Workbench ISaGRAF 5.x Workbench
778 ISaGRAF 5 Concrete Automation Model - Getting Started

Naming Conventions and Limitations
Projects

Project names Project names can have up to 128 characters and must begin with a
letter or single underscore followed by letters, digits, and single
underscores.

Device quantity Projects can contain multiple devices

Resources

Resource names Resource names can have up to 128 characters and must begin with a
letter or single underscore followed by letters, digits, and single
underscores.

Devices

Device names Device names can have up to 128 characters and must begin with a
letter or single underscore followed by letters, digits, and single
underscores.

Networks

Network instances Projects can have an unlimited quantity of network instances

POUs (Programs, Functions, and Function Blocks)

POU names POU names can have up to 128 characters and must begin with a letter
or single underscore followed by letters, digits, and single
underscores.

POUs per project Projects can contain up to 65 536 POUs

Function parameters Functions can have a maximum of 128 parameters (127 inputs and one
output)

Function parameter
names

Function parameter names can have up to 128 characters and must
begin with a letter or single underscore followed by letters, digits, and
single underscores.

Function block
parameters

Function blocks can have a maximum of 128 parameters (inputs and
outputs)

Function block
parameter names

Function block parameter names can have up to 128 characters and
must begin with a letter or single underscore followed by letters,
digits, and single underscores.
Automation Collaborative Platform 779

Variables

Variable name Variable names can have up to 128 characters and must begin with a
letter or single underscore followed by letters, digits, and single
underscores.

BOOL variables Boolean variables can have the boolean value TRUE (1) or FALSE
(0).

SINT variables SINT variable integer values range from -128 to +127. Short integer
constants must begin with a prefix identifying the base. There is no
prefix for DECIMAL values. For HEXADECIMAL values the prefix
is "16#", for OCTAL values the prefix is "8#", and for BINARY
values the prefix is "2#".

USINT variables USINT variable integer values range from 0 to 255. Unsigned short
integer constants must begin with a prefix identifying the base. There
is no prefix for DECIMAL values. For HEXADECIMAL values the
prefix is "16#", for OCTAL values the prefix is "8#", and for BINARY
values the prefix is "2#".

BYTE variables BYTE variable integer values range from 0 to 255. BYTE constants
must begin with a prefix identifying the base. There is no prefix for
DECIMAL values. For HEXADECIMAL values the prefix is "16#",
for OCTAL values the prefix is "8#", and for BINARY values the
prefix is "2#".

INT variables INT variable integer values range from -32768 to +32767. Integer
constants must begin with a prefix identifying the base. There is no
prefix for DECIMAL values. For HEXADECIMAL values the prefix
is "16#", for OCTAL values the prefix is "8#", and for BINARY
values the prefix is "2#".

UINT variables UINT variable integer values range from 0 to 65535. Unsigned integer
constants must begin with a prefix identifying the base. There is no
prefix for DECIMAL values. For HEXADECIMAL values the prefix
is "16#", for OCTAL values the prefix is "8#", and for BINARY
values the prefix is "2#".
780 ISaGRAF 5 Concrete Automation Model - Getting Started

WORD variables WORD variable integer values range from 0 to 65535. WORD
constants must begin with a prefix identifying the base. There is no
prefix for DECIMAL values. For HEXADECIMAL values the prefix
is "16#", for OCTAL values the prefix is "8#", and for BINARY
values the prefix is "2#".

DINT variables DINT variable integer values range from -2147483648 to
+2147483647. Double integer constants must begin with a prefix
identifying the base. There is no prefix for DECIMAL values. For
HEXADECIMAL values the prefix is "16#", for OCTAL values the
prefix is "8#", and for BINARY values the prefix is "2#".

UDINT variables UDINT variable integer values range from 0 to 4294967295.
Unsigned double integer constants must begin with a prefix
identifying the base. There is no prefix for DECIMAL values. For
HEXADECIMAL values the prefix is "16#", for OCTAL values the
prefix is "8#", and for BINARY values the prefix is "2#".

DWORD variables DWORD variable integer values range from 0 to 4294967295. Double
word constants must begin with a prefix identifying the base. There is
no prefix for DECIMAL values. For HEXADECIMAL values the
prefix is "16#", for OCTAL values the prefix is "8#", and for BINARY
values the prefix is "2#".

LINT variables LINT variable integer values range from -9223372036854775808 to
+9223372036854775807. Long integer constants must begin with a
prefix identifying the base. There is no prefix for DECIMAL values.
For HEXADECIMAL values the prefix is "16#", for OCTAL values
the prefix is "8#", and for BINARY values the prefix is "2#".

ULINT variables ULINT variable integer values range from 0 to
18446744073709551615. Unsigned long integer constants must begin
with a prefix identifying the base. There is no prefix for DECIMAL
values. For HEXADECIMAL values the prefix is "16#", for OCTAL
values the prefix is "8#", and for BINARY values the prefix is "2#".

LWORD variables LWORD variable integer values range from 0 to
18446744073709551615. Long word constants must begin with a
prefix identifying the base. There is no prefix for DECIMAL values.
For HEXADECIMAL values the prefix is "16#", for OCTAL values
the prefix is "8#", and for BINARY values the prefix is "2#".
Automation Collaborative Platform 781

REAL variables Real variables have six significant digits. For larger values, the
maximum possible value is ±3.402823466E+38 while for smaller
values, the minimum possible value is ±1.175494351E-38. Therefore,
values greater than ±3.402823466E+38 and greater than 0.0 but less
than ±1.175494351E-38 are not supported. Real literal values can be
written with either decimal or scientific representation. The exponent
part of a real scientific expression must be a signed integer value
ranging from -37 to +37. The scientific representation uses the 'E'
letter to separate the mantissa part and the exponent.

LREAL variables Long real variables have 15 significant digits. For larger values, the
maximum possible value is ±1.7976931348623158e+308 while for
smaller values, the minimum possible value is
±2.22507385850721E-308. Therefore, values greater than
±1.7976931348623158e+308 and greater than 0.0 but less than
±2.22507385850721E-308 are not supported. Long real literal values
can be written with either decimal or scientific representation. The
range of a real scientific expression must be a signed integer value
from 1.7E -308 to 1.7E +308.

TIME variables Time variables can have positive values ranging from 0 to
49d17h2m47s294ms. The time literal value must begin with the "T#"
or "TIME#" prefix.

DATE variables Date variable values range from 1970-01-01 to 2038-01-18. The date
literal expression must begin with the "D#" or "DATE#" prefix.

STRING variables STRING variable string capacity is limited to 252 characters
excluding the terminating null character (0), a byte for the current
length of the string, and a byte for the maximum length of the string.
String variables can contain any character of the standard ASCII table.
Characters must be preceded and followed by single quote (')
characters. When placing single quote (‘) characters within a string
literal, these characters must be preceded by the dollar ($) character.

Alias names Alias names can have up to 128 characters consisting of letters, digits,
and the following special characters: !, #, $, %, &, \, *, +, -, /, <, :, =, >,
?, @, ^, _, `, |, and ~.

Address The user-defined address of a variable consists of four digits in
hexadecimal format ranging from 0001 to FFFF.
782 ISaGRAF 5 Concrete Automation Model - Getting Started

Array names Array names can have up to 128 characters and must begin with a letter
or single underscore followed by letters, digits, and single underscores.

Structure names Structure names can have up to 128 characters and must begin with a
letter or single underscore followed by letters, digits, and single
underscores.

Defined Words

Defined Word names Defined word names can have up to 128 characters and must begin
with a letter or single underscore followed by letters, digits, and single
underscores.

Defined word
equivalents

Defined word equivalents can have up to 128 characters.

I/O Wiring

I/O device order The I/O device order ranges from 0 to 65535

SFC Programs

Priority of transitions The priority of transitions value ranges from 1 to 255.

Access Control

Password definitions Password definitions are limited to eight characters consisting of
letters, digits, and symbols.
Automation Collaborative Platform 783

Introducing the Automation Collaborative Platform (ACP)
The Automation Collaborative Platform (ACP) provides a robust integrated development
environment (IDE) enabling the development of process control applications. The ACP
workbench offers a complete suite of tools for building applications.

To get to know the different aspects of the ACP

1. From the Start menu, click All Programs, then ISaGRAF 6.4, and then click
Automation Collaborative Platform.

The ACP is launched displaying the Start Page, Solution Explorer, and Output window.
The Toolbox is displayed in auto hide mode.

The Start Page enables opening new or recent projects, viewing tutorials, as well as
accessing the Getting Started help pages. The Solution Explorer displays open solutions
consisting of projects and their elements. The Output window displays the compilation
progress and errors. The Toolbox displays the available elements for insertion in
programs.
784 ISaGRAF 5 Concrete Automation Model - Getting Started

2. When adding elements in the language container, you can use the following ACP
features:

 To display program-specific elements for insertion in the language container, from
the View menu, click Toolbox.
Automation Collaborative Platform 785

 To display variables defined for a program, from the Toolbox, drag the Variable icon
into the language container. The Variable Selector is displayed.
786 ISaGRAF 5 Concrete Automation Model - Getting Started

 To display the list of the blocks available for a program, from the Toolbox, drag the
Block icon into the language container. The Block Selector is displayed. You can
also access the Parameters display from the Block Selector.
Automation Collaborative Platform 787

 To display a graphical view of standard operators, as well as standard and
user-defined functions and function blocks available for the POUs of a project, from
the View menu, click Block Library.

 To view, add, or edit the rich text descriptions for ISaGRAF project elements, select
the required element in the Solution Explorer, then from the View menu, click
Description Window.
788 ISaGRAF 5 Concrete Automation Model - Getting Started

3. To work in full screen mode, from the View menu, click Full Screen. Full screen mode
enlarges the workspace to fill the screen, hiding other tabbed windows.

4. To display the Properties window, from the View menu, click Properties Window. The
properties window enables viewing and editing the properties of items selected within
language containers, ISaVIEW instances, the Solution Explorer, and the Deployment
View. You can view properties alphabetically or categorically.
Automation Collaborative Platform 789

5. You can navigate through program content, including application code, using the
following ACP features:

 To find and replace strings and expressions in files, from the Edit menu, point to
Find and Replace, and then click the required option. For example, click Quick
Find to display Quick Find options.
790 ISaGRAF 5 Concrete Automation Model - Getting Started

 To focus on an area displayed within a program opened for editing, from the View
menu, click Document Overview.

 To view and jump to instances of ISaGRAF elements within a project, from the View
menu, click Cross Reference Browser, refresh the list of cross references, then
locate the required element by entering the required search information.
Automation Collaborative Platform 791

 To view the ascending and descending dependencies of variables, from a graphic
program or dictionary instance, right-click the required variable, and then click
Dependencies. Before viewing variable dependencies, refresh the cross references
for the project.

Dependencies are also available while editing, debugging, or running online.

6. You can navigate through the different elements and aspects of projects using the
following ACP features:

 To navigate through project aspects and elements, from the View menu, click
Navigation Window. The environment provides the global view (listing the devices
contained in one or more projects within a solution), the deployment view, and the
device view.

The initial aspects and elements displayed vary depending on the item selected in the
Solution Explorer.
792 ISaGRAF 5 Concrete Automation Model - Getting Started

 To navigate through project elements, from the Solution Explorer, right-click the
required device and then click Open. The Device View is displayed and enables
accessing device and resource information such as available POUs, C function and
function block parameters, interrupts, target I/O devices, target features, and
resource properties.

 To navigate through Active Files open in the current project, from the Window
menu, click Windows. Active files consist of language containers, the Deployment
view, and other windows docked in the workspace.

7. When managing elements, you can use the following ACP features:
Automation Collaborative Platform 793

 To manage local variables, global variables, arrays, structures, and defined words, in
the Solution Explorer, double click the required Local Variables, Global Variables or
Data Type instance. The Dictionary is displayed.

 To manage parameters and local variables for user-defined POUs, right-click the
POU, and then click Parameters.

8. To create external bindings, i.e., access paths, between variables located in different
resources, in the Solution Explorer, right-click the project, device, or resource and then
click Binding.
794 ISaGRAF 5 Concrete Automation Model - Getting Started

9. When debugging applications, you can oversee application performance using the
following ACP features:

 To view the build information, from the View menu, click Output.
Automation Collaborative Platform 795

 To view the errors, warnings, and messages produced when editing and building
programs, from the View menu, click Error List.

 To view or unlock locked variables while debugging, running online, and simulating,
from the Debug menu, click Locked Variables.

10. To add an ISaVIEW screen, right-click the device, resource, or program in the Solution
Explorer, point to Add, and then click New ISaVIEW.

You can monitor or run control processes, locally or remotely, by creating ISaVIEW
screens. You can define animation effects for the objects inserted in the ISaVIEW
screens. Design mode enables editing the screen objects and animation mode executes
the animation effects.
796 ISaGRAF 5 Concrete Automation Model - Getting Started

11. You can view information about devices using the following ACP features:
Automation Collaborative Platform 797

 To graphically display the devices, networks, and connections of a project, from the
View menu, click Deployment View.

 To access real-time status information for all devices in a project, from the View
menu, click Controller Status.

12. To implement a failover mechanism where a secondary device takes over if the primary
device fails, in the Solution Explorer, right-click the device, and then click Failover
Configuration.

The failover mechanism is available with the failover project template.
798 ISaGRAF 5 Concrete Automation Model - Getting Started

13. For version source control, the following options are available for managing changes to
ISaGRAF elements:

 To view the files for the elements of repositories, from the View menu, click
Repository Explorer.

 To view the directories and files of local working copies from repositories, from the
View menu, click Working Copy Explorer.
Automation Collaborative Platform 799

 To view a list of project changes that have not yet been committed to version source
control, from the View menu, click Pending Changes.

 To view the history of elements committed to version source control, from the File
menu, point to Subversion, then click View History.
800 ISaGRAF 5 Concrete Automation Model - Getting Started

 To compare different version of elements committed to version source control, from
the File menu, point to Subversion, and then click Compare.

 To revert elements to a prior version, from the File menu, point to Subversion, and
then click Revert.

14. To view changes in the values of variables and function block instances, from the Debug
menu, point to Spy Lists, then click the required spy list instance.
Automation Collaborative Platform 801

15. To generate documentation for projects, devices, resources, programs, and variables,
from the File menu, click Generate Documentation.

16. You can customize the Workbench using the following ACP features:
802 ISaGRAF 5 Concrete Automation Model - Getting Started

 To customize the environment, project, Source Control, Block Library, Deployment
view, Device view, various grids, I/O device, IEC languages, ISaVIEW, and Spy List
options, from the Tools menu, click Options...
Automation Collaborative Platform 803

 To create or customize Toolbars, Menu bars, and Context menus, from the Tools
menu, click Customize...

17. You can manage add-ins and external tools using the following ACP features:
804 ISaGRAF 5 Concrete Automation Model - Getting Started

 To manage registered add-ins, from the Tools menu, click Add-in Manager...

 To add external tools, from the Tools menu, click External Tools...
Automation Collaborative Platform 805

Walking Through an Existing Application
This section describes a demo project included with the default installation.

To walk through an existing application

1. Launch the ACP and open an existing application.

a) From the Start menu, point to All Programs, click ISaGRAF 6.4, and then click
Automation Collaborative Platform.

b) From the File menu, point to Open, then click Project/Solution....
806 ISaGRAF 5 Concrete Automation Model - Getting Started

c) In the Open Project dialog box, select and open the DEMO_ENERGY.isasln
project, located in the following directory:

%USERPROFILE%\My
Documents\ISaGRAF 6.x\Projects\DEMO_ENERGY\DEMO_ENERGY.isasln
Automation Collaborative Platform 807

The DEMO_ENERGY project is displayed.

2. Review the application components.

a) From the View menu, click Solution Explorer.

b) To view available programs, expand the project, device, resource, and program
elements, then view the programs by double-clicking the required program instance.
808 ISaGRAF 5 Concrete Automation Model - Getting Started

Opened programs are displayed in the language container.

c) To view the dictionary variables, in the Solution Explorer double-click Global
Variables.

The dictionary is displayed in the workspace. You can add, edit, and remove
variables. You can sort and filter the variables displayed, as well as arrange the
columns to display.
Automation Collaborative Platform 809

3. Configure bindings for variables located in different resources.

a) To configure directional links between variables located in different resources, from
the Solution Explorer, right-click the project, resource, or device, and then click
Binding.

b) From the Bindings View, in the Producing Groups column, expand the resource

node, then view the binding variables by clicking .

The variables displayed in the Producing Variables column are bound to the variables
displayed in the Consuming Variables column. You can edit, add, and delete the
groups of producing and consuming variables.
810 ISaGRAF 5 Concrete Automation Model - Getting Started

4. For each resource, program, and target, set the properties for debugging.

a) From the View menu, click Properties Window.

b) In the Solution Explorer, select the individual resources, then from the Properties
window, set Code For Simulation to True.
Automation Collaborative Platform 811

c) In the Solution Explorer, select individual programs, then in the Properties window,
make the following modifications for each programming language:

- For ST programs, set Generate Debug Info to True.

- For LD programs, set Generate Debug Info and Generate Monitoring Symbols to
True.

- For FBD programs, set Generate Debug Info and Generate Monitoring Symbols to
True.

- For SAMA programs, set Generate Monitoring Symbols to True.

- For IEC 61499 programs, set Generate Debug Info and Generate Monitoring
Symbols to True.
812 ISaGRAF 5 Concrete Automation Model - Getting Started

d) From the View menu, click Deployment View, and then make the following
modifications to the properties:

- In the Deployment view, select the target, then in the Properties window, for the
Target property, select the required target type from the drop-down combo box.
Automation Collaborative Platform 813

- In the Deployment view, select the connection between the target and the network,
then in the Properties window, in the IPAddress property, type the required IP
address.
814 ISaGRAF 5 Concrete Automation Model - Getting Started

5. Build the solution, then view any generated errors, warnings, and messages.

a) In the Solution Explorer, right-click the solution element, then click Build Solution.

b) To view the build information, from the View menu, click Output.
Automation Collaborative Platform 815

c) To view the errors, warnings, and messages generated during the build, from the
View menu, click Error List.

You can choose to display errors, warnings, or messages in the Error List. You can
also sort the list of errors, warnings, and messages displayed.

6. Debug the project.

You can simulate the running of an application without downloading code onto your
target platform. However, when running an application online, you must download the
project code onto the target before debugging.

a) In the Target Execution toolbar, from the Solution Configurations drop-down
combo-box, select Simulation.
816 ISaGRAF 5 Concrete Automation Model - Getting Started

b) To begin the debugging process, from the Debug menu, click Start Debugging.

You can monitor the progress of the simulation using the Output window.

7. While in debug mode, view the programs and dictionary variables.

a) From the Solution Explorer, view the individual programs by double-clicking the
required program instance.

The program is displayed in the language container. Boolean variables are displayed
using color: red when True and blue when False. Numerical and textual values are
displayed in red.

b) From the Solution Explorer, view the dictionary variables by double-clicking Global
Variables or Local Variables.

The dictionary is displayed in the workspace. Note that the logical and physical values
are displayed in red.
Automation Collaborative Platform 817

8. To stop the debugging process, from the Debug menu, click Stop Debugging.
818 ISaGRAF 5 Concrete Automation Model - Getting Started

Starting with a Basic Application
This section is a guideline to creating a basic solution and project by following the required
steps. The project detailed in this section uses the ISaFREE_TPL template consisting of one
resource in one device.

To start a new project having one resource in one device

1. To launch the ACP and create a new solution, perform the following:

a) From the Start menu, point to All Programs, click ISaGRAF 6.4, and then click
Automation Collaborative Platform.

The Workbench is displayed.

b) From the File menu, point to New, and then click Project...
Automation Collaborative Platform 819

c) In the New Project dialog box, expand the ISaGRAF 5 projects node, select the
Windows template section, then click the ISaFREE_TPL template. You then select
Create directory for solution and specify a solution name. You must also specify a
name and save location for the project, then click OK.
820 ISaGRAF 5 Concrete Automation Model - Getting Started

2. In the Solution Explorer, expand the project elements and note the device and resource
created from the ISaFREE_TPL template.

3. Specify the properties for the device and the resource.

a) In the Solution Explorer, select the device, then from the View menu, click
Properties Window.
Automation Collaborative Platform 821

b) In the Properties window, note the definitions for the memory size, target type,
comment, description, password protection, and name.
822 ISaGRAF 5 Concrete Automation Model - Getting Started

c) In the Solution Explorer, select the resource, then in the Properties window, note the
many properties for the code, hardware, info (resource), memory size for online
changes, memory usage info, settings, and SFC dynamic behavior limits.

4. In the Solution Explorer, add a program and define the program name.

a) Right-click the programs element, point to Add, and then click the required
programming language.
Automation Collaborative Platform 823

b) Right-click the added program, click Rename, and then type the desired name in the
space provided.

5. In the Properties window, define the properties for the program.

a) For Comment, type a comment in the space provided.
o

b) Set Generate Monitoring Symbols and Generate Debug Info to True.
824 ISaGRAF 5 Concrete Automation Model - Getting Started

6. In the language container, add elements to the program.

a) From the Solution Explorer, double-click the program instance. The program is
displayed in the language container. By default, the Toolbox is auto-hidden as a tab
on the left edge of the Integrated Development Environment (IDE).

b) To display the Toolbox, click the tab so the Toolbox slides into view. From the
Window menu, click Dock.
Automation Collaborative Platform 825

The Toolbox window is docked in the IDE.

c) Add a block in the language container.

i) From the Toolbox, drag the Block element into the language container.
826 ISaGRAF 5 Concrete Automation Model - Getting Started

The Block Selector is displayed.

ii) In the Block Selector list, select the required POU, specify the instance and the
number of inputs (when applicable), then click OK.
Automation Collaborative Platform 827

The block is displayed in the language container.

d) Add a variable in the language container.

i) From the Toolbox, drag the Variable element into the language container.

The Variable Selector is displayed, with tabs containing lists for Global variables,
Local variables, System variables, Directly Represented Variables, and Defined
Words.

ii) In the Local Variables list, enter the variable name, data type, and other required
information into the cells provided, then click OK.
828 ISaGRAF 5 Concrete Automation Model - Getting Started

The variable is displayed in the language container.

e) Draw links from the variable to another variable, a block input, or a block output.

7. In the Solution Explorer, configure an interrupt to control the moment of execution for
cyclic programs (SFC, ST, LD, FBD, or SAMA) and modify the properties.

a) Right-click the interrupts element, point to Add, and then click the desired
programming language.
Automation Collaborative Platform 829

b) From the Interrupt Selector dialog box, select the required interrupt, and then click
OK.

c) Right-click the added interrupt program, click Rename, and then type the desired
name in the space provided.

d) In the Properties window, note the definitions for the Interrupt Parameters.
830 ISaGRAF 5 Concrete Automation Model - Getting Started

e) From the Solution Explorer, double-click the interrupt instance. In the language
container, add elements to the interrupt program.

8. To link variables to the channels of I/O devices existing on a target system, perform the
following:

a) From the Solution Explorer, right-click the resource, and then click I/O Device.
Automation Collaborative Platform 831

The I/O Wiring view is displayed in the workspace.

b) From the I/O Wiring toolbar, add an I/O Device.
832 ISaGRAF 5 Concrete Automation Model - Getting Started

The Device Selector dialog box is displayed.

c) From the Device Selector dialog box, select the required I/O device, then click OK.

d) Double-click an empty channel and from the Variable Selector select the variable to
wire, then click OK.
Automation Collaborative Platform 833

9. From the Solution Explorer, build the solution, then view any generated errors, warnings,
and messages.

a) Right-click the solution element, then click Build Solution.

b) To view the build information, from the View menu, click Output
834 ISaGRAF 5 Concrete Automation Model - Getting Started

c) To view the errors, warnings, and messages generated during the build, from the
View menu, click Error List.

10. Begin the debugging process, then view the programs and dictionary variables.

a) From the Target Execution toolbar, in the Solution Configurations drop-down
combo-box, select Simulation.

b) From the Debug menu, click Start Debugging.
Automation Collaborative Platform 835

c) From the Solution Explorer, view the program by double-clicking the program
element.

Note the debugging information regarding boolean variables is displayed using color:
red when True and blue when False. Numerical and textual values are displayed in
red.

d) From the Solution Explorer, view the dictionary variables by double-clicking Local
Variables for the required program.
836 ISaGRAF 5 Concrete Automation Model - Getting Started

Note the logical values are displayed in red. Physical values are only displayed when
running online.

11. To stop the debugging process, from the Debug menu, click Stop Debugging.
Automation Collaborative Platform 837

Importing an Existing Application
When importing applications created with ISaGRAF 5, some features of your projects are
converted for use in the current environment.

To import an ISaGRAF 5 project into ISaGRAF 6

When importing ISaGRAF 5 projects into ISaGRAF 6, the targets associated with the
ISaGRAF 5 projects must be supported by ISaGRAF 6.

1. Import the ISaGRAF 5 project into ISaGRAF 6.

a) From the File menu, point to New, then click Project.
838 ISaGRAF 5 Concrete Automation Model - Getting Started

b) From the New Project dialog box, expand the ISaGRAF 5 projects node, select the
Import template section, and click Import ISaGRAF 5 Project. You then enter the
required information in the fields provided and click OK.

c) From the Choose an .mdb File dialog box, select the ISaGRAF 5 project file, then
click Open.

You may encounter a message asking if you want to update the database to the current
version. To continue the importation process, click OK.
Automation Collaborative Platform 839

The ISaGRAF 5 project is imported.

2. View the project in ISaGRAF 6.

a) In the Solution Explorer, expand the project, device, resource, and program
elements, then view the individual programs by double-clicking the required
program instance.

Opened programs are displayed in the language container.
840 ISaGRAF 5 Concrete Automation Model - Getting Started

3. Build the solution, then view any generated errors, warnings, and messages.

a) In the Solution Explorer, right-click the solution element, and then click
Build Solution.

b) To view the build information, from the View menu, click Output.

c) To view errors, warnings, and messages generated during build, from the View
menu, click Error List.

4. Debug the project.
Automation Collaborative Platform 841

a) To download the resource code to the target, in the Solution Explorer, right-click the
project element, then click Download.

You can monitor the progress of the download operation using the Output window.

b) In the Target Execution toolbar, from the drop-down combo-box, select Online.

c) To begin the debugging process, from the Debug menu, click Start Debugging.
842 ISaGRAF 5 Concrete Automation Model - Getting Started

5. To stop the debugging process, from the Debug menu, click Stop Debugging.
Automation Collaborative Platform 843

844 ISaGRAF 5 Concrete Automation Model - Getting Started

Version Source Control
You manage the changing versions of ISaGRAF elements including solutions, projects,
devices, resources, POUs (other than IEC 61499 and SFC with child), and ISaVIEW screens
by saving them to a repository. Saving these elements to a repository enables multiple users to
work on the same solutions and project elements at the same time as well as retrieve older
versions of elements at a later time.

This product includes software developed by * CollabNet (http://www.Collab.Net/) based on
the Subversion AnkhSVN source control plug-in for Visual Studio.

When creating a solution, you can choose to commit, i.e., save, the solution into a repository.
You should commit changes to elements such as projects, devices, resources, programs,
deployment views, and ISaVIEW screens from the pending changes feature (while retaining
all items selected). When committing elements to a repository, a default repository is installed
in the following location:

%USERPROFILE%\My Documents\ISaGRAF 6.x\Repository

After committing a solution to a repository, you can choose to lock the solution or sub-elements
for exclusive access when making changes. Upon making changes to previously committed
elements, these elements become locked for your exclusive access. Afterwards, you can
commit changes made to these elements into the repository. When committing solutions, all
sub-elements are also committed to the repository.

When deleting, renaming, and adding elements in the Solution Explorer, you need to have
locked the parent of that element.

When retrieving, i.e., updating, a solution from the repository, you can update the solution to
the latest version. For reference purposes, you can access specific revisions.

Element Parent

POU Resource

Resource Device

Device Project

ISaView Screen Project
Automation Collaborative Platform 845

When using version source control, the following best practices are recommended:

� When committing elements, save all changes, then commit all modified files at once.

� When locking elements, avoid stealing locks unless absolutely required. For instance,
when a user having the elements checked out is no longer available. Modifications
performed on such elements by the original lock holder are no longer available for
committing.

� When getting the latest version, perform the operation from the solution.

� When getting a specific version, place the retrieved files in an empty folder; avoid
placing the retrieved files in the current existing working copy.

� When canceling a modification, revert all modified files at once, wait for the completion
of the rollback operation, then unlock all files having no more modifications.

� When using libraries, always use an absolute path for binding a library. All other users
(different computer or folder) retrieving the library from the repository must also use the
same absolute path and get all library solutions before project solutions. Place libraries
and projects in different solutions since libraries need to be loaded before projects can
access their elements.

The version control status of elements is indicated in the Solution Explorer:

Unmodified. The solution is unmodified from the current repository version.

Modified but not saved on local disk. The solution is modified from the
current repository version.

Modified and saved on local disk. The solution is modified from the current
repository version.

New element (solution, project, device, resource, POU, or ISaVIEW screen)
having a reserved location in the repository. The element has been added to
the Solution Explorer and is in queue for committing to the repository.

New element. The element (solution, project, device, resource, POU, or
ISaVIEW screen) has been added and is in queue for committing to the
repository.
846 ISaGRAF 5 Concrete Automation Model - Version Source Con-

See also
Defining a Repository
Using the Repository Explorer
Using the Working Copy Explorer
Committing Pending Changes
Locking and Unlocking Elements
Getting Versions of Elements
Reverting Versions of Elements
Creating a Working Copy from a Repository
Viewing the History of Elements
Comparing Element Versions
Canceling Local Modifications

Locked and unmodified. The element (project, device, resource, POU, or
ISaVIEW screen) is locked for exclusive use from the repository and has not
been modified; The element is not available to others.

Locked and modified. The element (project, device, resource, POU, or
ISaVIEW screen) is locked for exclusive use from the repository and has been
modified; The element is not available to others.

Read-only. The element (project, device, resource, POU, or ISaVIEW screen)
may be available for modification from the repository if no other has locked it
for exclusive access. When committing an element, you can choose to keep it
locked.

Renamed. The element (solution, project, device, resource, POU, or ISaVIEW
screen) has been renamed from the current repository version.

Deleted. The element (solution, project, device, resource, POU, or ISaVIEW
screen) has been deleted from the local working copy.

Missing. The element (solution, project, device, resource, POU, or ISaVIEW
screen) is missing from the repository.

Conflicted. A conflict occurred between the element (solution, project,
device, resource, POU, or ISaVIEW screen) in the working copy and the
repository while performing a get specific version, performing a get latest
version, or committing to the repository.
Automation Collaborative Platform 847

Using the Repository Explorer
The Repository Explorer enables viewing the files for the elements committed to a local
repository. When committing, the repository includes a folder structure containing the
respective source control files for individual elements ranging from the solution to the
resources.

You set up repositories within a defined URL

In the Repository Explorer, you can perform management tasks:

� Add a URL

� Remove a URL

� Refresh the contents of repositories

� Copy directories or files to another location within a URL

� Move directories or files to another location within a URL. You can only move items not
locked by any user.

� Create directories

� Delete directories or files. You can only move items not locked by any user.

To access the Repository Explorer

The Repository Explorer displays the contents of the repository.

� From the View menu, choose Repository Explorer.

Element Type Retained in Repository

Solution Solution and deployment files

Project Project and target files

Device Device file

Resource Resource file

Programs Program properties, program coding, and language editor properties files
848 ISaGRAF 5 Concrete Automation Model - Version Source Con-

To add a URL in the explorer

You can add multiple URLs for viewing in the Repository Explorer.

1. In the Repository Explorer, select Local Repositories in the tree.

2. Click on the toolbar

3. In the Browse Repository dialog box, enter the URL or select one from the available
URLs.

To remove a URL from the explorer

1. In the Repository Explorer, select Local Repositories in the tree.

2. To remove a URL, click on the toolbar.

To refresh the contents of a URL or repository

You can refresh the contents of a selected URL or repository.

� In the Repository Explorer, select the URL or repository for which to refresh the

displayed contents, then click on the toolbar.

To copy a directory or file

You can copy a directory or file to another location within a URL.

� In the Repository Explorer, select the folder or file to copy, then click on the
toolbar.

To move a directory or file

You can move a directory or file to another location within a URL.
Automation Collaborative Platform 849

� In the Repository Explorer, select the folder or file to copy, then click on the
toolbar.

To create a directory

You can create directories within a URL.

� In the Repository Explorer, select the location in which to create the directory, then click

 on the toolbar.

To delete a directory or file

You can only delete files and directories while these are not locked by any users.

� In the Repository Explorer, select the file or directory to delete, then click on the
toolbar.
850 ISaGRAF 5 Concrete Automation Model - Version Source Con-

Using the Working Copy Explorer
The Working Copy Explorer enables viewing the directories and files of local working copies
from repositories. The current solution is displayed at the topmost of the explorer window. You
can also add new roots, i.e., mappings, to the Working Copy Explorer pointing to items such
as other solutions under source control. These added roots are temporary and are automatically
removed upon closing the Working Copy Explorer.

When using the Working Copy Explorer, you can perform the following tasks:

� Add a new root

� Update to latest version (recursive)

� Show the history viewer for a selected item

� Compare a file to another version

� Open or select a file in another environment

� Export a directory or file

� Delete directories and files

To access the Working Copy Explorer

The Working Copy Explorer displays the contents of the currently opened project in the local
repository.

� From the View menu, choose Working Copy Explorer.

To add a new root

1. In the Working Copy Explorer, click on the toolbar.

2. In the Browse Working Copy dialog box, enter the path or browse to locate the root.
Automation Collaborative Platform 851

To update to the latest version (recursive)

When updating versions of solutions, the current version must be latest committed version.
You can update the current solution to the latest version recursively.

� In the Working Copy Explorer, select the current solution, then click on the toolbar.

To show the History viewer for a selected item

� In the Working Copy Explorer, select the current solution, then click on the toolbar.

To compare a file to another version

You can compare the current solution to another version in a side-by-side editor. Available
versions for comparison include original, latest, committed, previous, and specific revisions.

� In the Working Copy Explorer, select the current solution, then click on the
toolbar and choose the version for comparison from the drop-down list.

To open or select a file in another environment

You can choose to open a file or select a file in an environment other than the Working Copy
Explorer. For opening files, available options include: Visual Studio, default application, and
text. You can also open the folder containing the file. For selecting files, the available options
include: Solution Explorer, Working Copy Explorer, and Repository Explorer.

� In the Working Copy Explorer, locate and select the file from the current solution, then

click on the toolbar and choose the required option from the drop-down list.

To export a directory or file

You can export a directory or file to another folder. You can choose to make exports
non-recursive.
852 ISaGRAF 5 Concrete Automation Model - Version Source Con-

1. In the Working Copy Explorer, select the directory or file to export, then click on
the toolbar.

2. In the Export dialog box, specify the version of the directory or file to export, then locate
or specify the path of the destination. To export only the selected directory or file, select
Non-recursive.

To delete a directory or file

� In the Working Copy Explorer, select the directory or file to delete, then click on
the toolbar.
Automation Collaborative Platform 853

Defining a Repository
When using version source control for managing changes in ISaGRAF element versions, you
need a repository. The repository contains all necessary files storing the changes for the
elements. When opening the Workbench for the first time, you can define a repository in a
location other than the default installation:

%USERPROFILE%\My Documents\ISaGRAF 6.x\Repository

You view the contents of a repository from the Repository Explorer. You can also view the
contents of a local solution from the Working Copy Explorer.

To define a repository in a location other than the default installation

You can only define a repository at a different location when opening the Workbench for the
first time; changing the location of a repository at a later time causes link issues with elements
saved in a previous repository. The Repository Explorer displays all local repositories and their
contents.

1. From Windows Explorer, copy the complete Repository directory from the default
installation and paste this directory in the required location.

2. From the View menu, point to Repository Explorer.

3. From the Repository toolbar, click , then specify the location or select one from the
list of available repositories in the Browse Repository dialog box.

See also
Using the Repository Explorer
Version Source Control
854 ISaGRAF 5 Concrete Automation Model - Version Source Con-

Committing Pending Changes
You can commit pending changes for ISaGRAF elements such as solutions, projects, devices,
resources, programs, deployment views, and ISaVIEW screens to a repository. Committing
pending changes enables managing the changing versions of elements and referencing specific
revisions. You can also commit pending changes for elements in previously committed
solutions. Committing changes to elements consists of adding elements in a queue for
committing, then committing to the repository.

You commit changes from the pending changes window after selecting an element in the
Solution Explorer hierarchy:

� Deleting projects, devices, resources, POUs, and ISaVIEW screens

� Renaming projects, devices, resources, POUs, and ISaVIEW screens

� Modifying passwords for projects, devices, resources, and POUs

� Reordering POUs

� Cutting, copying, and pasting projects, devices, resources, and POUs

Note: Make sure to commit entire projects and commit changes following a few changes.

From the pending changes window, you can perform the following tasks for elements selected
in the Solution Explorer.

� Commit a solution to a repository

� Commit an element to a previously committed solution

� Compare files with other versions

� Refresh the list of files pending changes

To commit a solution to a repository

When committing solutions, the necessary files are added to the repository.

1. From the Solution Explorer, right-click the solution to add to the repository.
Automation Collaborative Platform 855

2. From the contextual menu, point to Add Solution to Subversion.

3. In the Add to Subversion dialog box, specify the project name and the repository URL,
then click OK. The local path is set automatically.

4. When prompted, provide a meaningful comment.

The solution structure is queuing for commitment to the repository. The solution is
displayed with a yellow plus sign and all sub-elements with a blue plus sign.

5. From the File menu, point to Subversion, then click Pending Changes.

6. From the Pending Changes window, leave all items selected, then click Commit in the
toolbar.

The solution and all sub-elements are saved in the repository and are displayed with a lock in
the Solution Explorer.

To commit an element to a previously committed solution

When committing an element to a previously committed solution, you save all changes, then
commit the element to the repository. Elements available for adding to a project’s control
structure are displayed with a blue plus sign.

1. From the Solution Explorer, select the element to commit.

2. From the File menu, point to Subversion, then click Pending Changes.

3. From the Pending Changes window, leave all items selected, then click Commit and one
of the following options from the drop-down menu:

 To commit changes while keeping locks on the files, click Commit Changes.

 To commit changes while keeping the files locked for exclusive access, click
Commit Keeping Locks.

The element is saved in the repository and is displayed with a lock in the Solution Explorer.

See also
Version Source Control
Locking and Unlocking Elements
856 ISaGRAF 5 Concrete Automation Model - Version Source Con-

Comparing Element Versions
Automation Collaborative Platform 857

Getting Versions of Elements
You can get, i.e., retrieve or update, different versions including the latest version, previous
version, and a specific revision for solutions, projects, devices, resources, functions, function
blocks, programs, and ISaVIEW screens.

When updating versions of elements, the current version must be latest committed version.

When getting versions of elements, you can perform the following tasks:

� Get the latest version for a working copy

� Get a specific version for an element

To get the latest version for a working copy

You get the latest versions for a working copy from the solution level.

1. From the Solution Explorer, right-click the solution.

2. From the contextual menu, click Update Solution to Latest Version.

To get a specific version of an element

You can get a specific version for an element from the repository for reference purposes only.
When modifying previous versions, conflicts may arise for different reasons such as elements
being no longer available, renamed, or deleted. When getting a specific version, avoid placing
the retrieved files in the current existing working copy.

1. In the History Viewer, note the revision number for the specific version of the element to
retrieve, then close the viewer.
858 ISaGRAF 5 Concrete Automation Model - Version Source Con-

2. Close the solution.

3. From the File menu, point to Subversion, then click Open from Subversion.

4. In the Open from Subversion dialog box, select the required solution in the repository,
then click Open.

5. In the Open from Subversion dialog box, verify the project and location information,
select the Revision type, specify the revision number for the version to retrieve, and
define the empty local directory in which to place the solution, then click OK.
Automation Collaborative Platform 859

The solution files for the specific revision is opened in the Solution Explorer.

See also
Reverting Versions of Elements
Viewing the History of Elements
Comparing Element Versions
Version Source Control
860 ISaGRAF 5 Concrete Automation Model - Version Source Con-

Reverting Versions of Elements
You can revert, i.e., roll back, versions of solutions and all sub-elements to a specific revision
to continue making modifications from this revision. Reverting enables duplicating a project
from repository (as a branch) either from the latest version or any previous version. Reverting
the solution, project, device, or resource to a previous version involves getting a working copy,
removing the element from the source control, and reinserting the element in the source
control. Reverting POUs (without child) and ISaVIEW screens involves reverting from the
element history and locking the element for exclusive use.

When reverting versions of elements, you can perform the following tasks:

� Revert a solution to a specific revision and proceed from this version

� Revert a project, device, resource, or POU to a specific revision and proceed from this
version

� Revert a POU (without child) or ISaVIEW screen to a previous version and proceed from
this version

To revert a solution to a specific revision and proceed from this version

When reverting a solution to a specific revision for duplication in a repository, you need to get
a working copy of the required revision from the repository, remove all source control bindings
from the version, then duplicate the solution in the repository either using the same name or a
different name.

1. Get a working copy of the solution to remove from binding to the repository.

2. Close the solution.

3. Remove source control from the retrieved solution:

a) From Windows Explorer while displaying hidden files, locate the solution folder and
delete the .svn folder.
Automation Collaborative Platform 861

b) Re-open the solution in the workbench.

Note: You can choose to rename the solution or retain the existing name to prepare a duplicate
in the repository.

c) From the File menu, point to Subversion, then click Change Source Control.

d) In the Change Source Control dialog box, click Disconnect, then OK.
862 ISaGRAF 5 Concrete Automation Model - Version Source Con-

e) From the File menu, click Save All.

All bindings to the repository are removed.

4. Duplicate the solution in the same repository:

a) In the Solution Explorer, right-click the solution, then click Add Solution to
Subversion, from the contextual menu.

b) In the Add to Subversion dialog box, select the repository URL and the location in
which to place the solution duplication, then click Create Folder.
Automation Collaborative Platform 863

c) In the Create Folder dialog box, provide a name for the duplicate solution, then click
OK.

d) In the Add to Subversion dialog box, select the solution folder from the Repository
URL list for the duplicate solution, then click OK.

e) From the Pending Changes window, commit the entire duplicate solution to the
repository.

5. In the Repository Explorer, note the duplicate solution in the tree structure.
864 ISaGRAF 5 Concrete Automation Model - Version Source Con-

Each solution is separate in the repository and follows individual sets of changes.

To revert a project, device, resource, or POU to a specific revision and proceed from this
version

You can revert, i.e., rollback, elements such as projects, devices, resources, and POUs to a
specific revision and continue making modifications from this revision. You can revert element
after getting a version of the solution containing the required elements.

1. From the retrieved solution, right-click the desired element and export the element in the
*.7z format.

2. Place the *.7z file for the element in a safe location. You can choose to delete the
retrieved solution working copy.

3. Create a working copy of the latest solution from the repository.

4. To replace the element from the latest solution with the element exported in the *.7z
format. To add the retrieved element without deleting anything, skip this step.

a) Delete the element to replace from the solution.

b) From the File menu, click Save All.

c) From the Pending Changes window, commit all changes to the repository.

5. Lock the immediate parent of the element to replace.
Automation Collaborative Platform 865

6. Import the replacement element *.7z file while making sure not to replace any existing
elements. Specify all imported elements as “new”. Incorrect elements must be replaced
before importing.

7. From the Pending Changes window, commit all changes to the repository.

The current solution containing the imported (and reverted) element is available as a working
copy in which to make modifications.

To revert a POU or ISaVIEW screen to a previous version and proceed from this version

You can revert, i.e., rollback, a POU (without child) or ISaVIEW screen to a specific revision
from the repository. Reverting a POU or ISaVIEW screen consists of getting a specific revision
from the element history. You can also revert elements having been renamed, however, such
elements retain the latest name. For example, when reverting POU3 to a previous revision
where it was named POU2, the POU retains the POU3 name. Following reversion, you can
rename the element to its previous name.

1. In the History Viewer, right-click the required revision number for the specific version of
the element to retrieve.

2. From the contextual menu, click Revert to this Revision.

The element is available as defined for the retrieved specific revision.

3. Lock the element and make the required modifications.

4. From the File menu, click Save All.
866 ISaGRAF 5 Concrete Automation Model - Version Source Con-

5. From the Pending Changes window, commit all changes to the repository.

See also
Getting Versions of Elements
Viewing the History of Elements
Comparing Element Versions
Version Source Control
Automation Collaborative Platform 867

Creating a Working Copy from a Repository
You can create a local working copy of a solution stored in a repository.

To create a local working copy of a solution from a repository

1. From the File menu, point to Subversion, then click Open from Subversion.

2. In the Open from Subversion dialog box, select the required solution in the repository,
then click Open.

3. In the Open from Subversion dialog box, verify the project and location information,
select the Latest Version type, and specify the local directory in which to create the
working copy, then click OK.
868 ISaGRAF 5 Concrete Automation Model - Version Source Con-

The local working copy of the solution from the repository is opened in the Solution Explorer.

See also
Getting Versions of Elements
Reverting Versions of Elements
Viewing the History of Elements
Version Source Control
Automation Collaborative Platform 869

Locking and Unlocking Elements
You can lock elements to establish exclusive access when making changes. When committing
changes to locked files, the lock is removed unless you select the Keep locks option. When you
complete changes on locked elements, you can unlock these elements to enable access to
others.

Warning: When opening solutions and projects from a repository, i.e., checking out, you can
steal locks from others having locks on these same elements. However, you should avoid
performing such operations unless absolutely required, for instance, when a user having the
elements checked out is no longer available. Modifications performed on such elements by the
original lock holder are no longer available for committing.

To lock an element for exclusive access

When locking elements, sub-elements are not locked.

1. From the Solution Explorer, right-click the element to lock for exclusive access.

2. From the contextual menu, click Lock.

To unlock an element to enable access to others

When unlocking elements, sub-elements are unlocked.

1. From the Solution Explorer, select the element to unlock.

2. From the File menu, point to Subversion, then click Unlock.

See also
Committing Pending Changes
Version Source Control
870 ISaGRAF 5 Concrete Automation Model - Version Source Con-

Viewing the History of Elements
You can view the history of elements such as solutions, projects, devices, resources, POUs, and
ISaVIEW screens. The history of an element is usually available from the time of creation.

You view the history of elements in the History Viewer. The viewer displays log messages
from the repository. The viewer is split into three panes: list of revisions, changed paths, log
message. The top pane lists the revisions including the date and time, author and first line of
the log message for each revision. The Changed paths pane lists the files and folders associated
with a selected revision. The files or folders having changed paths are displayed using colored
font: blue font for modifications, red font for deletions, and dark red for additions. The Log
message pane displays the complete log message for a selected revision.

In the History viewer, you can fetch all revisions for an element. You can also choose to view
the strict node history displaying the equivalent of svn log with the --stop-on-copy option. You
can also choose to display the changed paths and log messages.

To view the history of an element

1. From the Solution Explorer, right-click the element for which to view the history.

2. From the contextual menu, click View History.

The History Viewer displays all revisions for the element. For some element revisions, you can
open the XML format in a textual editor.
Automation Collaborative Platform 871

To modify the layout of the History viewer

1. To display the changed paths for revisions, click .

2. To display the complete log messages for revisions, click .

See also
Comparing Element Versions
Canceling Local Modifications
Version Source Control
872 ISaGRAF 5 Concrete Automation Model - Version Source Con-

Comparing Element Versions
You can choose to compare the XML format files for different versions of elements including
projects, devices, resources, POUs, and ISaVIEW screens. These different versions can
include the latest version, working version, base version, committed version, previous version,
and a specific revision. You compare these revisions in a side-by-side textual editor having
many basic editing, search, and comparison functions. For a selected line, both versions of text
are placed in the lower pane.

You can also perform a unified differences of all items within a project. These different
versions can include the latest version, working version, base version, committed version,
previous version, and a specific revision version. You view the differences in single-pane
window.

For comparisons and unified differences, the differences are displayed using colored font: red
font for deletions, green font for changes, and blue font for insertions.
Automation Collaborative Platform 873

To compare versions of an element

1. In the Solution Explorer, select the element for which to build a comparison.

2. From the File menu, point to Subversion, then click Compare.

3. In the Compare Files dialog box, select the element for the comparison, specify the From
type and the To type to compare, then click OK.

Each file for the comparison file is displayed in a side-by-side textual editor.

To perform a unified differences for a solution

1. In the Solution Explorer, select the solution for which to build a unified differences, then
right-click.

2. From the contextual menu, point to Subversion, then click Unified diff.

3. In the Unified Diff dialog box, select the items for which to view differences, then
specify the From version and the To version, then click OK.

The differences between the versions for the selected element are displayed in a single window.

See also
Viewing the History of Elements
874 ISaGRAF 5 Concrete Automation Model - Version Source Con-

Getting Versions of Elements
Canceling Local Modifications
Version Source Control
Automation Collaborative Platform 875

Canceling Local Modifications
You can choose to cancel modifications made locally to elements, i.e., revert, to the state prior
to local changes since it was last updated.

To revert an element to the state prior to local changes

1. In the Pending Changes window, highlight all files, then right-click.

2. From the contextual menu, click Revert.

The element is returned to the latest committed version state.

3. To unlock the elements, in the Pending Changes window, highlight all files having the
Locked state, then right-click.

4. From the contextual menu, point to Subversion, then click Unlock.

The element is available for all users.

See also
Viewing the History of Elements
Getting Versions of Elements
Comparing Element Versions
Version Source Control
876 ISaGRAF 5 Concrete Automation Model - Version Source Con-

Version Source Control Keyboard Shortcuts
The following keyboard shortcuts are available for use with the Repository Explorer and
Working Copy Explorer.

Ctrl+K, R Opens the Repository Explorer

Ctrl+K, W Opens the Working Copy Explorer

Ctrl+K, C Opens the Pending Changes - Source Files window

Alt+Left Arrow Collapses the selected folder

Alt+Right Arrow Expands the selected folder

Shift+Home In the explorer view, moves to the first item.

In the folder view, selects from the current file/folder to the first
file/folder.

Shift+End In the explorer view, moves to the last item.

In the folder view, selects from the current file/folder to the last
file/folder.

Home Moves to the first item

End Moves to the last item
Automation Collaborative Platform 877

878 ISaGRAF 5 Concrete Automation Model - Version Source Con-

Dictionary
The Dictionary, i.e., tag editor, is the environment where you manage variables, arrays,
structures, and defined words. The Dictionary is made up of multiple grids having different
purposes.

� Arrays Grid, enables managing the arrays for a project

� Structures Grid, enables managing the structures for a project

� Defined Words Grid, enables managing the defined words for a project

� Variables Grid, enables managing the variables for resources and programs. Each
resource and program has its instance of the grid. For resources, the grid displays global
variables. For programs, the grid displays local variables.

The grids each display the properties for the type of element. You can open multiple grid
instances simultaneously. When working in a grid, you can navigate the cells using the mouse
controls. For complex data types, you can expand fields using Ctrl+PLUS SIGN on numeric
keypad (+) and collapse fields using Ctrl+MINUS SIGN on numeric keypad (-).

You access Dictionary instances from the Solution Explorer.

You can customize the Dictionary environment by arranging the columns to display and setting
the display colors.

To access a Dictionary grid instance

1. From the Solution Explorer, expand the project and device nodes.

2. For the variables of a resource, expand the required resource node, then double-click the
Global Variables element.

The Dictionary instance is displayed containing the variables belonging to the resource.

3. For the variables of a program, expand the required program node, then double-click the
Local Variables element.

The Dictionary instance is displayed containing the variables belonging to the program.
Automation Collaborative Platform 879

4. For the data types of a project, expand the required Project node, then double-click the
Data Types element.

The data types Dictionary instance is displayed with the Arrays, Structures, and Defined
Words tabs.

To arrange the columns to display

To retain customized display settings, you must save the Dictionary instance before closing.

1. To move a column, drag the column header to another location.

When dragging a column header, arrows indicate the current position of the header.

2. To hide a column, right-click a column header, then click Hide Column.

3. To show a column, right-click on any column header, click Show Column, and then
select the desired column name.
880 ISaGRAF 5 Concrete Automation Model - Dictionary

Arrays Grid
The Arrays grid of the Dictionary enables managing the arrays for a project. You can perform
the following tasks from the Arrays grid:

� Creating arrays

� Editing existing arrays

� Deleting arrays

� Sorting arrays in the grid

� Filtering arrays in the grid

For arrays, the properties are the following:

Column Description Possible Values

Name Name of the array Limited to 128 characters beginning
with a letter or underscore character
followed by letters, digits, and single
underscore characters. These names
cannot have two consecutive underscore
characters.

Data Type Type of the array BOOL, SINT, USINT, BYTE, INT,
UINT, WORD, DINT, UDINT,
DWORD, LINT, ULINT, LWORD,
REAL, LREAL, TIME, DATE,
STRING, User arrays, Structures

Dimension The dimension of the array Example: [1..10] for a one dimensional
array, [1..4,1..7], for a two dimensional
array. The dimension is defined as a
positive double integer (DINT) value.
Automation Collaborative Platform 881

You can customize the Dictionary environment by arranging the columns to display.

To create an array

1. From the Solution Explorer, access the Dictionary instance for the data types of the
project.

2. From the Data Types instance, click the Arrays tab.

3. In an empty row of the Arrays grid, define the required properties for the array, then press
ENTER.

To edit an existing array

1. From the Solution Explorer, access the Dictionary instance for the data types of the
project.

2. From the Data Types instance, click the Arrays tab.

3. In the Arrays grid, make the required changes.

To delete an array

You can delete arrays from the Arrays grid.

1. From the Solution Explorer, access the Dictionary instance for the data types of the
project.

2. From the Data Types instance, click the Arrays tab.

Comment Comment for the array Free-format text

String Size If Data Type is STRING,
represents the length

String capacity is limited to 252
characters excluding the terminating
null character (0), a byte for the current
length of the string, and a byte for the
maximum length of the string

Column Description Possible Values
882 ISaGRAF 5 Concrete Automation Model - Dictionary

3. In the Arrays grid, select the array by clicking the left-most column, and then click
Delete.

To sort arrays in the grid

You can sort the arrays in the grid using an ascending or descending order for the individual
columns.

1. From the Solution Explorer, expand the project, device, resource, and lib nodes, then
double-click the Data Types item.

2. From the Data Types instance, click the Arrays tab.

3. In the Arrays grid, select the required column header.

An arrow showing the current order is displayed on the column header.

4. Toggle the column header to switch between ascending and descending order.

To filter arrays in the grid

You can filter arrays displayed on the Arrays tab of Data Types instance. When filtering, you
create a view displaying only the arrays containing specified characters.

The filter row is the top row of the grid. You can filter arrays by typing alphabetical and
numerical characters in the cells of the filter row. You can also select from the
drop-down-combo box. Matching arrays are automatically displayed.

1. From the Solution Explorer, access the Dictionary instance for the data types of the
project.

2. From the Data Types instance, click the Arrays tab.
Automation Collaborative Platform 883

3. In the filter row of the Arrays grid, click the required cell, then do one of the following:

 Type the characters to use in the filtering operation

 Select the required array from the drop-down combo-box

See Also
Dictionary
884 ISaGRAF 5 Concrete Automation Model - Dictionary

Structures Grid
The Structures grid of the Dictionary enables managing the structures for a project. You can
perform the following tasks from the Structures grid:

� Creating structures

� Editing existing structures

� Deleting structures

� Sorting structures in the grid

� Filtering structures in the grid

For structures, the properties are the following:

You can customize the Dictionary environment by arranging the columns to display.

Column Description Possible Values

Name Name of the structure Limited to 128 characters beginning
with a letter or underscore character
followed by letters, digits, and single
underscore characters. These names
cannot have two consecutive underscore
characters.

Data Type Type of the structure BOOL, SINT, USINT, BYTE, INT,
UINT, WORD, DINT, UDINT,
DWORD, LINT, ULINT, LWORD,
REAL, LREAL, TIME, DATE,
STRING, User arrays, Structures

Comment Comment for the structure Free-format text

String Size If Data Type is STRING,
represents the length

String capacity is limited to 252
characters excluding the terminating
null character (0), a byte for the current
length of the string, and a byte for the
maximum length of the string
Automation Collaborative Platform 885

To create a structure

1. From the Solution Explorer, access the Dictionary instance for the data types of the
project.

2. From the Data Types instance, click the Structures tab.

3. In an empty row of the Structures grid, define the required properties for the structure,
then press ENTER.

To edit an existing structure

1. From the Solution Explorer, access the Dictionary instance for the data types of the
project.

2. From the Data Types instance, click the Structures tab.

3. In the Structures grid, make the required changes, then press ENTER.

To delete a structure

You can delete structures from the Structures grid.

1. From the Solution Explorer, access the Dictionary instance for the data types of the
project.

2. From the Data Types instance, click the Structures tab.

3. In the Structures grid, select the structure by clicking the left-most column, and then click
Delete.

To sort structures in the grid

You can sort the structures in the grid using an ascending or descending order for the individual
columns.

1. From the Solution Explorer, access the Dictionary instance for the data types of the
project.

2. From the Data Types instance, click the Structures tab.
886 ISaGRAF 5 Concrete Automation Model - Dictionary

3. In the Structures grid, select the required column header.

An arrow showing the current order is displayed on the column header.

4. Toggle the column header to switch between ascending and descending order.

To filter structures in the grid

You can filter structures in Structures grid. When filtering, you create a view displaying only
the structures containing specified characters.

The filter row is the top row of the grid. You can filter structures by typing alphabetical and
numerical characters in the cells of the filter row. You can also select from the
drop-down-combo box. Matching structures are automatically displayed.

1. From the Solution Explorer, access the Dictionary instance for the data types of the
project.

2. From the Data Types instance, click the Structures tab.

3. In the filter row of the Structures grid, click the required cell, then do one of the
following:

 Type the characters to use in the filtering operation

 Select the required structure from the drop-down combo-box

See Also
Dictionary
Automation Collaborative Platform 887

Defined Words Grid
The Defined Words grid of the Dictionary enables managing the defined words for a project.
You can perform the following tasks from the defined words grid:

� Creating defined words

� Editing existing defined words

� Deleting defined words

� Sorting defined words in the grid

� Filtering defined words in the grid

For defined words, the properties are the following:

You can customize the Dictionary environment by arranging the columns to display.

To create a defined word

1. From the Solution Explorer, access the Dictionary instance for the data types of the
project.

2. From the Data Types instance, click the Defined Words tab.

3. In the Defined Words grid, define the required properties, then press ENTER.

Column Description Possible Values

Word Name of the defined word Limited to 128 characters beginning
with a letter followed by letters, digits,
and underscores. Defined words cannot
contain defined words.

Equivalent String replacing the defined
word during compilation. For
example, the defined word "PI"
is replaced by its equivalent
"3.14159"

Limited to 128 characters

Comment Comment for the defined word Free-format text
888 ISaGRAF 5 Concrete Automation Model - Dictionary

To edit an existing defined word

1. From the Solution Explorer, access the Dictionary instance for the data types of the
project.

2. From the Data Types instance, click the Defined Words tab.

3. In the Defined Words grid, make the required changes.

To delete a defined word

You can delete defined words from the Defined Words grid.

1. From the Solution Explorer, access the Dictionary instance for the data types of the
project.

2. From the Data Types instance, click the Defined Words tab.

3. In the Defined Words grid, select the defined word by clicking the left-most column, and
then click Delete.

To sort defined words in the grid

You can sort the defined words in the grid using an ascending or descending order for the
individual columns.

1. From the Solution Explorer, access the Dictionary instance for the data types of the
project.

2. From the Data Types instance, click the Defined Words tab.

3. In the Defined Words grid, select the required column header.

An arrow showing the current order is displayed on the column header.

4. Toggle the column header to switch between ascending and descending order.
Automation Collaborative Platform 889

To filter defined words in the grid

You can filter defined words in Defined Words grid. When filtering, you create a view
displaying only the defined words containing specified characters.

The filter row is the top row of the grid. You can filter defined words by typing alphabetical
and numerical characters in the cells of the filter row. You can also select from the
drop-down-combo box. Matching defined words are automatically displayed.

1. From the Solution Explorer, access the Dictionary instance for the data types of the
project.

2. From the Data Types instance, click the Defined Words tab.

3. In the filter row of the Defined Words grid, click the required cell, then do one of the
following:

 Type the characters to use in the filtering operation

 Select the required defined word from the drop-down combo-box

See Also
Dictionary
890 ISaGRAF 5 Concrete Automation Model - Dictionary

Variables Grid
The variables grid of the Dictionary enables managing the variables for a resource or program.
Each resource and program has its instance of the grid. For resources, the grid displays global
variables. For programs, the grid displays the local variables. You can perform the following
tasks from the variables grid:

� Creating variables

� Editing existing variables

� Dragging variables

� Deleting variables

� Sorting variables in the grid

� Filtering variables in the grid

For variables of resources or programs, the properties are the following:

Column Description Possible Values

Name Name of the variable Limited to 128 characters beginning
with a letter or underscore character
followed by letters, digits, and single
underscore characters. These names
cannot have two consecutive underscore
characters.

Logical Value Available while monitoring
applications. Displays the value
used by code being executed on
the virtual machine. You can
force the value of variables.

Values are displayed according to the
variable data type

Physical Value Available while monitoring
applications. Displays the value
sent to and received from the
drivers. You can force the value
of variables.

Values are displayed according to the
variable data type
Automation Collaborative Platform 891

Lock Available when online. The
indication of whether the value
of the variable is locked.
Locking operates differently for
simple variables, array and
structure elements, and function
block parameters. For simple
variables, individual variables
are locked directly. For structure
and array elements, locking an
element locks all the elements of
the structure or array.

Yes or No

Data Type Data type of the variable BOOL, SINT, USINT, BYTE, INT,
UINT, WORD, DINT, UDINT,
DWORD, LINT, ULINT, LWORD,
REAL, LREAL, TIME, DATE,
STRING, Array types, Structure types,
Function blocks

Dimension The size (number of elements)
of an array.

For example: [1..3,1..10] - represents a
two-dimensional array containing a total
of 30 elements.

String Size For String type variables,
indicates the maximum length

String capacity is limited to 252
characters excluding the terminating
null character (0), a byte for the current
length of the string, and a byte for the
maximum length of the string

Initial Value Value held by a variable when
the virtual machine starts the
execution of the resource code

The initial value of a variable can be the
default value, a value given by the user
when the variable is defined or the value
of the retain variable after the virtual
machine has stopped.

Direction For I/O wiring, indicates
whether a variable is an input,
output, or internal.

 VarInput, VarOutput, or Var

Column Description Possible Values
892 ISaGRAF 5 Concrete Automation Model - Dictionary

You can customize the Dictionary environment b y arranging the columns to display.

To create a variable

1. From the Solution Explorer, access the Dictionary instance for the required resource or
program.

2. In an empty row of the variables grid, define the required properties for the variable, then
press ENTER.

Attribute The property of a variable
indicating its read and write
access rights.

Read, Write, or Read/Write

Retained The indication of whether the
value of the variable is saved by
the virtual machine at each
cycle.

Yes or No

Comment User-defined text Free format

Alias Any name (for use in LD POUs) Limited to 128 characters consisting of
letters, digits, and the following special
characters: !, #, $, %, &, \, *, +, -, ,/ <, :,
=, >, ?, @, \, ^, _, `, |, and ~.

Wiring Read-only cell, generated by the
I/O wiring tool indicating the
I/O channel to which the
variable is wired

Uses the syntax of Directly Represented
Variables

Address User-defined address of the
variable

The format is hexadecimal and the value
ranges from1 to FFFF.

Groups Variable groups containing the
variable listed in alphabetical
order

User-defined variable group names

Column Description Possible Values
Automation Collaborative Platform 893

To edit an existing variable

1. From the Solution Explorer, access the Dictionary instance for the required resource or
program.

2. In the variables grid, make the required changes.

To drag a variable

You can drag variables from a Dictionary instance to multiple locations within a project. These
locations include other Dictionary instances as well as elements within a language container.

You drag variables to other locations individually. When dragging a variable to another
Dictionary instance, you can place the variable anywhere in the grid. When dragging a variable
into a language container, you can place the variable anywhere in the language container. To
retain changes made to Dictionary instances and language containers, save the respective
instance or POU before closing.

1. From the Solution Explorer, access the Dictionary instance containing the required
variable and the destination for the variable.

2. From the Dictionary instance containing the required variable, in the variables grid, select
the variable by clicking the cell in the left-most column.

The selection indicator () is displayed in the leftmost column.

3. Drag , placing the variable in the grid or open language container.

The variable is displayed at the destination.

To delete a variable

You can delete variables from Dictionary instances. Deleting variables from an instance
opened for a program element removes the variables from the instance only.

1. From the Solution Explorer, access the Dictionary instance for the required resource or
program.
894 ISaGRAF 5 Concrete Automation Model - Dictionary

2. In the variables grid, select the variable by clicking in the left-most column, and then
click Delete.

To sort variables in the grid

You can sort the variables in the grid using an ascending or descending order for the individual
columns.

1. From the Solution Explorer, access the Dictionary instance for the required resource or
program.

2. In the variables grid, select the required column header.

An arrow showing the current order is displayed on the column header.

3. Toggle the column header to switch between ascending and descending order.

To filter variables in the grid

You can filter variables in variables grid instances. When filtering, you create a view
displaying only the variables containing specified characters.

The filter row is the top row of the grid. You can filter variables by typing alphabetical and
numerical characters in the cells of the filter row.You can also select from the
drop-down-combo box. Matching variables are automatically displayed.

1. From the Solution Explorer, access the Dictionary instance for the required resource or
program.

2. In the filter row of the variables grid, click the required cell, then do one of the following:

 Type the characters to use in the filtering operation

 Select the required variable from the drop-down combo-box

See Also
Dictionary
Automation Collaborative Platform 895

896 ISaGRAF 5 Concrete Automation Model - Dictionary

Cross Reference Browser
The cross reference browser provides an overview of the variables, programs, functions,
function blocks, and defined words existing in a project including information such as names,
various properties, location of usage, and comments. When locating items in the browser, you
need to select a context view for the type of elements to locate. You can find specific elements
by name or filter the element list. In the browser, some columns from the different context
views reflect the respective properties of the items. You can sort the items in the list according
to the different column headings in ascending or descending order.

The Cross Reference Browser toolbar contains the following:

Enables locating elements within the
element list. You can type the element name
in the field or select a previous search from
the drop-down combo-box.

Enables locating the element specified in the
Find field within the element list

Enables filtering the element list using text.
You can type element name in the field or
select a previous search from the drop-down
combo-box. To remove a filter, select
<Remove Filter> from the drop-down
combo-box.

Enables selecting a context view for the
element list. Possible views include
Variable, Programs, Functions,
Function Blocks, and Defined Words.

Enables refreshing the element list to include
the latest elements from the solution

Enables displaying the previous instance of
the selected element within the project

Enables displaying the next instance of the
selected element within the project
Automation Collaborative Platform 897

The properties for the Variables view are the following:

The properties for the Programs view are the following:

The properties for the Functions and Function Blocks views are the following:

Name Name of the variable

Scope Range of accessibility of a variable in relation to POUs of a
resource

Alias Alias name of the variable

Type Data type of the variable

Project Project using the variable

Device Device using the variable

Resource Resource using the variable

Comment Comment of the variable

Group Group containing the variable

Name Name of the program

Language Programming language of the program

Project Project using the program

Device Device using the program

Resource Resource using the program

Comment Comment of the program

Name Name of the function or function block

Category Type of function or function block. Possible types are standard,
user-defined, and native.

Language Programming language of the function or function block

Project Project using the function or function block

Device Device using the function or function block

Resource Resource using the function or function block

Comment Comment of the function or function block

From Library Library containing the function or function block
898 ISaGRAF 5 Concrete Automation Model - Cross Reference Browser

The properties for the Defined Words view are the following:

In the element list, color is used to identify elements used within the project. Element displayed
as blue are used at least once within the project. Elements displayed as red are not in use. For
elements other than programs, you can select elements displayed as blue to view the location
information for each instance of the element within the project. You can jump to the location
of individual instances by double-click in the instance list.

When working in the Cross Reference Browser, you can navigate using keyboard and mouse
controls.

To access the Cross Reference Browser

� From the View menu, click Cross Reference Browser (or press Ctrl+W, Ctrl+C).

The Cross Reference Browser is displayed.

To locate element in the Cross Reference Browser

When locating elements in the Cross Reference Browser, you refresh the list of
cross references by clicking (or pressing Ctrl+T, Ctrl+R).

1. From the Context View drop-down list, select the type of elements to display.

2. To refine the element list, do one of the following:

Name Name of the defined word

Equivalent String replacing the defined word during compilation. For
example, the defined word "PI" is replaced by its equivalent
"3.14159"

Project Project using the defined word

Comment Comment for the defined word

Arrow keys Enable moving up, down, left and right within the rows of the elements list

Tab key Enables moving left and right within the fields and commands of the toolbar.
Also enables moving from the elements list to the list of instances.

Esc key Enables moving from the Cross Reference Browser to the workspace
Automation Collaborative Platform 899

 To sort the elements list, click the column heading by which to sort in an ascending
order. Clicking twice sorts in descending order.

 To filter the elements list, type in the filter field or select a previous filter from the
drop-down combo-box.

3. Select the required element by performing one of the following:

 Type the name of the element in the Find field or select a previous search from the

drop-down combo-box, then click .

 Scroll through the element list.

To jump to an instance of an element

In the element list, elements displayed in blue are used at least once within the project. For
these elements, selecting in the element list displays all related instances in the instance list.

1. In the Cross Reference Browser, locate the required element.

2. In the instance list, double-click the required instance of the element (or press F8 or
Shift+F8).

The program containing the instance of the element is displayed with the instance selected.
900 ISaGRAF 5 Concrete Automation Model - Cross Reference Browser

Device View
The device view is a graphical environment enabling navigation through project elements
including devices, resources, and POUs. The navigation consists of vertical links on the left
pane and a breadcrumbs trail in the address field. The device view displays information for
individual devices and resources. For individual devices, you can access the following
information:

� Device information such as the name, comment, target, description, memory size, and
online behavior

� The resources contained in a device

� The list of C functions and function blocks available for the device based on the target
type. Furthermore, selecting C functions or function blocks enables viewing the
parameters.

� The list of target I/O devices available for the device. Information available for the I/O
devices includes package, driver, name, data type, direction, channels, parameters, and
channel parameters.

� Features of the target type attached to the device, including target name, memory size,
and supported characteristics

For individual resources, you can access the following information:

� Resource information such as the name, comment, number, description, and size of code.

� The POUs and interrupts defined in a resource. For programs and interrupts, you can
open individual programs or interrupts by double-clicking the required instance. For
user-defined functions and function blocks, you can access the parameters view by
single-clicking the instance or open the POU by double-clicking the instance.

� The list of interrupts available for a resource

� Other elements attached to resources including ISaVIEW screens and variable groups

� Resource properties such as cycle time, memory size for online changes, code type,
compiler options, and extended parameters.
Automation Collaborative Platform 901

You can open an instance of the device view for each device within your project.

To access the Device View

� In the Solution Explorer, right-click the required device, and then click Open.

The device view is displayed in the workspace.

To view device and resource information

1. To view device information, click the device instance located in the left pane of the
Device View.

The device information is displayed in the properties pane.

2. To view resource information, in the Device View, click on the device item, then
click the required resource instance.

The resource information is displayed in the properties pane.

To display device elements

1. To display the list of available C Functions and Function Blocks including the
parameters, perform the following:

� From the Device View, in the breadcrumbs trail, click and then click C
Functions & Function Blocks.

2. To display the I/O devices available for the target including information for each I/O
device instance, perform the following:

� From the Device View, in the breadcrumbs trail, click and then click Target I/O
Devices.

3. To display the features of the target type attached to the device, perform the following:
902 ISaGRAF 5 Concrete Automation Model - Device View

� From the Device View, in the breadcrumbs trail, click and then click Target
Features.

To display resource elements

1. From the Device View, in the breadcrumbs trail click at the device level, then click
the required resource instance.

2. To display programs, click on the Programs item, then double-click the required
program instance.

The program is displayed in the language container.

3. For interrupts click on the Interrupts item, then perform the following:

� To display the list of Interrupts, double-click the Interrupts item.

� To open the interrupt POU in the language container, double-click the interrupt
instance.

4. For functions, click on the Functions item, then perform the following:

� To display the Parameters view for a function, click the required function instance.

� To open the function in the language container, double-click the function instance.

5. For function blocks, click on the Function Blocks item, then perform the following:

� To display the Parameters view for a function block, click the function block
instance.

� To open the function block in the language container, double-click the function block
instance.

6. To display ISaVIEW screens, click on the Others item, then double-click the
required ISaVIEW instance.
Automation Collaborative Platform 903

7. To display variable groups, click on the Others item, expand the Variables Group
item, then double-click the required variable group instance.

To display resource properties

1. From the Device View, in the breadcrumbs trail click at the resource level, and then
click Properties.

The resource properties are displayed
904 ISaGRAF 5 Concrete Automation Model - Device View

Controller Status
You can access real-time status information for all controllers, i.e., devices, in a project. The
available information is the following:

When viewing the Controller Status, the Name column displays icons that indicate the
connection status of the controllers.

Name Name of the controller

Status Status of the controller:
- Building, indicates that the project, device, or
resource (if supported by the CAM) build is in progress
- Unable to Connect, indicates that the Workbench is
unable to connect with the controller
- Need Password, indicates that the Workbench
requires the controller password to connect and
provide status information
- Need Save Status, indicates that the project requires
saving then refreshing the controller status
- Unavailable, indicates that the Workbench is
switching from design to online or simulation mode
- Simulator Running, indicates that the Workbench is
unable to connect with the controller since it is in
simulation mode
- Connecting, indicates that the Workbench is
retrieving status information or is unable to
communicate with the controller
- Running, indicates that the controller is running an
application while displaying the application version
and date
- Stopped, indicates that the controller is not running
an application

Controller statuses are also displayed with a system
health condition: Healthy, Faulted, or Warning.

Locked Variables Number of locked input and output variables for the
controller.

Cycle Time Current cycle time of the controller
Automation Collaborative Platform 905

To access the status information for controllers

�From the View menu, click Controller Status.

Healthy, indicates a healthy, fault-free status

Faulted, indicates an unhealthy, faulted status

Warning, indicates a connection problem or a
mismatch between the local and running application
versions

I/O Wiring
I/O wiring enables the definition of links between variables defined for a project and I/O
channels of I/O devices existing on a target system. You perform I/O wiring from an I/O
Device instance accessed for a resource. Each resource can instantiate none, one, or multiple
I/O device instances.

When performing I/O wiring for a resource, you access an I/O Device instance, add I/O
devices, and wire the I/O channels to variables. When defining I/O wiring for the first time, an
I/O Device instance is empty.

An I/O Device instance consists of three sections:

� A hierarchical tree-like structure displaying devices, parameters, and comments

� A wiring grid enabling the association of channels with variables. The wiring grid
displays the name of all variables. When online, the wiring grid also displays the logical
value, physical value, and lock status of all variables.

� A section listing the options for individual channels

The I/O Wiring toolbar enables performing many tasks in I/O Device instances:

Adding an I/O device

Deleting an I/O device

Freeing all channels of an I/O device

Frees individual channels of an I/O device

Toggles an I/O device between real and virtual

While debugging, locks a channel
Automation Collaborative Platform 907

The tree-structure hierarchy is composed of the following items:

To access an I/O Device instance

� From the Solution Explorer, right-click on a resource, then click I/O Device.

I/O Wiring is displayed in the workspace.

See Also
I/O Devices
I/O Channels

While debugging, unlocks a channel

Shows or hides I/O device information

Simple I/O Device

Comment Comment of the simple I/O device

Parameters

Parameter
Name

Individual parameter defined for the device

Complex I/O Device

Comment Comment of the complex I/O device

Parameters
908 ISaGRAF 5 Concrete Automation Model - I/O Wiring

I/O Devices
I/O devices contain multiple channels having the same type and direction. When adding I/O
devices, the Device Selector enables selecting from those available for the target. You specify
a device index and a number of channels. You can also include an alias name and comment.
The device index value can range from 0 and 65535.

While running online, when devices are set to real, I/O variables are directly linked to the
corresponding I/O devices. Input or output operations in the programs correspond directly to
the input or output conditions of the actual I/O device fields. When devices are set to virtual,
I/O variables are processed as internal variables. The debugger can read or update these to
enable simulating I/O processing, but no actual connection is made.

When adding complex devices, the number of channels, i.e., device size, of individual simple
devices making up a complex device varies depending on the definition of the complex device
in the target.

You manage I/O devices from the hierarchical tree-like structure in an I/O Device instance
where these are one of two types:

When selecting I/O devices, their properties are displayed in the Properties window.

From an I/O device instance, you can perform the following tasks when managing the I/O
devices of a resource:

� Adding I/O devices

� Toggling I/O devices between real and virtual

� Modifying existing I/O devices

� Deleting I/O devices

� Showing or hiding I/O device information

Real device

Virtual device
Automation Collaborative Platform 909

To add an I/O device

1. On the I/O Wiring toolbar, click .

The Device Selector is displayed.

2. Select the required I/O device from the list of available devices.

You can sort the listed I/O devices in ascending or descending order by clicking the Name
column heading.

3. Specify a device index number, the number of channels, an alias name, and a comment
for the I/O device.

To toggle the real/virtual attribute

You can toggle between the real and virtual attribute for a selected I/O device.

� From the I/O Wiring toolbar, click .

To modify an existing I/O device

1. From the I/O Wiring tree structure, double-click the required I/O device.

2. In the Device Selector, make the required changes to the properties of the device.

To delete an I/O device

You can delete devices. You can also disconnect variables attached to selected channels. Note
that when deleting devices, all variables are unwired from the device (as with Free I/O device
channels).

1. From the I/O Wiring tree structure, click the I/O device element.

2. From the I/O Wiring toolbar, click .
910 ISaGRAF 5 Concrete Automation Model - I/O Wiring

The device is deleted.

To show or hide I/O device information

You can toggle between displaying and hiding I/O device information.

� From the I/O Wiring toolbar, click .

See Also
I/O Wiring
Automation Collaborative Platform 911

I/O Channels
I/O channels represent hardware I/O points. These can be inputs and outputs. A variable is
generally connected to a channel to be used in POUs. You can also use directly represented
variables in POUs. When adding I/O devices, you specify the number of channels. All I/O
channels of a device have the same type and direction.

You wire variables to channels of a device in the wiring grid. When wiring channels, you can
apply various operations to individual channels depending on their type. For Boolean channels,
you can toggle between the original value (direct) or its negation (reverse). For numerical
channels, you can apply gain and offset factors to the value. For all channel types, you can
apply conversions available for the target implementation. You apply these operations to
individual channels:

When applying the Gain/Offset factors, the resulting value differs for inputs and outputs. For
inputs, the original value (coming from the input device) is multiplied by the gain, and the
offset value is added. This results in the value used by the programs of the resource. For
outputs, the value of the variable resulting from the execution of the program is multiplied by
the gain and the offset value added, before updating the output device. The Gain factor consists
of a multiplier factor and a divider factor. The Gain/Offset formula is applied as follows:

NewValue = (Value * MultFactor) / DivFactor + Offset

Conversions are available for all channel types. However, the available conversions depend on
the target implementation.

For details on device-specific implementations of the Gain/Offset factors and conversions,
refer to the device documentation.

Direct Boolean channels only

Reverse Boolean channels only

Gain Numeric channels only

Offset Numeric channels only

Conversion All channel types, depending on target implementation
912 ISaGRAF 5 Concrete Automation Model - I/O Wiring

You can import I/O channel OEM parameters defined in target definition files. I/O channel
parameters enable using different settings for individual channels of an I/O device. Individual
I/O channel parameter definitions include the parameter name, access type, format, default
value, and comment text.

You can use direct variable representation (%IX1.1) to access I/O values when I/O channels
have no wiring.

When deleting variables in the Dictionary, channels are automatically unwired. For each
deleted variable a new variable is created in the Dictionary. The name of the new variable refers
to the name of the channel wired to the deleted variable. For example, deleting a variable wired
to channel %IX0.0 creates a variable with the name _IO_IX0_0. Renaming variable
_IO_IX0_0 rewires it to channel %IX0.0.

After having wired channels of a device to variables, you can choose to free individual wired
channels of a device or free all wired channels of a device.

While debugging, you can choose to force the values of I/O variables.

To wire the channels of an I/O device

1. Access the I/O Device instance for the required resource.
Automation Collaborative Platform 913

2. From the tree structure, click the device having the I/O channels to wire. For complex
devices, channels are accessed from the simple devices making up the complex device.

3. In the wiring grid, double-click the channel to wire.

4. From the Variable Selector, select the variable for the channel, then click OK.

The channel’s Name field indicates the wired variable. For Boolean channels, the default
value operations are direct and no conversion.

5. For Boolean channels, to toggle between the direct and reversion operations, select the

channel in the grid, then double-click the (Direct) or (Reversion) item below
the grid.

6. For numerical channels, to set a Gain and Offset factor, select the channel in the grid and
do the following:

a) Double-click the (Gain or Offset) item below the grid.

b) In the I/O Filter dialog box, specify the required values in the Filter section.

7. To apply a conversion to a channel, select the channel in the grid and do the following:

Note: Conversions are only available when implemented for a target.

a) Double-click the (Conversion) item below the grid.

b) In the I/O Filter dialog box, select the required conversion.

To view I/O channel OEM parameters

1. Import the required target definition file containing the I/O channel parameters.

2. From the Solution Explorer, right-click the required device, and then click Open.

3. From the Device View, click , and then click Target I/O Devices.

The Device View displays information on the Target I/O devices.
914 ISaGRAF 5 Concrete Automation Model - I/O Wiring

4. In the left-hand pane, select the required I/O device.

The I/O device definition, I/O device parameters, and I/O channel parameters are displayed in
the right-hand pane.

To free individual channels of an I/O device

You can free one channel in a device.

1. In the wiring grid, select the wired channel.

2. From the I/O Wiring toolbar, click .

To free all channels of an I/O device

You can free all channels of a device.

1. In the tree-like structure, select the device having the channels to unwire.

2. From the I/O Wiring toolbar, click .

To lock and unlock an I/O variable

You can also lock and unlock variables from a Dictionary instance.

1. Access the I/O Device instance for the required resource.

2. In the tree-like structure, select the device having the channels to lock or unlock.

3. To lock a channel, select the channel in the wiring grid, then click , from the I/O
Wiring toolbar.

4. To unlock a channel, select the channel in the wiring grid, then click , from the I/O
Wiring toolbar.
Automation Collaborative Platform 915

See Also
I/O Devices
I/O Wiring
916 ISaGRAF 5 Concrete Automation Model - I/O Wiring

I/O Wiring Keyboard Shortcuts
The following keyboard shortcuts are available for use with I/O wiring. Some shortcuts do not
apply or may differ while debugging.

Ctrl+N Adds a device (not available while debugging)

Ctrl+F Frees all channels of a selected device (not available while debugging)

Ctrl+R Frees a channel (not available while debugging)

Ctrl+H Toggles between a real or virtual I/O device (not available while debugging)

Ctrl+L While debugging, locks a channel

Ctrl+U While debugging, unlocks a channel

Ctrl+S Toggles between showing or hiding the full device name
Automation Collaborative Platform 917

918 ISaGRAF 5 Concrete Automation Model - I/O Wiring

Bindings
Bindings are directional links, i.e., access paths, between variables located in different
resources. One variable is referred to as the producing variable and the other as the consuming
variable. The value stored in the producing variable is transferred to the consuming variable.
ISaGRAF enables external bindings, which exist between resources belonging to different
projects.

When defining bindings, devices must be connected via a network that supports bindings. For
bindings between resources on the same device, the HSD network type must be used. You
define network connections using the Deployment View.

Note: Online changes are possible as long as binding definitions remain the same.

Binding the variable V1 from resource R1 to the variable V2 of resource R2 means that V1 is
periodically copied to V2 using memory sharing or network exchanges.

Variables coming from bindings (consumed variables) are refreshed in the resource at the
beginning of the cycle, each time the producing resource sends them, i.e. on each end of the
producing resource cycle.

The variable is not updated in the consuming resource until the producing resource sends them
through the binding media. For example:

ISaGRAF does not impose the read-only accessibility for consumed variables. However, it is
highly recommended to declare consumed variables with read-only attribute in order to
avoid conflicts between Binding and execution of POUs.

Producer

Binding

Consumer

No update of the variable on that cycle
Automation Collaborative Platform 919

Binding error variables

Binding error variables enable the management of binding errors at the consumer resource
level; one error variable for one consumer resource for each resource that produces to this
resource. The virtual machine gives specific values to these error variables.

Example

Depending on the driver used the error variables can take different values with different
meanings.

Warning: Once the error variable is set to a non-zero value, it has to be reset to 0 by user or
by Programs.

To test globally that there is a binding error, you can test the value of the following system
variables:

Production errors

The variable 'A' of the R1 resource represents the
producer error variable for all binding links
starting from R1 and using the HSD driver

(in the example only link from R1 to R3).

The variable 'B' of the R1 resource represents the
producer error variable for all binding links
starting from R1 and using the ETCP network

(links from R1 to R4 and from R1 to R5).

Consumption errors

The variable 'F' of the R5 resource represents the
consumer error variable for the unique binding link
that comes from R1 and using ETCP.

The variable 'G' of the R5 resource represents the
consumer error variable for the unique binding link
that comes from R2 and using ETCP.
920 ISaGRAF 5 Concrete Automation Model - Bindings

� __SYSVA_KVBPERR: for a production error. It is a Boolean variable. If it is true it
means there is a production error.

� __SYSVA_KVBCERR: for a consumption error. It is a Boolean variable. If it is true it
means there is a consumption error.

You access the Bindings View from the contextual menu for the projects, devices, and
resources in the Solution Explorer.

For HSD:

To test values of one binding error variable, you should create the following defined words in
the dictionary of your project:

The 0 value in the error variable indicates there is no error.

ISA_HSD_KVB_ER_MUTEX 1 An error occurred with semaphore
management

ISA_HSD_KVB_ER_SPACE 2 An error occurred with memory space
access

ISA_HSD_KVB_ER_NOKERNEL 3 The bound producer is stopped (not
running). This error happens only for
consumer resources.

ISA_HSD_KVB_ER_TIMEOUT 4 Variable was not refreshed within the
maximum time allowed (ValidityTime).
This error happens only for consumer
resources.

ISA_HSD_KVB_ER_BAD_CRC 5 Producer and consumer have different
CRC.

ISA_HSD_KVB_ER_INTERNAL 6 Internal error
Automation Collaborative Platform 921

For ETCP:

To test values of binding error variables, you should create the following defined words in the
dictionary of your Project:

A value of 0 in the error variable indicates no error.

External Bindings

External variable bindings are bindings between the variables of resources belonging to
different projects. When defining external variable bindings, you need to define groups of
producer variables in the producer project, then create bindings by defining groups of
consuming variables from a consumer project.

You can define external bindings using the Bindings View.

To open the Bindings View

The Bindings View is accessed from the Solution Explorer.

ETCP_KVB_ERR_BINDING_IN_PROCESS 1 The binding initialization process is
on its way.

ETCP_KVB_ERR_NO_PRODUCER 2 The remote producer is not currently
runnin g. This error happens only for
consumer resources.

ETCP_KVB_ERR_BAD_CRC 3 Producer and consumer have different
CRC.

Obsolete error value 4 The producer has been stopped. This
error happens only for consumer
resources.

ETCP_KVB_ERR_DATA_DIFFUSSION 5 Error during diffusion process.

ETCP_KVB_ERR_TIMEOUT 6 ETCP server does not answer quickly
enough (TimeOut). This error happens
only for consumer resources.

ETCP_KVB_ERR_IMPOSSIBLE_TO_BIND 7 Impossible to bind.
922 ISaGRAF 5 Concrete Automation Model - Bindings

� In the Solution Explorer, right-click the project, device, or resource, then
click Bindings.

The Bindings View is displayed.

See Also
Bindings View
Automation Collaborative Platform 923

Bindings View
Bindings are defined using the Binding View. In the Solution Explorer, you can access the
Bindings View from the contextual menus for the project and devices, as well as resources with
targets that support bindings. You can open multiple instances of the Bindings View. However,
each instance of the Bindings View must have a different scope.

When working in the Bindings View, you can navigate the cells using the mouse controls.

The Bindings View toolbar contains the following:

In the Bindings View, you can define groups of producer variables from the resources of your
project. Individual variables of a resource can belong to a one or more producing groups. You
can connect a producing group to consuming groups belonging to different resources. You can
also edit the contents of producing groups from their originating resource.

You can add variables from a Dictionary by dragging them into the Bindings View and place
them Producing Variables column. You can also drag variables from the Variable Selector into
the Bindings View and place them Producing Variables column. System variables and those
belonging to function block instances cannot be used in bindings.

Column Description

Producing Groups Displays a hierarchical view of projects, devices, resources, and
defined producing groups.

Producing Variables Displays the list of producer variables included in a selected
producing group

Consuming Groups Displays a hierarchical view of the projects, devices, resources, and
consuming groups

Consuming Variables Displays the list of consumer variables included in a selected
consumer group

Creates a group of producer variables

Creates a group of consumer variables

Enables selecting from a list of the most recently defined
bindings. Selected bindings are displayed automatically.
924 ISaGRAF 5 Concrete Automation Model - Bindings

Consuming groups are automatically updated to reflect changes made to producing groups. For
example, deleting a producer variable automatically removes the associated consumer
variable.

You can delete producing groups having producer variables used in bindings. However,
deleting such producing groups causes the bound variables to display errors.

In the Bindings View, you can define a group of consumer variables from local or external
projects by identifying the project, the resource, and the producing group. When creating a
consuming group, a link to an existing producing group is created. The Bindings View displays
the linked producer and consumer variables at the same level within their respective columns.
The link between producer and consumer variables flows in one direction, from producer to
consumer. You can also choose to use binding error variables.

When linking structure and array variables, these must have the same byte order and alignment.
Variables having the elementary data types are automatically adjusted for differences in byte
order and alignment.

Using the Bindings View, you can edit the contents of consuming groups. You can also delete
groups of consumer variables.

For consuming and producing variable groups and external bindings, indicates errors that
can occur for different situations such as the following:

 Variable groups - The project of a variable group cannot be found
- The variable group cannot be found within the specified project
- A conflict exists between the consumer and producer resources
- One of the bound variables no longer exists

External bindings - The variable used in the binding no longer exists
- The project holding the variable cannot be accessed
Automation Collaborative Platform 925

To define a group of producer variables

You define a producing group by adding producer variables within the Producing Variables
column and by dragging them from the Dictionary. When defining a producing group, the
consuming group column is empty.

1. In the Producing Groups column, select the required resource, then

click .

The producing group is displayed in the Producing Groups column.

2. Click the producing group.

3. To add producer variables, do one of the following:

 In the Producing Variables column, click , then select the
required variable from the drop-down combo-box.

 From the Dictionary, select the required variable, then drag the

selection indictor () into the Producing Variables column, placing it

on .

4. To add subsequent variables, from the Producing Variables column, click below the
existing producer variable, then repeat step 3.

To edit an existing group of producer variables

You can edit an existing producing group by replacing or deleting its variables individually.
Note that local producing groups are modifiable. However, the properties of external
producing groups are not editable using the Bindings View.

1. In the Producing Groups column, click the producing group.

2. In the Producing Variables column, click the variable, then do one of the following:
926 ISaGRAF 5 Concrete Automation Model - Bindings

 To replace the variable, right-click the variable, click Edit, then select another
variable from the drop-down combo-box.

 To delete the variable, right-click the variable, then click Delete.

To delete a producing group

You can delete producing groups from the Bindings View.

� In the Producing Groups column, right-click the producing group, then click Delete.

The producing group is permanently deleted.

To define a group of consumer variables

You can define a group of consumer variables by accessing the consuming resource of a
project. When defining consumer variables, a link is established between the producing
resource and the consuming resource.

1. In the Consuming Group column, select the required resource, then

click .

2. From the Add consuming group dialog:

a) Click , select the project library file containing the required consumer
variables, then click Open.

b) In the Resource Number field, select the required resource number from the
drop-down combo-box.

The drop-down combo-box contains the resource numbers of the resources within the
library file selected in step 2a.

c) In the Group ID field, select the group ID from the drop-down combo-box.

The drop-down combo-box contains the group IDs for the producing groups located
the Producing Groups column of the Bindings View.

The Group Comment field displays the name of the producing group corresponding
to the group ID selected.
Automation Collaborative Platform 927

d) In the Binding Error Variables section, select the binding error variable from the
drop-down combo-box (optional), then click OK.

3. In the Consuming Groups column, click the consuming group.

4. To add variables to the Consuming Variables column, do one of the following:

 Click , then select the required variable from the drop-down
combo-box.

 From the Dictionary, select the required variable, then drag the

selection indictor () into the Consuming Variables column, placing it

on .

5. To add more consumer variables, in the Consuming Variables column, click below the
existing variable, then repeat step 4.

To edit an existing consuming group

You can edit an existing consuming group by individually replacing or deleting the consumer
variables within the Consuming Variables column.

1. In the Consuming Groups column, click the consuming group.

2. In the Consuming Variables column, select the variable, then do one of the following:

 To replace the variable, right-click the variable, click Edit, then select another
variable from the drop-down combo-box.

 To delete the variable, right-click the variable, then click Delete.

To delete a consuming group

� In the Consuming Groups column, right-click the consuming group, then click Delete.

The consuming group is permanently deleted.

See Also
Bindings
928 ISaGRAF 5 Concrete Automation Model - Bindings

Automation Collaborative Platform 929

930 ISaGRAF 5 Concrete Automation Model - Bindings

Failover Mechanism
The failover mechanism is a secondary backup operational mode which is an essential part of
mission-critical systems where availability is without compromise. The failover mechanism
provides a more fault-tolerant industrial application. When a failure occurs in the primary
components of an industrial system or when a scheduled down time is performed, the functions
of the industrial system are backed by the failover mechanism running on a secondary
industrial system.

The failover mechanism consists of two devices (primary and secondary) executing the same
application. At the end of each cycle, both devices synchronize their data by exchanging CRCs
(data link). This parallel execution allows a bumpless switch-over between both devices.
During execution, only one device is active. This device updates the output while the other
device remains on standby. A heartbeat signal is sent between devices to ensure availability.

The failover mechanism sequence is executed as follows:

1. Download the application onto the active device.

The workbench downloads onto active devices. When the primary is not active, the
workbench automatically switches to the secondary.
Automation Collaborative Platform 931

2. The application is automatically transferred to the standby device.

The workbench always performs only one download to the active devices. When a device
is in error and is being replaced, the active device downloads the application to the
standby device turned active upon reconnecting.

3. Both devices execute the same application code in parallel.

4. Before each execution cycle, input values are transferred from the primary device to the
secondary device.

The performance of the failover mechanism is directly affected by the quantity of input
values transferred during data synchronisation between the primary device and the
secondary device.

5. At the end of each cycle, a check sum mechanism runs to ensure the integrity of the data
and results. In case of a mismatch, the full data space of the active device is transferred to
the standby device.

6. The active device generates the heartbeat, then verifies that the standby device can
receive it before sending the heartbeat across the link.

7. In case of failure on the active device, the standby device becomes the active one and
controls the process.

When the standby device (secondary device) does not detect activity during the time
determined in the FailoverHeartbeatDeactivationTimeMs property, it becomes active. If the
now active secondary device detects activity, it means the primary device is also active. You
can only have one active device, so the primary active device is forced into standby for the
duration of time specified in the FailoverHeartbeatDeactivationTimeMs property.

When a device contains multiple resources, each resource is executed independently and
performs data synchronization based on its defined cycle time. To optimize data
synchronization, a high priority resource should use a minimal amount of memory space.

The following system variables provide information for a failover system:

_SYSVA_FO_ISENABLE BOOL READ Activation status of the failover
system for the device
932 ISaGRAF 5 Concrete Automation Model - Failover Mechanism

_SYSVA_FO_ERRCODE UDINT READ Operational status of the failover
system. The associated bits of the
variable represent the following
errors:
0 = No error
1 = The standby device failed to
read the heartbeat from the active
device
2 = The devices are unable to
establish communication across the
data link
3 = System mismatch between both
devices making up the failover
mechanism - each device has a
different type
4 = Capability mismatch between
the devices making up the failover
mechanism - each device supports
different features

_SYSVA_FO_ISPRIMARY BOOL READ Indication of whether the active
device is the primary for the
failover system

_SYSVA_FO_ISACTIVE BOOL READ Indication of whether the device is
active

_SYSVA_FO_DATASYNCTIME UDINT READ Time between data
synchronizations from the active to
the standby device

_SYSVA_FO_DATASYNCCNT UDINT READ Number of full data
synchronizations since starting the
target (available from ISaGRAF
5.40 targets)

_SYSVA_FO_HBEATSYNCTIME UDINT READ Time between heartbeat
synchronization from the standby to
the active device
Automation Collaborative Platform 933

The failover mechanism executes only the most recent application code. When downloading
this code to the active device, the compilation date is used to determine whether the
downloaded code is older than the existing code on the device. To execute an older version of
an application, you must recompile the code before downloading to the active device.

Since the failover mechanism executes the same application code on the active and standby
devices, the code must contain conditions that can be executed by both devices. For example,
the __SYSVA_FO_ISACTIVE system variable can only be true for the active device.
Therefore, when __SYSVA_FO_ISACTIVE is true, the standby device does not execute the
following code. As a result, a CRC mismatch occurs and the failover mechanism requires a full
data synchronization, causing extended cycle time.

if (__SYSVA_FO_ISACTIVE = TRUE) THEN

(...)

end_if;

See Also
Limitations for Failover Mechanisms
934 ISaGRAF 5 Concrete Automation Model - Failover Mechanism

Configuring a Failover Mechanism
The workbench provides tools where engineers see one device during the programming phase
and both devices during monitoring and debugging. To emphasize the concept of primary,
secondary, and active devices, the workbench always remains focussed on active devices:

� Only one project with one device to manage

� Only one compilation to perform

� Only one download to perform to the active devices

� Only one connection to establish to the active devices

Failover mechanisms for devices are available for projects created using the failover project
template and in which was imported a failover *.TDB file.

A project with a failover mechanism has one device representing two devices. In the
deployment view, the failover mechanism is represented as a standalone device with the
graphical representation showing two devices where one represents the primary device and the
other represents the secondary device.

From the deployment view, you can configure a failover mechanism using one of two methods:

� In the properties window for a connection link accessed by selecting the connection link
between the device and the ETCP network, then right-clicking and then clicking
Properties (or pressing the F4 key).
Automation Collaborative Platform 935

� In the failover configuration graphical environment accessed by selecting a device, then
right-clicking and then clicking Failover.
936 ISaGRAF 5 Concrete Automation Model - Failover Mechanism

Configuring a failover mechanism consists of setting parameters defined by the OEM where
some may differ depending on whether it uses an Ethernet, serial, or another link type. Since a
failover mechanism requires Ethernet communication for the dialog between devices and the
workbench, the configuration is similar for all implementations:

Primary Device

FailoverPrimaryIP STRING IP address of the primary device on
the network used for
communication with the
workbench. This value is the same
as IPAddress.

FailoverDatalinkPrimaryIP STRING IP address of the primary device on
the data link used for
communication between the active
and standby devices

Secondary Device
Automation Collaborative Platform 937

You can configure the timeout of the data synchronization for a resource using the following
extended parameter. This is accessed from the properties for the individual resources.

See Also
Monitoring the Failover Mechanism
Implementing Failover Mechanisms on a Windows Platform
Limitations for Failover Mechanisms

FailoverSecondaryIP STRING IP address of the secondary device
on the network used for
communication with the
workbench

FailoverDatalinkSecondaryIP STRING IP address of the secondary device
on the data link used for
communication between the active
and standby devices

Failover System

EnableFailover BOOL Activates the failover mechanism
for the device

FailoverHeartbeatTimeoutMs UDINT Time delay, in milliseconds, before
the standby device takes over from
the active device

FailoverHeartbeatDeactivationTimeMs UDINT Time delay, in milliseconds, before
the standby device takes over from
the active device following a loss
of communication. This delay does
not apply for actual breakdowns of
the active device.

Extended Parameters

FailoverDatalinkTimeoutMs UDINT Maximum time, in milliseconds,
that the active device waits for a
reply from the standby device
before resuming the control cycle.
When the timeout is reached, the
communication is re-initialized.
938 ISaGRAF 5 Concrete Automation Model - Failover Mechanism

Monitoring the Failover Mechanism
You can access information for the failover mechanism from the Device and Deployment
views while running online or debugging. From the navigation view, you can access the
failover mechanism information for the primary device, the secondary device, general system,
and system variables.

From the deployment view, the real-time status of the primary and secondary devices is
displayed using color:

While running online, you can also monitor the failover mechanism including system variables
from the Device View. The status color displays are similar to those for the Deployment View.

Green Device is active

Yellow Device is on standby

Red Device is in error
Automation Collaborative Platform 939

See Also
Failover Mechanism
Implementing Failover Mechanisms on a Windows Platform
940 ISaGRAF 5 Concrete Automation Model - Failover Mechanism

Implementing Failover Mechanisms on a
Windows Platform
You can only implement failover mechanisms for systems running with targets having the
failover feature.

1. Create a project using the Win32_L_Failover_TPL template.

2. From the Deployment View, right-click the device for which to define a failover
mechanism, and then click Failover Configuration.

3. In the Device view, set EnableFailover to TRUE, then define the remaining properties for
the primary device, secondary device, and failover system. When not using a separate
data link connection for the devices, the respective data link properties must use the same
IP address as the corresponding failover IP address properties.
Automation Collaborative Platform 941

4. Set up the ISaGRAF targets for the primary and secondary devices.

a) From the PRDK, install the ISaGRAF targets on the respective computers.

b) From a command prompt (Start menu > All Programs > Accessories > Command
Prompt), launch the targets using the following command lines to identify which will
run the primary and secondary systems.

Note: Before proceeding to download the application, make sure firmware (definition of C
functions, I/O drivers, etc.) is identical for the primary and secondary systems.

Primary or Secondary Window (MonoTask) Windows (MultiTask)

Primary system ISa.exe -PR ISaGRAF.exe -PR

Secondary system ISa.exe -SE ISaGRAF.exe -SE
942 ISaGRAF 5 Concrete Automation Model - Failover Mechanism

5. Build the application and perform a download.

The application is downloaded onto the active device and automatically duplicated on the
standby device. When launching the failover mechanism, the active device is the primary
and the standby device is the secondary.

6. Switch the application to run online by choosing Start Debugging from the Debug menu.

7. From the Device View, note the status information for the primary and secondary devices
as well as the values for the failover system variables.

See Also
Failover Mechanism
Monitoring the Failover Mechanism
Automation Collaborative Platform 943

Limitations for Failover Mechanisms
While using a failover mechanism, systems have no particular limitations. Most workbench
features are supported while the code behind the failover mechanism is highly portable
enabling it to run on any hardware platform that meets the requirements for ISaGRAF
firmware. The main limitations are the following:

� Failover requires using Ethernet communication between the workbench and firmware

� The OPC server and OPC gateway support automatic switching only on ETCP (Ethernet
TCP/IP)

� Failover supports the bindings feature from the ISaGRAF 5.40 targets

� Failover does not yet support the interrupt feature enabling to control the moment of
execution of cyclic programs (ST, LD, FBD, and SAMA)

� Failover does not support sending custom files, placed in the To Download folder of a
device directory, to the target when downloading onto the target platform

See Also
Failover Mechanism

IEC 61499 Language
The IEC 61499 language is a distribution method enabling the distribution of individual IEC
61499 function blocks belonging to an IEC 61499 program across multiple resources. The
IEC 61499 standard function blocks are available with the IEC 61499 library.

In an IEC 61499 project, you create programs into which you insert IEC 61499 basic function
blocks and composite function blocks.

Note: The IEC 61499 implementation is based on the Function blocks - Part 1: Architecture
and Function blocks - Part 2: Software Tools Requirements documents available from the
ANSI webstore.
Automation Collaborative Platform 945

IEC 61499 Program Main Format
In IEC 61499 programs, IEC 61499 function blocks are distributed across resources. Inputs
and outputs from these function blocks distributed between resources are connected with
bindings. These bindings are automatically created. Inputs and outputs between function
blocks must respect data types. For IEC 61499 function blocks, identifiers can only be literals
or defined words.

Insertion of an IEC 61499 basic function block or composite function block into a program is
enabled following its creation in the project library.

When splitting an IEC 61499 function block output to connect with two inputs, ISaGRAF
automatically performs the split. Therefore, use of the E_SPLIT function block is not required.

Resources having an instance of an IEC 61499 function block display the IEC 61499 program
in which the function block is defined. Therefore, a given IEC 61499 program can appear in
multiple resources. Bindings between resources are displayed in the Binding View.

IEC 61499 function blocks are distinct from IEC 61131-3 function blocks; An execution
control chart handles the events and algorithms handle the data. IEC 61499 is implemented as
either ECC (basic function blocks) or IEC 61499 FBD (composite function blocks). IEC 61499
function blocks have specific parameter types, for instance, event input and event output.
946 ISaGRAF 5 Concrete Automation Model - IEC 61499 Language

In an execution control chart, individual items represent SFC elements:

� a box with a double outline indicates the initial step

� arrows indicate transitions

� boxes with a single outline indicate steps

� double boxes indicate generated outputs. The space on the left indicates an algorithm
name when one is defined.

An IEC 61499 program is built with blocks from the IEC 61499 library and user-defined
IEC 61499 function blocks. The language editor displays IEC 61499 programs. The following
elements are available for IEC 61499 programs:

Basic function block type Execution control chart

� Function Blocks � Links

� Variables � Comments

� Regions
Automation Collaborative Platform 947

Cycle Execution Time in IEC 61499 Programs
In IEC 61499 programs, total execution time depends on the cycle execution of multiple
resources and the individual IEC 61499 function blocks. For instance, when using basic
IEC 61499 function blocks, the diagram consisting of FB1, FB2, FB3, and FB4 completes
execution after a minimum of four complete cycles of each resource. Each resource cycle
executes the steps of an event control chart until reaching a false transition.

The following formula expresses the minimum total time required to execute one cycle of the
above program:

Total time = cycle time (ResourceA) X 2 + cycle time (ResourceB) X 2
948 ISaGRAF 5 Concrete Automation Model - IEC 61499 Language

Debugging IEC 61499 Programs
When debugging IEC 61499 programs, you can monitor the output values of elements. These
values are displayed using color, numeric, or textual values according to their data type:

� Output values of boolean type are displayed using color. The output value color continues
to the next input. When the output value is unavailable, boolean elements remain black.
The colors are red when True and blue when False.

� Output values of SINT, USINT, BYTE, INT, UINT, WORD, DINT, UDINT, DWORD,
LINT, ULINT, LWORD, REAL, LREAL, TIME, DATE, and STRING type are displayed
as a numeric or textual value in the element. When the output is a structure type, the
displayed value is the selected member.

When the output value for a numeric or textual value is unavailable, the WAIT text is displayed
in the output label. Values are also displayed in the corresponding dictionary instance.
Automation Collaborative Platform 949

IEC 61499 Function Block Main Format
IEC 61499 function blocks are made up of event inputs and outputs as well as data inputs and
outputs:

An IEC 61499 function block is represented by a box having an upper section representing the
event control chart and a lower section representing the data process. Three names are
indicated in the block: the instance name at the top, the function block name just below, and
the resource in which it is declared at the bottom.

The parameters for standard IEC 61499 function blocks are displayed in the local variables
instance with their equivalent direction attribute. The E_TABLE function block shows the
following directions for its inputs and outputs:

Event Inputs Event Outputs

Data Inputs Data Outputs
950 ISaGRAF 5 Concrete Automation Model - IEC 61499 Language

� DT and N data inputs having the VarInput direction

� START and STOP event inputs having the EventInput direction.

� CV data output having the VarOutput direction

� EO event output having the EventOutput direction

� LocalEventInput_START and LocalEventInput_STOP are created for the START and
STOP arguments of the function block

See Also
Basic IEC 61499 Function Blocks
Composite IEC 61499 Function Blocks
Automation Collaborative Platform 951

Basic IEC 61499 Function Blocks
Basic IEC 61499 function blocks are defined using SFC elements to develop their execution
control chart.

� Steps (States)

� Transitions

� Sequence Controls

� Jumps to Steps

ISaGRAF automatically implements the WITH qualifier to ensure synchronization between
data inputs and event inputs.

When inserting steps and transitions, these are assigned a default naming convention including
numbering. For steps, the default naming is Sn where S indicates a step and n indicates the
numbering for the step. For transitions, the default naming is Tn where T indicates a transition
and n indicates the numbering for the transition. You can rename steps and transitions.
However, when renaming steps and transitions using the default naming convention and
changing only the numbering, you can renumber these steps and transitions to a numbering
scheme starting from top to bottom, then from left to right.
952 ISaGRAF 5 Concrete Automation Model - IEC 61499 Language

The following example shows the E_Merge function block made up of an initial step, two
transitions, and a step:

Before Renumbering After Renumbering

E_MERGE Event Control Chart
Automation Collaborative Platform 953

When defining the parameters of basic IEC 61499 function blocks, for each argument having
the event input type, a local variable having the Local_ prefix is automatically created. Also,
for each argument having the event output type, a defined word having the Generate_ prefix is
automatically created. From actions, you can call defined words for these event outputs.

SFC Equivalent

(* gets the events *)
LocalEventInput_EI1(EI1);
LocalEventInput_EI2(EI2);

(*tests for an event *)
LocalEventInput_EI1.Trigger or
LocalEventInput_EI2.Trigger;

(*processes the algorithm *)
EOLocal:=EOLocal+1;
EO:=EOLocal;
954 ISaGRAF 5 Concrete Automation Model - IEC 61499 Language

Typically, an event transition in an SFC diagram is made up of LD statements.

To add parameters to a basic function block

1. In the Solution Explorer, locate the basic function block by expanding the Function
Blocks section.

2. Right-click the block, then choose Parameters from the contextual menu.

A graphic representation of the function block is displayed in the Parameters window.

3. To add a new input, output, or variable, click the respective option below the function
block representation and define the arguments for the block.
Automation Collaborative Platform 955

To renumber steps and transitions

Renumbering ignores steps and transitions using a naming convention other than the default
Sn for steps and Tn for transitions.

1. Open the basic IEC 61499 function block for which to renumber the steps and transitions.

2. From the Tools menu, choose Multi-language Editor, then Renumber Steps and
Transitions.
956 ISaGRAF 5 Concrete Automation Model - IEC 61499 Language

States

For an IEC 61499 ECC, an initial step corresponds to an execution control initial state (EC
initial state) and a step corresponds to an execution control state (EC state).

Intial steps express the initial situation of an SFC program. Whereas, steps are placed
throughout an SFC program. An SFC program must contain at least one initial step. Initial steps
and steps are referenced by a name, written in their square symbol. This information is the level
1 of the step.

An initial step has a double bordered graphic symbol.

A step is represented by a single square.

At run time, a token indicates that the step is active. For initial steps, a token is automatically
placed in each when the program is started.

Steps have attributes. These can be used in any of the other languages.

StepName.x activity of the Step (Boolean value)
StepName.t activation duration of the Step (time value)

(where StepName is the name of the step)

Activity of a step is an attribute of a step which is activated by an SFC token.

For SFC function blocks, when reading a child active step or duration from a father:

Active Step Inactive Step
Automation Collaborative Platform 957

ChildName.__S1.x activity of the Step (Boolean value)
ChildName.__S1.t activation duration of the Step (time value)

(where ChildName is the name of the child. Note that S1 is preceded by two underscore
(_)characters)

To insert an initial step

� From the Toolbox, drag the initial step element into the language container.

The initial step is displayed in the language container.

To insert a step

� From the Toolbox, drag the step element into the language container.

The step is displayed in the language container.
958 ISaGRAF 5 Concrete Automation Model - IEC 61499 Language

Transitions

For an IEC 61499 ECC, transitions and event transitions correspond to an execution control
transition (ECC transition). Event transitions are transitions programmed to trigger from an
event input. Event transitions are pre-programmed in LD.

Transitions are represented by a small horizontal bar that crosses the connection link. Event
transitions are displayed with an additional arrow pointing towards the connection link. Each
transition is referenced by a name, displayed next to the transition symbol.

To insert a transition

� From the Toolbox, drag the transition element into the language container.

The transition is displayed in the language container.

To insert an event transition

� From the Toolbox, drag the event transition element into the language container.
Automation Collaborative Platform 959

The event transition is displayed in the language container.
960 ISaGRAF 5 Concrete Automation Model - IEC 61499 Language

Sequence Controls

Sequence controls are divergences or convergences. These elements adjust automatically to the
context of the SFC diagram. For instance, the editor automatically inserts the type of sequence
control required according to the elements at the insertion point. Moreover, when adding a
parallel element below a sequence control, the sequence control automatically branches out to
the added element. Also, when a sequence control is placed erroneously within a diagram, the
editor displays it as red.

� Selection Divergences, a multiple link from a step to multiple transitions

� Selection Convergences, a multiple link from multiple transitions to a single step

� Simultaneous Divergences, a multiple link from a transition to multiple steps

� Simultaneous Convergences, a multiple link from multiple steps to a single transition

Divergences are multiple links from one SFC element (step or transition) to multiple SFC
symbols. Convergences are multiple connections from more than one SFC symbol to one other
symbol.

When inserting a sequence control, the type is determined logically according to the number
of SFC elements of a same type (whether multiple) located initially above then below the
control.

To insert a sequence control

� From the Toolbox, drag the sequence control to the desired location in the language
container.

The sequence control element is displayed in the language container.
Automation Collaborative Platform 961

Selection Divergences

A selection divergence (OR) is a multiple link from one step to multiple transitions. The
selection divergence enables an active token to pass into one of a number of branches.

Conditions attached to the different transitions at the beginning of a selection divergence are
not implicitly exclusive. Exclusivity of transitions is defined by the priorities set to those
transitions following the divergence.

Selection divergences are represented by single horizontal lines.

The first transitions following a single divergence are set in a group to define their priority of
execution. The workbench automatically assigns the priority of transitions, displayed on the
left, in the order of creation of the divergence branch. You can specify a different priority for
a transition in the properties. The possible priority values range from 1 to 255.

Example

(* ECC with selection divergence and convergence *)
962 ISaGRAF 5 Concrete Automation Model - IEC 61499 Language

See Also
Selection Convergences
Simultaneous Divergences
Automation Collaborative Platform 963

Selection Convergences

A selection convergence (OR) is a multiple link from multiple transitions to a single step.
Selection convergences are generally used to group branches which were started using
selection divergences. Selection convergences are represented by single horizontal lines.

See Also
Selection Convergences
Simultaneous Convergences
964 ISaGRAF 5 Concrete Automation Model - IEC 61499 Language

Simultaneous Divergences

A simultaneous divergence (AND) is a multiple link from one transition to multiple steps. A
simultaneous divergence corresponds to parallel operations of a process. Simultaneous
divergences are represented by double horizontal lines.

Example

(* Program with simultaneous divergence and convergence *)

See Also
Simultaneous Convergences
Selection Divergences
Automation Collaborative Platform 965

Simultaneous Convergences

A simultaneous convergence (AND) is a multiple link from multiple steps to a single transition.
Simultaneous convergences are generally used to group branches which were started using
simultaneous divergences. Simultaneous convergences are represented by double horizontal
lines.

See Also
Simultaneous Divergences
Selection Convergences
966 ISaGRAF 5 Concrete Automation Model - IEC 61499 Language

Jumps to Steps

Jump symbols are available to indicate a connection link from a transition to a step, without
having to draw a connection line. The jump symbol must be referenced with the name of the
destination step. A jump symbol cannot represent a link from a step to a transition.

To insert a jump to a step

1. From the Toolbox, drag the jump element into the language container and place it directly
below the existing transition.

2. In the language container, click the jump element.

3. In the drop-down combo-box, click the desired step.

Example

Jump to Step S1

The following charts are equivalent. The chart on the left uses links to return from the bottom
to the top of the chart while the chart on the right uses jumps to return to the top of the chart.
Automation Collaborative Platform 967

Coding Action Blocks for Steps

Action blocks are operations executed when a step is active. Steps can contain multiple action
blocks of the same or different type. You add action blocks to the level 1 of a step. Depending
on the action block type, you may need to program the level 2 for the block. You program level
2 code for an action block in a level 2 window, displayed to the right of the POU. The available
action block types are the following:

� Boo where the action block name is automatically associated to Boolean variable selected
from the variable selector. Possible qualifiers are Action (N), Reset (R), and Set (S).

� LD where you program an LD diagram in the level 2 window. Possible qualifiers are
Action (N), Reset (R), Set (S), Pulse on Deactivation Action (P0), and Pulse On
Activation Action (P1).

� SFC where the action block name is automatically associated to the SFC child. Possible
qualifiers are Action (N), Reset (R), and Set (S).

� ST where you define ST code in the level 2 window. Possible qualifiers are Action (N),
Reset (R), Set (S), Pulse on Deactivation Action (P0), and Pulse On Activation Action
(P1).

� Event Action where an ST action is automatically generated following the selection of an
event output. The ST action is named using the event output name preceded by the
Generate_ prefix.

Individual SFC steps are executed in the following order:

1. Step activation - beginning when the previous transition is cleared. During this period,
defined action blocks are executed in the order of appearance.

2. Step cycle - beginning when the step becomes active and ending when the step completes
deactivation. During this period, defined action blocks are executed in the order of
appearance.

3. Step deactivation - ending when the following transition becomes active. During this
period, defined action blocks other than Boolean (Boo) action blocks having the N
qualifier are executed in the order of appearance. Boolean (Boo) action blocks are
executed after all other action blocks.
968 ISaGRAF 5 Concrete Automation Model - IEC 61499 Language

To add action blocks to steps

1. Select the step for which to define operations.

2. Right-click the step, then from the contextual menu choose Add, then the required action
block type.

3. Specify the required properties for the action block from the Properties window by
clicking the action block definition on the step.

a) To rename the action block, type the required text in the Name field.

Note: The names for Boo and SFC action blocks are automatically associated to their
respective assignation (Boolean variable or SFC child).

b) To specify the qualifier for the action block, choose the required type in the Qualifier
field.

c) To include a comment, type the required text in the Comment field.

4. For a Boo action block, double-click the action block name, then from the Variable
Selector, select the variable for use in the block.

5. For an ST or LD action block, access the level 2 for the block by double-clicking the
action block name on the step, then program the required level 2 operations in the level 2
window displayed to the right of the POU.

6. For an Event Action block, select an event output from the Select Output Event window.

To rearrange the order of action blocks for a step

1. On the step, select the action block to displace.

2. Right-click the action block, the choose Move Up or Move Down from the contextual
menu.

To delete an action block

1. On the step, select the action block to remove.

2. Right-click the action block, the choose Delete from the contextual menu.
Automation Collaborative Platform 969

Boolean Actions

Boolean Actions assign a Boolean Variable with the activity of the Step. The Boolean Variable
can be a VarInput or VarOutput variable. It is assigned each time the Step activity starts or
stops. This is the meaning of the basic Boolean Actions:

The Boolean variable must be VarInput or VarOutput. The following SFC programming leads
to the indicated behavior:

N on a Boolean Variable assigns the Step activity signal to the variable

S on a Boolean Variable sets the variable to TRUE when the step activity signal becomes
TRUE

R on a Boolean Variable resets the variable to FALSE when the step activity signal
becomes TRUE

Qualifier

Variable Name (S10.X is the activity of Step S10)
970 ISaGRAF 5 Concrete Automation Model - IEC 61499 Language

Pulse Actions

A pulse action is a list of instructions, which are executed only once at the activation of the
Step: P1 Qualifier, or executed only once at the deactivation of the Step: P0 Qualifier.
Instructions are written using the ST or LD syntax. The following shows the results of a pulse
Action with the P1 Qualifier:

Step Activity

Execution
Automation Collaborative Platform 971

Example

In the following program, step S1 is assigned an ST action named EdgeInit having the P1
qualifier and S2 is assigned an ST action named EdgeCount having the P1 qualifier. The code
for these actions is programmed in their respective level 2 window.
972 ISaGRAF 5 Concrete Automation Model - IEC 61499 Language

Non-Stored Actions

A non-stored (normal) action is a list of ST or LD instructions which are executed at each cycle
during the whole active period of the step. Instructions are written according to the used
language syntax. Non-stored actions have the "N" qualifier. The following are the results of a
non-stored Action:

Example

Step Activity

Execution

In the following program, step S1 is assigned an ST action named EdgeInit having the P1
qualifier and S2 is assigned an ST action named EdgeCount having the N qualifier. The code
for these actions is programmed in their respective level 2 window.
Automation Collaborative Platform 973

Coding Conditions for Transitions

You code conditions for the clearing of transitions by programming these in the level 2
window. When defining the properties of conditions, you indicate a name, a comment
(optional), and the programming language (type). The available programming languages for
transitions are LD and ST.

When no expression is attached to the Transition, the default condition is TRUE.

To code conditions for transitions

1. Select the transition for which to code a condition.

2. Right-click the transition, then from the contextual menu choose Properties.

3. Specify the required properties for the transition from the Properties window.

a) To rename the transition, type the required text in the Name field.

b) To specify the type (programming language) for the transition condition, choose the
required type in the Type field.

c) To include a comment, type the required text in the Comment field.

4. In the Level 2 window, program the required condition.
974 ISaGRAF 5 Concrete Automation Model - IEC 61499 Language

Conditions Programmed in ST

The Structured Text (ST) language can be used to describe the condition attached to a
Transition. The complete expression must have Boolean type and may be terminated by a semi
colon, according to the following syntax:

< boolean_expression > ;

The expression may be a TRUE or FALSE constant expression, a single input or an internal
Boolean Variable, or a combination of Variables that leads to a Boolean value.

Example

(* Program with ST programming for Transitions *)
Automation Collaborative Platform 975

Conditions Programmed in LD

The Ladder Diagram (LD) language can be used to describe the condition attached to a
transition. The initial diagram is composed of a rung.

Example

(* Program with LD programming for transitions *)
976 ISaGRAF 5 Concrete Automation Model - IEC 61499 Language

Calling Functions from Transitions

Any Function (written in ST, LD, or FBD), or a "C" Function can be called to evaluate the
condition attached to a Transition, according to the following syntax in ST:

< function > () ;

The value returned by the Function must be Boolean and yields the resulting condition:

Example

(* Program with function call for transitions *)

return value = FALSE -> condition is FALSE

return value = TRUE -> condition is TRUE
Automation Collaborative Platform 977

Calling Function Blocks from Transitions

It is not recommended to call a function block in an SFC condition for the following reasons:

� A function block should be called at each cycle, typically in a cyclic program.

� An SFC condition is evaluated only when all of its preceding steps are active (not at each
cycle)
978 ISaGRAF 5 Concrete Automation Model - IEC 61499 Language

Composite IEC 61499 Function Blocks
Composite IEC 61499 function blocks are defined using IEC 61499 FBD calling standard
IEC 61499 function blocks, basic function blocks, and composite function blocks to perform
the required operations.

A composite IEC 61499 function block is like a function block network where nodes are basic
and/or composite function blocks and their parameters and where branches are data
connections and event connections. ISaGRAF automatically implements the WITH qualifier to
ensure synchronization between data inputs and event inputs.

The following example shows the E_CYCLE composite function block:

The following elements are available for composite IEC 61499 function blocks:

E_CYCLE Algorithm

IEC 61499 FBD Equivalent

� Function Blocks � Links

� Variables � Regions

� Comments
Automation Collaborative Platform 979

Function Blocks

In IEC 61499 programs and composite function blocks, you can include standard IEC 61499
or user-defined function blocks. You include functions blocks by inserting block elements into
the language container then selecting the function block from the block selector. Following
insertion, you connect inputs and outputs to variable blocks (literals or defined words) or other
block inputs or outputs. Formal parameter short names are displayed inside the blocks.

To insert a block element

1. From the Toolbox, drag the block element into the language container.

The Block Selector is displayed.

2. In the Block Selector, choose the required function block, then click OK. You can sort
the block list according to the columns by setting these in ascending or descending order.

The selected function block is displayed in the language container.
980 ISaGRAF 5 Concrete Automation Model - IEC 61499 Language

Variables

In IEC 61499 programs and composite function blocks, variable blocks can only be literals or
defined words.

To connect a new symbol to an existing one (a block input or output), drag the element until
its connecting line on the left (or right) overlaps an existing connecting point. When the mouse
is released, the new symbol is automatically created and linked.

When entering variable blocks, you need to enter a literal or select a defined word by
double-clicking the variable element. Available defined words are displayed in a drop-down
list.

To insert a variable element

1. From the toolbox, drag the variable element to the required input or output.

2. Double-click the variable element, then do one of the following:

� To specify a literal, type the required value in the text box.

� To specify a defined word, select a defined word from the drop-down list.

The variable element is displayed in the language container with the specified value.
Automation Collaborative Platform 981

Links

You draw connection links between block inputs and outputs. For variable elements, the links
are automatically drawn when the element approaches an input or output.

Negation connection links are equivalent to placing a NOT block on a direct link.

Links are always drawn from an output to an input point (following the direction of the data
flow).

To insert a link between outputs and inputs in programs

1. Click an output, then drag while holding the mouse depressed to the required input.

2. To set the link to negation, right-click the link and choose Properties from the contextual
menu, then in the Properties window, set the Is Negation property to True.

To insert a link between outputs and inputs in composite function blocks

� Right-click an output and from the contextual menu choose Connect To, then the required
function block and input with which to connect.
982 ISaGRAF 5 Concrete Automation Model - IEC 61499 Language

Regions

Regions delineate and group together areas of an IEC 61499 POU. A region consists of a
header and a delineated zone grouping together elements.The header section enables entering
free-format text. After entering text in the header, click elsewhere in the region to exit editing
mode. When moving the location of a region in the language container, you can also move all
the content grouped within. You can resize regions.

To insert a region

� From the Toolbox, drag the region element into the language container.

The region element is displayed in the language container.

To move a region

1. In the language container, left-click the top right corner of the region element and hold
the mouse button.

2. Drag the region element to the required location and release the mouse button.

The region and the elements contained inside have moved location in the language container.

See Also
Comments
Automation Collaborative Platform 983

Comments

Comments are free format text inserted anywhere in the POU, for documentation purposes
only. After entering text, click elsewhere in the workspace to exit editing mode.

To insert a comment

1. From the toolbox, drag the comment element to the required location in the language
container.

2. Double-click the comment element, then type the required text within the space provided.

The comment is displayed in the language container.
984 ISaGRAF 5 Concrete Automation Model - IEC 61499 Language

Execution Control Chart Behavior
The execution control chart behavior consists of three states: initial situation (start), code
execution, and end. Each virtual machine cycle consists of determining all clearable transitions
and executing as many active steps as possible. Execution ends upon reaching unclearable
transitions, the end of the control chart, or a previously executed step.

Within the execution cycle, the dynamic behaviors of the SFC language are the following:

Initial situation

The Initial Situation is characterized by the initial steps which are, by definition, in the active
state at the beginning of the operation. At least one initial step must be present in each SFC
program.

Clearing of a transition

A transition has three properties: enabled/disabled, active/inactive, and
clearable/non-clearable. A transition is enabled when all immediately preceding steps linked
to its corresponding transition symbol are active, otherwise, the transition is disabled. A
transition is active if its condition is True.

A transition is clearable if it is enabled and active at the same time. When a transition is
clearable, the steps immediately preceding it become inactive and those immediately following
it become active. When transitions follow a divergence, multiple transitions may become
clearable.

Changing of state of active steps

The clearing of a transition simultaneously leads to the active state of the immediately
following steps and to the inactive state of the immediately preceding steps. The code within a
step is only executed if the step is active.

Simultaneous clearing of transitions

All transitions (of all SFC programs) that can be cleared (enabled and active), are
simultaneously cleared.
Automation Collaborative Platform 985

End

The End is characterized by reaching the end of clearable transitions, the end of the control
chart, or a previously executed step.
986 ISaGRAF 5 Concrete Automation Model - IEC 61499 Language

IEC 61499 Keyboard Shortcuts
The following keyboard shortcuts are available for use with IEC 61499. Some shortcuts do not
apply or may differ while debugging.

Ctrl+A Selects all elements (not available while debugging)

Ctrl+C Copies the selected elements to the clipboard (not available while
debugging)

Ctrl+V Pastes elements saved on the clipboard to the insertion point (not
available while debugging)

Ctrl+X Cuts the selected elements to the clipboard (not available while
debugging)

Ctrl+Y Redoes the previous command (not available while debugging)

Ctrl+Z Undoes the previous command (not available while debugging)

Shift+Ctrl+Alt+G Enables/disables the grid in the language container

Shift+Alt+Enter Toggles between full-screen and windowed modes

Ctrl+R Toggles between Auto-Input and Manual-Input. Auto-Input
automatically opens the Block Selector and Variable Selector (not
available while debugging).

Ctrl+B Bolds selected comment text (not available while debugging)

Ctrl+I Italicizes selected comment text (not available while debugging)

Ctrl+U Underlines selected comment text (not available while debugging)

Enter When a function block is selected, opens the Block Selector (not
available while debugging).

When a comment is selected, starts editing it (not available while
debugging).

Ctrl+Enter When a variable is selected, opens the drop-down list of available
variables (not available while debugging).

When editing a comment, confirms the text (not available while
debugging).

Ctrl+- Decreases the magnification

Ctrl+= Increases the magnification
Automation Collaborative Platform 987

Ctrl+0 100% magnification

Ctrl+1 Inserts a variable (not available while debugging)

Ctrl+2 Inserts a function block (not available while debugging)

Ctrl+3 Inserts a comment (not available while debugging)

Shift+Up Arrow Reduces the height of the selected element (not available while
debugging)

Shift+Down Arrow Increases the height of the selected element (not available while
debugging)

Shift+Left Arrow Reduces the width of the selected element (not available while
debugging)

Shift+Right Arrow Increases the width of the selected element (not available while
debugging)

Ctrl+Up Arrow Moves the selection to the next element located higher in the
diagram without keeping the previous element selected (not
available while debugging)

Ctrl+Down Arrow Moves the selection to the next element located lower in the
diagram without keeping the previous element selected (not
available while debugging)

Ctrl+Left Arrow Moves the selection to the next element located to the left in the
diagram without keeping the previous element selected (not
available while debugging)

Ctrl+Right Arrow Moves the selection to the next element located to the right in the
diagram without keeping the previous element selected (not
available while debugging)

Alt+Shift+Up Arrow When a function block is selected, navigates up the different inputs
and outputs (not available while debugging)

Alt+Shift+Down Arrow When a function block is selected, navigates down the different
inputs and outputs (not available while debugging)

Alt+Shift+Left Arrow When a function block is selected, navigates left across the different
inputs and outputs (not available while debugging)

Alt+Shift+Right Arrow When a function block is selected, navigates right across the
different inputs and outputs (not available while debugging)

Ctrl+Page Up Jumps to the top of the language container
988 ISaGRAF 5 Concrete Automation Model - IEC 61499 Language

Ctrl+Page Down Jumps to the bottom of the language container

Alt+Up Arrow Scrolls up

Alt+Down Arrow Scrolls down

Alt+Left Arrow Scrolls left

Alt+Right Arrow Scrolls right

Up Arrow Moves selected elements up the language container. While
debugging, scrolls up.

Down Arrow Moves selected elements down the language container. While
debugging, scrolls down.

Left Arrow Moves selected elements left across the language container. While
debugging, scrolls left.

Right Arrow Moves selected elements right across the language container. While
debugging, scrolls right.

Delete Removes the selected elements (not available while debugging)
Automation Collaborative Platform 989

990 ISaGRAF 5 Concrete Automation Model - IEC 61499 Language

FBD Language
The Functional Block Diagram (FBD) is a graphic language enabling programmers to build
complex procedures by taking existing functions from the standard library, function section, or
function block section.

In FBD containers, you can also include LD elements such as coils, contacts, jumps, labels, and
returns. However, in contrast to LD elements usage in LD containers where these elements
follow strict graphical positioning regulations, LD elements within FBD container are
independent of these regulations.

See Also
FBD Diagram Main Format
Debugging FBD Programs
Automation Collaborative Platform 991

FBD Diagram Main Format
FBD diagrams describe a process between input variables and output variables. A process is
described as a network of basic elements. Input and output variables are connected to blocks
by connection lines. Outputs of blocks can also be connected to inputs of other blocks.

An entire process represented by an FBD program is built using the available variables,
operators, functions, and function blocks. Each block has either a fixed or defined number of
input and output connection points. A block is represented by a single rectangle. The inputs are
connected on its left border. The outputs are connected on its right border. An elementary block
performs a single function between its inputs and its outputs. The name of the function to be
performed by the block is written inside its rectangular shape. Each input or output of a block
is labeled and has a well defined type.

Function Block

Inputs Outputs

Function Name

Inputs Outputs
992 ISaGRAF 5 Concrete Automation Model - FBD Language

Input variables of an FBD program must be connected to input connection points of blocks.
The type of each variable must be the same as the type expected for the associated input. An
input for FBD diagram can be a literal, any internal or input variable, an output variable, or a
block output.

Output variables of an FBD program must be connected to output connection points of blocks.
The type of each variable must be the same as the type expected for the associated block output.
An output for FBD diagram can be any internal or output variable, or the name of the function
(for functions only). When an output is the name of the currently edited function, it represents
the assignment of the return value for the function (returned to the calling program).

Input and output variables, inputs and outputs of the blocks are wired together with connection
lines, or links. Single lines can be used to connect two logical points of a diagram:

� An input variable and an input of a block

� An output of a block and an input of another block

� An output of a block and an output variable

The connection is oriented, meaning that the line carries associated data from left to right. The
left and right ends of the connection line must be of the same data type.

Multiple right connections, also called divergences can be used to broadcast information from
their left end to each of the right ends. All ends of the connections must be of the same data
type.

See Also
Execution Order of FBD Programs
Automation Collaborative Platform 993

Execution Order of FBD Programs
When editing FBD programs, you can display the execution order of elements and networks.
Within a program, a network is a sequence of connected blocks. The execution order for
elements and networks can be defined automatically or manually. When using the manual
definition for the execution order, a region is considered a sub-network where the rules of
execution order apply to the elements inside the region. The execution order is displayed for
the following elements in the form of numerical tags:

� blocks

� variables (where a value is assigned from another variable)

� coils

� contacts

� vertical bars

� returns

� jumps

� labels (manual definition only)

For manual definition of the execution order, a numerical tag is displayed with a red outline
when the specified tag order for an element presents a possible malfunction.

Numerical tags are displayed using different colors depending on the type of execution order:

When using manual definition, you can perform the following task:

� reset the manual definition order to the default execution order

Beige. Automatic execution order.

Green. Manual definition for the execution order.
994 ISaGRAF 5 Concrete Automation Model - FBD Language

For the execution order of a program, a block is any object in the diagram, a network is a set
of blocks linked together, and the position of a block is based on its top-left corner. The
following rules apply to the execution order of the program:

� Networks are executed from top to bottom, left to right. During execution, a grouping is
entirely processed before moving to the next grouping.

� All inputs must be resolved before executing a block. When the inputs of two or more
blocks are resolved at the same time, the decision for the execution is based on the
position of the block.

� The outputs of a block are assigned following execution

You can perform execution order operations from the menu bar, the toolbar, or keyboard
shortcuts.

To display the execution order in an FBD diagram

�From the Tools menu, click Execution Order (or press Ctrl+W).

Numerical tags in the individual elements display the default execution order.

To manually define the execution order in an FBD diagram

Before manually defining the execution order, you need to display the execution order for a
diagram. You specify manual definition of the execution order from the contextual menu,
accessed by right-clicking in the language container.

1. To specify manual definition of the execution order, right-click in the language container,
point to Execution Order, and then click Manual Definition (or press Ctrl+Alt+M).

2. To start redefining the execution order of individual elements, right-click in the language
container, point to Execution Order, and then click Start Renumbering.

The numerical tags displaying the execution order are available for renumbering.

3. Click the individual elements in the required order of execution.

When renumbering is complete, right-click in the language container, point to Execution
Automation Collaborative Platform 995

Order, and then click Stop Renumbering.

To reset the manual definition to the default execution order rules

You reset the execution order from the contextual menu, accessed by right-clicking in the
language container.

1. To reset the execution order to use the default rules, right-click in the language container,
point to Execution Order, and then click Reset.

See Also
FBD Diagram Main Format
Regions
996 ISaGRAF 5 Concrete Automation Model - FBD Language

Debugging FBD Programs
When debugging FBD programs, you can monitor the output value of elements. These values
are displayed using color, numeric, or textual values according to their data type:

� Output values of boolean type are displayed using color. The output value color continues
to the next input. When the output value is unavailable, boolean elements remain black.
The colors are red when True and blue when False.

� Output values of SINT, USINT, BYTE, INT, UINT, WORD, DINT, UDINT, DWORD,
LINT, ULINT, LWORD, REAL, LREAL, TIME, DATE, and STRING type are displayed
as a numeric or textual value in the element. When the output is a structure type, the
displayed value is the selected member.

When the output value for a numeric or textual value is unavailable, the WAIT text is displayed
in the output label. Values are also displayed in the corresponding dictionary instance.
Automation Collaborative Platform 997

For FBD programs, you enable step-by-step execution by generating debug information for
individual POUs. When debug information is generated for FBD programs in a resource, the
resource automatically switches to step-by-step execution when the application encounters a
breakpoint. You instantiate step-by-step execution by setting breakpoints to functions, function
blocks, operators, user-defined functions, and user-defined function blocks. In the language
editor, breakpoints appear as red circles located at the top left corner of blocks. When a
breakpoint is encountered, a yellow arrow is displayed on the breakpoint and the block is
highlighted in yellow. When debugging, the application stops when it encounters a breakpoint.
At this time, the resource is in the DEBUGGING state and you can choose to perform one of
the following operations:

� Step into the highlighted block (available for user-defined functions and function blocks),
executes the highlighted block then steps to the subsequent block.

� Step over the highlighted block, skips the highlighted block then steps to the subsequent
block.

� Switch execution to real-time mode

� Switch execution to cycle-to-cycle mode

� Execute one cycle

Note: You can only set breakpoints for TIC POUs; you cannot set breakpoints for C source
code POUs.

To generate debug information for an FBD POU

Generate debug information for FBD POUs enables step-by-step debugging within the POU.

1. In the Solution Explorer, select the FBD POU for which to generate debug information.

2. In the Properties for the POU, set Generate Debug Info to True.

To set a breakpoint in an FBD POU

� Right-click the block on which to add a breakpoint, then click Add Breakpoint.

A breakpoint is displayed as a red circle at the top left corner of the block.
998 ISaGRAF 5 Concrete Automation Model - FBD Language

To disable a breakpoint

Disabling a breakpoint prevents the block execution.

� Right-click the block on which to disable a breakpoint, then click Disable Breakpoint.

To enable a breakpoint

Enabling a breakpoint allows block execution.

� Right-click the block on which to enable a breakpoint, then click Enable Breakpoint.

To delete a breakpoint

� Right-click the block having a breakpoint to remove, then click Delete Breakpoint.

The breakpoint is deleted from the block.

To step into the user-defined function or function block

� From the Debug menu, click Step Into (or press F11).

The POU executes the highlighted user-defined function or function block then steps to the
next block.

To step over the block

� From the Debug menu, click Step Over (or press F10).

The POU skips the highlighted block then steps to the next one.

To switch execution to real-time mode

� From the Target Execution toolbar, click .

The POU executes in real-time mode.
Automation Collaborative Platform 999

To switch execution to cycle-to-cycle mode

� From the Target Execution toolbar, click .

The POU executes in cycle-to-cycle mode.

To execute one cycle

� From the Target Execution toolbar, click .

Executes the remaining POUs until the next cycle.
1000 ISaGRAF 5 Concrete Automation Model - FBD Language

FBD Elements
When programming in FBD, you place elements in the workspace by dragging them from the
Toolbox into the language container. For FBD POUs, the following elements are available:

� Blocks

� Variables

� Vertical Bars

� Labels

� Jumps

� Returns

� Rungs

� Left Power Rails

� Right Power Rails

� Coils

� Contacts

� Regions

� Comments

See Also
FBD Diagram Main Format
Execution Order of FBD Programs
Automation Collaborative Platform 1001

Blocks

Block elements can be operators, functions, or function blocks. You connect block inputs and
outputs to variables, contacts or coils, or other block inputs and outputs. You insert block
elements in language containers.

Functions and function blocks are represented by a box displaying the name of the function,
function block, or operator, and the parameter names. For function blocks, the instance name
is displayed in italics.

For functions, the return parameter is the only output. For function blocks, multiple return
parameters can provide multiple outputs. The return parameter of a function has the same name
as the function. The return parameters of a function block can have any name.

You define the parameters of POUs in the Parameters view.
1002 ISaGRAF 5 Concrete Automation Model - FBD Language

For loops in blocks, you need to use local variables since these are initialized with a value.
When using loops, the first execution may produce incorrect outputs due to the execution order
of elements in the diagram or the initial values of temporary variables. For example, the
following diagram produces a warning when compiling since the TON block is executed
before the XOR operator. Whereas, moving the XOR operator to the upper left corner of the
diagram eliminates the warning since the XOR operator becomes first in the execution order.

You can resize blocks elements.

To access the parameters view

The parameters view is available from function or function block instances located in the
Solution Explorer.

1. In the Solution Explorer, right-click the required function or function block, then click
Parameters.

The Parameters view is displayed.

2. To define the parameters of a function or function block, in the Parameters view, enter the
required information in the fields provided.

To insert a block element

1. From the Toolbox, drag the block element into the language container.

The Block Selector is displayed.
Automation Collaborative Platform 1003

2. In the Block Selector, choose the required function block, then click OK. You can sort the
block list according to the columns by setting these in ascending or descending order.

The selected block is displayed in the language container.

See Also
FBD Diagram Main Format
1004 ISaGRAF 5 Concrete Automation Model - FBD Language

Variables

To connect a new symbol to an existing one (another variable, a block input, or a block output)
in the workspace, keep the mouse button depressed (the cursor becomes a "ghost" symbol) and
drag the element until its connecting line on the left (or right) overlaps an existing connecting
point. When the mouse is released, the new symbol is automatically created and linked.

You replace existing variables in POUs by double-clicking them to access the Variable
Selector or single-clicking them to select from a drop-down combo-box containing the global
and local variables. Also, you can single-click a variable, then type a literal value in the text
box provided. When inserting literal values that being with a letter or an underscore, enclose
these in single quotes as follows: 'abc'.

When selecting items such as local variables, global variables, system variables, and defined
words from the drop-down combo-box, typing characters in the text box focuses on the
possible items. You can focus on listed items by typing letters, digits, and specific special
characters: !, #, $, %, &, \, *, +, -, ,/ <, :, =, >, ?, @, \, ^, _, `, |, and ~.

Drag to place the existing element: Release the mouse button. The variable is
automatically connected:

Select a variable from the drop-down
combo-box:

Type a literal value in the text box:
Automation Collaborative Platform 1005

For input and output variables, you can choose to display comments entered in the dictionary.
From the View menu, you can access the Properties window where you can define the
Comment Position property.

You can resize variables displayed in the workspace.

To insert a variable

1. From the Toolbox, drag the variable element into the language container.

The Variable Selector is displayed.

2. In the Variable Selector, select the required variable, then click OK.

The variable is displayed in the language container.

See Also
FBD Diagram Main Format
1006 ISaGRAF 5 Concrete Automation Model - FBD Language

Vertical Bars

Vertical bars are graphic components of FBD programs enables closing multiple parallel links.
More than one horizontal links on the left side of a vertical bar are connected to one link on the
right side. The Boolean state of the right end is the logical OR between all the left extremities.

To insert a vertical bar

� From the Toolbox, drag the vertical bar element into the language container.

The vertical bar is displayed in the language container.
Automation Collaborative Platform 1007

Labels

Labels can be placed anywhere in an FBD diagram. These are used as a target for jump
instructions, to change the execution order of the diagram. Labels are not connected to other
elements.

Place labels on the left of the diagram in order to increase diagram readability.

Labels are used to control the execution of the diagram. No other object may be connected on
the right of a label symbol.

If the connection line on the left of the jump symbol has the Boolean state TRUE, the execution
of the program directly jumps to after the corresponding label symbol.

Example

To insert a label

1. From the Toolbox, drag the label element into the language container.

2. In the language container, click the label, then type a label name in the space provided.

The label is displayed in the language container.
1008 ISaGRAF 5 Concrete Automation Model - FBD Language

See Also
Jumps
Automation Collaborative Platform 1009

Jumps

A Jump symbol must be linked to a Boolean point. When this Boolean (left) connection is
TRUE, the execution of the diagram Jumps directly to the target Label.

Jumps are used to control the execution of the diagram. No other object may be connected on
the right of a jump symbol.

If the connection line on the left of the jump symbol has the Boolean state TRUE, the execution
of the program directly jumps to after the corresponding label symbol.

Example

To insert a jump to a label

Before inserting jumps, define one or more labels within the program.

1. From the Toolbox, drag the jump element into the language container.

2. In the language container, click the jump element, then select the required label name
from the drop-down combo-box.

The jump is displayed in the language container with the required label name.
1010 ISaGRAF 5 Concrete Automation Model - FBD Language

See Also
Labels
Automation Collaborative Platform 1011

Returns

If the connection line (to the left of the Return symbol) has the Boolean state TRUE, the
Program ends - no further part of the diagram is executed.

No connection can be put on the right of a RETURN symbol.

The "<RETURN>" keyword may occur as a diagram output. It must be connected to a Boolean
output connection point of a block. The RETURN statement represents a Conditional End of
the program: if the output of the box connected to the statement has the Boolean value TRUE,
the end (remaining part) of the diagram is not executed.

Example

(* ST equivalence: *)

If auto_mode OR alarm Then
Return;
End_if;
bo67 := (bi10 AND bi23) OR x_cmd;

To insert a return

� From the Toolbox, drag the return element into the language container.

The return is displayed in the language container.
1012 ISaGRAF 5 Concrete Automation Model - FBD Language

Rungs

Rungs are graphic components of FBD programs and represent a group of circuit elements
leading to the activation of a coil. Dragging the rung element into the workspace inserts a
left power rail linked to a right power rail. Also, the rung contains a direct contact and a
direct coil. Error symbols () indicate that the direct contact and direct coil are undefined.

To insert a rung

� From the Toolbox, drag the rung element into the language container.

The rung is displayed in the language container.
Automation Collaborative Platform 1013

Left Power Rails

Left Power Rails are graphic components of FBD programs that represent the left boundary of
a rung. Any horizontal link connected to a left power rail has the boolean state TRUE.

You can link left power rails to right power rails as well as many FBD and LD elements,
including variables, blocks, jumps, returns, vertical bars, coils, and contacts.

To insert a left power rail

� From the Toolbox, drag the left power rail element into the language container.

The left power rail is displayed in the language container.
1014 ISaGRAF 5 Concrete Automation Model - FBD Language

Right Power Rails

Right Power Rails are graphic components of FBD programs that represent the right boundary
of a rung. The right power rail is optional; ending the rung with a coil also produces the correct
code.

You can link right power rails to left power rails as well as many FBD and LD elements,
including variables, blocks, vertical bars, coils, and contacts.

To insert a right power rail

� From the Toolbox, drag the right power rail element into the language container.

The right power rail is displayed in the language container.
Automation Collaborative Platform 1015

Coils

Coils are graphic components of LD programs that you can use in FBD programs representing
the assignment of Boolean outputs. A coil represents an action. It must be connected on the left
to a Boolean symbol, such as a contact or the Boolean output of a block.

The following types of coils are available from the FBD toolbox:

� Direct Coil

� Reverse Coil

� Set Coil

� Reset Coil

You can change the type of a coil at any time following its insertion.

When inserting coils in POUs, you assign variables using the Variable Selector. Names of
assigned variables are displayed above the coil elements within POUs. You replace existing
variables by double-clicking the variable names to access the Variable Selector or by
single-clicking variable names to select from drop-down combo-boxes containing the global
and local variables. Also, you can single-click existing variables, then type literal values in the
text boxes provided. When inserting literal values beginning with a letter or an underscore,
enclose the variable name in single quotes as follows: 'abc'.

Select a variable from the drop-down
combo-box:

Type a literal value in the text box:
1016 ISaGRAF 5 Concrete Automation Model - FBD Language

To insert a coil

You can insert coils from the Toolbox.

1. From the Toolbox, drag the desired coil type into the language container and place it on
the rung.

The Variable Selector is displayed.

2. In the Variable Selector, select the required variable, then click OK.

The coil element and its associated variable name are displayed in the language container.

To insert a parallel coil

1. From the Toolbox, drag a contact element into the language container while placing it
parallel to the existing contact.

The Variable Selector is displayed.

2. In the Variable Selector, select the required variable, then click OK.

3. Drag the left and right connections to the respective connection points on the rung.

The contact and its associated variable name are displayed on the branch.

To change the type of a coil

� In the language container, select the coil, then select the required type in the Modify
property of the Properties window.
Automation Collaborative Platform 1017

Direct Coil

Direct Coils enable a Boolean output of a connection line Boolean state.

The associated variable is assigned with the Boolean state of the left connection. The state of
the left connection is propagated into the right connection. The right connection can be
connected to the right vertical power rail.

The associated name can be the name of the program (for functions only). This corresponds to
the assignment of the return value of the function.

Example

(* ST Equivalence: *)

output1 := input1;
output2 := input1;

See Also
Coils

Left
Connection

Right
Connection
1018 ISaGRAF 5 Concrete Automation Model - FBD Language

Reverse Coil

Reverse coils enable a Boolean output according to the Boolean negation of a connection line
state.

The associated variable is assigned with the Boolean negation of the state of the left
connection. The state of the left connection is propagated into the right connection. The right
connection can be connected to the right vertical power rail.

The associated name can be the name of the program (for functions only). This corresponds to
the assignment of the return value of the function.

Example

(* ST Equivalence: *)

output1 := NOT (input1);
output2 := input1;

See Also
Coils

Left
Connection

Right
Connection
Automation Collaborative Platform 1019

Set Coil

Set coils enable a Boolean output of a connection line Boolean state.

The associated variable is set to TRUE when the boolean state of the left connection becomes
TRUE. The output variable keeps this value until an inverse order is made by a RESET coil.
The state of the left connection is propagated into the right connection. The right connection
can be connected to the right vertical power rail.

Example

(* ST Equivalence: *)

IF input1 THEN
output1 := TRUE;

END_IF;
IF input2 THEN
output1 := FALSE;

END_IF;

Left
Connection

Right
Connection
1020 ISaGRAF 5 Concrete Automation Model - FBD Language

See Also
Coils
Automation Collaborative Platform 1021

Reset Coil

Reset coils enable Boolean output of a connection line Boolean state.

The associated variable is reset to FALSE when the Boolean state of the left connection
becomes TRUE. The output variable keeps this value until an inverse order is made by a SET
coil. The state of the left connection is propagated into the right connection. The right
connection can be connected to the right vertical power rail.

Example

(* ST Equivalence: *)

IF input1 THEN
output1 := TRUE;

END_IF;
IF input2 THEN
output1 := FALSE;

END_IF;

Left
Connection

Right
Connection
1022 ISaGRAF 5 Concrete Automation Model - FBD Language

See Also
Coils
Automation Collaborative Platform 1023

Contacts

Contacts are graphic components of LD diagrams that you can use in FBD programs.
Depending on the type of contact, it represents the value or function of an input or internal
variable.

The following contact types are available from the FBD toolbox:

� Direct Contact

� Reverse Contact

� Pulse Rising Edge Contact

� Pulse Falling Edge Contact

You can change the type of a contact at any time following its insertion.

When inserting contacts in POUs, you assign variables using the Variable Selector. Names of
assigned variables are displayed above the contact elements within POUs. You replace existing
variables by double-clicking the variable names to access the Variable Selector or by
single-clicking variable names to select from drop-down combo-boxes containing the global
and local variables. Also, you can single-click existing variables, then type literal values in the
text boxes provided. When inserting literal values beginning with a letter or an underscore,
enclose the variable name in single quotes as follows: 'abc'.

Select a variable from the drop-down
combo-box:

Type a literal value in the text box:
1024 ISaGRAF 5 Concrete Automation Model - FBD Language

To insert a contact

You can insert contacts from the Toolbox.

1. From the Toolbox, drag the desired contact type into the language container and place it
on the rung.

The Variable Selector is displayed.

2. From the Variable Selector, select the required variable, then click OK.

The contact and its associated variable name are displayed in the language container.

To insert a parallel contact

1. From the Toolbox, drag a contact element into the language container while placing it
parallel to the existing contact.

The Variable Selector is displayed.

2. In the Variable Selector, select the required variable, then click OK.

3. Drag the left and right connections to the respective connection points on the rung.

The contact and its associated variable name are displayed on the branch.

To change the type of a contact

� In the language container, select the contact, then select the required type in the Modifier
property of the Properties window.
Automation Collaborative Platform 1025

Direct Contact

Direct contacts enable a Boolean operation between a connection line state and a Boolean
variable.

The state of the connection line on the right of the contact is the logical AND between the state
of the left connection line and the value of the variable associated with the contact.

Example

(* ST Equivalence: *)

output1 := input1 AND input2;

See Also
Contacts

Left
Connection

Right
Connection
1026 ISaGRAF 5 Concrete Automation Model - FBD Language

Reverse Contact

Reverse contacts enable a Boolean operation between a connection line state and the Boolean
negation of a Boolean variable.

The state of the connection line on the right of the contact is the logical AND between the state
of the left connection line and the Boolean negation of the value of the variable associated with
the contact.

Example

(* ST Equivalence: *)

output1 := NOT (input1) AND NOT (input2);

See Also
Contacts

Left
Connection

Right
Connection
Automation Collaborative Platform 1027

Pulse Rising Edge Contact

Pulse rising edge (positive) contacts enable a Boolean operation between a connection line
state and the rising edge of a Boolean variable.

The state of the connection line on the right of the contact is set to TRUE when the state of the
connection line on the left is TRUE, and the state of the associated variable rises from FALSE
to TRUE. The state is reset to FALSE in all other cases.

Example

(* ST Equivalence: *)

output1 := input1 AND (input2 AND NOT (input2prev));

(* input2prev is the value of input2 at the previous cycle *)

See Also
Contacts

Left
Connection

Right
Connection
1028 ISaGRAF 5 Concrete Automation Model - FBD Language

Pulse Falling Edge Contact

Pulse falling edge (negative) contacts enable a Boolean operation between a connection line
state and the falling edge of a Boolean variable.

The state of the connection line on the right of the contact is set to TRUE when the state of the
connection line on the left is TRUE, and the state of the associated variable falls from TRUE
to FALSE. The state is reset to FALSE in all other cases.

Example

(* ST Equivalence: *)

output1 := input1 AND (NOT (input2) AND input2prev);

(* input2prev is the value of input2 at the previous cycle *)

See Also
Contacts

Left
Connection

Right
Connection
Automation Collaborative Platform 1029

Regions

Regions delineate and group together areas of an FBD POU. A region consists of a header and
a delineated zone grouping together elements.The header section enables entering free-format
text. After entering text in the header, click elsewhere in the region to exit editing mode. When
moving the location of a region in the language container, you can also move all the content
grouped within. You can resize regions.

The region element affects the left to right, top to bottom manual execution order. During
manual execution, a grouping is entirely processed before moving to the next grouping.

To insert a region

� From the Toolbox, drag the region element into the language container.

The region element is displayed in the language container.

To move a region

1. In the language container, left-click the top right corner of the region element and hold
the mouse button.

2. Drag the region element to the required location and release the mouse button.
1030 ISaGRAF 5 Concrete Automation Model - FBD Language

The region and the elements contained inside have moved location in the language container.

See Also
Comments
Execution Order of FBD Programs
Automation Collaborative Platform 1031

Comments

Comments are free format text inserted anywhere in the FBD POU, for documentation
purposes only. After entering text, click elsewhere in the workspace to exit editing mode.

You can expand and collapse comment elements displayed in the workspace by clicking the
maximize and minimize buttons. You can also resize comments.

To insert a comment

You can apply text formatting options including bold, italic, underline, strikethrough, and
justify from the Description Editor toolbar. You can also define the foreground color.

1. From the Toolbox, drag the comment element into the language container.

2. In the language container, double-click the comment, then type the required text within
the space provided.

The comment is displayed in the language container.

See Also
Regions

Minimize Maximize
1032 ISaGRAF 5 Concrete Automation Model - FBD Language

Configuring Function Block Instances
For individual function block instances in FBD, a block configurator provides an integrated
environment in which to modify parameters and visual settings. You can perform the following
tasks for a function block instance from a block configurator:

� Visualizing information such as the scope for the instance and comment for the block

� Specifying a comment for an instance

� Assigning initial values to unconnected inputs
Automation Collaborative Platform 1033

� Setting background and gradient colors for an instance

� Displaying instance names

� Choosing the pins to display for the instance: hiding unconnected pins, showing all pins,
or specifying individual pins. You can only hide unconnected pins.

When aliases are defined for variables, the aliases are displayed in the instance. For function
block instances having hidden pins, the Display All Pins button , enables showing all pins.

To access information and modify parameters for a function block instance

1. In the POU, click in the upper-right corner of the block instance.

The block configurator window for the block instance is displayed.

2. Click the Parameters tab.

3. To visualize the scope of the instance, the comment for the block, or specify a comment

for the instance, expand the POU definition by clicking .

4. To specify an initial value for an input, click in the field or click (for
inputs with multiple fields) alongside the required item, then provide the necessary
values.

To define visual settings for a function block instance

1. In the POU, click in the upper-right corner of the block instance.

The block configurator window for the block instance is displayed.

2. Click the Visual Settings tab.

3. To set the background color or background gradient color for the instance, click the color
swatch for the respective item, then from the color picker, choose or specify the required
color.

You can also reset the background color or background gradient color for the instance.
1034 ISaGRAF 5 Concrete Automation Model - FBD Language

4. To display the instance name in the block, select Display Instance Name.

5. Choose pins to display for the instance:

� To mask unconnected pins, click Hide Unconnected Pins.

� To display all connected and unconnected pins, click Show All Pins.

� To specify individual pins to make visible, on the block representation, click the
required pins to toggle from Hidden to Visible. You can only hide unconnected pins.
Automation Collaborative Platform 1035

FBD Keyboard Shortcuts
The following keyboard shortcuts are available for use with the FBD language. Some shortcuts
do not apply or may differ while debugging.

Ctrl+A Selects all elements (not available while debugging)

Ctrl+C Copies the selected elements to the clipboard (not available while
debugging)

Ctrl+V Pastes elements saved on the clipboard to the insertion point (not
available while debugging)

Ctrl+X Cuts the selected elements to the clipboard (not available while
debugging)

Ctrl+Y Redoes the previous command (not available while debugging)

Ctrl+Z Undoes the previous command (not available while debugging)

Shift+Ctrl+Alt+G Enables/disables the grid in the language container

Shift+Alt+Enter Toggles between full-screen and windowed modes

Ctrl+R Toggles between Auto-Input and Manual-Input. Auto-Input
automatically opens the Block Selector and Variable Selector (not
available while debugging).

Ctrl+B Bolds selected comment text (not available while debugging)

Ctrl+I Italicizes selected comment text (not available while debugging)

Ctrl+U Underlines selected comment text (not available while debugging)

Enter When a function block is selected, opens the Block Selector (not
available while debugging).

When a variable is selected, opens the Variable Selector (not
available while debugging).

When a comment is selected, starts editing it (not available while
debugging).

Ctrl+Enter When a variable is selected, opens the drop-down list of available
variables (not available while debugging).

When editing a comment, confirms the text (not available while
debugging).

Ctrl+- Decreases the magnification
1036 ISaGRAF 5 Concrete Automation Model - FBD Language

Ctrl+= Increases the magnification

Ctrl+0 100% magnification

Ctrl+1 Inserts a variable (not available while debugging)

Ctrl+2 Inserts a function block (not available while debugging)

Ctrl+3 Inserts a comment (not available while debugging)

Shift+Up Arrow Reduces the height of the selected element (not available while
debugging)

Shift+Down Arrow Increases the height of the selected element (not available while
debugging)

Shift+Left Arrow Reduces the width of the selected element (not available while
debugging)

Shift+Right Arrow Increases the width of the selected element (not available while
debugging)

Ctrl+Up Arrow Moves the selection to the next element located higher in the
diagram without keeping the previous element selected (not
available while debugging)

Ctrl+Down Arrow Moves the selection to the next element located lower in the diagram
without keeping the previous element selected (not available while
debugging)

Ctrl+Left Arrow Moves the selection to the next element located to the left in the
diagram without keeping the previous element selected (not
available while debugging)

Ctrl+Right Arrow Moves the selection to the next element located to the right in the
diagram without keeping the previous element selected (not
available while debugging)

Alt+Shift+Up Arrow When a function block is selected, navigates up the different inputs
and outputs (not available while debugging)

Alt+Shift+Down Arrow When a function block is selected, navigates down the different
inputs and outputs (not available while debugging)

Alt+Shift+Left Arrow When a function block is selected, navigates left across the different
inputs and outputs (not available while debugging)

Alt+Shift+Right Arrow When a function block is selected, navigates right across the
different inputs and outputs (not available while debugging)
Automation Collaborative Platform 1037

Ctrl+Page Up Jumps to the top of the language container

Ctrl+Page Down Jumps to the bottom of the language container

Alt+Up Arrow Scrolls up

Alt+Down Arrow Scrolls down

Alt+Left Arrow Scrolls left

Alt+Right Arrow Scrolls right

Up Arrow Moves selected elements up the language container. While
debugging, scrolls up.

Down Arrow Moves selected elements down the language container. While
debugging, scrolls down.

Left Arrow Moves selected elements left across the language container. While
debugging, scrolls left.

Right Arrow Moves selected elements right across the language container. While
debugging, scrolls right.

Delete Removes the selected elements (not available while debugging)

Ctrl+D Only available in debug mode for the date data type. When the Write
Logical Value dialog box is open, enters the current date.

Ctrl+W Displays the execution order of elements within the diagram (not
available while debugging)

Ctrl+Alt+M While displaying the execution order of elements, enables manually
defining the execution order of individual elements and networks
(not available while debugging)
1038 ISaGRAF 5 Concrete Automation Model - FBD Language

LD Language
Ladder Diagram (LD) is a graphic representation of Boolean equations, combining contacts
(input arguments) with coils (output results). The LD language enables the description of tests
and modifications of Boolean data by placing graphic symbols into the program chart. LD
graphic symbols are organized within the chart as an electric contact diagram. Thus, the term
"ladder" coming from the concept of rungs connected to vertical power rails at both ends where
each rung represents an individual circuit.

You can adjust editor and view settings for individual or all Ladder Diagrams. When working
in a Ladder Diagram, you set the properties for the diagram from the Container properties in
the Properties window. You set the properties for all Ladder Diagrams using the options
available from the Tools menu. Some of the available properties include the following:

� background and gradient colors for operators, functions, and function blocks
Automation Collaborative Platform 1039

� displaying the grid as well as the height and width of grid cells, in pixels

� the height and width of elements, in grid cells. Basic elements are blocks without inputs
or outputs, coils, and contacts. For blocks, each input and output adds a basic element
dimension. For example, note the contact using the default settings of one grid cell high
by four grid cells wide. The following block uses a basic element width for the inputs,
another for the block, and another for the outputs. The block uses a basic element height
for the EN/ENO level, another for the first input and the output, and another for the
second input.

� the font type, size, style, and color applied to the text displayed in elements

� various options such as displaying comments and labels, aligning coils, and setting the
colors for variables, labels, comments, power rails, and rung headers

See Also
Debugging LD Programs
1040 ISaGRAF 5 Concrete Automation Model - LD Language

Debugging LD Programs
When debugging LD programs, you can monitor the output values of elements. These values
are displayed using color, numeric, or textual values according to their data type:

� Output values of boolean type are displayed using color. The output value color continues
to the next input. When the output value is unavailable, boolean elements remain black.
The default colors are red when True and blue when False. You can customize the colors
used for boolean items.

� Output values of SINT, USINT, BYTE, INT, UINT, WORD, DINT, UDINT, DWORD,
LINT, ULINT, LWORD, REAL, LREAL, TIME, DATE, and STRING type are displayed
as a numeric or textual value in the element. When the output is a structure type, the
displayed value is the selected member.

When the output value for a numeric or textual value is unavailable, the WAIT text is displayed
in the output label. Transitional elements such as Pulse rising edge (positive) contacts, having
an unstable state, remain black. Values are also displayed in the corresponding dictionary
instance.
Automation Collaborative Platform 1041

For LD programs, you enable step-by-step execution by generating debug information for
individual POUs. When debug information is generated for LD programs in a resource, the
resource automatically switches to step-by-step execution when the application encounters a
breakpoint. You instantiate step-by-step execution by setting breakpoints to rungs. When
debugging, the application stops when it encounters a breakpoint. At this time, the resource is
in the DEBUGGING state and you can choose to perform one of the following operations:

� Step into the highlighted rung (available for user-defined functions and function blocks),
executes the highlighted rung then steps to the subsequent rung.When the highlighted
rung includes a call to a function, stepping continues in the called function then returns to
the subsequent rung in the POU.

� Step over the highlighted rung, skips the highlighted rung then steps to the subsequent
rung.

� Switch execution to real-time mode

� Switch execution to cycle-to-cycle mode

� Execute one cycle

Note: You can only set breakpoints for TIC POUs; you cannot set breakpoints for C source
code POUs.

In the language editor, breakpoints appear as red circles to the left of the rung. When a
breakpoint is encountered, a yellow arrow is displayed on the breakpoint and the next rung is
highlighted in yellow.
1042 ISaGRAF 5 Concrete Automation Model - LD Language

When stepping passes beyond the last rung of a POU, the arrow points downward.

To generate debug information for an LD POU

Generate debug information for LD POUs enables step-by-step debugging within the POU.

1. In the Solution Explorer, click the LD POU for which to generate debug information.

2. In the Properties for the POU, set Generate Debug Info to True.

To set breakpoints in an LD POU

1. In the Properties for the POU, set Generate Debug Info to True.

2. Select the rung or rungs requiring breakpoints, right-click the rung area, and then click
Add Breakpoint.

Breakpoints are displayed as red circles to the left of rungs.

To remove breakpoints

� Select the rung or rungs requiring the removal of breakpoints, right-click the rung area,
and then click Remove Breakpoint.

The breakpoints are removed from the selected rungs.

To step into the highlighted rung

� From the Debug menu, click Step Into (or press F11).

The POU executes the highlighted rung then steps into the next one and stepping continues in
any called function before returning to the next rung of the POU.

To step over the highlighted rung

� From the Debug menu, click Step Over (or press F10).

The POU executes the current rung then steps to the next one.
Automation Collaborative Platform 1043

To switch execution to real-time mode

� From the Target Execution toolbar, click .

The POU executes in real-time mode.

To switch execution to cycle-to-cycle mode

� From the Target Execution toolbar, click .

The POU executes in cycle-to-cycle mode.

To execute one cycle

� From the Target Execution toolbar, click .

Executes the remaining POUs until the next cycle.
1044 ISaGRAF 5 Concrete Automation Model - LD Language

LD Elements
When editing an LD POU, you can place elements in a language container by dragging them
from the LD Toolbox. An element is inserted at the current position in the diagram. When
inserting subsequent elements, these are placed to the right of the selected element on the rung,
then onto the next rung. For LD POUs, the following elements are available:

� Rungs

� Blocks

� Coils

� Contacts

� Jumps

� Returns

� Branches
Automation Collaborative Platform 1045

Rungs

Rungs are graphic components of LD programs and represent a group of circuit elements
leading to the activation of a coil. Rungs have labels to identify them within the diagram.
Labels along with jumps enable controlling the execution of a diagram. The label and jump
must have the same name. When the connection on the left of the jump element has the TRUE
Boolean state, the diagram execution proceeds at the label element. Comments are free format
text inserted above the rung, for documentation purposes only.

To insert a rung

You can insert rungs from the Toolbox or using keyboard shortcuts.

� From the Toolbox, drag the rung element into the language container.

The rung is displayed in the language container.

To define the label for a rung

1. Right-click a rung, then click Add Label.

2. In the upper left-hand corner, click in the text area beside the grey square and type the
required label text.
1046 ISaGRAF 5 Concrete Automation Model - LD Language

To define the comment for a rung

You place comments in the space above the rung. After entering text, click elsewhere in the
workspace to 'validate' the comment. Text formatting options including bold, italic, underline,
strikethrough, and justify, are available from the Format menu. Using the Format menu, you
can also define the foreground color.

� In the language container, click the rectangular space above the rung, then type the
required text.
Automation Collaborative Platform 1047

Blocks

In a language container, you connect blocks to Boolean lines. Blocks can be operators,
functions, or function blocks. Boolean inputs and outputs are not always contained within
blocks. Boolean inputs connecting blocks to rungs are always executed each cycle. Boolean
outputs connecting blocks to rungs control the remaining rung power flow. When inserting
blocks in a diagram, the EN and ENO parameters are added to some block interfaces. You can
also force the inclusion of the EN and ENO parameters for blocks having either one Boolean
input, one Boolean output, or no Boolean input and output. You activate the Enable EN/ENO
and Display Instance Names options from the Ladder Diagram options.

For functions and function blocks, you set the value of return parameters using coils. The return
parameter of a function has the same name as the function. The return parameters of a function
block can have any name.

When working with different resources, you can define parameters of POUs for multiple
resources by navigating the tabs for individual resources displayed in the Parameters view.

You insert blocks from the LD Toolbox. You can set the type of a block using the Block
Selector at any time following insertion. When you set the type of block, variables are
automatically displayed and are connected to the inputs and outputs of the block.

You replace input and output variables by double-clicking them to access the Variable Selector
or single-clicking them to select from a drop-down combo-box containing the global and local
variables. Also, you can single-click a variable, then type a literal value in the text box
provided. When inserting literal values that being with a letter or an underscore, enclose the
variable name in single quotes as follows: 'abc'.
1048 ISaGRAF 5 Concrete Automation Model - LD Language

When selecting items such as local variables, global variables, system variables, and defined
words from the drop-down combo-box, typing characters in the text box focuses on the
possible items. You can focus on listed items by typing letters, digits, and specific special
characters: !, #, $, %, &, \, *, +, -, ,/ <, :, =, >, ?, @, \, ^, _, `, |, and ~.

EN Input

For operators, functions, and function blocks where the first input is not a Boolean data type,
another input called EN is automatically inserted at the first position since the first input is
always connected to the rung. The block is executed only when the EN input is TRUE. The
following example shows a comparison operator and its equivalent code expressed in ST.

Select a variable from the drop-down
combo-box:

Type a literal value in the text box:
Automation Collaborative Platform 1049

ENO Output

For operators, functions, and function blocks where the first output is not a Boolean data type,
another output called ENO is automatically inserted at the first position since the first output is
always connected to the rung. The ENO output always has the same state as the first input of
the block. The following example shows the AVERAGE function block and its equivalent code
expressed in ST.

IF rung_state THEN
q := (value1 > value 2);
ELSE
q := FALSE;
END_IF;

(* continue rung with o1 state *)

AVERAGE(rung_state, Signal,
100);
OutSignal := AVERAGE.XOUT;
eno := rung_state;

(* continue rung with eno state *)
1050 ISaGRAF 5 Concrete Automation Model - LD Language

EN and ENO Parameters

In some cases, both EN and ENO parameters are required. The following example shows an
arithmetic operator and its equivalent code expressed in ST.

To access the Parameters view

The Parameters view is available from function or function block instances located in the
Solution Explorer.

1. In the Solution Explorer, right-click the required function or function block, and then
click Parameters.

The Parameters view is displayed.

2. To define the parameters of a function or function block, enter the required information in
the Parameters view.

To insert a block

You can insert blocks from the Toolbox or using keyboard shortcuts.

1. From the Toolbox, drag the block element into the language container and place it on the
rung.

The Block Selector is displayed.

2. In the Block Selector, locate the required block. You can sort the block list according to
the columns by setting these in ascending or descending order.

IF rung_state THEN
result := (value1 + value2);
END_IF;
eno := rung_state;

(* continue rung with eno state *)
Automation Collaborative Platform 1051

� To force the inclusion of the EN/ENO parameters, select Enable EN/ENO.

3. Click OK.

The selected block is displayed on the rung.

To insert a parallel block

1. From the Toolbox, drag the branch element onto the existing block in the language
container.

2. To place a block element on the branch, do the following:

a) From the Toolbox, drag the block element into the language container, placing it on
the branch.

The Block Selector is displayed.

b) In the Block Selector, locate the required block. You can sort the block list according
to the columns by setting these in ascending or descending order.

� To force the inclusion of the EN/ENO parameters, select Enable EN/ENO.

c) Click OK.

The selected block is displayed on the branch.
1052 ISaGRAF 5 Concrete Automation Model - LD Language

Coils

Coils are graphic components of LD programs and represent the assignment of Boolean
outputs. In an LD program, a coil represents an action. It must be connected on the left to a
Boolean symbol, such as a contact or the Boolean output of a block.

The following types of coils are available from the LD toolbox:

� Direct Coil

� Reverse Coil

� Pulse Rising Edge Coil

� Pulse Falling Edge Coil

� Set Coil

� Reset Coil

You can change the type of a coil at any time following its insertion. When inserting coils in
POUs, you assign variables using the Variable Selector. Names of assigned variables are
displayed above the coil elements within POUs. You replace existing variables by
double-clicking the variable names to access the Variable Selector or by single-clicking
variable names to select from drop-down combo-boxes containing the global and local
variables. Also, you can single-click existing variables, then type literal values in the provided
text boxes. When inserting literal values beginning with a letter or an underscore, enclose the
variable name in single quotes as follows: 'abc'.

Select a variable from the drop-down
combo-box:

Type a literal value in the text box:
Automation Collaborative Platform 1053

When selecting items such as local variables, global variables, system variables, and defined
words from the drop-down combo-box, typing characters in the text box focuses on the
possible items. You can focus on listed items by typing letters, digits, and specific special
characters: !, #, $, %, &, \, *, +, -, ,/ <, :, =, >, ?, @, \, ^, _, `, |, and ~.

You can align the coils of all rungs making up diagrams to improve readability.

To insert a coil

You can insert coils from the Toolbox or using keyboard shortcuts.

1. From the Toolbox, drag the desired coil type into the language container and place it on
the rung.

The Variable Selector is displayed.

2. In the Variable Selector, select the required variable, then click OK.

The coil element and its associated variable name are displayed on the rung.

To insert a parallel coil

1. From the Toolbox, drag the branch element into the language container, placing it on the
required element.

2. From the Toolbox, drag a coil element into the language container, placing it on the
branch element.

The Variable Selector is displayed.

3. In the Variable Selector, select the required variable, then click OK.

The coil element and its associated variable name are displayed on the branch.

To change the type of a coil

� In the language container, select the coil, then press the space bar.
1054 ISaGRAF 5 Concrete Automation Model - LD Language

To align all coils in a diagram

1. Right-click in the language container, and then click Properties.

2. In the Properties window, set the Coil Alignment property to True.
Automation Collaborative Platform 1055

Direct Coil

Direct Coils enable a Boolean output of a connection line Boolean state.

The associated variable is assigned with the Boolean state of the left connection. The state of
the left connection is propagated into the right connection. The right connection can be
connected to the right vertical power rail.

The associated name can be the name of the program (for functions only). This corresponds to
the assignment of the return value of the function.

Example

(* ST Equivalence: *)

output1 := input1;
output2 := input1;

See Also
Coils

Left
Connection

Right
Connection
1056 ISaGRAF 5 Concrete Automation Model - LD Language

Reverse Coil

Reverse coils enable a Boolean output according to the Boolean negation of a connection line
state.

The associated variable is assigned with the Boolean negation of the state of the left
connection. The state of the left connection is propagated into the right connection. The right
connection can be connected to the right vertical power rail.

The associated name can be the name of the program (for functions only). This corresponds to
the assignment of the return value of the function.

Example

(* ST Equivalence: *)

output1 := NOT (input1);
output2 := input1;

See Also
Coils

Left
Connection

Right
Connection
Automation Collaborative Platform 1057

Pulse Rising Edge Coil

Pulse rising edge coils or "Positive" coils enable Boolean output of a connection line Boolean
state.

The associated variable is set to TRUE when the Boolean state of the left connection rises from
FALSE to TRUE. The output variable resets to FALSE in all other cases. The state of the left
connection is propagated into the right connection. The right connection can be connected to
the right vertical power rail.

Example

(* ST Equivalence: *)

IF (input1 and NOT(input1prev)) THEN
output1 := TRUE;

ELSE
output1 := FALSE;

END_IF;

(* input1prev is the value of input1 at the previous cycle *)

See Also
Coils

Left
Connection

Right
Connection
1058 ISaGRAF 5 Concrete Automation Model - LD Language

Pulse Falling Edge Coil

Pulse falling edge coils or "Negative" coils enable Boolean output of a connection line Boolean
state.

The associated variable is set to TRUE when the Boolean state of the left connection falls from
TRUE to FALSE. The output variable resets to FALSE in all other cases. The state of the left
connection is propagated into the right connection. The right connection can be connected to
the right vertical power rail.

Example

(* ST Equivalence: *)

IF (NOT(input1) and input1prev) THEN
output1 := TRUE;

ELSE
output1 := FALSE;

END_IF;

(* input1prev is the value of input1 at the previous cycle *)

See Also
Coils

Left
Connection

Right
Connection
Automation Collaborative Platform 1059

Set Coil

Set coils enable a Boolean output of a connection line Boolean state.

The associated variable is set to TRUE when the boolean state of the left connection becomes
TRUE. The output variable keeps this value until an inverse order is made by a RESET coil.
The state of the left connection is propagated into the right connection. The right connection
can be connected to the right vertical power rail.

Example

(* ST Equivalence: *)

IF input1 THEN
output1 := TRUE;

END_IF;
IF input2 THEN
output1 := FALSE;

END_IF;

Left
Connection

Right
Connection
1060 ISaGRAF 5 Concrete Automation Model - LD Language

See Also
Coils
Automation Collaborative Platform 1061

Reset Coil

Reset coils enable Boolean output of a connection line Boolean state.

The associated variable is reset to FALSE when the Boolean state of the left connection
becomes TRUE. The output variable keeps this value until an inverse order is made by a SET
coil. The state of the left connection is propagated into the right connection. The right
connection can be connected to the right vertical power rail.

Example

(* ST Equivalence: *)

IF input1 THEN
output1 := TRUE;

END_IF;
IF input2 THEN
output1 := FALSE;

END_IF;

Left
Connection

Right
Connection
1062 ISaGRAF 5 Concrete Automation Model - LD Language

See Also
Coils
Automation Collaborative Platform 1063

Contacts

Contacts are graphic components of LD diagrams. Depending on the type of contact, it
represents the value or function of an input or internal variable.

The following contact types are available from the LD toolbox:

� Direct Contact

� Reverse Contact

� Pulse Rising Edge Contact

� Pulse Falling Edge Contact

You can change the type of a contact at any time following its insertion.

When inserting contacts in POUs, you assign variables using the Variable Selector. Names of
assigned variables are displayed above the contact elements within POUs. You replace existing
variables by double-clicking the variable names to access the Variable Selector or by
single-clicking variable names to select from drop-down combo-boxes containing the global
and local variables. Also, you can single-click existing variables, then type literal values in the
text boxes provided. When inserting literal values beginning with a letter or an underscore,
enclose the variable name in single quotes as follows: 'abc'.

Select a variable from the drop-down
combo-box:

Type a literal value in the text box:
1064 ISaGRAF 5 Concrete Automation Model - LD Language

When selecting items such as local variables, global variables, system variables, and defined
words from the drop-down combo-box, typing characters in the text box focuses on the
possible items. You can focus on listed items by typing letters, digits, and specific special
characters: !, #, $, %, &, \, *, +, -, ,/ <, :, =, >, ?, @, \, ^, _, `, |, and ~.

To insert a contact

You can insert contacts from the Toolbox or using keyboard shortcuts.

1. From the Toolbox, drag the desired contact type into the language container and place it
on the rung.

The Variable Selector is displayed.

2. In the Variable Selector, select the required variable, then click OK.

The contact and its associated variable name are displayed on the rung.

To insert a parallel contact

1. From the Toolbox, drag the branch element into the language container, placing it on the
existing contact.

2. From the Toolbox, drag a contact element into the language container, placing it on the
branch.

The Variable Selector is displayed.

3. In the Variable Selector, select the required variable, then click OK.

The contact and its associated variable name are displayed on the branch.

To change the type of a contact

� In the language container, select the contact, then press the space bar.
Automation Collaborative Platform 1065

Direct Contact

Direct contacts enable a Boolean operation between a connection line state and a Boolean
variable.

The state of the connection line on the right of the contact is the logical AND between the state
of the left connection line and the value of the variable associated with the contact.

Example

(* ST Equivalence: *)

output1 := input1 AND input2;

See Also
Contacts

Left
Connection

Right
Connection
1066 ISaGRAF 5 Concrete Automation Model - LD Language

Reverse Contact

Reverse contacts enable a Boolean operation between a connection line state and the Boolean
negation of a Boolean variable.

The state of the connection line on the right of the contact is the logical AND between the state
of the left connection line and the Boolean negation of the value of the variable associated with
the contact.

Example

(* ST Equivalence: *)

output1 := NOT (input1) AND NOT (input2);

See Also
Contacts

Left
Connection

Right
Connection
Automation Collaborative Platform 1067

Pulse Rising Edge Contact

Pulse rising edge (positive) contacts enable a Boolean operation between a connection line
state and the rising edge of a Boolean variable.

The state of the connection line on the right of the contact is set to TRUE when the state of the
connection line on the left is TRUE, and the state of the associated variable rises from FALSE
to TRUE. The state is reset to FALSE in all other cases.

Example

(* ST Equivalence: *)

output1 := input1 AND (input2 AND NOT (input2prev));

(* input2prev is the value of input2 at the previous cycle *)

See Also
Contacts

Left
Connection

Right
Connection
1068 ISaGRAF 5 Concrete Automation Model - LD Language

Pulse Falling Edge Contact

Pulse falling edge (negative) contacts enable a Boolean operation between a connection line
state and the falling edge of a Boolean variable.

The state of the connection line on the right of the contact is set to TRUE when the state of the
connection line on the left is TRUE, and the state of the associated variable falls from TRUE
to FALSE. The state is reset to FALSE in all other cases.

Example

(* ST Equivalence: *)

output1 := input1 AND (NOT (input2) AND input2prev);

(* input2prev is the value of input2 at the previous cycle *)

See Also
Contacts

Left
Connection

Right
Connection
Automation Collaborative Platform 1069

Jumps

Conditional and unconditional jump elements enable controlling the execution of diagrams.
You cannot place connections to the right of a jump element. When the connection on the left
of the jump element has the TRUE Boolean state, the diagram execution proceeds at the label.
The label and jump must have the same name.

Example

To insert a jump

Before inserting jumps, define one or more labels within the program. You can insert jumps
from the Toolbox or using keyboard shortcuts.
1070 ISaGRAF 5 Concrete Automation Model - LD Language

1. From the Toolbox, drag the jump element into the language container and place it on the
rung.

2. In the language container, click the jump element, then select the required label name
from the drop-down combo-box.

The jump is displayed on the rung with the required label name.
Automation Collaborative Platform 1071

Returns

You can use RETURN elements as outputs representing a conditional end of a diagram. You
cannot place connections to the right of a RETURN element.

When the left connection line has the TRUE Boolean state, the diagram ends without executing
the equations located on the next lines of the diagram.

When the LD diagram is a function, its name is associated with an output coil to set the return
value (returned to the calling diagram).

Example

(* ST Equivalence: *)

If Not (manual_mode) Then RETURN; End_if;
result := (input1 OR input3) AND input2;

To insert a return

You can insert returns from the Toolbox or using keyboard shortcuts.

� From the Toolbox, drag the return element into the language container, placing it on the
rung.

The return element is displayed on the rung.
1072 ISaGRAF 5 Concrete Automation Model - LD Language

See Also
Jumps
Automation Collaborative Platform 1073

Branches

Branches create alternative routing for connections. You can add parallel branches to elements
on a rung.

To insert a branch

You can insert branches from the Toolbox or using keyboard shortcuts.

� From the Toolbox, drag the branch element into the language container and place in on
the rung.

A parallel branch is displayed.
1074 ISaGRAF 5 Concrete Automation Model - LD Language

Configuring Function Block Instances
For individual function block instances in LD, a block configurator provides an integrated
environment in which to modify parameters and visual settings. You can perform the following
tasks for a function block instance from a block configurator:

� Visualizing information such as the scope for the instance and comment for the block

� Specifying a comment for an instance
Automation Collaborative Platform 1075

� Assigning variables to inputs and outputs as well as defining structure elements within
arguments

� Setting background and gradient colors for an instance

� Displaying instance names

� Choosing the pins to display for the instance: hiding unconnected pins, showing all pins,
or specifying individual pins

� Choosing the pin information to display for the instance: pin names or pin aliases

For function block instances having hidden pins, the Display All Pins button , enables
showing all pins.

To access information and modify parameters for a function block instance

1. In the POU, click in the upper-right corner of the block instance.

The block configurator window for the block instance is displayed.

2. Click the Parameters tab.

3. To visualize the scope of the instance, the comment for the block, or specify a comment

for the instance, expand the POU definition by clicking .

4. To assign a variable to an input or output, click on the required item, then do one of the
following:

� Type the name of the variable in the field.

� Click , then select the variable from the drop-down list.

5. For blocks having structure elements within arguments, click , then
provide the required values in the fields.
1076 ISaGRAF 5 Concrete Automation Model - LD Language

To define visual settings for a function block instance

1. In the POU, click in the upper-right corner of the block instance.

The block configurator window for the block instance is displayed.

2. Click the Visual Settings tab.

3. To set the background color or background gradient color for the instance, click the color
swatch for the respective item, then from the color picker, choose or specify the required
color.

You can also reset the background color or background gradient color for the instance.

4. To display the instance name in the block, select Display Instance Name.

5. Choose pins to display for the instance:

� To mask unconnected pins, click Hide Unconnected Pins.

� To display all connected and unconnected pins, click Show All Pins.

� To specify individual pins to make visible, on the block representation, click the
required pins to toggle from Hidden to Visible.

6. Choose the information to display for the instance pins:

� To display the names of pins, click Display Pin Names.

� To display the aliases for the pins, click Display Pin Aliases.

You can also toggle between displaying individual pin names and aliases by clicking the
item.
Automation Collaborative Platform 1077

LD Keyboard Shortcuts
The following keyboard shortcuts are available for use with the LD language. Some shortcuts
do not apply or may differ while debugging.

Ctrl+A Selects all rungs (not available while debugging)

Ctrl+C Copies the selected elements to the clipboard (not available while
debugging)

Ctrl+V Pastes elements saved on the clipboard to the insertion point (not
available while debugging)

Ctrl+X Cuts the selected elements to the clipboard (not available while
debugging)

Ctrl+Y Redoes the previous command (not available while debugging)

Ctrl+Z Undoes the previous command (not available while debugging)

Shift+Ctrl+Alt+G Enables/disables the grid in rungs

Shift+Alt+Enter Toggles between full-screen and windowed modes

Ctrl+R Toggles between Auto-Input and Manual-Input. Auto-Input
automatically opens the Block Selector and Variable Selector (not
available while debugging).

Ctrl+B Bolds selected comment text (not available while debugging)

Ctrl+I Italicizes selected comment text (not available while debugging)

Ctrl+U Underlines selected comment text (not available while debugging)

Enter Calls the Variable/Block selector depending on the selected element (not
available while debugging)

F9 Toggles between setting or removing a breakpoint on a selected rung
(available when Generate Debug Info is True). If more than one rung is
selected, only sets a breakpoint on the first selected rung.

Space Bar For coils or contacts, toggles between the available types (not available
while debugging)

Ctrl+0 Inserts a rung after a selected rung. When no rung is selected, a rung is
added at the end of the rung list (not available while debugging).

Ctrl+Alt+0 Inserts a rung before a selected rung. When no rung is selected, a rung is
added at the end of the rung list (not available while debugging).
1078 ISaGRAF 5 Concrete Automation Model - LD Language

Ctrl+ 1 Inserts a branch after a selected element (not available while debugging)

Ctrl+Alt+ 1 Inserts a branch before a selected element (not available while
debugging)

Ctrl+2 Inserts a block after a selected element. When a branch is selected, a
block is inserted on the branch (not available while debugging).

Ctrl+Alt+2 Inserts a block before a selected element. When a branch is selected, a
block is inserted on the branch (not available while debugging).

Ctrl+3 Inserts a contact after a selected element. When a branch is selected, a
contact is inserted on the branch (not available while debugging).

Ctrl+Alt+3 Inserts a contact before a selected element. When a branch is selected, a
contact is inserted on the branch (not available while debugging).

Ctrl+4 When a rung or the last element on a rung is selected, inserts a coil at the
end of the rung. When the last element selected on a rung is a branch, a
coil is inserted on the branch (not available while debugging).

Ctrl+Alt+4 When a rung or the last element on a rung is selected, inserts a coil at the
end of the rung. When the last element selected on a rung is a branch, a
coil is inserted on the branch (not available while debugging).

Ctrl+5 When a rung or the last element on a rung is selected, inserts a jump at
the end of the rung. When the last element selected on a rung is a
branch, a jump is inserted on the branch (not available while
debugging).

Ctrl+Alt+5 When a rung or the last element on a rung is selected, inserts a jump at
the end of the rung. When the last element selected on a rung is a
branch, a jump is inserted on the branch (not available while
debugging).

Ctrl+6 When a rung or the last element on a rung is selected, inserts a return at
the end of the rung. When the last element selected on a rung is a
branch, a return is inserted on the branch (not available while
debugging).

Ctrl+Alt+6 When a rung or the last element on a rung is selected, inserts a return at
the end of the rung. When the last element selected on a rung is a
branch, a return is inserted on the branch (not available while
debugging).

Ctrl+Page Up Jumps to the top of the language container
Automation Collaborative Platform 1079

Ctrl+Page Down Jumps to the bottom of the language container

Ctrl+Up Arrow Slowly scrolls up.

Ctrl+Down Arrow Slowly scrolls down.

Ctrl+Left Arrow Slowly scrolls left.

Ctrl+Right Arrow Slowly scrolls right.

Up Arrow Moves up the elements.

Down Arrow Moves down the elements.

Left Arrow Moves to the left across the elements.

Right Arrow Moves to the right across the elements.

Alt+Up Arrow Selects the previous rung. When no element or rung is selected, selects
the last rung.

Alt+Down Arrow Selects the next rung. When no element or rung is selected, selects the
first rung.

Alt+Left Arrow Selects the rung of the selected element. When no element is selected,
selects the first rung.

Alt+Right Arrow Selects the rung of the selected element. When no element is selected,
selects the first rung.

Shift+Up Arrow Scrolls up

Shift+Down Arrow Scrolls down

Shift+Left Arrow Scrolls left

Shift+Right Arrow Scrolls right

Delete Removes a selected rung or element (not available while debugging)

Ctrl+D Only available in debug mode for the date data type. When the Write
Logical Value dialog box is open, enters the current date.
1080 ISaGRAF 5 Concrete Automation Model - LD Language

ST Language
ST (Structured Text) is a high level structured language designed for automation processes.
This language is mainly used to implement complex procedures that cannot be easily expressed
with graphic languages. ST language is also used for the description of the actions within the
Steps and conditions attached to the Transitions of the SFC Language.

See Also
ST Main Syntax
Debugging ST Programs
Automation Collaborative Platform 1081

ST Main Syntax
An ST program is a list of ST statements. Each statement ends with a semi-colon (";")
separator. Names used in the source code (variable identifiers, constants, language
keywords...) are separated with inactive separators (space character, end of line or tab stops) or
by active separators, which have a well defined significance (for example, the ">" separator
indicates a "greater than" comparison.

Comments enable the inclusion of non-executed information throughout code. You can insert
comments anywhere in an ST program. Comments can run multiple lines and must begin with
"(*" and end with "*)". You cannot use interleave comments, i.e., comments within comments.

When typing statements, a drop-down combo-box automatically lists the available items such
as identifiers, operators, functions, and function blocks. The listed items are filtered by typing
letters, digits, and specific special characters: !, #, $, %, &, \, *, +, -, ,/ <, :, =, >, ?, @, \, ^, _,
`, |, and ~.

The following are basic types of ST statements:

� assignment statement (variable := expression;)

� function call

� function block call

� selection statements (IF, THEN, ELSE, CASE...) S

� iteration statements (FOR, WHILE, REPEAT...)

� control statements (RETURN, EXIT...)

� special statements for links with other languages

When entering ST syntax, basic coding is black while other items are displayed using
customizable colors. The default colors for ST elements are the following:

� Comments are green

� The Editor background is white

� Identifiers are black
1082 ISaGRAF 5 Concrete Automation Model - ST Language

� Numbers are firebrick

� Operators are black

� POUs are blue-violet

� Punctuation marks are black

� Reserved words are fuchsia

� Strings of text are gray

Inactive separators between active separators, literals, and identifiers increase ST program
legibility. ST inactive separators are the following: space (blank), tabs and end of line. You can
place end of lines anywhere in a program. The following rules apply to using inactive
separators:

� Write one statement on one line

� Use tabs to indent complex statements

� Insert comments to increase legibility of lines or paragraphs

Examples

Low Readability

imax := max_ite; cond := X12;

if not(cond (* alarm *)

then return; end_if;

for i (* index *) := 1 to max_ite

do if i <> 2 then Spcall();

end_if; end_for;

(* no effect if alarm *)
Automation Collaborative Platform 1083

To customize the default display settings for ST programs

1. From the Tools menu, click Options.

2. From the Options dialog box, expand IEC Languages, and then click Structured Text
(ST).

3. Expand the respective category, customize the required setting, then click OK.

The customized settings are now the default values for ST programs.

To customize the display settings for the current ST program

1. From the View menu, click Properties Window

The Properties Window is displayed.

2. Select the ST Container

High Readability

(* imax : number of iterations *)
(* i: FOR statement index *)
(* cond: process validity *)

imax := max_ite;

cond := X12;

if not (cond) then

return;

end_if;

(* process loop *)

for i := 1 to max_ite do

if i <> 2 then

Spcall ();

end_if;

end_for;
1084 ISaGRAF 5 Concrete Automation Model - ST Language

3. From the Properties Window you can:

 Customize the font for the required item by clicking . The Font dialog box is
displayed allowing for customization of the font, text size, bold, italic, strikeout, and
underline styles.

 Customize the text color for the required items. The possible colors are custom, web,
and system colors.

The customized settings only affect the current ST program.
Automation Collaborative Platform 1085

Expressions and Parentheses
ST expressions combine ST operators and variable or constant operands. For each single
expression (combining operands with one ST operator), the type of the operands must be the
same. This single expression has the same data type as its operands, and can be used in a more
complex expression. For example:

Parentheses are used to isolate sub parts of an expression and to explicitly order the priority of
operations. When no parentheses are given for a complex expression, the operation sequence
is implicitly given by the default priority between ST operators.

Expressions are executed from left to right and according to the following operator precedence
table:

(boo_var1 AND boo_var2) has BOOL type

not (boo_var1) has BOOL type

(sin (3.14) + 0.72) has REAL type

(t#1s23ms + 78) is an invalid expression

Precedence Operators Symbols

1 (Highest) Function evaluation identifier(arguement list)
For example: MAX(X,Y)

2 Negation -

Complement NOT

3 Multiplication *

Division /

4 Addition +

Subtraction -

5 Comparison <, >, <=, >=

6 Equality =

Inequality <>

7 Boolean AND &, AND
1086 ISaGRAF 5 Concrete Automation Model - ST Language

Examples:

Evaluating Boolean Expressions

Boolean expressions, executed from left to right, are evaluated only to the extent necessary in
determining the resultant value. The evaluation of boolean expressions applies to the operators
AND and OR. Evaluating boolean expressions prevents the Virtual Machine from stopping
execution, as seen when dividing by 0.

To evaluate boolean expressions

1. From the Solution Explorer, select the Resource.

2. In the Properties window, set the Reduce Boolean Expression Evaluation property to
TRUE.

Boolean expressions are now evaluated before execution.

8 Boolean Exclusive OR XOR

9 (Lowest) Boolean OR OR

2 + 3 * 6 equals 2+18=20 because multiplication operator has a higher priority

(2 + 3) * 6 equals 5*6=30 priority is given by parenthesis

(* Reduce Boolean Expression Evaluation property is set to TRUE*)

A := 0;

IF A > 0 AND 4/A = 4 THEN

B := 1;

END_IF;
Automation Collaborative Platform 1087

Calling Functions
The ST programming language enables calling functions. Function calls can be used in any
expression.

When setting the value of the return parameter in the body of a function, assign the return
parameter using the same name as the function:
FunctionName := <expression>;

Example

Example1: IEC 61131-3 function call

(* Main ST program *)
(* gets an integer value and converts it into a limited time value *)
ana_timeprog := SPlimit (tprog_cmd);
appl_timer := ANY_TO_TIME (ana_timeprog * 100);

(* Called FBD function named 'SPlimit' *)

Example2: "C" function call – same syntax as for IEC 61131-3 function calls

(* Functions used in complex expressions: min, max, right, mlen and
left are standard "C" functions *)
limited_value := min (16, max (0, input_value));
rol_msg := right (message, mlen (message) - 1) + left (message, 1);

Name: name of the called function written in IEC 61131-3 language or in "C"

Meaning: calls a ST, LD, or FBD functions or a "C" function and gets its return value

Syntax: <variable> := <funct> (<par1>, ... <parN>);

Operands: The type of return value and calling parameters must follow the interface
defined for the function.

Return value: value returned by the function
1088 ISaGRAF 5 Concrete Automation Model - ST Language

Calling Function Blocks
The ST programming language enables calling function blocks. Function block calls can be
used in any expression.

When setting the value of the return parameter in the body of a function block, assign the return
parameter using its name concatenated with the function block name:
FunctionBlockName.OutputParaName := <expression>;

Example

(* ST program calling a function block *)

(* declare the instance of the block in the dictionary: *)
(* trigb1 : block R_TRIG - rising edge detection *)

(* Function block activation from ST language *)
trigb1 (b1);
(* return parameters access *)
If (trigb1.Q) Then nb_edge := nb_edge + 1; End_if;

Name: name of the function block instance

Meaning: calls a function block from the standard library or from the user's library
and accesses its return parameters

Syntax: (* call of the function block *)
<blockname> (<p1>, <p2> ...);
(* gets its return parameters *)
<result> := <blockname>. <ret_param1>;
...
<result> := <blockname>. <ret_paramN>;

Operands: parameters are expressions which match the type of the parameters
specified for that function block

Return value: See Syntax to get the return parameters.
Automation Collaborative Platform 1089

Debugging ST Programs
For ST programs, you can enable step-by-step execution by generating debug information for
individual POUs. When debug information is generated for ST programs in a resource, the
resource automatically switches to step-by-step execution when the application encounters a
breakpoint. You instantiate step-by-step execution by setting breakpoints to lines of code. In
the language editor, breakpoints appear as red circles to the left of the line of code and the line
is highlighted in red.

When debugging, the application stops when it encounters a breakpoint. At this time, the
resource is in the DEBUGGING state and you can choose to perform one of the following
operations:

� Step into the highlighted line of code, executing the highlighted line of code then
stepping into the subsequent line of code. When the next line of code includes a call to a
function, stepping continues in the called function then returns to the next line of code in
the POU.

� Step over the highlighted line of code, skips the highlighted line of code then steps to the
susbsequent line of code

� Switch execution to real-time mode

� Switch execution to cycle-to-cycle mode

� Execute one cycle

Note: You can only set breakpoints for TIC POUs; you cannot set breakpoints for C source
code POUs.

When a breakpoint is encountered, a yellow arrow is displayed beside the breakpoint and the
next line of code is highlighted in pink.
1090 ISaGRAF 5 Concrete Automation Model - ST Language

When stepping passes beyond the last line of code of a POU, the arrow points downward.

To generate debug information for an ST POU

Generate debug information for ST POUs enables step-by-step debugging within the POU.

1. In the Solution Explorer, select the ST POU for which to generate debug information.

2. In the Properties for the POU, set Generate Debug Info to True.

To set a breakpoint in an ST POU

� Right-click in the margin to the left of the line of code on which to add a breakpoint, then
click Add Breakpoint.

A breakpoint is displayed as a red dot to the left of the line of code.

To remove a breakpoint

� Right-click in the area to the left of the line of code having a breakpoint to remove, then
click Remove Breakpoint.

The breakpoint is removed from the line of code.

To step into the highlighted line of code

� From the Debug menu, click Step Into (or press F11).

The POU executes the highlighted line of code then steps into the next one and stepping
continues in any called function before returning to the next line of the POU.

To step over the highlighted line of code

� From the Debug menu, click Step Over (or press F10).

The POU skips the highlighted line of code then steps to the next one.
Automation Collaborative Platform 1091

To switch execution to real-time mode

� From the Target Execution toolbar, click .

The POU executes in real-time mode.

To switch execution to cycle-to-cycle mode

� From the Target Execution toolbar, click .

The POU executes in cycle-to-cycle mode.

To execute one cycle

� From the Target Execution toolbar, click .

Executes the remaining POUs until the next cycle.
1092 ISaGRAF 5 Concrete Automation Model - ST Language

ST Basic Elements and Statements
The basic elements and statements of the ST language are the following:

� Assignments

� CASE Statement

� EXIT Statement

� FOR Statement

� IF-THEN-ELSIF-ELSE-END_IF Statement

� REPEAT Statement

� RETURN Statement

� WHILE Statement

See Also
ST Main Syntax
Automation Collaborative Platform 1093

Assignments

The expression can be a call to a function.

Example

(* ST program with assignments *)

(* variable <<= variable *)
bo23 := bo10;

(* Variable <<= expression *)

bo56 := bx34 OR alrm100 & (level >= over_value);
result := (100 * input_value) / scale;

(* assignment with function call *)
limited_value := min (16, max (0, input_value));

To insert an Assignment

� In the language container, type :=.

Name: :=

Meaning: Assigns a variable to an expression

Syntax: <variable> := <any_expression> ;

Operands: Variable must be an internal or output variable and the expression must have
the same type
1094 ISaGRAF 5 Concrete Automation Model - ST Language

CASE Statement

CASE values must be double integer (DINT) constant expressions. You can convert other data
types such as reals and long integers using the ANY_TO_DINT data conversion operator.

Several values, separated by commas, can lead to the same list of statements. The ELSE
statement is optional.

Example

(* ST program using CASE statement *)

Name: CASE ... OF ... ELSE ... END_CASE

Meaning: executes one of several lists of ST statements
selection is made according to an integer expression

Syntax: CASE <integer_expression> OF
<value> : <statements> ;
<value> , <value> : <statements> ;
...

ELSE
<statements> ;

END_CASE;
Automation Collaborative Platform 1095

CASE error_code OF
255: err_msg := 'Division by zero';

fatal_error := TRUE;
1: err_msg := 'Overflow';
2, 3: err_msg := 'Bad sign';

ELSE
err_msg := 'Unknown error';

END_CASE;

To insert a CASE

� From the Toolbox, drag the CASE element into the language container.
1096 ISaGRAF 5 Concrete Automation Model - ST Language

EXIT Statement

The EXIT is commonly used within an IF statement, inside a FOR, WHILE or REPEAT block.

Example

(* ST program using EXIT statement *)
(* this program searches for a character in a string *)

length := mlen (message);
found := NO;
FOR index := 1 TO length BY 1 DO
code := ascii (message, index);
IF (code = searched_char) THEN

found := YES;
EXIT;

END_IF;
END_FOR;

To insert an EXIT

� In the language container, type EXIT.

Name: EXIT

Meaning: exit from a FOR, WHILE or REPEAT iteration statement

Syntax: EXIT;
Automation Collaborative Platform 1097

FOR Statement

The [BY step] statement is optional. If not specified, the increment step is 1

Warning: Because the virtual machine is a synchronous system, input variables are not
refreshed during FOR iterations.

This is the "WHILE" equivalent of a FOR statement:

index := mini;
while (index <= maxi) do
<statement> ;
<statement> ;
index := index + step;

end_while;

Example

(* ST program using FOR statement *)
(* this program extracts the digit characters of a string *)

length := mlen (message);
target := ''; (* empty string *)
FOR index := 1 TO length BY 1 DO
code := ascii (message, index);
IF (code >= 48) & (code <= 57) THEN

target := target + char (code);
END_IF;

END_FOR;

Name: FOR ... TO ... BY ... DO ... END_FOR

Meaning: executes a limited number of iterations, using an integer index variable

Syntax: FOR <index> := <mini> TO <maxi> BY <step> DO
<statement> ;
<statement> ;

END_FOR;

Operands: index: internal integer variable increased at each loop
mini: initial value for index (before first loop)
maxi: maximum allowed value for index
step: index increment at each loop
1098 ISaGRAF 5 Concrete Automation Model - ST Language

To insert a FOR

� From the Toolbox, drag the FOR element into the language container.
Automation Collaborative Platform 1099

IF-THEN-ELSIF-ELSE-END_IF Statement

The ELSE and ELSIF statements are optional. If the ELSE statement is not written, no
instruction is executed when the condition is FALSE. You can use the ELSIF statement more
than once. The ELSE statement, if used, must appear only once at the end of the ‘IF, ELSIF...’
sequence.

When the resource property Reduce Boolean Expression Evaluation is set to FALSE,
ISaGRAF evaluates complete Boolean expressions. For instance, evaluating the following line
of code, where i represents the array index having a definition of 2..10, causes a run-time error
upon reaching the second part where it applies the value 1 as the array index.

IF i >= 2 and i <= 10 and matrix [i] > 5 THEN

You can avoid this type of error by using the following code:

IF i >= 2 and i <= 10 THEN
IF Array1[i] THEN

Example

(* ST program using IF statement *)

Name: IF ... THEN ... ELSIF ... THEN ... ELSE ... END_IF

Meaning: executes one of several lists of ST statements
selection is made according to the value of a Boolean expression

Syntax: IF <Boolean_expression> THEN
<statement> ;
<statement> ;
...

ELSIF <Boolean_expression> THEN
<statement> ;
<statement> ;
...

ELSE
<statement> ;
<statement> ;
...

END_IF;
1100 ISaGRAF 5 Concrete Automation Model - ST Language

IF manual AND not (alarm) THEN
level := manual_level;
bx126 := bi12 OR bi45;

ELSIF over_mode THEN
level := max_level;

ELSE
level := (lv16 * 100) / scale;
END_IF;

(* IF structure without ELSE *)
If overflow THEN
alarm_level := true;

END_IF;

To insert an IF-THEN-ELSIF-ELSE-END_IF

� From the Toolbox, drag the IF THEN ELSE element into the language container.

See Also
Expressions and Parentheses
Automation Collaborative Platform 1101

REPEAT Statement

Warning: Because the virtual machine is a synchronous system, input variables are not
refreshed during REPEAT iterations. The change of state of an input variable cannot be used
to describe the ending condition of a REPEAT statement.

Example

(* ST program using REPEAT statement *)

(* this program uses specific "C" functions to read characters *)
(* on a serial port *)

str := ''; (* empty string *)
nbchar := 0;
IF ComIsReady () THEN
REPEAT

str := str + ComGetChar ();
nbchar := nbchar + 1;

UNTIL ((nbchar >= 16) OR NOT (ComIsReady ()))
END_REPEAT;

END_IF;

To insert a REPEAT

� From the Toolbox, drag the REPEAT element into the language container.

Name: REPEAT ... UNTIL ... END_REPEAT

Meaning: iteration structure for a group of ST statements
the "continue" condition is evaluated AFTER any iteration

Syntax: REPEAT
<statement> ;
<statement> ;

...
UNTIL <Boolean_condition>
END_REPEAT ;
1102 ISaGRAF 5 Concrete Automation Model - ST Language

RETURN Statement

In an SFC action block, the RETURN statement indicates the end of the execution of that block
only.

Example

(* FBD specification of the program: programmable counter *)

(* ST implementation of the program, using RETURN statement *)

If NOT (CU) then
Q := false;
CV := 0;
RETURN; (* terminates the program *)

end_if;

if RESET then
CV := 0;

else
if (CV < PV) then

CV := CV + 1;
end_if;

end_if;
Q := (CV >= PV);

To insert a RETURN

� In the language container, type RETURN.

Name: RETURN

Meaning: terminates the execution of the current program

Syntax: RETURN ;

Operands: (none)
Automation Collaborative Platform 1103

WHILE Statement

Warning: Since the virtual machine is a synchronous system, input variables are not refreshed
during WHILE iterations. The change of state of an input variable cannot be used to describe
the condition of a WHILE statement.

Example

(* ST program using WHILE statement *)

(* this program uses specific "C" functions to read characters *)
(* on a serial port *)

str := ''; (* empty string *)
nbchar := 0;

WHILE ((nbchar < 16) & ComIsReady ()) DO
str := str + ComGetChar ();
nbchar := nbchar + 1;

END_WHILE;

To insert a WHILE

� From the Toolbox, drag the WHILE element into the language container.

Name: WHILE ... DO ... END_WHILE

Meaning: iteration structure for a group of ST statements
the "continue" condition is evaluated BEFORE any iteration

Syntax: WHILE <Boolean_expression> DO
<statement> ;
<statement> ;

...
END_WHILE ;
1104 ISaGRAF 5 Concrete Automation Model - ST Language

ST Extensions
The following statements and functions are available to control the execution of SFC child
programs. You can use these within action blocks written in ST for SFC steps.

Warning: These functions are not part of the IEC 61131-3 standard.

Simple equivalents for the GSTART and GKILL statements are available using the following
syntax in an SFC step:

� child_name with the S qualifier (* equivalent to GSTART(child_name); *)

� child_name with the R qualifier (* equivalent to GKILL(child_name); *)

The following fields enable accessing the status of an SFC step or child (from its parent):

GSTART starts an SFC program or function block

GFREEZE freezes an SFC program

GKILL terminates an SFC program

GSTATUS gets current status of an SFC program

GRST restarts a frozen SFC program or function block

StepName.x Boolean value that represents the activity of the Step

StepName.t time elapsed since the last activation of the step: activity duration
("StepName" represents the name of the SFC step)

ChildName.__S1.x Boolean value that represents the activity of the child

ChildName.__S1.t time elapsed since the last activation of the step: activity duration
("ChildName" represents the name of the SFC child)
Automation Collaborative Platform 1105

GSTART Statement in SFC Action

Children of the child program are not automatically started by the GSTART statement. Since
GSTART is not part of the IEC 61131-3 standard, it is preferable to use the S qualifier attached
to the child name.

Name: GSTART

Meaning: Starts an SFC child program or function block by placing a token into
each of its initial steps. The abbreviated syntax is equivalent to an
SFC Child action block having the S qualifier. The extended syntax
only applies to SFC child function blocks.

Syntax: GSTART (<child_name>);
or
GSTART (<child_name,step_name,input1,input2,...inputn>)
where
child_name represents the name of the SFC child POU
step_name represents the name of the active step. step_name must be
preceded by two underscore characters (e.g., __S1)
input1,input2,...inputn indicate the values of the input parameters of
the SFC child POU

Operands: the specified SFC program must be a child of the one in which the
statement is written

Return value: (none)
1106 ISaGRAF 5 Concrete Automation Model - ST Language

Example

To insert a GSTART

� In the language container, type GSTART.
Automation Collaborative Platform 1107

GFREEZE Statement in SFC Action

Children of the child program are automatically frozen along with the specified program.

GFREEZE is not part of the IEC 61131-3 standard.

Name: GFREEZE

Meaning: freezes a child SFC (program or function block); suspends its execution. The
suspended SFC POU can then be restarted using the GRST statement.

Syntax: GFREEZE (<child_name>);
where
child_name represents the name of the SFC child POU

Operands: the specified SFC program must be a child of the one in which the statement
is written

Return value: (none)
1108 ISaGRAF 5 Concrete Automation Model - ST Language

Example

To insert a GFREEZE

� In the language container, type GFREEZE.
Automation Collaborative Platform 1109

GKILL Statement in SFC Action

Children of the child program are automatically terminated with the specified program.

Since GKILL is not part of the IEC 61131-3 standard, it is preferable to use the R qualifier
attached to the child name.

Name: GKILL

Meaning: Terminates a child SFC program by removing the Tokens currently existing
in its Steps. The syntax is equivalent to an SFC Child action block having the
R qualifier.

Syntax: GKILL (<child_name>);
where
child_name represents the name of the SFC child POU

Operands: the specified SFC program must be a child of the one in which the statement
is written

Return value: (none)
1110 ISaGRAF 5 Concrete Automation Model - ST Language

Example

To insert a GKILL

� In the language container, type GKILL.
Automation Collaborative Platform 1111

GSTATUS Statement in SFC Action

GSTATUS is not part of the IEC 61131-3 standard.

Name: GSTATUS

Meaning: returns the current status of an SFC program

Syntax: <var> := GSTATUS (<child_name>);
where
child_name represents the name of the SFC child POU

Operands: the specified SFC program must be a child of the one in which the statement
is written

Return value: 0 = Program is inactive (killed)
1 = Program is active (started)
2 = Program is frozen
1112 ISaGRAF 5 Concrete Automation Model - ST Language

Example

To insert a GSTATUS

� In the language container, type GSTATUS.
Automation Collaborative Platform 1113

GRST Statement in SFC Action

The GRST statement automatically restarts children of the child program.

GRST is not part of the IEC 61131-3 standard.

Name: GRST

Meaning: restarts a child SFC program frozen by the GFREEZE statement: all the
tokens removed by GFREEZE are restored. The extended syntax only applies
to SFC child function blocks.

Syntax: GRST (<child_name>);
or
GRST (<child_name,input1,input2,...inputn>);
where
child_name represents the name of the SFC child POU
input1,input2,...inputn indicate the value of the input parameter of the SFC
child POU

Operands: the specified SFC program must be a child of the one in which the statement
is written

Return value: (none)
1114 ISaGRAF 5 Concrete Automation Model - ST Language

Example

To insert a GRST

� In the language container, type GRST.
Automation Collaborative Platform 1115

ST Keyboard Shortcuts
The following keyboard shortcuts are available for use with the ST language. Some shortcuts
do not apply or may differ while debugging.
.

Ctrl+A Selects the entire document (not available while debugging)

Ctrl+C Copies the selected text to the clipboard (not available while
debugging)

Ctrl+Insert Copies the selected text to the clipboard (not available while
debugging)

Ctrl+V Pastes text saved on the clipboard to the insertion point (not
available while debugging)

Shift+Insert Pastes text saved on the clipboard to the insertion point (not
available while debugging)

Ctrl+X Cuts the selected text to the clipboard (not available while
debugging)

Shift+Delete Cuts the selected text to the clipboard (not available while
debugging)

Ctrl+L Cuts the current line to the clipboard (not available while
debugging)

Ctrl+Z Undoes the previous command (not available while
debugging)

Ctrl+Y Redoes the previous command (not available while
debugging)

Ctrl+Shift+Z Redoes the previous command (not available while
debugging)

Shift+Alt+Enter Toggles between full-screen and windowed modes

Insert Toggles between the overwrite/insert typing mode

Shift+Enter Inserts a line break. While debugging, when the insertion point
is on a variable it opens the Write Logical Value dialog box.

Ctrl+Enter Inserts a line above the current line. While debugging, when
the insertion point is on a variable it opens the Write Logical
Value dialog box.
1116 ISaGRAF 5 Concrete Automation Model - ST Language

Ctrl+Shift+Enter Inserts a line below the current line. While debugging, when
the insertion point is on a variable it opens the Write Logical
Value dialog box.

Ctrl+Shift+T Transposes the current and previous word (not available while
debugging)

Ctrl+Shift+Alt+T Transposes the current and next line (not available while
debugging)

Ctrl+Space Displays a drop-down combo-box listing available items such
as variables, operators, functions, and function blocks. You can
filter displayed items by typing letters, digits, and specific
special characters: !, #, $, %, &, \, *, +, -, ,/ <, :, =, >, ?, @, \, ^,
_, `, |, and ~. (not available while debugging)

Ctrl+Shift+Space Displays a drop-down combo-box listing available items such
as variables, operators, functions, and function blocks. You can
filter displayed items by typing letters, digits, and specific
special characters: !, #, $, %, &, \, *, +, -, ,/ <, :, =, >, ?, @, \, ^,
_, `, |, and ~. (not available while debugging)

Ctrl+Shift+U Changes the selected text into uppercase (not available while
debugging)

Ctrl+U Changes the selected text into lowercase (not available while
debugging)

Up Arrow Moves up lines and characters

Down Arrow Moves down lines and characters

Left Arrow Moves left across lines and characters

Right Arrow Moves right across lines and characters

Ctrl+Left Arrow Moves to the previous statement or word

Ctrl+Right Arrow Moves to the next statement or word

Home Jumps to the start of the line

End Jumps to the end of the line

Ctrl+Home Jumps to the start of the document

Ctrl+End Jumps to the end of the document

Page Up Jumps to the top of the visible code
Automation Collaborative Platform 1117

Page Down Jumps to the bottom of the visible code

Ctrl+Page Up Jumps to the top of the visible code

Ctrl+Page Down Jumps to the bottom of the visible code

Ctrl+Up Arrow Scrolls up

Ctrl+Down Arrow Scrolls down

Shift+Up Arrow Selects up

Shift+Down Arrow Selects down

Shift+Left Arrow Selects left

Shift+Right Arrow Selects right

Ctrl+Shift+Left Arrow Selects to the previous statement or word

Ctrl+Shift+Right Arrow Selects to the next statement or word

Shift+Home Selects from the insertion point until the start of the line

Shift+End Selects from the insertion point until the end of the line

Ctrl+Shift+Home Selects from the insertion point until the start of the document

Ctrl+Shift+End Selects from the insertion point until the end of the document

Ctrl+Shift+Page Up Selects from the insertion point until the top of the visible code

Ctrl+Shift+Page Down Selects from the insertion point until the end of the visible
code

Ctrl+Shift+W Selects the next word

Shift+Alt+Up Arrow Selects the current and previous lines

Shift+Alt+Down Arrow Selects the current and next lines

Shift+Alt+Left Arrow Selects left on the current line

Shift+Alt+Right Arrow Selects right on the current line

Ctrl+Shift+Alt+Left Arrow Selects available columns in lines of code from the left to right

Ctrl+Shift+Alt+Right Arrow Selects available columns in lines of code from the right to left

Escape Deselects the selected text

Ctrl+I Opens the Variable Selector. While debugging, opens the
Variable Monitoring dialog box.

Ctrl+Shift+I Opens the Variable Selector. While debugging, opens the
Variable Monitoring dialog box.
1118 ISaGRAF 5 Concrete Automation Model - ST Language

Ctrl+R Opens the Block Selector. When the insertion point is on a
variable during debugging, it is selected.

Ctrl+Alt+R Opens the Block Selector. When the insertion point is on a
variable during debugging, it is selected.

Ctrl+Shift+Alt+R Opens the Block Selector. When the insertion point is on a
variable during debugging, it is selected.

Delete Removes the character on the right (not available while
debugging)

Ctrl+Shift+L Removes the current line (not available while debugging)

Ctrl+Delete Removes the next word in the current line (not available while
debugging)

Ctrl+Backspace Removes the previous word in the current line (not available
while debugging)

Backspace Removes the character on the left (not available while
debugging)

Shift+Backspace Removes the character on the left (not available while
debugging)
Automation Collaborative Platform 1119

1120 ISaGRAF 5 Concrete Automation Model - ST Language

SFC Language
The SFC language is a graphic language used to describe operations of a sequential process.
This language uses a simple graphic representation for the different steps of a process, and
conditions that enable the change of active steps.

SFC is the core of the IEC 61131-3 standard. The other languages (other than Flow Chart)
usually describe the actions within the steps and the logical conditions for the transitions.

See Also
SFC Main Format
SFC Execution Behavior
SFC Program Hierarchy
Child SFC POUs
Debugging SFC Programs
SFC Elements
Automation Collaborative Platform 1121

SFC Main Format
An SFC program is a graphic set of steps and transitions, linked together using oriented links.
Divergences and convergences represent multiple connection links from 1 to n and n to 1
respectively. The basic graphic rules of SFC are the following:

� SFC programs must have at least one initial step

� A step must follow a transition

� A transition must follow a step

SFC programs describe sequential operations, where the time variable explicitly synchronizes
basic operations. These are called sequential programs. Programs before and after SFC
programs describe cyclic operations and are not time-dependent. These are called cyclic
programs. Main sequential programs (at the top of the hierarchy) are executed according to the
SFC dynamic behavior. Cyclic programs are systematically executed at the beginning of each
run time cycle. In Programs sections, sequential programs are grouped together.

Main sequential programs are described with the SFC language; Cyclic programs cannot be
described with the SFC language. Any SFC program can have one or more SFC child
programs.

Functions and function blocks can be called from actions or conditions of SFC programs.

SFC programs and SFC child programs have dynamic behavior limits set at the resource level.
These dynamic behavior limits determine the amount of memory, allocated by a target at
initialization time, designated to manage SFC dynamic behavior (i.e. token moving). The
amount of allocated memory is calculated as a linear relation with the number of SFC POUs:

Alloc Mem (bytes) = N * NbElmt * sizeof(typVa)

NbElmt = GainFactor * NbOfSFC + OffsetFactor

Where:
1122 ISaGRAF 5 Concrete Automation Model - SFC Language

N = 5 (constant linked to SFC engine design)
NbElmt = The maximum number of transitions that can be valid for each executed cycle, i.e.,
transitions with at least one of their previous steps being active.
typVa = 16 bits in the medium memory model (32 bits in the large memory model)
GainFactor and OffsetFactor = the linear parameters of the linear relation
NbOfSFC = the number of SFC POUs in the project

The following points offer a simplified and more approximate definition of the allocated
memory:

� The maximum number of steps that can be active

� The maximum number of actions (N, P1 or P0 action linked to the step) that can be
executed

When the available memory is insufficient at a specific moment for a target where check mode
(ITGTDEF_SFCEVOCHECK defined in dsys0def.h) is generated, the target kernel generates
a warning. This warning signals an SFC token moving error or an action execution error and
the resource is set to ERROR mode, i.e., cycles are no longer executed or kernel behavior may
become unpredictable.

For SFC function blocks and SFC child function blocks, each has a maximum number of
tokens which is set in the properties of the block.

SFC function block instances, as their SFC child blocks, have a maximum number of tokens,
unlike SFC programs whose dynamic behavior limits are set at the resource level.

See Also
SFC Execution Behavior
SFC Program Hierarchy
Child SFC POUs
Debugging SFC Programs
SFC Elements
Automation Collaborative Platform 1123

SFC Execution Behavior
The SFC execution behavior consists of three stages: initial situation (start), code execution,
and end. Each virtual machine cycle consists of determining all clearable transitions and
executing their active steps. Execution ends upon reaching unclearable transitions or the end
of the control chart.

Within the execution cycle, the dynamic behaviors of the SFC language are the following:

Initial situation

The Initial Situation is characterized by the initial steps which are, by definition, in the active
state at the beginning of the operation. At least one initial step must be present in each SFC
program.

Clearing of a transition

A transition has three properties: enabled/disabled, active/inactive, and
clearable/non-clearable. A transition is enabled when all immediately preceding steps linked
to its corresponding transition symbol are active, otherwise, the transition is disabled. A
transition is active if its condition is True.

A transition is clearable if it is enabled and active at the same time. When a transition is
clearable, the steps immediately preceding it become inactive and those immediately following
it become active. When transitions follow a divergence, multiple transitions may become
clearable.

Changing of state of active steps

The clearing of a transition simultaneously leads to the active state of the immediately
following steps and to the inactive state of the immediately preceding steps. The code within a
step is only executed if the step is active.

Simultaneous clearing of transitions

All transitions (of all SFC programs) that can be cleared (enabled and active), are
simultaneously cleared.
1124 ISaGRAF 5 Concrete Automation Model - SFC Language

However, for transitions following divergences, the only transition that is cleared is the one
having the highest priority among those that are enabled and active.

End

The End is characterized by reaching the end of clearable transitions or the end of the control
chart.

See Also
SFC Language
Automation Collaborative Platform 1125

SFC Program Hierarchy
The system enables the description of the vertical structure of SFC programs. SFC programs
are organized in a hierarchical-tree structure. Each SFC program can control (start,
terminate,...) other SFC programs. Such programs are called children of the SFC program
which controls them. SFC programs are linked together into a main hierarchy tree, using a
"parent - child" relationship:

The basic rules implied by the hierarchy structure are:

� SFC programs having no parent are called "main" SFC programs

� Main SFC programs are activated by the system when the application starts

� A program can have several child programs

� A child of a program can only have one parent

� A child program can only be controlled by its parent

� A program cannot control the children of one of its own children

The basic actions that a parent SFC program can take to control its child program are:

Parent Program

Child Program

Start (GSTART) Starts the child program: activates each of its initial steps.
Children of this child program are not automatically started.

Terminate (GKILL) Terminates the child program by deactivating each of its active
steps. All the children of the child program are also terminated.

Freeze (GFREEZE) Deactivates each of the active steps of the program, and
memorizes them so the program can be restarted. All the
children of the child program are also frozen.
1126 ISaGRAF 5 Concrete Automation Model - SFC Language

See Also
SFC Language

Restart (GRST) Restarts a frozen SFC program by reactivating all the
suspended steps. Children of the program are not automatically
restarted.

Get status (GSTATUS) Gets the current status (active, inactive or frozen) of a child
program.
Automation Collaborative Platform 1127

Child SFC POUs
Any SFC POU may control other SFC POUs. Such low level units are called child SFC POUs.
A child SFC POU is a parallel unit that can be started, terminated, frozen, or restarted by its
parent. The parent POU and child POU must both be described with the SFC language. A child
SFC POU can have local variables.

When a parent POU starts a child SFC, it puts an SFC token (activates) into each initial step of
the child. This command is described with the GSTART statement or with the name of the
child with the S qualifier. When a parent POU terminates a child SFC, it clears all the tokens
existing in the steps of the child. Such a command is described with the GKILL statement or
with the name of the child and the R qualifier. When a parent POU starts a child, the parent
continues its execution.

When a parent POU freezes a child SFC, it clears all the tokens existing in the child, and keeps
their position in memory. Such a command is described with the GFREEZE statement. When
a parent POU restarts a frozen child SFC, it restores all the tokens cleared when the child was
frozen. Such a command is described with the GRST statement.

For details about the usage of the GSTART, GKILL, GFREEZE, and GRST statements in SFC
child POUs, consult the ST Extensions section.

Child SFC function block instances, as for their SFC function block parents, have a maximum
number of tokens, unlike SFC programs whose dynamic behavior limits are set at the resource
level. You specify the tokens limit for an SFC function block in its settings properties.

When using an SFC function block with an SFC child, you can access, for read-only purposes,
the local values of the child from its parent by entering the child’s name and the parameter in
an action or transition’s code. For example, to access the Local1 parameter of an SFC child
named FB_Child, in an action or transition defined for the SFC function block parent, you
would write the following syntax:

FB_Child.Local1
1128 ISaGRAF 5 Concrete Automation Model - SFC Language

Debugging SFC Programs
When debugging SFC programs, you can visually follow the execution of the individual steps.
Steps are colored red while active. You can also place SFC breakpoints on SFC steps or
transitions. When a breakpoint is encountered, the resource switches to the BREAK state. This
mode is equivalent to the cycle-to-cycle mode. Then to pass the breakpoint, you can choose
either to execute one cycle or to switch to real-time mode. When a resource is in the BREAK
state and step-by-step execution is activated for other POUs within the resource, you can also
step to the first line of the first POU of the resource for which debug information is generated.

Note: You can only set breakpoints for TIC POUs; you cannot set breakpoints for C source
code POUs. Furthermore, you cannot set or remove SFC breakpoints while a resource is in the
STEPPING state.

For steps, two types of breakpoints are available:

� Breakpoint on Step Activation

� Breakpoint on Step Deactivation

Breakpoints appear as red circles with a white "X" displayed on the left part of the step or
transition. For steps, breakpoints on activation are displayed at the top corner while breakpoints
on deactivation are displayed at the bottom corner.

To set a breakpoint command on a step or transition

You set breakpoints onto steps and transitions from the contextual menu. For steps, you can
apply a breakpoint on activation or a breakpoint on deactivation.

� Right-click the step or transition, and then click the required breakpoint command.

Once the breakpoint is reached, you can execute one cycle or switch to real-time mode to
continue execution.

To remove breakpoints from steps or transitions

You remove breakpoints from steps and transitions from the contextual menu.

� Right-click the step or transition, and then click Remove Breakpoint.
Automation Collaborative Platform 1129

See Also
SFC Language
1130 ISaGRAF 5 Concrete Automation Model - SFC Language

Breakpoint on Step Activation

When the step goes from the inactive (no token) to the active (token) state, then breakpoint
mode is set for the next cycle. The current cycle goes on executing normally. In particular
around the step where the breakpoint is placed, before breakpoint mode is really set:

� All P0 actions, linked to all previous steps that become inactive, are executed.

� All P1 – S – R – N actions, linked to the step that becomes active, are executed.

The following illustrates cycle execution when a breakpoint on step activation is encountered.

The behavior of setting a breakpoint on step activation is the same as setting a breakpoint on
step deactivation of the previous step. Whether placing a breakpoint on step activation or on
deactivation of the previous step, the target executes the break at the same moment.

To set a breakpoint on step activation

� Right-click the step, and then click Set Breakpoint on Activation.
Automation Collaborative Platform 1131

Breakpoint on Step Deactivation

When the step goes from the active (token) to the inactive (no token) state, then breakpoint
mode is set for the next cycle. Current cycle goes on executing normally. In particular around
the step where the breakpoint is placed, before breakpoint mode is really set:

� All P0 actions, linked to the step that becomes inactive, are executed.

� All P1 – S – R – N actions, linked to all successor steps that become active, are executed.

The following illustrates cycle execution when a breakpoint on step deactivation is
encountered.

The behavior of setting a breakpoint on step activation is the same as setting a breakpoint on
step deactivation of the previous step. Whether placing a breakpoint on step activation or on
deactivation of the previous step, the target executes the break at the same moment. Both
breakpoint on step activation and breakpoint on step deactivation are available to avoid setting
multiple breakpoints as shown below.
1132 ISaGRAF 5 Concrete Automation Model - SFC Language

Note: On a given step, you cannot set both a breakpoint on step activation and a breakpoint on
step deactivation.

To set a breakpoint on step deactivation

� Right-click the step, and then click Set Breakpoint on Deactivation.
Automation Collaborative Platform 1133

Breakpoint on Transition

When a transition becomes clearable (transition is valid i.e. all previous steps are active, and
its receptivity is true) then breakpoint mode is set for the next cycle. The current cycle goes on
executing normally except that the transition is not cleared and therefore related tokens are not
moved.

The following illustrates cycles execution when a breakpoint on transition is encountered.

To set a breakpoint on a transition

� Right-click the transition, and then click Set Breakpoint.
1134 ISaGRAF 5 Concrete Automation Model - SFC Language

Transition Clearing Forcing

You can force the clearing of a transition while in simulation whether all previous steps are
active or not. The tokens are moved and the actions are executed the same as with usual
transition clearings.

Tokens of all predecessor steps are removed and tokens of all successor steps are created. All
P0 actions linked to predecessor steps and P1 - S - R - N actions linked to successor steps are
executed.

The following illustrates cycle execution when forcing transition clearing:

Warning: Clearing a transition may cause abnormal behavior of your chart since several
tokens may be created.

To clear a transition

� Right-click the transition while in simulation mode, and then click Clear Transition.
Automation Collaborative Platform 1135

SFC Elements
When working in SFC programs, you can insert the following elements. A program always has
an initial step.

� Steps

� Transitions

� Sequence Controls

� Jumps to Steps

When inserting steps and transitions, these are assigned a default naming convention including
numbering. For steps, the default naming is Sn where S indicates a step and n indicates the
numbering for the step. For transitions, the default naming is Tn where T indicates a transition
and n indicates the numbering for the transition. You can rename steps and transitions.
However, when renaming steps and transitions using the default naming convention and
changing only the numbering, you can renumber these elements to a numbering scheme
starting from top to bottom, then from left to right.
1136 ISaGRAF 5 Concrete Automation Model - SFC Language

To renumber steps and transitions

Renumbering ignores steps and transitions using a naming convention other than the default
Sn for steps and Tn for transitions.

1. Open the SFC program for which to renumber the steps and transitions.

2. From the Tools menu, point to Multi-language Editor, and then click Renumber Steps
and Transitions.

See Also
SFC Language

Before Renumbering After Renumbering
Automation Collaborative Platform 1137

Steps

SFC programs contain initial steps and steps. Initial steps express the initial situation of an SFC
program. Whereas, steps are placed throughout an SFC program. An SFC program must
contain at least one initial step. Initial steps and steps are referenced by a name, written in their
square symbol. This information is the level 1 of the step.

An initial step has a double bordered graphic symbol.

A step is represented by a single square.

At run time, a token indicates that the step is active. For initial steps, a token is automatically
placed in each when the program is started.

Steps have attributes. These can be used in any of the other languages.

StepName.x activity of the Step (Boolean value)
StepName.t activation duration of the Step (time value)

(where StepName is the name of the step)

Initial Step

Step

Active Step Inactive Step
1138 ISaGRAF 5 Concrete Automation Model - SFC Language

Activity of a step is an attribute of a step which is activated by an SFC token.

For SFC function blocks, when reading a child active step or duration from a father:

ChildName.__S1.x activity of the Step (Boolean value)
ChildName.__S1.t activation duration of the Step (time value)

(where ChildName is the name of the child. Note that S1 is preceded by two underscore
(_)characters)

To insert an initial step

� From the Toolbox, drag the initial step element into the language container.

The initial step is displayed in the language container.

To insert a step

� From the Toolbox, drag the step element into the language container.

The step is displayed in the language container.
Automation Collaborative Platform 1139

Transitions

Transitions are represented by small horizontal bars that cross the connection link. Each
transition is referenced by a name, written next to the transition symbol. This information is
called the level 1 of the transition.

To insert a transition

� From the Toolbox, drag the transition element into the language container.

The transition is displayed in the language container.
1140 ISaGRAF 5 Concrete Automation Model - SFC Language

Sequence Controls

Sequence controls are divergences or convergences. These elements adjust automatically to the
context of the SFC diagram. For instance, the editor automatically inserts the type of sequence
control required according to the elements at the insertion point. Moreover, when adding a
parallel element below a sequence control, the sequence control automatically branches out to
the added element. Also, when a sequence control is placed erroneously within a diagram, the
editor displays it as red.

� Selection Divergences, a multiple link from a step to multiple transitions

� Selection Convergences, a multiple link from multiple transitions to a single step

� Simultaneous Divergences, a multiple link from a transition to multiple steps

� Simultaneous Convergences, a multiple link from multiple steps to a single transition

Divergences are multiple links from one SFC element (step or transition) to multiple SFC
symbols. Convergences are multiple connections from more than one SFC symbol to one other
symbol.

When inserting a sequence control, the type is determined logically according to the number
of SFC elements of a same type (whether multiple) located initially above then below the
control.

To insert a sequence control

� From the Toolbox, drag the sequence control to the required location in the language
container.

The sequence control is displayed in the language container.
Automation Collaborative Platform 1141

Selection Divergences

A selection divergence (OR) is a multiple link from one step to multiple transitions. The
selection divergence enables an active token to pass into one of a number of branches.

Conditions attached to the different transitions at the beginning of a selection divergence are
not implicitly exclusive. Exclusivity of transitions is defined by the priorities set to those
transitions following the divergence.

Selection divergences are represented by single horizontal lines.

The first transitions following a single divergence are set in a group to define their priority of
execution. The workbench automatically assigns the priority of transitions, displayed on the
left, in the order of creation of the divergence branch. You can specify a different priority for
a transition in the properties. The possible priority values range from 1 to 255.

Example

(* SFC Program with selection divergence and convergence *)
1142 ISaGRAF 5 Concrete Automation Model - SFC Language

See Also
Selection Convergences
Simultaneous Divergences
Automation Collaborative Platform 1143

Selection Convergences

A selection convergence (OR) is a multiple link from multiple transitions to a single step.
Selection convergences are generally used to group branches which were started using
selection divergences. Selection convergences are represented by single horizontal lines.

See Also
Selection Convergences
Simultaneous Convergences
1144 ISaGRAF 5 Concrete Automation Model - SFC Language

Simultaneous Divergences

A simultaneous divergence (AND) is a multiple link from one transition to multiple steps. A
simultaneous divergence corresponds to parallel operations of a process. Simultaneous
divergences are represented by double horizontal lines.

Example

(* SFC program with simultaneous divergence and convergence *)

See Also
Simultaneous Convergences
Selection Divergences
Automation Collaborative Platform 1145

Simultaneous Convergences

A simultaneous convergence (AND) is a multiple link from multiple steps to a single transition.
Simultaneous convergences are generally used to group branches which were started using
simultaneous divergences. Simultaneous convergences are represented by double horizontal
lines.

See Also
Simultaneous Divergences
Selection Convergences
1146 ISaGRAF 5 Concrete Automation Model - SFC Language

Jumps to Steps

Jump symbols may be used to indicate a connection link from a transition to a step, without
having to draw the connection line. The jump symbol must be referenced with the name of the
destination step. A Jump symbol cannot represent a link from a step to a transition.

To insert a jump to a step

1. From the Toolbox, drag the jump element into the language container and place it directly
below the existing transition.

2. In the language container, click the jump element.

3. In the drop-down combo-box, click the desired step.

The jump is displayed in the language container.

Jump to Step S1
Automation Collaborative Platform 1147

Example

The following charts are equivalent. The chart on the left uses links to return
from the bottom to the top of the chart while the chart on the right uses jumps to
return to the top of the chart.
1148 ISaGRAF 5 Concrete Automation Model - SFC Language

Coding Action Blocks for Steps
Action blocks are operations executed when a step is active. Steps can contain multiple action
blocks of the same or different type. You add action blocks to the level 1 of a step. Depending
on the action block type, you may need to program the level 2 for the block. You program level
2 code for an action block in a level 2 window, displayed to the right of the POU. The available
action block types are the following:

� Boo where the action block name is automatically associated to Boolean variable selected
from the variable selector. Possible qualifiers are Action (N), Reset (R), and Set (S).

� LD where you program an LD diagram in the level 2 window. Possible qualifiers are
Action (N), Pulse on Deactivation Action (P0), and Pulse On Activation Action (P1).

� SFC where the action block name is automatically associated to the SFC child. Possible
qualifiers are Action (N), Reset (R), and Set (S).

� ST where you define ST code in the level 2 window. Possible qualifiers are Action (N),
Pulse on Deactivation Action (P0), and Pulse On Activation Action (P1).

Individual SFC steps are executed in the following order:

1. Step activation - beginning when the previous transition is cleared. During this period,
defined action blocks are executed in the order of appearance.

2. Step cycle - beginning when the step becomes active and ending when the step completes
deactivation. During this period, defined action blocks are executed in the order of
appearance.

3. Step deactivation - ending when the following transition becomes active. During this
period, defined action blocks other than Boolean (Boo) action blocks having the N
qualifier are executed in the order of appearance. Boolean (Boo) action blocks are
executed after all other action blocks.

To add action blocks to steps

1. Select the step for which to define operations.

2. Right-click the step, point to Add, and then click the required action block type.
Automation Collaborative Platform 1149

3. Specify the required properties for the action block from the Properties window by
clicking the action block definition on the step.

a) To rename the action block, type the required text in the Name field.

Note: The names for Boo and SFC action blocks are automatically associated to their
respective assignation (Boolean variable or SFC child).

b) To specify the qualifier for the action block, choose the required type in the Qualifier
field.

c) To include a comment, type the required text in the Comment field.

4. For a Boo action block, double-click the action block name, then from the Variable
Selector, select the variable for use in the block.

5. For an ST or LD action block, access the level 2 for the block by double-clicking the
action block name on the step, then program the required level 2 operations in the level 2
window displayed to the right of the POU.

To rearrange the order of action blocks for a step

1. On the step, select the action block to displace.

2. Right-click the action block, and then click Move Up or Move Down.

To delete an action block

1. On the step, select the action block to remove.

2. Right-click the action block, and then click Delete.
1150 ISaGRAF 5 Concrete Automation Model - SFC Language

Boolean Actions

Boolean (Boo) actions assign a Boolean variable to the activity of the Step. The Boolean
variable can be a VarInput or VarOutput variable. The variable is assigned each time the step
activity starts or stops. The operation for Boolean actions differs for the different qualifiers:

The Boolean variable must be VarInput or VarOutput. The following SFC programming leads
to the indicated behavior:

N on a Boolean Variable assigns the step activity signal to the variable

S on a Boolean Variable sets the variable to TRUE when the step activity signal becomes
TRUE

R on a Boolean Variable resets the variable to FALSE when the step activity signal
becomes TRUE
Automation Collaborative Platform 1151

Pulse Actions

A pulse action is a list of instructions which are executed only once at the activation of the step:
P1 qualifier, or executed only once at deactivation of the step: P0 qualifier. Instructions are
written using the ST or LD syntax. The following shows the results of a pulse action with the
P1 qualifier:

Example

In the following SFC program, step S1 is assigned an ST action named EdgeInit having the P1
qualifier and S2 is assigned an ST action named EdgeCount having the P1 qualifier. The code
for these actions is programmed in their respective level 2 window.

Step Activity

Execution
1152 ISaGRAF 5 Concrete Automation Model - SFC Language

Automation Collaborative Platform 1153

Non-Stored Actions

A non-stored (normal) action is a list of ST or LD instructions which are executed at each cycle
during the whole active period of the step. Instructions are written according to the language
syntax in use. Non-stored actions have the "N" qualifier. The following is the results of a
non-stored action:

Example

In the following program, step S1 is assigned an ST action named EdgeInit having the P1
qualifier and S2 is assigned an ST action named EdgeCount having the N qualifier. The code
for these actions is programmed in their respective level 2 window.

Step Activity

Execution
1154 ISaGRAF 5 Concrete Automation Model - SFC Language

Automation Collaborative Platform 1155

SFC Actions

An SFC action is a child SFC sequence, started or terminated according to the change of the
step activity signal. An SFC action can have the N (Non stored), S (Set), and R (Reset)
qualifiers. This is the meaning of the action on an SFC child:

The SFC sequence specified as an action must be a child SFC program of the program currently
being edited.

Example

(* SFC Program using SFC Action *)

The main SFC program is named Parent having one SFC child, called SeqMlx. The SFC
programming of the parent SFC program is the following:

N on a child starts the child sequence when the step becomes active and
terminates the child sequence when the step becomes inactive

S on a child starts the child sequence when the step becomes active

R on a child stops the child sequence when the step becomes active
1156 ISaGRAF 5 Concrete Automation Model - SFC Language

Automation Collaborative Platform 1157

Coding Conditions for Transitions
You code conditions for the clearing of transitions by programming these in the level 2
window. When defining the properties of conditions, you indicate a name, a comment
(optional), and the programming language (type). The available programming languages for
transitions are LD and ST.

When no expression is attached to the Transition, the default condition is TRUE.

To code conditions for transitions

1. Select the transition for which to code a condition.

2. Right-click the transition, and then click Properties.

3. Specify the required properties for the transition from the Properties window.

a) To rename the transition, type the required text in the Name field.

b) To specify the type (programming language) for the transition condition, choose the
required type in the Type field.

c) To include a comment, type the required text in the Comment field.

4. In the Level 2 window, program the required condition.
1158 ISaGRAF 5 Concrete Automation Model - SFC Language

Conditions Programmed in ST

The ST language can be used to describe the condition for a transition. The complete
expression must have Boolean type and may be terminated by a semi colon, according to the
following syntax:

< boolean_expression > ;

The expression may be a TRUE or FALSE constant expression, a single input or an internal
Boolean variable, or a combination of variables that leads to a Boolean value.

Example

(* SFC Program with ST programming for Transitions *)
Automation Collaborative Platform 1159

Conditions Programmed in LD

The Ladder Diagram (LD) language can be used to describe the condition attached to a
transition. The initial diagram is composed of a rung.

Example

(* SFC Program with LD programming for transitions *)
1160 ISaGRAF 5 Concrete Automation Model - SFC Language

Calling Functions from Transitions
Any function (written in ST, LD, or FBD), or a "C" function can be called to evaluate the
condition attached to a transition, according to the following syntax in ST:

< function > () ;

The value returned by the function must be Boolean and yield the resulting condition:

Example

(* SFC program with function call for transitions *)

return value = FALSE -> condition is FALSE

return value = TRUE -> condition is TRUE
Automation Collaborative Platform 1161

Calling Function Blocks from Transitions
It is not recommended to call a function block in an SFC condition for the following reasons:

� A function block should be called at each cycle, typically in a cyclic program.

� An SFC condition is evaluated only when all of its preceding steps are active (not at each
cycle)
1162 ISaGRAF 5 Concrete Automation Model - SFC Language

SFC Keyboard Shortcuts
The following keyboard shortcuts are available for use with the SFC language. Some shortcuts
do not apply or may differ while debugging.

Ctrl+A Selects all elements (not available while debugging)

Ctrl+C Copies the selected elements to the clipboard (not available while
debugging)

Ctrl+V Pastes elements saved on the clipboard to the insertion point (not
available while debugging)

Ctrl+X Cuts the selected elements to the clipboard (not available while
debugging)

Ctrl+Y Redoes the previous command (not available while debugging)

Ctrl+Z Undoes the previous command (not available while debugging)

Ctrl+S Saves the selected elements (not available while debugging)

Ctrl+Shift+S Saves all files making up a solution (not available while debugging)

Shift+Alt+Enter Toggles between full-screen and windowed modes

Ctrl+0 Inserts an initial step (not available while debugging)

Ctrl+1 Inserts a step (not available while debugging)

Ctrl+2 Inserts a transition (not available while debugging)

Ctrl+3 Inserts a sequence control (not available while debugging)

Ctrl+4 Inserts a jump (not available while debugging)

Ctrl+Shift+R Renumbers the steps and transitions using the default naming convention
(Sn and Tn)

Ctrl+Page Up Jumps to the top edge of the visible language container

Ctrl+Page Down Jumps to the bottom edge of the visible language container

Alt+Up Arrow Scrolls up

Alt+Down Arrow Scrolls down

Alt+Left Arrow Scrolls left

Alt+Right Arrow Scrolls right

Ctrl+Up Arrow Slowly scrolls up
Automation Collaborative Platform 1163

Ctrl+Down Arrow Slowly scrolls down

Ctrl+Left Arrow Slowly scrolls left

Ctrl+Right Arrow Slowly scrolls right

Up Arrow Moves up the grid or from one selected element to the next

Down Arrow Moves down the grid or from one selected element to the next

Left Arrow Moves to the left across the grid or from one selected element to the next

Right Arrow Moves to the right across the grid or from one selected element to the next

Delete Removes the selected elements (not available while debugging)
1164 ISaGRAF 5 Concrete Automation Model - SFC Language

SAMA Language
You can development Scientific Apparatus Makers Association (SAMA) diagrams using the
IEC 61131-3 Function Block Diagram (FBD) language. You can build, edit, simulate and
debug SAMA diagrams.

See Also
Debugging SAMA Programs
Automation Collaborative Platform 1165

SAMA Diagram Main Format
SAMA language diagrams are composed of symbols linked together using the continuously
variable signal type to define complex programs. SAMA diagrams are built using the FBD
editor and follow the IEC 61131-3 standard. The combination of symbols or auxiliary
operations is not supported by the IEC 61131-3 standard. Therefore, the following example is
not supported:

In SAMA diagrams, functions are placed from right to left as follows:

� Measuring functions are placed on the left

� Signal processing and manual functions are placed in the center

� Final control functions are placed at the right

In SAMA POUs, the main signal enters each symbol enclosure from the left (input) and exits
from the right (output). For auxiliary functions, the signal enters the symbol enclosure from
either the top or bottom.

You connect the logical points of a diagram using connection lines. When connecting
elements, arrows indicate signal direction. From the connection properties, you can choose to
modify the line style and line type. You can also choose whether arrows are displayed.

When programming a SAMA POU, the Toolbox offers the available SAMA Elements.

See Also
Execution Order of SAMA Programs
1166 ISaGRAF 5 Concrete Automation Model - SAMA Language

Execution Order of SAMA Programs
SAMA programs are executed horizontally, from left to right and then from the top downward.
For the execution order of a program, a block is any element in the diagram, a network is a
group of blocks linked together. The position of a block is based on its top-left corner. The
following rules apply to the execution order of the program:

� Networks are executed from left to right and top to bottom only.

� All inputs must be resolved before executing the block. When the inputs of two or more
blocks are resolved at the same time, the decision for the execution is based on the
position of the block (left to right, then top to bottom).

� The outputs of a block are executed recursively from left to right, then from top to
bottom.

The following is an example of SAMA diagram in horizontal format:
Automation Collaborative Platform 1167

Debugging SAMA Programs
When debugging SAMA programs, you can monitor the output values of elements. These
values are displayed using color, numeric, or textual values according to their data type:

� Output values of boolean type are displayed using color. The output value color continues
to the next input. When the output value is unavailable, boolean elements remain black.
The colors are red when True and blue when False.

� Output values of SINT, USINT, BYTE, INT, UINT, WORD, DINT, UDINT, DWORD,
LINT, ULINT, LWORD, REAL, LREAL, TIME, DATE, and STRING type are displayed
as a numeric or textual value in the element. When the output is a structure type, the
displayed value is the selected member.

When the output value for a numeric or textual value is unavailable, the WAIT text is displayed
in the output label. Values are also displayed in the corresponding dictionary instance.

See Also
SAMA Diagram Main Format
1168 ISaGRAF 5 Concrete Automation Model - SAMA Language

SAMA Elements
When programming a SAMA POU using the FBD editor, you can drag SAMA elements and
FBD elements into FBD language containers. You can also use Ladder (LD) elements in FBD
containers.

See Also
SAMA Diagram Main Format
Execution Order of SAMA Programs

� Alarm Signal � Logical OR

� Averaging � Logical Signal

� Bias � Low Selecting

� Derivative � Measuring or Readout

� Difference � Multiplying

� Dividing � NOT

� Equal To � Root Extraction

� Exponential � SAMA Variable

� Greater Than � Server Monitored Variable

� High Selecting � Signal Monitor

� Integral � Summing

� IPID � Transfer

� Lesser Than � Variable Signal Generator

� Logical AND
Automation Collaborative Platform 1169

Alarm Signal

Description:

The alarm signal is a variable signal generator representing alarms. The alarm signal is only a
graphical representation and is still considered a standard ISaGRAF variable.

To insert an Alarm Signal element

1. From the Toolbox, drag the Alarm Signal element into the language container.

The Variable Selector is displayed.

2. In the Variable Selector, select the required variable, then click OK.

The Alarm Signal variable is displayed in the language container in SAMA format.

To insert an FBD variable

1. From the Toolbox, drag the variable element into the language container.

The Variable Selector is displayed.

2. In the Variable Selector, select the required variable, then click OK.

The variable is displayed in the language container in FBD format.

See Also
FBD Variables

SAMA Representation: FBD Representation:
1170 ISaGRAF 5 Concrete Automation Model - SAMA Language

Averaging

Arguments:

Description:

The output value is the algebraic sum of the input values divided by the number of inputs.

The Averaging element is mapped to the IEC 61131-3 AVERAGE function block.

To insert an Averaging element

� From the Toolbox, drag the Averaging element into the language container.

The Averaging element is displayed in the language container in SAMA format.

To insert an AVERAGE function block

1. From the Toolbox, drag the block element into the language container.

The Block Selector is displayed.

2. In the Block Selector, select AVERAGE, then click OK.

SAMA Representation: FBD Representation:

RUN BOOL TRUE=run / FALSE=reset

XIN REAL Any REAL variable

N DINT Application defined number of samples

XOUT REAL Running average of XIN value
Automation Collaborative Platform 1171

The Averaging element is displayed in the language container in SAMA format.
1172 ISaGRAF 5 Concrete Automation Model - SAMA Language

Bias

Arguments:

Description:

The output value is equal to the input value plus or minus the bias value.

The Bias element is mapped to the BIAS function block.

To insert a Bias element

� From the Toolbox, drag the Bias element into the language container.

The Bias element is displayed in the language container in SAMA format.

To insert a BIAS function block

1. From the Toolbox, drag the block element into the language container.

The Block Selector is displayed.

SAMA Representation: FBD Representation:

INA REAL Input signal A

INE REAL Input signal E

BIAS REAL Bias value

OUT REAL Output value. Output = (BIAS) + InputA + InputE
Automation Collaborative Platform 1173

2. In the Block Selector, select BIAS, then click OK.

The Bias element is displayed in the language container in SAMA format.
1174 ISaGRAF 5 Concrete Automation Model - SAMA Language

Derivative

Arguments:

Description:

The output value is proportional to the rate of change of the input value.

The Derivative element is mapped to the IEC 61131-3 DERIVATE function block.

To insert a Derivative element

� From the Toolbox, drag the Derivative element into the language container.

The Derivative element is displayed in the language container in SAMA format.

To insert a DERIVATE function block

1. From the Toolbox, drag the block element into the language container.

The Block Selector is displayed.

2. In the Block Selector, select DERIVATE, then click OK.

SAMA Representation: FBD Representation:

RUN BOOL Mode: TRUE=normal / FALSE=reset

XIN REAL Input: any real value

CYCLE TIME Sampling period. Possible values range from 0ms to 23h59m59s999ms.

XOUT REAL Differentiated output
Automation Collaborative Platform 1175

The Derivative element is displayed in the language container in SAMA format.
1176 ISaGRAF 5 Concrete Automation Model - SAMA Language

Difference

Arguments:

Description:

The output value is the algebraic difference between the input values.

The Difference element is mapped to the IEC 61131-3 Subtraction operator.

To insert a Difference element

� From the Toolbox, drag the Difference element into the language container.

The Difference element is displayed in the language container in SAMA format.

To insert a Subtraction operator

1. From the Toolbox, drag the block element into the language container.

The Block Selector is displayed.

2. In the Block Selector, select Subtraction (-), then click OK.

The Difference element is displayed in the language container in SAMA format.

SAMA Representation: FBD Representation:

i1 DINT can be any DINT

i2 DINT can be any DINT

o1 DINT subtraction (first minus second)
Automation Collaborative Platform 1177

Dividing

Arguments:

Description:

The output value is proportional to the quotient of the input values.

The Dividing element is mapped to the IEC 61131-3 Division operator.

To insert a Dividing element

� From the Toolbox, drag the Dividing element into the language container.

The Dividing element is displayed in the language container in SAMA format.

To insert a Division operator

1. From the Toolbox, drag the block element into the language container.

The Block Selector is displayed.

2. In the Block Selector, select Division (/), then click OK.

The Dividing element is displayed in the language container in SAMA format

SAMA Representation: FBD Representation:

i1 DINT can be a DINT (operand)

i2 DINT can be a DINT (divisor)

o1 DINT division of i1 by i2
1178 ISaGRAF 5 Concrete Automation Model - SAMA Language

Equal To

Arguments:

Description:

Compares the first input to the second to determine equality.

The Equal To element is mapped to the IEC 61131-3 Equal operator.

To insert an Equal To element

� From the Toolbox, drag the Equal To element into the language container.

The Equal To element is displayed in the language container in SAMA format.

To insert an Equal operator

1. From the Toolbox, drag the block element into the language container.

The Block Selector is displayed.

2. In the Block Selector, select Equal (=), then click OK.

The Equal To element is displayed in the language container in SAMA format.

SAMA Representation: FBD Representation:

i1 DINT Both inputs must have the same DINT
type

i2 DINT

o1 BOOL TRUE if i1 = i2
Automation Collaborative Platform 1179

Exponential

Arguments:

Description:

The output value is the input value raised to a defined power.

The Exponential element is mapped to the IEC 61131-3 EXPT function.

To insert an Exponential element

� From the Toolbox, drag the Exponential element into the language container.

The Exponential element is displayed in the language container in SAMA format.

To insert an EXPT function

1. From the Toolbox, drag the block element into the language container.

The Block Selector is displayed.

2. In the Block Selector, select EXPT, then click OK.

The Exponential element is displayed in the language container in SAMA format.

SAMA Representation: FBD Representation:

IN REAL Any signed real value

EXP DINT Integer exponent

EXPT REAL (IN EXP)
1180 ISaGRAF 5 Concrete Automation Model - SAMA Language

Greater Than

Arguments:

Description:

Compares input variables to determine whether the first is greater than the second.

The Greater Than element is mapped to the IEC 61131-3 Greater Than operator.

To insert a Greater Than element

� From the Toolbox, drag the Greater Than element into the language container.

The Greater Than element is displayed in the language container in SAMA format.

To insert a Greater Than operator

1. From the Toolbox, drag the block element into the language container.

The Block Selector is displayed.

2. From the Block Selector, select Greater Than (>), then click OK.

The Greater Than element is displayed in the language container in SAMA format.

SAMA Representation: FBD Representation:

i1 DINT Both inputs must have DINT type

i2 DINT

o1 BOOL TRUE if i1 > i2
Automation Collaborative Platform 1181

High Selecting

Arguments:

Description:

The output value is equal to the largest input value.

The High Selecting element is mapped to the IEC 61131-3 MAX function.

To insert a High Selecting element

� From the Toolbox, drag the High Selection element into the language container.

The High Selecting element is displayed in the language container in SAMA format.

To insert a MAX function

1. From the Toolbox, drag the block element into the language container.

The Block Selector is displayed.

2. In the Block Selector, select MAX, then click OK.

The High Selecting element is displayed in the language container in SAMA format.

SAMA Representation: FBD Representation:

IN1 DINT Any signed integer value

IN2 DINT (cannot be REAL)

MAX DINT Maximum of both input values
1182 ISaGRAF 5 Concrete Automation Model - SAMA Language

Integral

Arguments:

Description:

The output value varies according to the magnitude and duration of the input value. The output
value is proportional to the time integral of the input value.

The Integral element is mapped to the IEC 61131-3 INTEGRAL function block.

To insert an Integral element

� From the Toolbox, drag the Integral element into the language container.

SAMA Representation: FBD Representation:

RUN BOOL Mode: TRUE=integrate / FALSE=hold

R1 BOOL Overriding reset

XIN REAL Input: any REAL value

X0 REAL Initial value

CYCLE TIME Sampling period. Possible values range from 0ms to 23h59m59s999ms.

Q BOOL Not R1

XOUT REAL Integrated output
Automation Collaborative Platform 1183

The Integral element is displayed in the language container in SAMA format.

To insert an INTEGRAL function block

1. From the Toolbox, drag the block element into the language container.

The Block Selector is displayed.

2. In the Block Selector, select INTEGRAL, then click OK.

The Integral element is displayed in the language container in SAMA format.
1184 ISaGRAF 5 Concrete Automation Model - SAMA Language

IPID

Arguments:

SAMA Representation: FBD Representation

Process P REAL Process value

SetPoint SP REAL Set point

Feedback FB REAL Feed Back signal

Auto AUTO BOOL The operation mode of the PID controller:
TRUE controller runs in normal mode
FALSE controller causes reset R to track

(F-GE)

Initialize INIT BOOL A change in value (TRUE to FALSE or FALSE to
TRUE) causes the controller to eliminate any
proportional gain during that cycle. Also initializes
AutoTune sequences.
Automation Collaborative Platform 1185

GAIN_PID structure:

Gains GNS GAIN_PID Gains PID for IPIDCONTROLLER
(see GAIN_PID structure)

AutoTune ATUN BOOL When set to TRUE and Auto and Initialize are
FALSE, the AutoTune sequence is started

ATParameters ATPA GAIN_PID Auto Tune Parameters (see AT_Param structure)

ErrorMode ERR DINT Mode used to handle errors. Possible values are:
0 no error messages ErrLog file
1 prints error messages level 1 in ErrLog file
2 prints error messages level 1 and level 2 in

ErrLog file

Output OUT REAL Output value from controller

AbsoluteError AERR REAL Absolute Error (Process – SETPOINT) from
controller

ATWarning ATW DINT Warning for Auto Tune sequence. Possible values
are:
0 no auto tune done
1 in auto tune mode
2 auto tune done
-1 ERROR 1 input Auto set to TRUE, no auto

tune possible
-2 ERROR 2 auto tune error, ATDynaSet

expired

OutGains OGNS GAIN_PID Gains calculated after AutoTune sequences
(see GAIN_PID structure)

DirectActing BOOL The type of acting:
TRUE direct acting
FALSE reverse acting

ProportionalGain REAL Proportional gain for PID (>= 0.0001)

TimeIntegral REAL Time integral value for PID (>= 0.0001)

TimeDerivative REAL Time derivative value for PID (> 0.0)

DerivativeGain REAL Derivative gain for PID (> 0.0)
1186 ISaGRAF 5 Concrete Automation Model - SAMA Language

AT_Param structure:

Description:

The IPID element is mapped to the IPIDCONTROLLER function block.

The IPID controller (IPIDCONTROLLER) is based on the following function block:

In the HMI, the IPID faceplate is available for use with the IPIDCONTROLLER function
block.

The IPID element enables tracking When Input Auto is Logic One (TRUE), the IPID runs in
normal auto mode. When Input Auto is Logic Zero (FALSE), this causes reset R to track
(F-GE). This forces the IPID Output to track the Feedback within the IPID limits and allows
the controller to switch back to auto without bumping the Output.

Load REAL Load parameter for auto tuning. This is the output value
when starting AutoTune.

Deviation REAL Deviation for auto tuning. This is the standard deviation
used to evaluate the noise band needed for AutoTune.

Step REAL Step value for AutoTune. Must be greater than noise band
and less than ½ Load.

ATDynamSet REAL Waiting time before abandoning auto tune

ATReset BOOL The indication of whether the Output value is reset to zero
after an AutoTune sequence:
TRUE resets Output to zero
FALSE leaves Output at Load value

with A: Acting (+/- 1)

PG: Proportional Gain

DG: Derivative Gain

ãD: Time Derivative

ãI: Time Integral
Automation Collaborative Platform 1187

When Input Auto is Logic One (TRUE), the IPID element runs in normal auto mode. When
Input Auto is Logic Zero (FALSE), this causes reset R to track (F-GE). This forces the IPID
Output to track the Feedback within the IPID element limits and allows the controller to switch
back to auto without bumping the Output.

For Input Initialize, changing from Logic Zero (FALSE) to Logic One (TRUE) or Logic One
(TRUE) to Logic Zero (FALSE) when AutoTune is Logic Zero (FALSE) causes the IPID
element to eliminate any proportional gain action during that cycle (i.e Initialize). This can be
used to prevent bumping the Output when changes are made to the SETPOINT using a switch
function block.

To run an AutoTune sequence, the input ATParameters must be completed. The input Gain and
DirectActing must be set according to the process and DerivativeGain set, typically, to 0.1. The
AutoTune sequence is started with this sequence:

� Put input Initialize to (Logic One) TRUE

� Put input Autotune to (Logic One) TRUE

� Put back Initialize to (Logic Zero) FALSE

� Wait output ATWarning going to 2

� Transfer values for output OutGains to input Gains
1188 ISaGRAF 5 Concrete Automation Model - SAMA Language

To finalize the tuning, some fine tuning may be needed depending on the processes and needs.
When setting TimeDerivative to 0.0, the IPID element forces DerivativeGain to 1.0 then works
as a PI controller.

To insert an IPID element

� From the Toolbox, drag the IPID element into the language container.

The IPID element is displayed in the language container.

To insert an IPIDCONTROLLER function block

1. From the Toolbox, drag the block element into the language container.

The Block Selector is displayed.

2. In the Block Selector, select IPIDCONTROLLER, then click OK.

The IPID element is displayed in the language container.
Automation Collaborative Platform 1189

Lesser Than

Arguments:

Description:

Compares input variables to determine whether the first is less than the second.

The Lesser Than element is mapped to the IEC 61131-3 Less Than operator.

To insert a Lesser Than element

� From the Toolbox, drag the Lesser Than element into the language container.

The Lesser Than element is displayed in the language container in SAMA format.

To insert a Less Than operator

1. From the Toolbox, drag the block element into the language container.

The Block Selector is displayed.

� In the Block Selector, select Less Than (<), then click OK.

The Lesser Than element is displayed in the language container in SAMA format.

SAMA Representation: FBD Representation:

i1 DINT Both inputs must have the DINT type

i2 DINT

o1 BOOL TRUE if i1i2 < i2
1190 ISaGRAF 5 Concrete Automation Model - SAMA Language

Logical AND

Arguments:

Description:

The output is a Logic One only if all of the input signals are Logic Ones.

The Logical AND element is mapped to the IEC 61131-3 AND operator.

Mathematical equation:

Graphic representation:

SAMA Representation: FBD Representation:

i1 BOOL

i2 BOOL

o1 BOOL Boolean AND of the input terms

A B C

1 0 0

0 1 0

1 1 1

0 0 0
Automation Collaborative Platform 1191

To insert a Logical AND element

� From the Toolbox, drag the Logical AND element into the language container.

The Logical AND element is displayed in the language container in SAMA format.

To insert an AND operator

1. From the Toolbox, drag the block element into the language container.

The Block Selector is displayed.

2. In the Block Selector, select AND, then click OK.

The Logical AND element is displayed in the language container in SAMA format.
1192 ISaGRAF 5 Concrete Automation Model - SAMA Language

Logical OR

Arguments:

Description:

When there is one or more Logic One inputs, the output of Logical OR is Logic One.

The Logical OR element is mapped to the IEC 61131-3 OR operator.

Mathematical equation:

Graphic representation:

SAMA Representation: FBD Representation:

i1 BOOL

i2 BOOL

o1 BOOL Boolean OR of the input terms

A B C

1 0 1

0 1 1

1 1 1

0 0 0
Automation Collaborative Platform 1193

To insert a Logical OR element

� From the Toolbox, drag the Logical OR element into the language container.

The Logical OR element is displayed in the language container in SAMA format.

To insert an OR operator

1. From the Toolbox, drag the block element into the language container.

The Block Selector is displayed.

2. In the Block Selector, select OR, then click OK.

The Logical OR element is displayed in the language container in SAMA format.
1194 ISaGRAF 5 Concrete Automation Model - SAMA Language

Logical Signal

Description:

The logical signal generates logical signals for manual processing.

The Logical Signal element is mapped to the IEC 61131-3 variable element.

To insert a Logical Signal element

You can also insert variables using the variable element available in the FBD toolbox.

1. From the Toolbox, drag the Logical Signal element into the language container.

The Variable Selector is displayed.

2. In the Variable Selector, select the required variable, then click OK.

The Logical Signal element is displayed in the language container in SAMA format.

To insert an FBD variable

1. From the Toolbox, drag the variable element into the language container.

The Variable Selector is displayed.

2. In the Variable Selector, select the required variable, then click OK.

The variable is displayed in the language container in FBD format.

SAMA Representation: FBD Representation:
Automation Collaborative Platform 1195

Low Selecting

Arguments:

Description:

The output value is equal to the smallest input value.

The Low Selecting element is mapped to the IEC 61131-3 MIN function.

To insert a Low Selecting element

� From the Toolbox, drag the Low Selecting element into the language container.

The Low Selecting element is displayed in the language container in SAMA format.

To insert a MIN function

1. From the Toolbox, drag the block element into the language container.

The Block Selector is displayed.

2. In the Block Selector, select MIN, then click OK.

The Low Selecting element is displayed in the language container in SAMA format.

SAMA Representation: FBD Representation:

IN1 DINT Any signed integer value

IN2 DINT (cannot be REAL)

MIN DINT Minimum of both input values
1196 ISaGRAF 5 Concrete Automation Model - SAMA Language

Measuring or Readout

Description:

A literal value or a defined word. On the SAMA representation, you can add text on the
element.

Measuring or Readout element is mapped to the IEC 61131-3 variable element.

To insert a Measuring or Readout element

You can also insert variables using the variable element available in the FBD toolbox.

1. From the Toolbox, drag the Measuring or Readout element into the language container.

The Variable Selector is displayed.

2. In the Variable Selector, select the required variable, then click OK.

3. To add text to the element, click the element then type the required text.

The Measuring or Readout element is displayed in the language container in SAMA format.

To insert an FBD variable

1. From the Toolbox, drag the variable element into the language container.

The Variable Selector is displayed.

2. In the Variable Selector, select the required variable, then click OK.

The variable is displayed in the language container in FBD format.

SAMA Representation: FBD Representation:
Automation Collaborative Platform 1197

Multiplying

Arguments:

Description:

The output value is proportional to the product of the input values.

The Multiplying element is mapped to the IEC 61131-3 Multiplication operator.

To insert a Multiplying element

� From the Toolbox, drag the Multiplying element into the language container.

The Multiplying element is displayed in the language container in SAMA format.

To insert a Multiplication operator

1. From the Toolbox, drag the block element into the language container.

The Block Selector is displayed.

2. In the Block Selector, select Multiplication (*), then click OK.

The Multiplying element is displayed in the language container in SAMA format.

SAMA Representation: FBD Representation:

i1 DINT can be a DINT

i2 DINT can be a DINT

o1 DINT multiplication of the input terms
1198 ISaGRAF 5 Concrete Automation Model - SAMA Language

NOT

Arguments:

Description:

For Boolean expressions, converts variables to negated variables.

The NOT element is mapped to the IEC 61131-3 NOT operator.

To insert a NOT element

� From the Toolbox, drag the NOT element into the language container.

The NOT element is displayed in the language container in SAMA format.

To insert a NOT operator

1. From the Toolbox, drag the block element into the language container.

The Block Selector is displayed.

2. In the Block Selector, select NOT, then click OK.

The NOT element is displayed in the language container in SAMA format.

SAMA Representation: FBD Representation:

i1 BOOL Any Boolean variable

o1 BOOL TRUE when i1 is FALSE
FALSE when i1 is TRUE
Automation Collaborative Platform 1199

Root Extraction

Arguments:

Description:

The output value is equal to the root of the input value.

The Root Extraction element is mapped to the IEC 61131-3 SQRT function.

To insert a Root Extraction element

� From the Toolbox, drag the Root Extraction element into the language container.

The Root Extraction element is displayed in the language container in SAMA format.

To insert a SQRT function

1. From the Toolbox, drag the block element into the language container.

The Block Selector is displayed.

2. In the Block Selector, select SQRT, then click OK.

The Root Extraction element is displayed in the language container in SAMA format.

SAMA Representation: FBD Representation:

IN REAL Must be greater than or equal to zero

SQRT REAL Square root of the input value
1200 ISaGRAF 5 Concrete Automation Model - SAMA Language

SAMA Variable

Description:

The SAMA variable is a standard ISaGRAF variable representing elementary data used in
SAMA programs.

To insert a SAMA Variable element

1. From the Toolbox, drag the SAMA Variable element into the language container.

The Variable Selector is displayed.

2. In the Variable Selector, select the required variable, then click OK.

The SAMA variable is displayed in the language container in SAMA format.

To insert an FBD variable

1. From the Toolbox, drag the variable element into the language container.

The Variable Selector is displayed.

2. In the Variable Selector, select the required variable, then click OK.

The variable is displayed in the language container in FBD format.

See Also
FBD Variables

SAMA Representation: FBD Representation:
Automation Collaborative Platform 1201

Server Monitored Variable

Description:

The server monitored variable monitors logical values. The server monitored variable is only
a graphical representation and is still considered a standard ISaGRAF variable.

To insert a Server Monitored Variable element

1. From the Toolbox, drag the Server Monitored Variable element into the language
container.

The Variable Selector is displayed.

2. In the Variable Selector, select the required variable, then click OK.

The Server Monitored Variable is displayed in the language container in SAMA format.

To insert an FBD variable

1. From the Toolbox, drag the variable element into the language container.

The Variable Selector is displayed.

2. In the Variable Selector, select the required variable, then click OK.

The variable is displayed in the language container in FBD format.

See Also
FBD Variables

SAMA Representation: FBD Representation:
1202 ISaGRAF 5 Concrete Automation Model - SAMA Language

Signal Monitor

Arguments:

Description:

The output value has discrete states that depend on the value of the input. When the input
exceeds (or becomes less than) the limit value, the output changes state. Each of these limit
values may have deadband.

The Signal Monitor element is mapped to the IEC 61131-3 LIM_ALRM function block.

Mathematical equations:

SAMA Representation: FBD Representation:

H REAL High limit value

X REAL Input: any real value

L REAL Low limit value

EPS REAL Hysteresis value (must be greater than zero)

QH BOOL "high" alarm: TRUE if X above high limit H

Q BOOL Alarm output: TRUE if X out of limits

QL BOOL "low" alarm: TRUE if X below low limit L
Automation Collaborative Platform 1203

Graphic representation:

To insert a Signal Monitor element

� From the Toolbox, drag the Signal Monitor element into the language container.

The Signal Monitor element is displayed in the language container in SAMA format.

To insert a LIM_ALRM function block

1. From the Toolbox, drag the block element into the language container.

The Block Selector is displayed.

� In the Block Selector, select LIM_ALRM, then click OK.

The Signal Monitor element is displayed in the language container in SAMA format.

State 1
(First output m1 is energized or in alarm state)

x < L

State 2
(Both outputs are inactive or de-energized)

L x

State 3
(Second output m2 is energized or in alarm state)

x > H
1204 ISaGRAF 5 Concrete Automation Model - SAMA Language

Summing

Arguments:

Description:

The output value is the algebraic sum of the input values.

The Summing element is mapped to the IEC 61131-3 Addition operator.

To insert a Summing element

� From the Toolbox, drag the Summing element into the language container.

The Summing element is displayed in the language container in SAMA format.

To insert an Addition operator

1. From the Toolbox, drag the block element into the language container.

The Block Selector is displayed.

2. In the Block Selector, select Addition (+), then click OK.

The Summing element is displayed in the language container in SAMA format.

SAMA Representation: FBD Representation:

i1 DINT can be of any DINT

i2 DINT can be of any DINT

o1 DINT addition of the input terms
Automation Collaborative Platform 1205

Transfer

Arguments:

Description:

The output value is equal to the input selected by the transfer and is either on or off. The transfer
state is determined by external means.

The Transfer element is mapped to the TRANSFERSWITCH function block.

To insert a Transfer element

� From the Toolbox, drag the Transfer element into the language container.

The Transfer element is displayed in the language container in SAMA format.

SAMA Representation: FBD Representation:

InputA INA REAL Input signal A

InputB INB REAL Input signal B

Command CMD BOOL (Command) Indication of which signal to select:
FALSE selects InputA
TRUE selects InputB

Output OUT REAL Output signal
1206 ISaGRAF 5 Concrete Automation Model - SAMA Language

To insert a TRANSFERSWITCH function block

1. From the Toolbox, drag the block element into the language container.

The Block Selector is displayed.

2. In the Block Selector, select TRANSFERSWITCH, then click OK.

The Transfer element is displayed in the language container in SAMA format.
Automation Collaborative Platform 1207

Variable Signal Generator

Description:

The output value is an analog signal from the generator.

The Variable Signal Generator element is mapped to the IEC 61131-3 variable element.

To insert a Variable Signal Generator element

You can also insert variables using the variable element.

1. From the Toolbox, drag the Variable Signal Generator element into the language
container.

The Variable Selector is displayed.

2. In the Variable Selector, select the required variable, then click OK.

The Variable Signal Generator element is displayed in the language container in SAMA
format.

To insert an FBD variable

1. From the Toolbox, drag the variable element into the language container.

The Variable Selector is displayed.

2. In the Variable Selector, select the required variable, then click OK.

The variable is displayed in the language container in FBD format.

SAMA Representation: FBD Representation:
1208 ISaGRAF 5 Concrete Automation Model - SAMA Language

Mapping Chart of SAMA Elements with IEC
61131-3 Elements
The following SAMA elements are mapped to IEC 61131-3 elements:

SAMA Element IEC 61131-3 Element

 SAMA Variable Variable

 Server Monitored Variable Variable

 Alarm Signal Variable

 Summing Addition

 Averaging AVERAGE

 Difference Subtraction

 Multiplying Multiplication

 Dividing Division

 Root Extraction SQRT

 Exponential EXPT

 Measuring or Readout Variable

 High Selecting MAX

 Low Selecting MIN

 Variable Signal Generator Variable

 Signal Monitor LIM_ALRM

 Logical Signal Variable

 Logical AND AND

 Logical OR OR

 Greater Than Greater Than

 Lesser Than Less Than

 Equal To Equal
Automation Collaborative Platform 1209

SAMA Keyboard Shortcuts
The following keyboard shortcuts are available for use with the SAMA language. Some
shortcuts do not apply or may differ while debugging.

Ctrl+A Selects all elements (not available while debugging)

Ctrl+C Copies the selected elements to the clipboard (not available while
debugging)

Ctrl+V Pastes elements saved on the clipboard to the insertion point (not
available while debugging)

Ctrl+X Cuts the selected elements to the clipboard (not available while
debugging)

Ctrl+Y Redoes the previous command (not available while debugging)

Ctrl+Z Undoes the previous command (not available while debugging)

Shift+Ctrl+Alt+G Enables/disables the grid in the language container

Shift+Alt+Enter Toggles between full-screen and windowed modes

Ctrl+R Toggles between Auto-Input and Manual-Input. Auto-Input
automatically opens the Block Selector and Variable Selector (not
available while debugging).

Ctrl+B Bolds selected comment text (not available while debugging)

Ctrl+I Italicizes selected comment text (not available while debugging)

Ctrl+U Underlines selected comment text (not available while debugging)

Ctrl+Page Up Jumps to the top edge of the language container

Ctrl+Page Down Jumps to the bottom edge of the language container

Up Arrow Scrolls up

Down Arrow Scrolls down

Left Arrow Scrolls left

Right Arrow Scrolls right

Alt+Up Arrow Scrolls up

Alt+Down Arrow Scrolls down

Alt+Left Arrow Scrolls left

Alt+Right Arrow Scrolls right
1210 ISaGRAF 5 Concrete Automation Model - SAMA Language

Ctrl+Up Arrow Aligns the selected elements with the highest element. While
debugging, slowly scrolls up.

Ctrl+Down Arrow Aligns the selected elements with the lowest element. While debugging,
slowly scrolls down.

Ctrl+Left Arrow Aligns the selected elements with the leftmost element. While
debugging, slowly scrolls left.

Ctrl+Right Arrow Aligns the selected elements with the rightmost element. While
debugging, slowly scrolls right.

Delete Removes the selected elements (not available while debugging)

Ctrl+D Only available in debug mode for the date data type. When the Write
Logical Value dialog box is open, enters the current date.
Automation Collaborative Platform 1211

1212 ISaGRAF 5 Concrete Automation Model - SAMA Language

Language Reference
The language reference includes information about the usage and limitations of various project
elements and other aspects:

� Programs

� Functions

� Function Blocks

� Execution Rules

� Reserved Keywords

� Variables

� Directly Represented Variables

� Defined Words

� Data Types

� Literal Values
Automation Collaborative Platform 1213

Programs
Programs, also known as POUs, are logical programming units describing operations between
variables of a process. Programs describe either sequential or cyclic operations. Cyclic
programs are executed at each target system cycle. Sequential programs, representing
sequential operations, are grouped together. The execution of sequential programs has a
dynamic behavior.

Programs before and after sequential programs describe cyclic operations. Cyclic programs are
not time-dependent. Cyclic programs are systematically executed at the beginning of each run
time cycle. Main sequential programs (at the top of the hierarchy) are executed according to
their respective dynamic behavior.

Programs located at the beginning of a cycle (before sequential programs) typically describe
preliminary operations on input devices to build high level filtered variables. Sequential
programs frequently use these variables. Programs located at the end of the cycle (after
sequential programs) typically describe security operations on the variables operated on by
sequential programs, before sending values to output devices.

Programs are described using the available graphic or literal languages. You specify the
programming language when creating a program; you cannot change the programming
language for an existing program.

POUs defined as programs are executed on the target system respecting the order shown in the
Programs section.

Within resources, you need to respect the hierarchy of programs. Programs are linked together
in a hierarchical tree. Those placed at the top of the hierarchy are activated by the system.
Child-programs (lower level of the hierarchy) are activated by their parent.

POUs (programs, functions, and function blocks) within a project and dependency libraries
must have unique names. These names can have up to 128 characters and must begin with a
letter.

Projects can contain up to 65 536 programs.

Begin Cyclic operations (FDB, LD, ST, SAMA, IEC 61499)

Sequential Sequential operations (SFC, SFC child)

End Cyclic operations (FDB, LD, ST, SAMA, IEC 61499)
1214 ISaGRAF 5 Concrete Automation Model - Language Reference

See Also
Execution Rules
Automation Collaborative Platform 1215

Functions
Functions are POUs having one or more input parameters and one output parameter. A function
can be called by a program, a function or a function block. A function has no instance meaning
that local data is not stored and is usually lost from one call to the other.

The execution of a function is driven by its parent program. Therefore, the execution of the
parent program is suspended until the function ends:

Any POU of any section can call one or more functions. A function can have local variables.

ISaGRAF does not support recursivity during function calls. When a function of the Functions
section is called by itself or one of its called functions, a build error occurs. Furthermore,
functions do not store the local values of their local variables. Since functions are not
instantiated, these cannot call function blocks.

The interface of a function must be explicitly defined with a type and a unique name for each
of its calling (input) parameters or return (output) parameter. Functions can have up to 127
calling parameters and one return parameter. Return parameters can only have Elementary IEC
61131-3 Types.

POUs (programs, functions, and function blocks) within a project and dependency libraries
must have unique names. Function names and function parameter names can have up to 128
characters. Function parameter names can begin with a letter followed by letters, digits, and
single underscores.

When the Function Internal State Enable resource property is set to True, local variables
having the var direction are initialized using their initial values only at run-time startup. When
set to False, function calls initialize local variables, having the var direction, at every call.
1216 ISaGRAF 5 Concrete Automation Model - Language Reference

Function Blocks
Function blocks are POUs having multiple input and output parameters. These are instantiated
meaning local variables of a function block are copied for each instance. When calling a
function block in a program, you actually call the instance of the block where the same code is
called but the data used is that which has been allocated to the instance. The values of the
variables of an instance are stored from one cycle to the other.

Function blocks can be called by any POU in the project. Function blocks can call functions or
other function blocks.

The interface of a function block must be explicitly defined with a type and a unique name for
each of its calling (input) parameters or return (output) parameters. Function blocks can have
more than one output parameter. The value of a return parameter for a function block differs
for the various programming languages.

POUs (programs, functions, and function blocks) within a project and dependency libraries
must have unique names. Function block names and function block parameter names can have
up to 128 characters. Function block parameter names can begin with a letter followed by
letters, digits, and single underscores.
Automation Collaborative Platform 1217

Execution Rules
The execution of a control application for a resource follows eight main steps within a loop.
The duration of this loop is defined as the cycle timing for a resource.

1. Scan input variables

2. Consume bound variables

3. Execute POUs

4. Produce bound variables

5. Update output variables

6. Save retained values

7. Process IXL messages

8. Sleep until next cycle

In a case where bindings are defined, variables consumed by a resource are updated after the
inputs are scanned and the variables produced for other resources are sent before updating
outputs.

When a cycle time is specified, a resource waits until this time has elapsed before starting the
execution of a new cycle. The POUs execution time varies depending on the size of the
application. When a cycle exceeds the specified time, the loop continues to execute the cycle
but sets an overrun flag. In such a case, the application no longer runs in real time.

When a cycle time is not specified, a resource performs all programs then restarts a new cycle
without waiting.
1218 ISaGRAF 5 Concrete Automation Model - Language Reference

Reserved Keywords
Reserved keywords are unavailable for use as names of POUs or variables.

_ _AND, _CALL, _CALL_IEC_SFC_FB, _END, _GOTO, _IF, _NOT,
_PUSH_PAR, _OR, _POP_CSTK, _PUSH_CSTK, _RET, _STEP, _XOR

A ABS, ACOS, ADD, AND, AND_MASK, ANDN, ARRAY, ASIN, AT, ATAN,

B BCD_TO_BOOL, BCD_TO_INT, BCD_TO_REAL, BCD_TO_STRING,
BCD_TO_TIME, BINDING, BOOL, BOOL_TO_BCD, BOOL_TO_INT,
BOOL_TO_REAL, BOOL_TO_STRING, BOOL_TO_TIME, BY, BYTE,

C CAL, CALC, CALCN, CALN, CALNC, CASE, CONCAT, CONSTANT, COS,

D DATE, DATE_AND_TIME, DELETE, DINT, DIV, DO, DT, DWORD,

E ELSE, ELSIF, EN, END_CASE, END_FOR, END_FUNCTION, END_IF,
END_PROGRAM, END_REPEAT, END_RESOURCE, END_STRUCT,
END_TYPE, END_VAR, END_WHILE, ENO, EQ, EXIT, EXP, EXPT,

F FALSE, FIND, FOR, FUNCTION,

G GE, GFREEZE, GKILL, GLOBALVARIABLE, GRST, GSTART, GSTATUS, GT,

H HEADER,

I IF, INSERT, INT, INT_TO_BCD, INT_TO_BOOL, INT_TO_REAL,
INT_TO_STRING, INT_TO_TIME, IO,

J JMP, JMPC, JMPCN, JMPN, JMPNC,

L LD, LDN, LE, LEFT, LEN, LIMIT, LINT, LN, LOG, LREAL, LT, LWORD,

M MAX, MID, MIN, MOD, MOVE, MUL, MUX,

N NE, NOT,

O OF, ON, OR, OR_MASK, ORN,

P PROGRAM

R R, READ_ONLY, READ_WRITE, REAL, REAL_TO_BCD, REAL_TO_BOOL,
REAL_TO_INT, REAL_TO_STRING, REAL_TO_TIME, REPEAT, REPLACE,
RESOURCE, RET, RETAIN, RETC, RETCN, RETN, RETNC, RETURN, RIGHT,
ROL, ROR,
Automation Collaborative Platform 1219

S S, SEL, SHL, SHR, SIN, SINT, SQRT, ST, STN, STRING, STRING_TO_BCD,
STRING_TO_BOOL, STRING_TO_INT, STRING_TO_REAL,
STRING_TO_TIME, STRUCT, SUB, SYS_SAVALL, SYS_SAVANA,
SYS_SAVBOO, SYS_SAVTMR,

T TAN, TASK, THEN, TIME, TIME_OF_DAY, TIME_TO_BCD,
TIME_TO_BOOL, TIME_TO_INT, TIME_TO_REAL, TIME_TO_STRING, TO,
TOD, TRUE, TYPE,

U UDINT, UINT, ULINT, UNTIL, USINT,

V VAR, VAR_ACCESS, VAR_EXTERNAL, VAR_GLOBAL, VAR_IN_OUT,
VAR_INPUT, VAR_OUTPUT

W WHILE, WITH, WORD

X XOR, XOR_MASK, XORN
1220 ISaGRAF 5 Concrete Automation Model - Language Reference

Variables
The scope of variables can be local to a POU or global to a resource. Local variables are
available for use within one POU only. Global variables are available for use within any POU
of the resource. Variables have the following properties:

� Name, limited to 128 characters beginning with a letter or underscore character followed
by letters, digits, and single underscore characters. These cannot have two consecutive
underscore characters.

� Logical Value, available when online. The displayed value differs depending on the
direction of the variable: varInputs are locked values, varOutputs are updated by the
running TIC code, and var values are locked.

� Physical Value, available when online. The displayed value differs depending on the
direction of the variable: varInputs are updated by the field value, varOutputs are locked,
and var values are updated by the running TIC code.

� Lock, available when online. The indication of whether the value of the variable is
locked. Locking operates differently for simple variables, array and structure elements,
and function block parameters. For simple variables, individual variables are locked
directly. For structure and array elements, locking an element locks all the elements of the
structure or array. Possible values are Yes or No.

� Data Type, possible values are BOOL, SINT, USINT, BYTE, INT, UINT, WORD, DINT,
UDINT, DWORD, LINT, ULINT, LWORD, REAL, LREAL, TIME, DATE, STRING,
Array types, Structure types, and Function blocks

� Dimension, the size (number of elements) of an array. For example: [1..3,1..10] -
represents a two-dimensional array containing a total of 30 elements.

� String Size, indicates the maximum length for string-type variables. String capacity is
limited to 252 characters excluding the terminating null character (0), a byte for the
current length of the string, and a byte for the maximum length of the string.

� Initial Value, value held by a variable when the virtual machine starts the execution of the
resource. The initial value of a variable can be the default value, a value given by the user
when the variable is defined or the value of the retain variable after the virtual machine
has stopped. You can set initial values for POU variables and global variables. You can
Automation Collaborative Platform 1221

set initial values for local variables of functions and instances of function blocks. The
format is comma separated values (CSV).

� Direction, for I/O wiring, function or function block, indicates whether a variable is an
input (varInput), output (varOutput), or internal (var). The direction of a variable affects
the logical value and physical value.

� Attribute, property of a variable indicating its read and write access rights. Possible
values are read-only, write-only, and read-write.

� Retained, the indication of whether the value of the variable is saved by the virtual
machine at each cycle. Possible values are Yes or No.

� Comment, user-defined free-format text

� Alias, any name (for use in POUs) limited to 128 characters beginning with a letter or
underscore character followed by letters, digits, and single underscore characters. These
cannot have two consecutive underscore characters.

� Wiring, (read-only cell) generated by the I/O wiring tool indicating the I/O channel to
which the variable is wired. You can only wire POU variables and global variables; you
cannot wire functions and function blocks. Uses the syntax of Directly Represented
Variables.

� Address, user-defined address of the variable. The format is hexadecimal and the value
ranges from 1 to FFFF.

� Retained Flags, available when the Retained property is selected for a variable and
supported by the target type. Enables retaining specific elements of a variable whereas
the Retained property applies to the entire variable. Also indicates whether to use, at the
beginning of the cycle, the initial value of the variable or the value previously retained on
the target. The format is comma separated values (CSV), where True indicates retaining
elements of the structure, array, or function block instance.

� Groups, variable groups containing the variable listed in alphabetical order.

� Comment Fields, user-defined free-format text available for array elements. Each array
element of the same type can have a different comment. The format is comma separated
values (CSV).
1222 ISaGRAF 5 Concrete Automation Model - Language Reference

Although function block instances are declared using variables, these variables do not follow
rules applying to elementary or derived type variables. These variables can only have the var
direction and the read-write attribute.
Automation Collaborative Platform 1223

Directly Represented Variables
The system enables the use of directly represented variables in the source of programs to
represent a free channel. Free channels are those not linked to a declared I/O variable. The
identifier of a directly represented variable always begins with the "%" character.

The naming conventions of a directly represented variable for a channel of a single I/O device.
"s" is the slot number of the I/O device. "c" is the number of the Channel:

%IXs.c free Channel of a Boolean input I/O device

%IBs.c free Channel of a Short integer, Unsigned short integer, or BYTE input I/O
device

%IWs.c free Channel of an Integer, Unsigned integer, or WORD input I/O device

%IDs.c free Channel of a Double integer, Unsigned double integer, Double word, or
DATE input I/O device

%ILs.c free Channel of a Long integer, Unsigned long integer, Long word, or Long real
input I/O device

%IRs.c free Channel of a Real input I/O device

%ITs.c free Channel of a Time input I/O device

%ISs.c free Channel of a String input I/O device

%QXs.c free Channel of a Boolean output I/O device

%QBs.c free Channel of a Short Integer, Unsigned short integer, or BYTE output I/O
device

%QWs.c free Channel of an Integer, Unsigned integer, or WORD output I/O device

%QDs.c free Channel of a Double integer, Unsigned double integer, Double word, or
DATE output I/O device

%QLs.c free Channel of a Long integer, Unsigned long integer, Long word, or Long real
output I/O device

%QRs.c free Channel of a Real output I/O device

%QTs.c free Channel of a Time output I/O device

%QSs.c free Channel of a String output I/O device
1224 ISaGRAF 5 Concrete Automation Model - Language Reference

The naming conventions of a directly represented variable for a Channel of a complex device.
"s" is the slot number of the device. "b" is the index of the single I/O device within the complex
device. "c" is the number of the Channel:

Example

%QX1.6 6th channel of the I/O device #1 (boolean output)
%ID2.1.7 7th channel of the I/O device #1 in the device #2 (integer input)

%IXs.b.c free Channel of a Boolean input I/O device

%IBs.b.c free Channel of a Short Integer, Unsigned short integer, or BYTE input I/O
device

%IWs.b.c free Channel of an Integer, Unsigned integer, or WORD input I/O device

%IDs.b.c free Channel of a Double integer, Unsigned double integer, Double word, or
DATE input I/O device

%ILs.b.c free Channel of a Long integer, Unsigned long integer, Long word, or Long
real input I/O device

%IRs.b.c free Channel of an Real input I/O device

%ITs.b.c free Channel of a Time input I/O device

%ISs.b.c free Channel of a String input I/O device

%QXs.b.c free Channel of a Boolean output I/O device

%QBs.b.c free Channel of a Short Integer, Unsigned short integer, or BYTE output I/O
device

%QWs.b.c free Channel of an Integer, Unsigned integer, or WORD output I/O device

%QDs.b.c free Channel of a Double integer, Unsigned double integer, Double word, or
DATE output I/O device

%QLs.b.c free Channel of a Long integer, Unsigned long integer, Long word, or Long
real output I/O device

%QRs.b.c free Channel of a Real output I/O device

%QTs.b.c free Channel of a Time output I/O device

%QSs.b.c free Channel of a String output I/O device
Automation Collaborative Platform 1225

Defined Words
ISaGRAF supports the use of identifier names, called defined words. When building, defined
words are replaced by the variables and expressions these represent. Defined words have a
global scope, i.e., these are available for use in any POU of any resource of a project.

For POUs, a defined word can replace literal expressions, boolean expressions, reserved
keywords, or complex ST expressions

The following are examples of defined words:

When such an equivalence is defined, its identifier is available anywhere in the project to
replace the attached expression. The following ST programming example uses defined words:

If OK Then
angle := PI / 2.0;
isdone := YES;
End_if;

The naming of defined words must conform to the following rules:

� contain up to 128 characters

� the first character must be a letter and subsequent characters can be letters, digits, and
single underscore ('_') characters. The last character can be either a letter or a digit.

The definition of a defined word cannot contain a defined word. Note the invalid definition
(with strikethrough mark) in the following defined word examples:

PI is 3.14159
PI2 is PI*2

PI2 is 6.28318
1226 ISaGRAF 5 Concrete Automation Model - Language Reference

Data Types
Any literal, expression, or variable used in a POU (written in any language) must be
characterized by a data type. Data type coherence must be followed in graphic operations and
literal statements. Data types are one of the following types:

� Elementary IEC 61131-3 Types

� Derived Types: Arrays

� Derived Types: Structures
Automation Collaborative Platform 1227

Elementary IEC 61131-3 Types

You can program objects using the following elementary IEC 61131-3 types:

� ANY: user-defined type enabling overloading "C" function block inputs to support
specified IEC 61131-3 data types as well as specified complex types such as arrays and
structures

� ANY_ELEMENTARY: overloads "C" function block inputs to support all of the IEC
61131-3 elementary data types

� BOOL: logic (true or false) value

� SINT: short integer value (8 bit)

� USINT: unsigned short integer value (8 bit)

� BYTE: byte value (8 bit)

� INT: single integer value (16 bit)

� UINT: unsigned single integer value (16 bit)

� WORD: word value (16 bit)

� DINT: double integer value (32 bit)

� UDINT: unsigned double integer value (32 bit)

� DWORD: double word value (32 bit)

� LINT: long integer value (64 bit)

� ULINT: unsigned long integer value (64 bit)

� LWORD: long word value (64 bit)

� REAL: real (floating) value (32 bit)

� LREAL: long real (floating) value (64 bit)
1228 ISaGRAF 5 Concrete Automation Model - Language Reference

� TIME: time values less than 49d17h2m47s295ms; these value types cannot store dates
(32 bit)

� DATE: date values (32 bit)

� STRING: character string having a defined size, representing the maximum number of
characters the string can contain.

Based on the above elementary IEC 61131-3 types, you can define new user types.
Furthermore, you can define arrays or structures using elementary IEC 61131-3 types, arrays,
or other user types.

When creating a variable, a dimension can be given to define an array. The following example
shows the MyVar variable of type BOOL having a dimension defined as follows:

[1..10]

FOR i = 1 TO 10 DO
MyVar[i] := FALSE;
END_FOR;
Automation Collaborative Platform 1229

ANY Data Type

Note: For use, your target must support the ANY data type.

The ANY data type is a user-defined type enabling overloading "C" function block inputs to
support specified IEC 61131-3 data types (BOOL, BYTE, DATE, DINT, DWORD, INT,
LINT, LREAL, LWORD, REAL, SAFEBOOL, SINT, TIME, UDINT, UINT, ULINT,
USINT, and WORD) as well as specified complex types such as arrays and structures.

Warning: You can only pass user-defined arrays to "C" function block inputs having defined
array dimensions.
1230 ISaGRAF 5 Concrete Automation Model - Language Reference

ANY_ELEMENTARY Data Type

Note: For use, your target must support the ANY_ELEMENTARY data type.

The ANY_ELEMENTARY data type enables overloading "C" function block inputs to
support all of the following IEC 61131-3 elementary data types: BOOL, BYTE, DATE, DINT,
DWORD, INT, LINT, LREAL, LWORD, REAL, SAFEBOOL, SINT, TIME, UDINT, UINT,
ULINT, USINT, and WORD.

Warning: You can only pass user-defined arrays to "C" function block inputs having defined
array dimensions.
Automation Collaborative Platform 1231

Boolean Data Type

Boolean variables (BOOL) can take one of the Boolean values: TRUE or FALSE. Boolean
variables are typically used in Boolean expressions.

For Boolean literal expressions, ISaGRAF targets evaluate all parts of such expressions.
Whereas, the IEC 61131-3 standard states that Boolean expressions may be evaluated only to
the extent necessary to determine the resultant value. In the following example according to the
IEC 61131-3 standard, if B is zero then the first expression (B <> 0) is false and the second
expression (A/B > 0) is not performed.

if ((B <> 0) and (A/B > 0)) then

GREATER := true;

else

GREATER := false;

end_if;

Boolean literal values are the following:

� TRUE is equivalent to the integer value 1

� FALSE is equivalent to the integer value 0
1232 ISaGRAF 5 Concrete Automation Model - Language Reference

Short Integer Data Type

Short Integer (SINT) variables are 8-bit signed integers from -128 to +127.

A bit of a short integer variable, array, structure, or the output of a function block instance can
be accessed using the following syntax:

MyVar.i

If MyVar is a short Integer.
MyVar.i is a Boolean. "i" must be a constant value from 0 to 7.

Short integer literal values represent signed integer (8 bit) values:

from -128 to +127

Short integer constants may be expressed with one of the following Bases. Short integer
constants must begin with a Prefix that identifies the Bases used:

The underscore character ('_') may be used to separate groups of digits. It has no particular
significance other than to improve literal value readability.

Base Prefix Example

DECIMAL (none) 19

HEXADECIMAL "16#" 16#A1

OCTAL "8#" 8#27

BINARY "2#" 2#0101_0101
Automation Collaborative Platform 1233

Unsigned Short Integer or BYTE Data Type

Unsigned Short Integer (USINT) or BYTE variables are 8-bit unsigned integers from 0 to 255.

A bit of an unsigned short integer or BYTE variable, array, structure, or the output of a function
block instance can be accessed using the following syntax:

MyVar.i

If MyVar is an unsigned short integer or BYTE.
MyVar.i is a Boolean. "i" must be a constant value from 0 to 7

Unsigned short integer and BYTE literal values represent unsigned integer (8 bit) values:

from 0 to 255

Short integer and BYTE constants may be expressed with one of the following Bases. These
constants must begin with a Prefix that identifies the Bases used:

The underscore character ('_') may be used to separate groups of digits. It has no particular
significance other than to improve literal value readability.

Base Prefix Example

DECIMAL (none) 19

HEXADECIMAL "16#" 16#A1

OCTAL "8#" 8#27

BINARY "2#" 2#0101_0101
1234 ISaGRAF 5 Concrete Automation Model - Language Reference

Integer Data Type

Integer (INT) variables are 16-bit signed integers from -32768 to 32767.

A bit of an integer variable, array, structure, or the output of a function block instance can be
accessed using the following syntax:

MyVar.i

If MyVar is an Integer.
MyVar.i is a Boolean. "i" must be a constant value from 0 to 15.

Integer literal values represent signed integer (16 bit) values:

from -32768 to 32767

Integer constants may be expressed with one of the following Bases. Integer constants must
begin with a Prefix that identifies the Bases used:

The underscore character ('_') may be used to separate groups of digits. It has no particular
significance other than to improve literal value readability.

Base Prefix Example

DECIMAL (none) -260

HEXADECIMAL "16#" 16#FEFC

OCTAL "8#" 8#177374

BINARY "2#" 2#0101_0101_0101_0101
Automation Collaborative Platform 1235

Unsigned Integer or Word Data Type

Unsigned Integer (UINT) or WORD variables are 16-bit unsigned integers from 0 to 65535.

A bit of an unsigned integer or WORD variable, array, structure, or the output of a function
block instance can be accessed using the following syntax:

MyVar.i

If MyVar is an unsigned integer or WORD.
MyVar.i is a Boolean. "i" must be a constant value from 0 to 15.

Unsigned integer and WORD literal values represent unsigned integer (16 bit) values:

from 0 to 65535

Unsigned integer and WORD constants may be expressed with one of the following Bases.
These constants must begin with a Prefix that identifies the Bases used:

The underscore character ('_') may be used to separate groups of digits. It has no particular
significance other than to improve literal value readability.

Base Prefix Example

DECIMAL (none) +33000

HEXADECIMAL "16#" 16#80E8

OCTAL "8#" 8#100350

BINARY "2#" 2#0101_0101_0101_0101
1236 ISaGRAF 5 Concrete Automation Model - Language Reference

Double Integer Data Type

Double Integer (DINT) variables are 32-bit signed integers from -2147483648 to
+2147483647.

A bit of a double integer variable, array, structure, or the output of a function block instance
can be accessed using the following syntax:

MyVar.i

If MyVar is an Integer.
MyVar.i is a Boolean. "i" must be a constant value from 0 to 31.

Double integer literal values represent signed double integer (32 bit) values:

from -2147483648 to +2147483647

Double integer constants may be expressed with one of the following Bases. Double integer
constants must begin with a Prefix that identifies the Bases used:

The underscore character ('_') may be used to separate groups of digits. It has no particular
significance other than to improve literal value readability.

Base Prefix Example

DECIMAL (none) -908

HEXADECIMAL "16#" 16#1A2B3C4D

OCTAL "8#" 8#1756402

BINARY "2#" 2#1101_0001_0101_1101_0001_0010_1011_1001
Automation Collaborative Platform 1237

Unsigned Double Integer or Double Word Data Type

Unsigned Double Integer (UDINT) or Double Word (DWORD) variables are 32-bit unsigned
integers from 0 to 4294967295.

A bit of an unsigned double integer or double word variable, array, structure, or the output of
a function block instance can be accessed using the following syntax:

MyVar.i

If MyVar is an unsigned double integer or double word.
MyVar.i is a Boolean. "i" must be a constant value from 0 to 31.

Unsigned double integer and Double Word literal values represent unsigned double integer (32
bit) values:

from 0 to 4294967295

Double integer and double word constants may be expressed with one of the following Bases.
Double integer and double word constants must begin with a Prefix that identifies the
Bases used:

The underscore character ('_') may be used to separate groups of digits. It has no particular
significance other than to improve literal value readability.

Base Prefix Example

DECIMAL (none) +908

HEXADECIMAL "16#" 16#1A2B3C4D

OCTAL "8#" 8#1756402

BINARY "2#" 2#1101_0001_0101_1101_0001_0010_1011_1001
1238 ISaGRAF 5 Concrete Automation Model - Language Reference

Long Integer Data Type

Long Integer (LINT) variables are 64-bit signed integers from -9223372036854775808 to
9223372036854775807.

A bit of a long integer variable, array, structure, or the output of a function block instance can
be accessed using the following syntax:

MyVar.i

If MyVar is a long integer.
MyVar.i is a Boolean. "i" must be a constant value from 0 to 63.

Long integer literal values represent signed long integer (64 bit) values:

from -9223372036854775808 to 9223372036854775807

Long integer constants may be expressed with one of the following Bases. Long integer
constants must begin with a Prefix that identifies the Bases used:

The underscore character ('_') may be used to separate groups of digits. It has no particular
significance other than to improve literal value readability.

Base Prefix Example

DECIMAL (none) -908

HEXADECIMAL "16#" 16#1A2B3C4D

OCTAL "8#" 8#1756402

BINARY "2#" 2#1101_0001_0101_1101_0001_0010_1011_1001_
1101_0001_0101_1101_0001_0010_1011_1001
Automation Collaborative Platform 1239

Unsigned Long Integer or Long Word Data Type

Unsigned Long Integer (ULINT) or Long Word (LWORD) variables are 64-bit unsigned
integers from 0 to 18446744073709551615.

A bit of an unsigned long integer or long word variable, array, structure, or the output of a
function block instance can be accessed using the following syntax:

MyVar.i

If MyVar is an unsigned long integer or long word.
MyVar.i is a Boolean. "i" must be a constant value from 0 to 63.

Unsigned long integer and long word literal values represent unsigned long integer (64 bit)
values:

from 0 to 18446744073709551615

Unsigned long integer and long word constants may be expressed with one of the following
Bases. Long integer and long word constants must begin with a Prefix that identifies the
Bases used:

The underscore character ('_') may be used to separate groups of digits. It has no particular
significance other than to improve literal value readability.

Base Prefix Example

DECIMAL (none) +908

HEXADECIMAL "16#" 16#1A2B3C4D

OCTAL "8#" 8#1756402

BINARY "2#" 2#1101_0001_0101_1101_0001_0010_1011_1001_
1101_0001_0101_1101_0001_0010_1011_1001
1240 ISaGRAF 5 Concrete Automation Model - Language Reference

Real Data Type

Real variables are standard IEEE 32-bit floating values (single precision).

1 sign bit + 23 mantissa bits + 8 exponent bits

A real variable has six significant digits. For larger values, the maximum possible value
is ±3.402823466E+38 while for smaller values, the minimum possible value is
±1.175494351E-38. Therefore, values greater than ±3.402823466E+38 and greater than 0.0
but less than ±1.175494351E-38 are not supported. The following example shows the value
ranges including 0.0 that are supported for real variables:

Real literal values can be written with either Decimal or Scientific representation. The decimal
point ('.') separates the Integer and Decimal parts. The decimal point must be used to
differentiate a Real literal value from an Integer one. The scientific representation uses the
letter 'E' to separate the mantissa part and the exponent. The exponent part of a real scientific
value must be a signed integer value from -37 to +37. A real variable has six significant digits.

Example

The value "123" does not represent a Real literal value. Its correct real representation is
"123.0".

3.14159 -1.0E+12

+1.0 1.0E-15

-789.56 +1.0E-37
Automation Collaborative Platform 1241

Long Real Data Type

Long Real (LREAL) variables are standard IEEE 64-bit floating values (double precision).

1 sign bit + 52 mantissa bits + 11 exponent bits

A long real variable has 15 significant digits. For larger values, the maximum possible value
is ±1.7976931348623158e+308 while for smaller values, the minimum possible value is
±2.22507385850721E-308. Therefore, values greater than ±1.7976931348623158e+308 and
greater than 0.0 but less than ±2.22507385850721E-308 are not supported. The following
example shows the value ranges including 0.0 that are supported for long real variables:

Long real literal values can be written with either Decimal or Scientific representation. The
decimal point ('.') separates the Integer and Decimal parts. The decimal point must be used to
differentiate a Real literal value from an Integer one. The scientific representation uses the
letter 'E' to separate the mantissa part and the exponent. The range of a real scientific expression
must be a signed integer value from 1.7E -308 to 1.7E +308. A long real variable has 15
significant digits.

Example

The value "123" does not represent a long real literal value. Its correct real representation is
"123.0".

3.14159 -1.0E+12

+1.0 1.0E-15

-789.56 +1.0E-37
1242 ISaGRAF 5 Concrete Automation Model - Language Reference

Time Data Type

Time variables are typically used in Time expressions. A Time value represents values from 0
to 49d17h2m47s294ms. Time variables are stored in 32 bit words. The internal representation
is a positive number of milliseconds. Time variables can be used with timer function blocks
such as TOF and TON.

Time literal values represent time values from 0 to 49d17h2m47s294ms. The lowest allowed
unit is a millisecond. Standard time units used in literal values are:

The time literal value must begin with "T#" or "TIME#" prefix. Prefixes and unit letters are not
case sensitive. Some units may not appear.

When the TIME value is equal to -1 (as a DINT value), the value is considered as overflow and
invalid. For example:

IF ANY_TO_DINT(TIME1) = -1 then
(* Handle overflow *)
END_IF;

Example

T#1D1H450MS 1 day, 1 hour, 450 milliseconds
time#1H3M 1 hour, 3 minutes

The following ST code gets the current time for use in the clock portion of a date variable:

NOW_1(); (* Instance of the NOW function block *)

date1 := any_to_date(NOW_1.sec); (* Casts the seconds of NOW into a
date *)

Days The "d" letter must follow the number of days

Hours The "h" letter must follow the number of hours

Minutes The "m" letter must follow the number of minutes

Seconds The "s" letter must follow the number of seconds

Milliseconds The "ms" letters must follow the number of milliseconds
Automation Collaborative Platform 1243

clock := any_to_time(MOD(NOW_1.sec,86400)*1000+NOW_1.nsec/100000); (*
Gets the current time *)
1244 ISaGRAF 5 Concrete Automation Model - Language Reference

Date Data Type

Date variables have date values and are typically used in Date expressions. A Date value ranges
from 1970-01-01 to 2038-01-18. Date variables are stored using the 32 bit ISO 'C' time_t data
type. The internal representation is a positive number of seconds since 1970-01-01 at midnight
GMT.

Date literal expressions represent date values in the year-month-day format, separated by
hyphens. Possible date literal expressions range from DATE#1970-01-01 to
DATE#2038-01-18 GMT.

The date literal expression must begin with "D#" or "DATE#" prefix. Prefixes and unit letters
are not case sensitive.

Example

D#2005-02-20
date#2005-02-20
Automation Collaborative Platform 1245

String Data Type

String variables contain character strings. The length of the string can change during process
operations. The length of a string variable cannot exceed the capacity (maximum length)
specified when the variable is declared. String capacity is limited to 252 characters excluding
the terminating null character (0), a byte for the current length of the string, and a byte for the
maximum length of the string. When declaring string variables, the maximum number of
characters is defined in the String Size column of the Dictionary or Variable Selector.

String variables can contain any character of the standard ASCII table (ASCII code from 0
to 255). The null character (0) can exist in a character string, however, it indicates the end of
the string.

String literal values represent character strings. Characters must be preceded and followed by
single quote (') characters. For example:

'THIS IS A MESSAGE'

Warning: A string literal expression must be expressed on one line of the program source
code. When placing single quote (') characters within a string literal, these characters must be
preceded by the dollar ($) character. In the following string literal, note the dollar character
preceding the single quote character.

'THIS IS $' A MESSAGE'

A string literal value must be expressed on one line of the program source code. Its length
cannot exceed 252 characters, including spaces.

Empty string literal values are represented by two single quote (') characters, with no space or
tab character between them:

'' (* this is an empty string *)

The dollar ('$') special character, followed by other special characters, can be used in a string
literal values to represent a non-printable character:

Sequence Meaning ASCII (hex) Example

$$ '$' character 16#24 'I paid $$5 for this'

$' apostrophe 16#27 'Enter $'Y$' for YES'
1246 ISaGRAF 5 Concrete Automation Model - Language Reference

(*) "hh" is the hexadecimal value of the ASCII code for the expressed character.

$L line feed 16#0a 'next $L line'

$R carriage return 16#0d ' llo $R He'

$N new line 16#0d0a 'This is a line$N'

$P new page 16#0c 'lastline $P first line'

$T tabulation 16#09 'name$Tsize$Tdate'

$hh (*) any character 16#hh 'ABCD = $41$42$43$44'
Automation Collaborative Platform 1247

Safety Type

You can program objects using a SAFE data type:

� SAFEBOOL: logic (true or false) value for binary safety signals only
1248 ISaGRAF 5 Concrete Automation Model - Language Reference

Safety Boolean Data Type

Safety Boolean (SAFEBOOL) variables behave the same way as Boolean variables and are
typically used for binary safety Boolean signals. Safety Boolean variables can have one of two
values: TRUE or FALSE. The false value indicates a safe value.

The safety data type recognizes that the signals are safety-relevant and must be treated with
special care. You can connect safety Boolean variables to other safety Boolean variables only.
You can apply safety Boolean variables to the inputs and outputs of functions, function blocks,
and operators.

The workbench targets evaluate all parts of safety Boolean (SAFEBOOL) expressions in the
same manner as Boolean expressions.

There are two safety Boolean constant expressions:

� TRUE is equivalent to the integer value 1

� FALSE is equivalent to the integer value 0

"True" and "False" keywords are not case-sensitive. For safety Boolean expressions, false is
the default value and indicates a safe value.

See Also
Boolean Data Type
Automation Collaborative Platform 1249

Derived Types: Arrays

You can define arrays of standard IEC 61131-3 types or derived types. An array has one or
more dimensions. When an array is defined, a variable can be created with this type and a
structure can have a field with this type. Array dimensions are positive DINT literal values and
array indexes are DINT literal values or variables.

Array names can have up to 128 characters and can begin with letters or single underscores
followed by letters, digits, and single underscores.

Example

1. One-dimensional array:

MyArrayType is an array of 10 BOOL. Its dimension is defined as follows: [1..10].
MyVar is of type MyArrayType.
Ok := MyVar[4];

2. Two-dimensional array:

MyArrayType2 is an array of DINT. It has two dimensions defined as follows:
[1..10,1..3]
MyVar2 is of type MyArrayType2
MyVar2[1,2] := 100;

3. Array of an array:

MyVar3 is an array of MyArrayType; Its dimension is defined as follows [1..3]
FOR I := 1 TO 3 DO
FOR J := 1 TO 10 DO
MyVar3[I][J] := FALSE;
END_FOR;
END_FOR;
1250 ISaGRAF 5 Concrete Automation Model - Language Reference

Derived Types: Structures

Users can define structures using elementary IEC 61131-3 types or derived types. A structure
is composed of sub-entries called Fields. When a structure is defined, a variable can be created
with this type.

Example

MyStruct1 is composed of:

Field1 which is BOOL
Field2 which is DINT

MyStruct2 is composed of:

Field1 which is DINT
Field2 which is BOOL
Field3 which is an array of 10 DINT
Field4 which is of type MyStruct1

MyVar of type MyStruct2 can be used as follows:

Value1 := MyVar.Field1; (* Value1 is of type DINT *)
Ok1 := MyVar.Field2; (* Ok1 is of type BOOL *)
Tab[2] := MyVar.Field3[5]; (* Tab is an array of DINT *)
Value2 := MyVar.Field3[8]; (* Value2 is of type DINT *)
Ok2 := MyVar.Field4.Field1; (* Ok2 is of type BOOL *)
Automation Collaborative Platform 1251

Literal Values
You can type literal values in POUs written in textual and graphical languages, including ST,
LD, and FBD. For literal values, the ISaGRAF compiler assigns appropriate data types. When
the literal value exceeds the size of a specified data type, the compiler assigns a larger data type
and generates an error. You can force the compiler to use a specific data type for a literal value.

For the following data types, the compiler evaluates the literal value and assigns the
appropriate data type:

� For integer values, the default data type assigned is DINT. However, when the integer
value exceeds the DINT data type, the compiler assigns a larger data type such as LINT.

� For floating point values, the default data type assigned is REAL. However, when the
floating point value exceeds the REAL data type, the compiler assigns the larger LREAL
data type.

When assigning larger data types for these literal values, the compiler may generate errors. To
resolve such errors, you can specify, i.e force, the data type for compilation by using the
following syntax:

� ANY_TO_DataType(LiteralValue), available for use with all data types.
For example, any_to_time(78)

� DataType#LiteralValue, for use with LREAL, TIME, and DATE.
For example, LREAL#1.23456
1252 ISaGRAF 5 Concrete Automation Model - Language Reference

Operators
The following are standard operators of the IEC 61131-3 languages:

Arithmetic Operations Addition Adds two or more variables

Division Divides two variables

Multiplication Multiplies two or more variables

Subtraction Subtracts a variable from another

1 GAIN Assigns one variable into another

NEG Integer negation

Boolean Operations AND Boolean AND

OR Boolean OR

XOR Boolean exclusive OR

NOT Boolean negation

Comparator
Operations

Less Than Tests if one value is less than another

Less Than or Equal Tests if one value is less than or equal to
another

Greater Than Tests if one value is greater than another

Greater Than or Equal Tests if one value is greater than or equal
to another

Equal Tests if one value is equal to another

Not Equal Tests if one value is not equal to another
Automation Collaborative Platform 1253

Data Conversion ANY_TO_BOOL Converts to Boolean

ANY_TO_SINT Converts to Short integer

ANY_TO_USINT Converts to Unsigned short integer

ANY_TO_BYTE Converts to BYTE

ANY_TO_INT Converts to Integer

ANY_TO_UINT Converts to Unsigned integer

ANY_TO_WORD Converts to WORD

ANY_TO_DINT Converts to Double integer

ANY_TO_UDINT Converts to Unsigned double integer

ANY_TO_DWORD Converts to Double WORD

ANY_TO_LINT Converts to Long integer

ANY_TO_ULINT Converts to Unsigned long integer

ANY_TO_LWORD Converts to Long WORD

ANY_TO_REAL Converts to Real

ANY_TO_LREAL Converts to Long real

ANY_TO_TIME Converts to Time

ANY_TO_DATE Converts to Date

ANY_TO_STRING Converts to String
1254 ISaGRAF 5 Concrete Automation Model - Operators

Multiplication

Note: The creation of additional inputs is supported.

Arguments:

Description:

Multiplication of two or more integer or real variables.

Example

(* FBD example with Multiplication Operators *)

(inputs) SINT - USINT - BYTE - INT -
UINT - WORD - DINT - UDINT -
DWORD - LINT - ULINT -
LWORD - REAL - LREAL

can be INTEGER or REAL
(all inputs must have the same format)

output SINT - USINT - BYTE - INT -
UINT - WORD - DINT - UDINT -
DWORD - LINT - ULINT -
LWORD - REAL - LREAL

multiplication of the input terms
Automation Collaborative Platform 1255

(* ST equivalence *)

ao10 := ai101 * ai102;

ao5 := (ai51 * ai52) * ai53;
1256 ISaGRAF 5 Concrete Automation Model - Operators

Addition

Note: The creation of additional inputs is supported.

Arguments:

Description:

Addition of two or more integer, real, TIME, or STRING variables.

Example

(* FBD example with Addition Operators *)

(inputs) SINT - USINT - BYTE - INT -
UINT - WORD - DINT - UDINT -
DWORD - LINT - ULINT -
LWORD - REAL - LREAL -
TIME - STRING

can be of any integer, real, TIME, or
STRING format(all inputs must have the
same format)

o1 SINT - USINT - BYTE - INT -
UINT - WORD - DINT - UDINT -
DWORD - LINT - ULINT -
LWORD - REAL - LREAL -
TIME - STRING

addition of the input terms
Automation Collaborative Platform 1257

(* ST equivalence: *)

ao10 := ai101 + ai102;

ao5 := (ai51 + ai52) + ai53;
1258 ISaGRAF 5 Concrete Automation Model - Operators

Subtraction

Arguments:

Description:

Subtraction of two integer, real, or TIME variables.

Example

(* FBD example with Subtraction Operators *)

i1 SINT - USINT - BYTE - INT - UINT - WORD
- DINT - UDINT - DWORD - LINT - ULINT -
LWORD - REAL - LREAL - TIME

can be of any integer, real or long
real, or TIME format

i2 SINT - USINT - BYTE - INT - UINT - WORD
- DINT - UDINT - DWORD - LINT - ULINT -
LWORD - REAL - LREAL - TIME

(i1 and i2 must have the same
format)

o1 SINT - USINT - BYTE - INT - UINT - WORD
- DINT - UDINT - DWORD - LINT - ULINT -
LWORD - REAL - LREAL - TIME

subtraction (first minus second)
Automation Collaborative Platform 1259

(* ST equivalence: *)

ao10 := ai101 - ai102;

ao5 := (ai51 - 1) - ai53;
1260 ISaGRAF 5 Concrete Automation Model - Operators

Division

Arguments:

Description:

Division of two integer or real variables (the first divided by the second).

Example

(* FBD example with Division Operators *)

i1 SINT - USINT - BYTE - INT - UINT - WORD
- DINT - UDINT - DWORD - LINT - ULINT -
LWORD - REAL - LREAL

can be of any integer or real format
(operand)

i2 SINT - USINT - BYTE - INT - UINT - WORD
- DINT - UDINT - DWORD - LINT - ULINT -
LWORD - REAL - LREAL

non-zero integer or real value
(divisor)
(i1 and i2 must have the same
format)

o1 SINT - USINT - BYTE - INT - UINT - WORD
- DINT - UDINT - DWORD - LINT - ULINT -
LWORD - REAL - LREAL

integer or real division of i1 by i2
Automation Collaborative Platform 1261

(* ST Equivalence: *)

ao10 := ai101 / ai102;

ao5 := (ai5 / 2) / ai53;
1262 ISaGRAF 5 Concrete Automation Model - Operators

1 GAIN

Arguments:

Description:

Directly links the input to output. When used with a Boolean negation, inverts the state of the
line connected to the output.

Example

(* FBD example with assignment Operators *)

(* ST equivalence: *)

ao23 := ai10;

bo100 := NOT (bi1 AND bi2);

i1 BOOL - SINT - USINT - BYTE - INT -
UINT - WORD - DINT - UDINT -
DWORD - LINT - ULINT - LWORD -
REAL - LREAL - TIME - DATE - STRING

o1 BOOL - SINT - USINT - BYTE - INT -
UINT - WORD - DINT - UDINT -
DWORD - LINT - ULINT - LWORD -
REAL - LREAL - TIME - DATE - STRING

i1 and o1 must have the same format
Automation Collaborative Platform 1263

AND

Note: The creation of additional inputs is supported.

Arguments:

Description:

Boolean AND between two or more terms.

In the text editor, the ’&’ character can be used as well as typing AND.

Example

(* FBD example with "AND" Operators *)

(* ST equivalence 1: *)

(inputs) BOOL

o1 BOOL Boolean AND of the input terms
1264 ISaGRAF 5 Concrete Automation Model - Operators

bo10 := bi101 AND NOT (bi102);

bo5 := (bi51 AND bi52) AND bi53;

(* ST equivalence 2: *)

bo10 := bi101 & NOT (bi102);

bo5 := (bi51 & bi52) & bi53;
Automation Collaborative Platform 1265

ANY_TO_BOOL

Arguments:

Description:

Converts variables to Boolean variables

Example

(* FBD example with "Convert to Boolean" Operators *)

(* ST Equivalence: *)

i1 BOOL - SINT - USINT - BYTE - INT -
UINT - WORD - DINT - UDINT -
DWORD - LINT - ULINT - LWORD -
REAL - LREAL - TIME - DATE - STRING

Any value

o1 BOOL TRUE for non-zero numerical value
FALSE for zero numerical value
TRUE for 'TRUE' string
FALSE for 'FALSE' string
1266 ISaGRAF 5 Concrete Automation Model - Operators

ares := ANY_TO_BOOL (10); (* ares is TRUE *)

tres := ANY_TO_BOOL (t#0s); (* tres is FALSE *)

mres := ANY_TO_BOOL ('FALSE'); (* mres is FALSE *)
Automation Collaborative Platform 1267

ANY_TO_SINT

Arguments:

Description:

Converts variables to 8-bit short integer variables

Example

(* FBD example with "Convert to Short Integer" Operators *)

(* ST Equivalence: *)

i1 BOOL - SINT - USINT - BYTE - INT -
UINT - WORD - DINT - UDINT -
DWORD - LINT - ULINT - LWORD -
REAL - LREAL - TIME - DATE - STRING

Any value

o1 SINT 0 if i1 is FALSE / 1 if i1 is TRUE
number of milliseconds for a timer
integer part for real
decimal number represented by a string
1268 ISaGRAF 5 Concrete Automation Model - Operators

bres := ANY_TO_SINT (true); (* bres is 1 *)

tres := ANY_TO_SINT (t#0s46ms); (* tres is 46 *)

mres := ANY_TO_SINT ('0198'); (* mres is 198 *)
Automation Collaborative Platform 1269

ANY_TO_USINT

Arguments:

Description:

Converts variables to 8-bit unsigned short integer variables

Example

(* FBD example with "Convert to Unsigned Short Integer" Operators *)

(* ST Equivalence: *)

i1 BOOL - SINT - USINT - BYTE - INT -
UINT - WORD - DINT - UDINT -
DWORD - LINT - ULINT - LWORD -
REAL - LREAL - TIME - DATE - STRING

Any value

o1 USINT 0 if i1 is FALSE / 1 if i1 is TRUE
number of milliseconds for a timer
integer part for real
decimal number represented by a string
1270 ISaGRAF 5 Concrete Automation Model - Operators

bres := ANY_TO_USINT (true); (* bres is 1 *)

tres := ANY_TO_USINT (t#0s46ms); (* tres is 46 *)

mres := ANY_TO_USINT ('0198'); (* mres is 198 *)
Automation Collaborative Platform 1271

ANY_TO_BYTE

Arguments:

Description:

Converts variables to 8-bit BYTE variables

Example

(* FBD example with "Convert to BYTE" Operators *)

(* ST Equivalence: *)

i1 BOOL - SINT - USINT - BYTE - INT -
UINT - WORD - DINT - UDINT -
DWORD - LINT - ULINT - LWORD -
REAL - LREAL - TIME - DATE - STRING

Any value

o1 BYTE 0 if i1 is FALSE / 1 if i1 is TRUE
number of milliseconds for a timer
integer part for real
decimal number represented by a string
1272 ISaGRAF 5 Concrete Automation Model - Operators

bres := ANY_TO_BYTE (true); (* bres is 1 *)

tres := ANY_TO_BYTE (t#0s46ms); (* tres is 46 *)

mres := ANY_TO_BYTE ('0198'); (* mres is 198 *)
Automation Collaborative Platform 1273

ANY_TO_INT

Arguments:

Description:

Converts variables to 16-bit integer variables

Example

(* FBD example with "Convert to Integer" Operators *)

(* ST Equivalence: *)

i1 BOOL - SINT - USINT - BYTE - INT -
UINT - WORD - DINT - UDINT -
DWORD - LINT - ULINT - LWORD -
REAL - LREAL - TIME - DATE - STRING

Any value

o1 INT 0 if i1 is FALSE / 1 if i1 is TRUE
number of milliseconds for a timer
integer part for real
decimal number represented by a string
1274 ISaGRAF 5 Concrete Automation Model - Operators

bres := ANY_TO_INT (true); (* bres is 1 *)

tres := ANY_TO_INT (t#0s46ms); (* tres is 46 *)

mres := ANY_TO_INT ('0198'); (* mres is 198 *)
Automation Collaborative Platform 1275

ANY_TO_UINT

Arguments:

Description:

Converts variables to 16-bit unsigned integer variables

Example

(* FBD example with "Convert to Unsigned Integer" Operators *)

(* ST Equivalence: *)

i1 BOOL - SINT - USINT - BYTE - INT -
UINT - WORD - DINT - UDINT -
DWORD - LINT - ULINT - LWORD -
REAL - LREAL - TIME - DATE - STRING

Any value

o1 UINT 0 if i1 is FALSE / 1 if i1 is TRUE
number of milliseconds for a timer
integer part for real
decimal number represented by a string
1276 ISaGRAF 5 Concrete Automation Model - Operators

bres := ANY_TO_UINT (true); (* bres is 1 *)

tres := ANY_TO_UINT (t#0s46ms); (* tres is 46 *)

mres := ANY_TO_UINT ('0198'); (* mres is 198 *)
Automation Collaborative Platform 1277

ANY_TO_WORD

Arguments:

Description:

Converts variables to 16-bit WORD variables

Example

(* FBD example with "Convert to WORD" Operators *)

(* ST Equivalence: *)

i1 BOOL - SINT - USINT - BYTE - INT -
UINT - WORD - DINT - UDINT -
DWORD - LINT - ULINT - LWORD -
REAL - LREAL - TIME - DATE - STRING

Any value

0 if i1 is FALSE / 1 if i1 is TRUE
number of milliseconds for a timer
integer part for real
decimal number represented by a string

o1 WORD
1278 ISaGRAF 5 Concrete Automation Model - Operators

bres := ANY_TO_WORD (true); (* bres is 1 *)

tres := ANY_TO_WORD (t#0s46ms); (* tres is 46 *)

mres := ANY_TO_WORD ('0198'); (* mres is 198 *)
Automation Collaborative Platform 1279

ANY_TO_DINT

Arguments:

Description:

Converts variables to 32-bit double integer variables

Example

(* FBD example with "Convert to Double Integer" Operators *)

(* ST Equivalence: *)

i1 BOOL - SINT - USINT - BYTE - INT -
UINT - WORD - DINT - UDINT -
DWORD - LINT - ULINT - LWORD -
REAL - LREAL - TIME - DATE - STRING

Any value

o1 DINT 0 if i1 is FALSE / 1 if i1 is TRUE
number of milliseconds for a timer
integer part for real
decimal number represented by a string
1280 ISaGRAF 5 Concrete Automation Model - Operators

bres := ANY_TO_DINT (true); (* bres is 1 *)

tres := ANY_TO_DINT (t#1s46ms); (* tres is 1046 *)

mres := ANY_TO_DINT ('0198'); (* mres is 198 *)
Automation Collaborative Platform 1281

ANY_TO_UDINT

Arguments:

Description:

Converts variables to 32-bit unsigned double integer variables

Example

(* FBD example with "Convert to Unsigned Double Integer" Operators *)

(* ST Equivalence: *)

i1 BOOL - SINT - USINT - BYTE - INT -
UINT - WORD - DINT - UDINT -
DWORD - LINT - ULINT - LWORD -
REAL - LREAL - TIME - DATE - STRING

Any value

o1 UDINT 0 if i1 is FALSE / 1 if i1 is TRUE
number of milliseconds for a timer
integer part for real
decimal number represented by a string
1282 ISaGRAF 5 Concrete Automation Model - Operators

bres := ANY_TO_UDINT (true); (* bres is 1 *)

tres := ANY_TO_UDINT (t#1s46ms); (* tres is 1046 *)

mres := ANY_TO_UDINT ('0198'); (* mres is 198 *)
Automation Collaborative Platform 1283

ANY_TO_DWORD

Arguments:

Description:

Convert variables to 32-bit double WORD variables

Example

(* FBD example with "Convert to Double WORD" Operators *)

(* ST Equivalence: *)

i1 BOOL - SINT - USINT - BYTE - INT -
UINT - WORD - DINT - UDINT -
DWORD - LINT - ULINT - LWORD -
REAL - LREAL - TIME - DATE - STRING

Any value

o1 DWORD 0 if i1 is FALSE / 1 if i1 is TRUE
number of milliseconds for a timer
integer part for real
decimal number represented by a string
1284 ISaGRAF 5 Concrete Automation Model - Operators

bres := ANY_TO_DWORD (true); (* bres is 1 *)

tres := ANY_TO_DWORD (t#1s46ms); (* tres is 1046 *)

mres := ANY_TO_DWORD ('0198'); (* mres is 198 *)
Automation Collaborative Platform 1285

ANY_TO_LINT

Arguments:

Description:

Converts variables to 64-bit long integer variables.

Note: The maximum value for a REAL or LREAL input must be less than 9.2233720e+18. For
input values greater than this maximum, the output value is determined by the target type. For
Windows and Linux targets, the output value will be reset to zero when the input value is
greater than 9.2233720e+18. While for QNX targets, the output value will go into overflow.

Example

(* FBD example with "Convert to Long Integer" Operators *)

i1 BOOL - SINT - USINT - BYTE - INT -
UINT - WORD - DINT - UDINT -
DWORD - LINT - ULINT - LWORD -
REAL - LREAL - TIME - DATE - STRING

Any value

o1 LINT 0 if i1 is FALSE / 1 if i1 is TRUE
number of milliseconds for a timer
integer part for real
decimal number represented by a string
1286 ISaGRAF 5 Concrete Automation Model - Operators

(* ST Equivalence: *)

bres := ANY_TO_LINT (true); (* bres is 1 *)

tres := ANY_TO_LINT (t#0s46ms); (* tres is 46 *)

mres := ANY_TO_LINT ('0198'); (* mres is 198 *)
Automation Collaborative Platform 1287

ANY_TO_ULINT

Arguments:

Description:

Converts variables to 64-bit unsigned long integer variable.

Note: The maximum value for a REAL or LREAL input must be less than 1.8446744e+19. For
input values greater than this maximum, the output value is determined by the target type. For
Windows and Linux targets, the output value will be reset to zero when the input value is
greater than 1.8446744e+19. While for QNX targets, the output value will go into overflow.

Example

(* FBD example with "Convert to Unsigned Long Integer" Operators *)

i1 BOOL - SINT - USINT - BYTE - INT -
UINT - WORD - DINT - UDINT -
DWORD - LINT - ULINT - LWORD -
REAL - LREAL - TIME - DATE - STRING

Any value

o1 ULINT 0 if i1 is FALSE / 1 if i1 is TRUE
number of milliseconds for a timer
integer part for real
decimal number represented by a string
1288 ISaGRAF 5 Concrete Automation Model - Operators

(* ST Equivalence: *)

bres := ANY_TO_ULINT (true); (* bres is 1 *)

tres := ANY_TO_ULINT (t#0s46ms); (* tres is 46 *)

mres := ANY_TO_ULINT ('0198'); (* mres is 198 *)
Automation Collaborative Platform 1289

ANY_TO_LWORD

Arguments:

Description:

Converts variables to 64-bit long WORD variables.

Note: The maximum value for a REAL or LREAL input must be less than 1.8446744e+19. For
input values greater than this maximum, the output value is determined by the target type. For
Windows and Linux targets, the output value will be reset to zero when the input value is
greater than 1.8446744e+19. While for QNX targets, the output value will go into overflow.

Example

(* FBD example with "Convert to Long Word" Operators *)

i1 BOOL - SINT - USINT - BYTE - INT -
UINT - WORD - DINT - UDINT -
DWORD - LINT - ULINT - LWORD -
REAL - LREAL - TIME - DATE - STRING

Any value

o1 LWORD 0 if i1 is FALSE / 1 if i1 is TRUE
number of milliseconds for a timer
integer part for a real
decimal number represented by a string
1290 ISaGRAF 5 Concrete Automation Model - Operators

(* ST Equivalence: *)

bres := ANY_TO_LWORD (true); (* bres is 1 *)

tres := ANY_TO_LWORD (t#0s46ms); (* tres is 46 *)

mres := ANY_TO_LWORD ('0198'); (* mres is 198 *)
Automation Collaborative Platform 1291

ANY_TO_REAL

Arguments:

Description:

Converts variables to REAL variables

Example

(* FBD example with "Convert to Real" Operators *)

(* ST Equivalence: *)

i1 BOOL - SINT - USINT - BYTE - INT -
UINT - WORD - DINT - UDINT -
DWORD - LINT - ULINT - LWORD -
REAL - LREAL - TIME - DATE - STRING

Any value

o1 REAL 0.0 if i1 is FALSE / 1.0 if i1 is TRUE
number of milliseconds for a timer
equivalent number for integer
1292 ISaGRAF 5 Concrete Automation Model - Operators

bres := ANY_TO_REAL (true); (* bres is 1.0 *)

tres := ANY_TO_REAL (t#1s46ms); (* tres is 1046.0 *)

ares := ANY_TO_REAL (198); (* ares is 198.0 *)
Automation Collaborative Platform 1293

ANY_TO_LREAL

Arguments:

Description:

Converts any variable to a long REAL variable

Example

(* FBD example with "Convert to Long REAL" Operators *)

(* ST Equivalence: *)

i1 BOOL - SINT - USINT - BYTE - INT -
UINT - WORD - DINT - UDINT -
DWORD - LINT - ULINT - LWORD -
REAL - LREAL - TIME - DATE - STRING

Any value

o1 LREAL 0.0 if i1 is FALSE / 1.0 if i1 is TRUE
number of milliseconds for a timer
equivalent number for integer
1294 ISaGRAF 5 Concrete Automation Model - Operators

bres := ANY_TO_LREAL (true); (* bres is 1.0 *)

tres := ANY_TO_LREAL (t#1s46ms); (* tres is 1046.0 *)

ares := ANY_TO_LREAL (198); (* ares is 198.0 *)
Automation Collaborative Platform 1295

ANY_TO_TIME

Arguments:

Description:

Converts variables to TIME variables, except for TIME and DATE variables. The
SUB_DATE_DATE function enables the conversion of a DATE to TIME format.

Example

(* FBD example with "Convert to Timer" Operators *)

(* ST Equivalence: *)

i1 BOOL - SINT - USINT - BYTE
- INT - UINT - WORD - DINT -
UDINT - DWORD - LINT -
ULINT - LWORD - REAL -
LREAL - TIME - DATE -
STRING

Any value
i1 (or integer part of i1 if it is real) is the number of
milliseconds
STRING (number of milliseconds, for example, a
value of 300032 represents 5 minutes and 32
milliseconds)

o1 TIME time value represented by i1. A value of
1193h2m47s295ms indicates an invalid time.

ares := ANY_TO_TIME (1256); (* ares := t#1s256ms *)

rres := ANY_TO_TIME (1256.3); (* rres := t#1s256ms *)
1296 ISaGRAF 5 Concrete Automation Model - Operators

ANY_TO_DATE

Arguments:

Description:

Converts variables to DATE variables. A 32-bit variable, providing the number of seconds
since Jan 1, 1970, based on the time_t data type.

Example

(* FBD example with "Convert to DATE" Operators *)

(* ST Equivalence: *)

i1 BOOL - SINT - USINT - BYTE - INT -
UINT - WORD - DINT - UDINT -
DWORD - LINT - ULINT - LWORD -
REAL - LREAL - TIME - DATE -
STRING

Any value

o1 DATE date represented by i1. A value of -1
indicates an invalid date.

ares := ANY_TO_DATE (1109110199); (* ares := d#2005-02-22 *)

rres := ANY_TO_DATE (1109110199.3); (*rres := d#2005-02-22 *)
Automation Collaborative Platform 1297

ANY_TO_STRING

Arguments:

Description:

Converts variables to STRING variables

Example

(* FBD example with "Convert to STRING" Operators *)

i1 BOOL - SINT - USINT - BYTE -
INT - UINT - WORD - DINT -
UDINT - DWORD - LINT -
ULINT - LWORD - REAL -
LREAL - TIME - DATE -
STRING

Any value

o1 STRING If i1 is a Boolean, 'FALSE' or 'TRUE'
If i1 is an integer or a real, decimal representation
If i1 is a TIME:
TIME time1
STRING s1
time1 :=13 ms;
s1 :=ANY_TO_STRING(time1);
(* s1 = '0s13' *)
1298 ISaGRAF 5 Concrete Automation Model - Operators

(* ST Equivalence: *)

bres := ANY_TO_STRING (TRUE); (* bres is 'TRUE' *)

ares := ANY_TO_STRING (125); (* ares is '125' *)
Automation Collaborative Platform 1299

Equal

Arguments:

Description

For integer, REAL, TIME, DATE, and STRING variables, compares the first input to the
second to determine equality.

For TON, TP, TOF, BLINK, and StepName.t in SFC chart, equality testing of TIME variables
is not recommended.

Example

(* FBD example with "Is Equal to" Operators *)

i1 BOOL - SINT - USINT - BYTE - INT -
UINT - WORD - DINT - UDINT -
DWORD - LINT - ULINT - LWORD -
REAL - LREAL - TIME - DATE - STRING

Both inputs must have the same format.

i2 BOOL - SINT - USINT - BYTE - INT -
UINT - WORD - DINT - UDINT -
DWORD - LINT - ULINT - LWORD -
REAL - LREAL - TIME - DATE - STRING

o1 BOOL TRUE if i1 = i2
1300 ISaGRAF 5 Concrete Automation Model - Operators

(* ST Equivalence: *)

aresult := (10 = 25); (* aresult is FALSE *)

mresult := ('ab' = 'ab'); (* mresult is TRUE *)
Automation Collaborative Platform 1301

Greater Than or Equal

Arguments:

Description:

For integer, REAL, TIME, DATE, and STRING variables, compares input variables to
determine whether the first is greater than or equal to the second.

For TON, TP, TOF, BLINK, and StepName.t in SFC chart, equality testing of TIME variables
is not recommended.

Example

(* FBD example with "Greater or Equal to" Operators *)

i1 SINT - USINT - BYTE - INT - UINT -
WORD - DINT - UDINT - DWORD - LINT
- ULINT - LWORD - REAL - LREAL -
TIME - DATE - STRING

Both inputs must have the same type.

i2 SINT - USINT - BYTE - INT - UINT -
WORD - DINT - UDINT - DWORD - LINT
- ULINT - LWORD - REAL - LREAL -
TIME - DATE - STRING

o1 BOOL TRUE if i1 >= i2
1302 ISaGRAF 5 Concrete Automation Model - Operators

(* ST Equivalence: *)

aresult := (10 >= 25); (* aresult is FALSE *)

mresult := ('ab' >= 'ab'); (* mresult is TRUE *)
Automation Collaborative Platform 1303

Greater Than

Arguments:

Description:

For integer, REAL, TIME, DATE, and STRING variables, compares input variables to
determine whether the first is greater than the second.

Example

(* FBD example with "Greater than" Operators *)

i1 SINT - USINT - BYTE - INT - UINT -
WORD - DINT - UDINT - DWORD - LINT
- ULINT - LWORD - REAL - LREAL -
TIME - DATE - STRING

Both inputs must have the same type

i2 SINT - USINT - BYTE - INT - UINT -
WORD - DINT - UDINT - DWORD - LINT
- ULINT - LWORD - REAL - LREAL -
TIME - DATE - STRING

o1 BOOL TRUE if i1 > i2
1304 ISaGRAF 5 Concrete Automation Model - Operators

(* ST Equivalence: *)

aresult := (10 > 25); (* aresult is FALSE *)

mresult := ('ab' > 'a'); (* mresult is TRUE *)
Automation Collaborative Platform 1305

Less Than or Equal

Arguments:

Description:

For integer, REAL, TIME, DATE, and STRING variables, compares input variables to
determine whether the first is less than or equal to the second.

For TON, TP, TOF, BLINK, and StepName.t in SFC chart, equality testing of TIME variables
is not recommended.

Example

(* FBD example with "Less or Equal to" Operators *)

i1 SINT - USINT - BYTE - INT - UINT -
WORD - DINT - UDINT - DWORD - LINT
- ULINT - LWORD - REAL - LREAL -
TIME - DATE - STRING

Both inputs must have the same type.

i2 SINT - USINT - BYTE - INT - UINT -
WORD - DINT - UDINT - DWORD - LINT
- ULINT - LWORD - REAL - LREAL -
TIME - DATE - STRING

o1 BOOL TRUE if i1 <= i2
1306 ISaGRAF 5 Concrete Automation Model - Operators

(* ST Equivalence: *)

aresult := (10 <= 25); (* aresult is TRUE *)

mresult := ('ab' <= 'ab'); (* mresult is TRUE *)
Automation Collaborative Platform 1307

Less Than

Arguments:

Description:

For integer, REAL, TIME, DATE, and STRING variables, compares input variables to
determine whether the first is less than the second.

Example

(* FBD example with "Less than" Operators *)

i1 SINT - USINT - BYTE - INT - UINT -
WORD - DINT - UDINT - DWORD - LINT
- ULINT - LWORD - REAL - LREAL -
TIME - DATE - STRING

Both inputs must have the same type

i2 SINT - USINT - BYTE - INT - UINT -
WORD - DINT - UDINT - DWORD - LINT
- ULINT - LWORD - REAL - LREAL -
TIME - DATE - STRING

o1 BOOL TRUE if i1i2 < i2
1308 ISaGRAF 5 Concrete Automation Model - Operators

(* ST Equivalence: *)

aresult := (10 < 25); (* aresult is TRUE *)

mresult := ('z' < 'B'); (* mresult is FALSE *)
Automation Collaborative Platform 1309

NEG

Arguments:

Description:

Converts variables to negated variables

Example

(* FBD example with Negation Operators *)

(* ST equivalence: *)

ao23 := - (ai10);

ro100 := - (ri1 + ri2);

i1 SINT - INT - DINT - LINT - REAL -
LREAL

Input and output must have the same
format

o1 SINT - INT - DINT - LINT - REAL -
LREAL
1310 ISaGRAF 5 Concrete Automation Model - Operators

NOT

Arguments:

Description:

For Boolean expressions, converts variables to negated variables.

Example

(* FBD example with "NOT" Operator *)

(* ST equivalence: *)

bo10 := NOT bi101;

i1 Any Boolean variable or complex expression

o1 TRUE when i1 is FALSE
FALSE when i1 is TRUE
Automation Collaborative Platform 1311

Not Equal

Arguments:

Description:

For integer, REAL, TIME, DATE, and STRING variables, compares input variables to
determine whether the first is not equal to the second.

Example

(* FBD example with "Is Not Equal to" Operators *)

i1 BOOL - SINT - USINT - BYTE - INT -
UINT - WORD - DINT - UDINT -
DWORD - LINT - ULINT - LWORD -
REAL - LREAL - TIME - DATE - STRING

both inputs must have the same type

i2 BOOL - SINT - USINT - BYTE - INT -
UINT - WORD - DINT - UDINT -
DWORD - LINT - ULINT - LWORD -
REAL - LREAL - TIME - DATE - STRING

o1 BOOL TRUE if first <> second
1312 ISaGRAF 5 Concrete Automation Model - Operators

(* ST Equivalence: *)

aresult := (10 <> 25); (* aresult is TRUE *)

mresult := ('ab' <> 'ab'); (* mresult is FALSE *)
Automation Collaborative Platform 1313

OR

Note: The creation of additional inputs is supported.

Arguments:

Description:

Boolean OR of two or more variables

Example

(* FBD example with "OR" Operators *)

(* ST equivalence: *)

bo10 := bi101 OR NOT (bi102);

(inputs) BOOL

output BOOL Boolean OR of the input terms
1314 ISaGRAF 5 Concrete Automation Model - Operators

bo5 := (bi51 OR bi52) OR bi53;
Automation Collaborative Platform 1315

XOR

Arguments:

Description:

Boolean exclusive OR of two variables

Example

(* FBD example with "XOR" operators *)

(* ST equivalence: *)

bo10 := bi101 XOR NOT (bi102);

bo5 := (bi51 XOR bi52) XOR bi53;

i1 BOOL

i2 BOOL

o1 BOOL Boolean exclusive OR of the two input terms
1316 ISaGRAF 5 Concrete Automation Model - Operators

Automation Collaborative Platform 1317

1318 ISaGRAF 5 Concrete Automation Model - Operators

Functions
The following are the functions supported by the system:

Arithmetic
Operations

ABS Absolute value of a REAL value

EXPT, POW Exponent, power calculation of
REAL values

LOG Logarithm of a REAL value

MOD Modulo

SQRT Square root of a REAL value

RAND Random value

TRUNC Truncate decimal part of a REAL
value

ACOS, ASIN, ATAN Arc cosine, Arc sine, Arc tangent of
a REAL value

COS, SIN, TAN Cosine, Sine, Tangent of a REAL
value

Binary Operations AND_MASK Integer bit-to-bit AND mask

OR_MASK Integer bit-to-bit OR mask

XOR_MASK Integer bit-to-bit Exclusive OR mask

NOT_MASK Integer bit-to-bit negation

ROL, ROR Rotate Left, Rotate Right an integer
value

SHL, SHR Shift Left, Shift Right an integer
value

Boolean Operations ODD Odd parity

Process Control MIN, MAX, LIMIT Minimum, Maximum, Limit

MUX4, MUX8 Multiplexer (4 or 8 entries)

SEL Binary selector
Automation Collaborative Platform 1319

String Manipulation ASCII Character -> ASCII code

CHAR ASCII code -> Character

MLEN Get string length

DELETE, INSERT Delete sub-string, Insert string

FIND, REPLACE Find sub-string, Replace sub-string

LEFT, MID, RIGHT Extract left, middle or right of a
string

System Operations LOCK_CPU, UNLOCK_CPU Lock data space, unlock data space

Time Operations CURRENT_ISA_DATE Gets the current date

SUB_DATE_DATE Compares two dates and provides the
difference in TIME format
1320 ISaGRAF 5 Concrete Automation Model - Functions

ABS

Arguments:

Description:

Yields the absolute (positive) value of a REAL value.

Example

(* FBD Program using "ABS" Function *)

(* ST Equivalence: *)

over := (ABS (delta) > range);

IN IN REAL Any signed real value

ABS Q REAL Absolute value (always positive)
Automation Collaborative Platform 1321

ACOS

Arguments:

Description:

Yields the Arc Cosine of a REAL value. Input and output values are in radians.

Example

(* FBD Program using "COS" and "ACOS" Functions *)

(* ST Equivalence: *)

cosine := COS (angle);

result := ACOS (cosine); (* result is equal to angle *)

IN IN REAL Must be in set [-1.0 .. +1.0]

ACOS Q REAL Arc-cosine of the input value (in set [0.0 .. PI])
= 0.0 for invalid input
1322 ISaGRAF 5 Concrete Automation Model - Functions

AND_MASK

Arguments:

Description:

Integer AND bit-to-bit mask.

Example

(* FBD example with AND_MASK Operators *)

(* ST Equivalence: *)

parity := AND_MASK (xvalue, 1); (* 1 if xvalue is odd *)

result := AND_MASK (16#abc, 16#f0f); (* equals 16#a0c *)

IN IN DINT Must have integer format

MSK MSK DINT Must have integer format

AND_MASK Q DINT Bit-to-bit logical AND between IN and MSK
Automation Collaborative Platform 1323

ASCII

Arguments:

Description:

Yields the ASCII code for characters in strings.

Example

(* FBD Program using "ASCII" Function *)

(* ST Equivalence: *)

FirstChr := ASCII (message, 1);

(* FirstChr is the ASCII code of the first character of the string *)

IN IN STRING Any non-empty string

Pos Pos DINT Position of the selected character in set [1.. len] (len is the
length of the IN string)

ASCII Code DINT Code of the selected character (in set [0 .. 255])
yields 0 is Pos is out of the string
1324 ISaGRAF 5 Concrete Automation Model - Functions

ASIN

Arguments:

Description:

Yields the Arc Sine of a REAL value.

Example

(* FBD Program using "SIN" and "ASIN" Functions *)

(* ST Equivalence: *)

sine := SIN (angle);
result := ASIN (sine); (* result is equal to angle *)

IN IN REAL Must be in set [-1.0 .. +1.0]

ASIN Q REAL Arc-sine of the input value (in set [-PI/2 .. +PI/2])
= 0.0 for invalid input
Automation Collaborative Platform 1325

ATAN

Arguments:

Description:

Yields the Arc Tangent of a REAL value.

Example

(* FBD Program using "TAN" and "ATAN" Function *)

(* ST Equivalence: *)

tangent := TAN (angle);

result := ATAN (tangent); (* result is equal to angle*)

IN IN REAL Any real value

ATAN Q REAL Arc-tangent of the input value (in set [-PI/2 .. +PI/2])
= 0.0 for invalid input
1326 ISaGRAF 5 Concrete Automation Model - Functions

CHAR

Arguments:

Description:

For a given ASCII code, provides a string containing one character.

Example

(* FBD Program using "CHAR" Function *)

(* ST Equivalence: *)

Display := CHAR (value + 48);

(* value is in set [0..9] *)

(* 48 is the ascii code of '0' *)

(* result is one character string from '0' to '9' *)

Code Code DINT Code in set [0 .. 255]

CHAR Q STRING One character string
the character has the ASCII code given in input Code
(ASCII code is used modulo 256)
Automation Collaborative Platform 1327

COS

Arguments:

Description:

Yields the Cosine of a REAL value.

Example

(* FBD Program using "COS" and "ACOS" Functions *)

(* ST Equivalence: *)

cosine := COS (angle);

result := ACOS (cosine); (* result is equal to angle *)

IN IN REAL Any REAL value

COS Q REAL Cosine of the input value (in set [-1.0 .. +1.0])
1328 ISaGRAF 5 Concrete Automation Model - Functions

CURRENT_ISA_DATE

Arguments:

Description:

Retrieves the current date.

Example

(* FBD Program using "CURRENT_ISA_DATE" Function *)

(* ST Equivalence: *)

datResult := CURRENT_ISA_DATE();

CURRENT_ISA_DATE DATE DATE The current date
Automation Collaborative Platform 1329

DELETE

Arguments:

Description:

Deletes part of a string.

Example

(* FBD Program using "DELETE" Function *)

(* ST Equivalence: *)

IN IN STRING Any non-empty string

NbC NbC DINT Number of characters to be deleted

Pos Pos DINT Position of the first deleted character
(first character of the string has position 1)

DELETE Q STRING modified string
empty string if Pos < 1
initial string if Pos > IN string length
initial string if NbC <= 0
1330 ISaGRAF 5 Concrete Automation Model - Functions

complete_string := INSERT (’ABCD ’, ’EFGH’, 5); (* complete_string is
'ABCDEFGH ' *)

sub_string := DELETE (complete_string, 4, 3); (* sub_string is
'ABGH '*)
Automation Collaborative Platform 1331

EXPT

Arguments:

Description:

Where 'base' is the first argument and 'exponent' is the second argument, yields the REAL
result of the following operation: (base exponent).

Example

(* FBD Program using "EXPT" Function *)

(* ST Equivalence: *)

tb_size := ANY_TO_DINT (EXPT (2.0, range));

IN IN REAL Any signed real value

EXP EXP DINT Integer exponent

EXPT Q REAL (IN EXP)
1332 ISaGRAF 5 Concrete Automation Model - Functions

FIND

Arguments:

Description:

Locates and provides the position of sub-strings within strings.

Example

(* FBD Program using "FIND" Function *)

(* ST Equivalence: *)

complete_string := 'ABCD' + 'EFGH'; (* complete_string is 'ABCDEFGH '
*)

found := FIND (complete_string, 'CDEF'); (* found is 3 *)

In In STRING Any string

Pat Pat STRING Any non-empty string (Pattern)

FIND Pos DINT = 0 if sub string Pat not found
= position of the first character of the first occurrence of the
sub-string Pat
(first position is 1)
this function is case sensitive
Automation Collaborative Platform 1333

INSERT

Arguments:

Description:

Inserts sub-strings at user-defined positions within strings.

Example

(* FBD Program using "INSERT" Function*)

IN IN STRING Initial string

Str Str STRING String to be inserted

Pos Pos DINT Position of the insertion
the insertion is done before the position
(first valid position is 1)

INSERT Q STRING Modified string
empty string if Pos <= 0
concatenation of both strings if Pos is greater than the length
of the IN string
1334 ISaGRAF 5 Concrete Automation Model - Functions

(* ST Equivalence: *)

MyName := INSERT ('Mr JONES', 'Frank ', 4);

(* MyName is 'Mr Frank JONES' *)
Automation Collaborative Platform 1335

LEFT

Arguments:

Description:

From the left end of strings, yields the number of characters defined.

Example

(* FBD Program using "LEFT" and "RIGHT" Functions *)

(* ST Equivalence: *)

complete_string := INSERT (RIGHT ('12345678', 4), LEFT ('12345678', 4),
5);

(* complete_string is '56781234'

IN IN STRING Any non-empty string

NbC NbC DINT Number of characters to be extracted. This number cannot be
greater than the length of the IN string.

LEFT Q STRING Left part of the IN string (its length = NbC)
empty string if NbC <= 0
complete IN string if NbC >= IN string length
1336 ISaGRAF 5 Concrete Automation Model - Functions

the value issued from RIGHT call is '5678'

the value issued from LEFT call is '1234'

*)
Automation Collaborative Platform 1337

LIMIT

Arguments:

Description:

Restricts integer values to a given interval. Integer values between the minimum and maximum
are unchanged. Integer values greater than the maximum are replaced with the maximum
value. Integer values less than the minimum are replaced with the minimum value.

Example

(* FBD Program using "LIMIT" Function *)

(* ST Equivalence: *)

new_value := LIMIT (min_value, value, max_value);

(* bounds the value to the [min_value..max_value] set *)

MIN MIN DINT Minimum value allowed

IN IN DINT Any signed integer value

MAX MAX DINT Maximum value allowed

LIMIT Q DINT Input value restricted to the allowed range
1338 ISaGRAF 5 Concrete Automation Model - Functions

LOCK_CPU

Arguments:

Description:

When using run-time supporting interrupts, each interrupt and main loop should use the
LOCK_CPU to access variables shared between different execution paths. LOCK_CPU grants
a POU exclusive access to the variables accessed after a call. The exclusive access is disabled
once UNLOCK_CPU is called. If multiple POUs on distinct interrupts call LOCK_CPU at the
same time, only one POU will run until UNLOCK_CPU is called. Afterwards, the next POU
in the execution stack will run LOCK_CPU.

Note: Ensure LOCK_CPU is called once in a given thread before calling UNLOCK_CPU.

Example

(* FBD Program using "LOCK_CPU" Function *)

(* ST Equivalence: *)

status1:=LOCK_CPU(T#8ms);

TMOT TMOT TIME Maximum time delay to lock the data space, in
milliseconds. If the data space is unavailable, i.e. locked,
during this time period, the lock operation fails.

OK OK BOOL Status of the thread lock operation
TRUE=Successful lock operation
FALSE=Unsuccessful lock operation
Automation Collaborative Platform 1339

LOG

Arguments:

Description:

Yields the logarithm (base 10) of a REAL value.

Example

(* FBD Program using "LOG" Function *)

(* ST Equivalence: *)

xpos := ABS (xval);

xlog := LOG (xpos);

IN IN REAL Must be greater than zero

LOG Q REAL Logarithm (base 10) of the input value
1340 ISaGRAF 5 Concrete Automation Model - Functions

MAX

Arguments:

Description:

Yields the maximum of two integer values.

Example

(* FBD Program using "MIN" and "MAX" Function *)

(* ST Equivalence: *)

new_value := MAX (MIN (max_value, value), min_value);

(* bounds the value to the [min_value..max_value] set *)

IN1 IN1 DINT Any signed integer value

IN2 IN2 DINT (cannot be REAL)

MAX Q DINT Maximum of both input values
Automation Collaborative Platform 1341

MID

Arguments:

Description:

Using the position and number of characters provided, yields required parts of strings.

Example

(* FBD Program using "MID" Function *)

IN IN STRING Any non-empty string

NbC NbC DINT Number of characters to extract (must be less than or equal to the
length of the IN string)

Pos Pos DINT Position of the sub-string
the sub-string first character is the one pointed to by Pos
(the first valid position is 1)

MID Q STRING Middle part of the string (its length = NbC).
When the number of characters to extract exceeds the length of
the IN string, NbC is automatically recalculated to get the
remainder of the string only. When NbC or Pos are zero or
negative numbers, an empty string is returned.
1342 ISaGRAF 5 Concrete Automation Model - Functions

(* ST Equivalence: *)

sub_string := MID ('abcdefgh', 2, 4);

(* sub_string is 'de' *)
Automation Collaborative Platform 1343

MIN

Arguments:

Description:

Yields the minimum of two integer values.

Example

(* FBD Program using "MIN" and "MAX" Function *)

(* ST Equivalence: *)

new_value := MAX (MIN (max_value, value), min_value);

(* bounds the value to the [min_value..max_value] set *)

IN1 IN1 DINT Any signed integer value

IN2 IN2 DINT (cannot be REAL)

MIN Q DINT Minimum of both input values
1344 ISaGRAF 5 Concrete Automation Model - Functions

MLEN

Arguments:

Description:

Yields the length of strings.

Example

(* FBD Program using "MLEN" Function *)

(* ST Equivalence: *)

nbchar := MLEN (complete_string);

If (nbchar < 3) Then Return; End_if;

prefix := LEFT (complete_string, 3);

IN IN STRING Any string

MLEN NbC DINT Number of characters in the IN string
Automation Collaborative Platform 1345

(* this program extracts the 3 characters on the left of the string and put the result in the prefix
string variable nothing is done if the string length is less than three characters *)
1346 ISaGRAF 5 Concrete Automation Model - Functions

MOD

Arguments:

Description:

Yields the modulo of an integer value.

Example

(* FBD Program using "MOD" Function *)

(* ST Equivalence: *)

division_result := (value / divider); (* integer division *)

rest_of_division := MOD (value, divider); (* rest of the division *)

IN IN DINT Any signed INTEGER value

Base Base DINT Must be greater than zero

MOD Q DINT Modulo calculation (input MOD base)
yields -1 if Base <= 0
Automation Collaborative Platform 1347

MUX4

Arguments:

Description:

Yields a value between four integer values.

Example

(* FBD Program using "MUX4" Function *)

SEL SEL DINT Selector integer value (must be in set [0..3])

IN1..IN4 IN1..IN4 DINT Any integer values

MUX4 Q DINT = value1 if SEL = 0
= value2 if SEL = 1
= value3 if SEL = 2
= value4 if SEL = 3
= 0 for all other values of the selector
1348 ISaGRAF 5 Concrete Automation Model - Functions

(* ST Equivalence: *)

range := MUX4 (choice, 1, 10, 100, 1000);

(* select from 4 predefined ranges, for example, if choice is 1, range will be 10 *)
Automation Collaborative Platform 1349

MUX8

Arguments:

Description:

Yields a value between eight integer values.

Example

(* FBD Program using "MUX8" Function *)

SEL SEL DINT Selector integer value (must be in set [0..7])

IN1..IN8 IN1..IN8 DINT Any integer values

MUX8 Q DINT = value1 if selector = 0
= value2 if selector = 1
...
= value8 if selector = 7
= 0 for all other values of the selector
1350 ISaGRAF 5 Concrete Automation Model - Functions

(* ST Equivalence: *)

range := MUX8 (choice, 1, 5, 10, 50, 100, 500, 1000, 5000);

(* select from 8 predefined ranges, for example, if choice is 3, range will be 50 *)
Automation Collaborative Platform 1351

NOT_MASK

Arguments:

Description:

Integer bit-to-bit negation mask.

Example

(* FBD example with NOT_MASK Operators *)

(*ST equivalence: *)

result := NOT_MASK (16#1234);

(* result is 16#FFFF_EDCB *)

IN IN DINT Must have integer format

NOT_MASK Q DINT Bit-to-bit negation on 32 bits of IN
1352 ISaGRAF 5 Concrete Automation Model - Functions

ODD

Arguments:

Description:

Determines the parity of an integer, yielding an odd or even result.

Example

(* FBD Program using "ODD" Function *)

(* ST Equivalence: *)

If Not (ODD (value)) Then Return; End_if;

value := value + 1;

(* makes value always even *)

IN IN DINT Any signed integer value

Odd Q BOOL TRUE if input value is odd
FALSE if input value is even
Automation Collaborative Platform 1353

OR_MASK

Arguments:

Description:

Integer OR bit-to-bit mask.

Example

(* FBD example with OR_MASK Operators *)

(* ST Equivalence: *)

parity := OR_MASK (xvalue, 1); (* makes value always odd *)

result := OR_MASK (16#abc, 16#f0f); (* equals 16#fbf *)

IN IN DINT Must have integer format

MSK MSK DINT Must have integer format

OR_MASK Q DINT Bit-to-bit logical OR between IN and MSK
1354 ISaGRAF 5 Concrete Automation Model - Functions

POW

Arguments:

Description:

When the first argument is 'base' and the second argument is 'exponent', yields the REAL result
of the following: (base exponent). 'Exponent' is a REAL value.

Example

(* FBD Program using "POW" Function *)

(* ST Equivalence: *)

result := POW (xval, power);

IN IN REAL REAL number to be raised

EXP EXP REAL Power (exponent)

POW Q REAL (IN EXP)
1.0 if IN is not 0.0 and EXP is 0.0
0.0 if IN is 0.0 and EXP is negative
0.0 if both IN and EXP are 0.0
0.0 if IN is negative and EXP does not correspond to an integer
Automation Collaborative Platform 1355

RAND

Arguments:

Description:

From a defined range, yields random integer values.

Example

(* FBD Program using "RAND" function *)

(* ST Equivalence: *)

selected := MUX4 (RAND (4), 1, 4, 8, 16);

(* random selection of 1 of 4 pre-defined values. The value issued of
RAND call is in set [0..3], so 'selected' issued from MUX4, will get
'randomly' the value 1 if 0 is issued from RAND,or 4 if 1 is issued
from RAND,or 8 if 2 is issued from RAND,or 16 if 3 is issued from RAND,

*)

base base DINT Defines the allowed set of number

RAND Q DINT Random value in set [0..base-1]
1356 ISaGRAF 5 Concrete Automation Model - Functions

REPLACE

Arguments:

Description:

Replaces parts of a strings with new sets of characters.

Example

(* FBD Program using "REPLACE" function *)

IN IN STRING Any string

Str Str STRING String to be inserted (to replace NbC chars)

NbC NbC DINT Number of characters to be deleted

Pos Pos DINT Position of the first modified character
(first valid position is 1)

REPLACE Q STRING Modified string:
- NbC characters are deleted at position Pos
- then substring Str is inserted at this position
yields empty string if Pos <= 0
yields strings concatenation (IN+Str) if Pos is greater
than the length of the IN string
yields initial string IN if NbC <= 0
Automation Collaborative Platform 1357

(* ST Equivalence: *)

MyName := REPLACE ('Mr X JONES, 'Frank', 1, 4);

(* MyName is 'Mr Frank JONES' *)
1358 ISaGRAF 5 Concrete Automation Model - Functions

RIGHT

Arguments:

Description:

From the right ends of strings, yields the number of characters defined.

Example

(* FBD Program using "LEFT" and "RIGHT" Functions *)

(* ST Equivalence: *)

complete_string := INSERT (RIGHT ('12345678', 4), LEFT ('12345678',
4),5);

IN IN STRING Any non-empty string

NbC NbC DINT Number of characters to be extracted. This number cannot be
greater than the length of the IN string.

RIGHT Q STRING Right part of the string (length = NbC)
empty string if NbC <= 0
complete string if NbC >= string length
Automation Collaborative Platform 1359

(* complete_string is '56781234'

the value issued from RIGHT call is '5678'

the value issued from LEFT call is '1234'

*)
1360 ISaGRAF 5 Concrete Automation Model - Functions

ROL

Arguments:

Description:

For 32-bit integers, rotates integer bits to the left.

Example

(* FBD Program using "ROL" Function *)

(* ST Equivalence: *)

result := ROL (register, 1);

(* register = 2#0100_1101_0011_0101*)

(* result = 2#1001_1010_0110_1010*)

IN IN DINT Integer value

NbR NbR DINT Number of 1-bit rotations (in set [1..31])

ROL Q DINT Left rotated value
When NbR <= 0, no change occurs.
Automation Collaborative Platform 1361

ROR

Arguments:

Description:

For 32-bit integers, rotates integer bits to the right.

Example

(* FBD Program using "ROR" Function *)

(* ST Equivalence: *)

result := ROR (register, 2);

(* register = 2#0011_0011_0010_1011_0011_0010_1001_1001 *)

(* result = 2#0100_1100_1100_1010_1100_1100_1010_0110 *)

IN IN DINT Any integer value

NbR NbR DINT Number of 1 bit rotations (in set [1..31])

ROR Q DINT Right rotated value
no effect if NbR <= 0
1362 ISaGRAF 5 Concrete Automation Model - Functions

SEL

Arguments:

Description:

Specifies the input to use between two integer values.

Example

(* FBD Program using "SEL" Function *)

(* ST Equivalence: *)

ProCmd := SEL (AutoMode, ManuCmd, InpCmd);

(* process command selection *)

SEL1 SEL1 BOOL Indicates the chosen value

IN1, IN2 IN1, IN2 DINT Any integer values

SEL Q DINT = IN1 if SEL is FALSE
= IN2 if SEL is TRUE
Automation Collaborative Platform 1363

SHL

Arguments:

Description:

For 32-bit integers, moves integers to the left and places 0 in the least significant bit.

Example

(* FBD Program using "SHL" Function *)

(* ST Equivalence: *)

result := SHL (register,1);

(* register = 2#0100_1101_0011_0101 *)

(* result = 2#1001_1010_0110_1010 *)

IN IN DINT Any integer value

NbS NbS DINT Number of 1 bit shifts (in set [1..31])

SHL Q DINT Left shifted value
no effect if NbS <= 0
0 replaces the least significant bit
1364 ISaGRAF 5 Concrete Automation Model - Functions

SHR

Arguments:

Description:

Shifts the 32 bits of an integer to the right and replicates the leftmost bit (significant bit) to fill
the vacant bits.

Example

(* FBD Program using "SHR" Function *)

(* ST Equivalence: *)

result := SHR (register,1);

(* register = 2#1100_1101_0011_0101 *)

IN IN DINT Any integer value

NbS NbS DINT Number of 1 bit shifts (in set [1..31])

SHR Q DINT Right shifted value
no effect if NbS <= 0
the leftmost bit is replicated if NbS >=1
Automation Collaborative Platform 1365

(* result = 2#1110_0110_1001_1010 *)
1366 ISaGRAF 5 Concrete Automation Model - Functions

SIN

Arguments:

Description:

Yields the Sine of a REAL value.

Example

(* FBD Program using "SIN" and "ASIN" Functions *)

(* ST Equivalence: *)

sine := SIN (angle);

result := ASIN (sine); (* result is equal to angle *)

IN IN REAL Any REAL value

SIN Q REAL Sine of the input value (in set [-1.0 .. +1.0])
Automation Collaborative Platform 1367

SQRT

Arguments:

Description:

Yields the square root of a REAL value.

Example

(* FBD Program using "SQRT" Function *)

(* ST Equivalence: *)

xpos := ABS (xval);
xroot := SQRT (xpos);

IN IN REAL Must be greater than or equal to zero

SQRT Q REAL Square root of the input value
1368 ISaGRAF 5 Concrete Automation Model - Functions

SUB_DATE_DATE

Arguments:

Description:

Compares two dates and yields the difference in TIME format.

Example

(* FBD Program using "SUB_DATE_DATE" Function *)

(* ST Equivalence: *)

timResult := SUB_DATE_DATE (datVal1, datVal2);

DAT1 DAT1 DATE First date in a comparison

DAT2 DAT2 DATE Second date in a comparison

SUB_DATE_DATE TIME TIME Difference in TIME format between DAT1 and
DAT2. The possible date difference values range
from t#0h to t#1193h2m47s294ms inclusively.
A value of 1193h2m47s295ms indicates an error
for either of the following conditions:
- DAT1 is less than DAT2
- The difference between DAT1 and DAT2 is
greater than 1193h2m47s294ms
Automation Collaborative Platform 1369

TAN

Arguments:

Description:

Yields the Tangent of a REAL value.

Example

(* FBD Program using "TAN" and "ATAN" Functions *)

(* ST Equivalence: *)

tangent := TAN (angle);

result := ATAN (tangent); (* result is equal to angle*)

IN IN REAL Cannot be equal to PI/2 modulo PI

TAN Q REAL Tangent of the input value
= 1E+38 for invalid input
1370 ISaGRAF 5 Concrete Automation Model - Functions

TRUNC

Arguments:

Description:

Truncates REAL values, leaving just the integer.

Example

(* FBD Program using "TRUNC" Function *)

(* ST Equivalence: *)

result := TRUNC (+2.67) + TRUNC (-2.0891);

(* means: result := 2.0 + (-2.0) := 0.0; *)

IN IN REAL Any REAL value

TRUNC Q REAL If IN>0, biggest integer less or equal to the input
If IN<0, least integer greater or equal to the input
Automation Collaborative Platform 1371

UNLOCK_CPU

Arguments:

Description:

When using interrupts, releases the lock on the data space, granting other interrupt POUs
access.

Note: Ensure UNLOCK_CPU is called once in a given thread before calling LOCK_CPU.

Example

(* FBD Program using "UNLOCK_CPU" Function *)

(* ST Equivalence: *)

status2:=UNLOCK_CPU();

OK OK BOOL Status of the thread unlock operation
TRUE=Successful unlock operation
FALSE=Unsuccessful unlock operation
1372 ISaGRAF 5 Concrete Automation Model - Functions

XOR_MASK

Arguments:

Description:

Integer exclusive OR bit-to-bit mask

Example

(* FBD example with XOR_MASK Operators *)

(* ST Equivalence: *)

crc32 := XOR_MASK (prevcrc, nextc);

result := XOR_MASK (16#012, 16#011); (* equals 16#003 *)

IN IN DINT Must have integer format

MSK MSK DINT Must have integer format

XOR_MASK Q DINT Bit-to-bit logical Exclusive OR between IN and MSK
Automation Collaborative Platform 1373

1374 ISaGRAF 5 Concrete Automation Model - Functions

Function Blocks
The workbench supports the following function blocks:

Note: When new function blocks are created, these can be called from any language.

Alarms
Management

LIM_ALRM High/low limit alarm with hysteresis

Boolean Operations SR Set dominant bistable

RS Reset dominant bistable

R_TRIG Rising edge detection

F_TRIG Falling edge detection

Comparator
Operations

CMP Full comparison function block

Counters CTU Up counter

CTD Down counter

CTUD Up-down counter

Process Control AVERAGE Running average over N samples

BLINK Blinking Boolean signal

DERIVATE Differentiation of a real value according to
time

HYSTER Boolean hysteresis on difference of reals

INTEGRAL Integration over time

SIG_GEN Signal generator

STACKINT Stack of integer

Remote Device
Communications

CONNECT Connection to a resource

USEND_S Sending of a message to a resource

URCV_S Reception of a message from a resource

Time Operations TON On-delay timing

TOF Off-delay timing

TP Pulse timing
Automation Collaborative Platform 1375

AVERAGE

Arguments:

Description:

Stores a value at each cycle and calculates the average value of all stored values. Only the latest
N values are stored.

The maximum number of samples N is 128. When N exceeds 128, the number of samples is
truncated to 128.

When the "RUN" command is FALSE (reset mode), the output value is equal to the input
value.

Upon reaching the maximum N of stored values, the first stored value is overwritten with the
latest value.

Example

(* FBD program using the AVERAGE block: *)

RUN BOOL TRUE=run / FALSE=reset

XIN REAL Any real Variable

N DINT Application defined number of samples

XOUT REAL Running average of XIN value

Note: When setting or changing the value for N, you need to set RUN to FALSE, then set it
back to TRUE.
1376 ISaGRAF 5 Concrete Automation Model - Function Blocks

(* ST Equivalence: AVERAGE1 instance of AVERAGE block *)

AVERAGE1((auto_mode & store_cmd), sensor_value, 100);

ave_value := AVERAGE1.XOUT;
Automation Collaborative Platform 1377

BLINK

Arguments:

Description:

Generates a blinking signal.

Timing diagram:

RUN BOOL Mode: TRUE=blinking / FALSE=reset the output to false

CYCL TIME Blinking period. Possible values range from 0ms to
1193h2m47s294ms.

Q BOOL Output blinking signal
1378 ISaGRAF 5 Concrete Automation Model - Function Blocks

CMP

Arguments:

Description:

Compare two values: tell if they are equal, or if the first is less or greater than the second one.

Example

(* FBD program using the CMP block *)

(* ST Equivalence: We suppose CMP1 is an instance of CMP block *)

CMP1(level, max_level);

pump_cmd := CMP1.LT OR CMP1.EQ;

VAL1 DINT Any signed integer value

VAL2 DINT Any signed integer value

LT BOOL TRUE if val1 is Less Than val2

EQ BOOL TRUE if val1 is Equal to val2

GT BOOL TRUE if val1 is Greater Than val2
Automation Collaborative Platform 1379

alarm := CMP1.GT AND NOT(manual_mode);
1380 ISaGRAF 5 Concrete Automation Model - Function Blocks

CONNECT

Note: This function is only available for use with multi-task runtimes.

Arguments:

Description:

Creates a connection with a remote or local virtual machine (of current Project or another
Project) and manages the exchanges (for blocks USEND_S and URCV_S).

It creates a communication channel identifier (ID).

This identifier is required in all others communication function blocks (URCV_S or
USEND_S).

PARTNER parameter is a string with the following format:

'ResourceNumber@Address'

Example

'1@123.45.67.89'

EN_C BOOL Enable connection.

PART STRING Name of the remote communication partner.

VAL BOOL If TRUE, connection ID is valid.

ERR BOOL If TRUE, new non-zero status received.

STAT DINT Last detected status.

ID DINT Identification of the communication Channel.
Automation Collaborative Platform 1381

Connection with the ETCP driver to Resource 1 at address 123.45.67.89.

If the resource is on the same device, its number is enough to identify it (e.g. '1').

On a rising edge of EN_C parameter, the CONNECT block establishes the communication
with the remote partner.

The VALID parameter is set to TRUE until the communication is available.

Every time the status changes, the output parameter ERROR is set to TRUE during one cycle
and the new status is set in the STATUS parameter.

STATUS can take following values:

If the connection failed, a new connection is not automatically done, a rising edge must be
detected on EN_C parameter.

Example

The following shows a program from Resource 3 sending a string to Resource 4 on the same
device:

STATUS Description

0 Connection successfully completed.

1 Waiting for reply

2 Too many CFB connect

3 Not ready for a new connection

4 Connect failed

5 Bad partner
1382 ISaGRAF 5 Concrete Automation Model - Function Blocks

The following shows the corresponding program in Resource 4 receiving the string:

See Also
USEND_S
URCV_S
Automation Collaborative Platform 1383

CTD

Arguments:

Description:

Counts (integer) from a given value down to 0 1 by 1

Example

(* FBD program using the CTD block *)

(* ST Equivalence: CTD1 is an instance of block*)

CTD1(trigger,load_cmd,100);

underflow := CTD1.Q;

CD BOOL Counting input
(down-counting when CD is a rising edge)

LOAD BOOL Load command (dominant)
(CV = PV when LOAD is TRUE)

PV DINT Programmed initial value

Q BOOL Underflow: TRUE when CV <= 0

CV DINT Counter result
1384 ISaGRAF 5 Concrete Automation Model - Function Blocks

result := CTD1.CV;
Automation Collaborative Platform 1385

CTU

Arguments:

Description:

Counts (integer) from 0 up to a given value 1 by 1

Example

(* FBD program using the CTU block *)

(* ST Equivalence: CTU1 is an instance of CTU block*)

CTU1(trigger,NOT(auto_mode),100);

overflow := CTU1.Q;

result := CTU1.CV;

CU BOOL Counting input (counting when CU is a rising edge)

RESE BOOL Reset command (dominant)

PV DINT Programmed maximum value

Q BOOL Overflow: TRUE when CV >= PV

CV DINT Counter result
1386 ISaGRAF 5 Concrete Automation Model - Function Blocks

CTUD

Arguments:

Description:

Counts (integer) from 0 up to a given value 1 by 1 or from a given value down to 0 1 by 1

Example

(* FBD program using the CTUD block *)

CU BOOL Up-counting (when CU is a rising edge)

CD BOOL Down-counting (when CD is a rising edge)

RESE BOOL Reset command (dominant)
(CV = 0 when RESET is TRUE)

LOAD BOOL Load command (CV = PV when LOAD is TRUE)

PV DINT Programmed maximum value

QU BOOL Overflow: TRUE when CV >= PV

QD BOOL Underflow: TRUE when CV <= 0

CV DINT Counter result
Automation Collaborative Platform 1387

(* ST Equivalence: We suppose CTUD1 is an instance of block*)

CTUD1(trigger1, trigger2, reset_cmd, load_cmd,100);

full := CTUD1.QU;

empty := CTUD1.QD;

nb_elt := CTUD1.CV;
1388 ISaGRAF 5 Concrete Automation Model - Function Blocks

DERIVATE

Arguments:

Description:

Differentiation of a real value.

If the "CYCLE" parameter value is less than the real duration of the cycle time in the virtual
machine, the sampling period will use the real duration of the cycle time.

Example

(* FBD program using the DERIVATE block: *)

(* ST Equivalence: DERIVATE1 instance of DERIVATE block *)

DERIVATE1(manual_mode, sensor_value, t#100ms);

RUN BOOL Mode: TRUE=normal / FALSE=reset

XIN REAL Input: any real value

CYCL TIME Sampling period. Possible values range from 0ms to
23h59m59s999ms.

XOUT REAL Differentiated output
Automation Collaborative Platform 1389

derivated_value := DERIVATE1.XOUT;
1390 ISaGRAF 5 Concrete Automation Model - Function Blocks

F_TRIG

Arguments:

Description:

Detects a falling edge of a Boolean variable

Example

(* FBD program using the F_TRIG block *)

(* ST Equivalence: We suppose F_TRIG1 is an instance of F_TRIG block *)

F_TRIG1(cmd);

nb_edge := ANY_TO_DINT(F_TRIG1.Q) + nb_edge;

CLK BOOL Any Boolean Variable

Q BOOL TRUE when CLK changes from TRUE to FALSE
FALSE if all other cases
Automation Collaborative Platform 1391

HYSTER

Arguments:

Description:

Hysteresis on a real value for a high limit.

Example

Example of a timing diagram:

XIN1 REAL Any real value

XIN2 REAL To test if XIN1 has overpassed XIN2+EPS

EPS REAL Hysteresis value (must be greater than zero)

Q BOOL TRUE if XIN1 has overpassed XIN2+EPS and is not yet below
XIN2-EPS
1392 ISaGRAF 5 Concrete Automation Model - Function Blocks

INTEGRAL

Arguments:

Description:

Integration of a real value.

If the "CYCLE" parameter value is less than the real duration of the cycle time in the virtual
machine, the sampling period will use the real duration of the cycle time.

When using the Enable EN/ENO option for INTEGRAL blocks in LD POUs, you must
reinitialize the internal variables for the R1 input. To reinitialize the R1 input, toggle the value
from False to True then back to False.

Example

(* FBD Program using "INTEGRAL" Block: *)

RUN BOOL Mode: TRUE=integrate / FALSE=hold

R1 BOOL Overriding reset

XIN REAL Input: any real value

X0 REAL Initial value

CYCL TIME Sampling period. Possible values range from 0ms to
23h59m59s999ms.

Q BOOL Not R1

XOUT REAL Integrated output
Automation Collaborative Platform 1393

(* ST Equivalence: INTEGRAL1 instance of INTEGRAL block *)

INTEGRAL1(manual_mode, NOT(manual_mode), sensor_value, init_value,
t#100ms);

controlled_value := INTEGRAL1.XOUT;
1394 ISaGRAF 5 Concrete Automation Model - Function Blocks

LIM_ALRM

Arguments:

Description:

Hysteresis on a real value for high and low limits.

A hysteresis is applied on high and low limits. The hysteresis delta used for either the high or
low limit is equal to the EPS parameter.

Example

Example of timing diagram:

H REAL High limit value

X REAL Input: any real value

L REAL Low limit value

EPS REAL Hysteresis value (must be greater than zero)

QH BOOL "high" alarm: TRUE if X above high limit H

Q BOOL Alarm output: TRUE if X out of limits

QL BOOL "low" alarm: TRUE if X below low limit L
Automation Collaborative Platform 1395

1396 ISaGRAF 5 Concrete Automation Model - Function Blocks

R_TRIG

Arguments:

Description:

Detects a rising edge of a Boolean variable

Example

(* FBD program using the R_TRIG block *)

(* ST Equivalence: We suppose R_TRIG1 is an instance of the R_TRIG block *)

R_TRIG1(cmd);

nb_edge := ANY_TO_DINT(R_TRIG1.Q) + nb_edge;

CLK BOOL Any Boolean Variable

Q BOOL TRUE when CLK rises from FALSE to TRUE
FALSE in all other cases
Automation Collaborative Platform 1397

RS

Arguments:

Description:

Reset dominant bistable:

Example

(* FBD Program using the RS block *)

SET BOOL If TRUE, sets Q1 to TRUE

RESE BOOL If TRUE, resets Q1 to FALSE (dominant)

Q1 BOOL Boolean memory state

Set Reset1 Q1 Result Q1

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 1

1 0 1 1

1 1 0 0

1 1 1 0
1398 ISaGRAF 5 Concrete Automation Model - Function Blocks

(* ST Equivalence: We suppose RS1 is an instance of RS block *)

RS1(start_cmd, (stop_cmd OR alarm));

command := RS1.Q1;
Automation Collaborative Platform 1399

SR

Arguments:

Description:

Set dominant bistable:

Example

(* FBD Program using the SR block *)

SET1 BOOL If TRUE, sets Q1 to TRUE (dominant)

RESE BOOL If TRUE, resets Q1 to FALSE

Q1 BOOL Boolean memory state

Set1 Reset Q1 Result Q1

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 1
1400 ISaGRAF 5 Concrete Automation Model - Function Blocks

(* ST Equivalence: We suppose SR1 is an instance of SR block *)

SR1((auto_mode & start_cmd), stop_cmd);

command := SR1.Q1;
Automation Collaborative Platform 1401

SIG_GEN

Arguments:

Description:

Generates various signal: blink on a boolean, a integer counter-up, and real sine wave.

When counting reaches maximum value, it restarts from 0 (zero). So END keeps the TRUE
value only during 1 PERIOD.

Timing diagram:

RUN BOOL Mode: TRUE=running / FALSE=reset to false

PERI TIME Duration of one sample. Possible values range from 0ms to
1193h2m47s294ms.

MAXI DINT Maximum counting value

PULS BOOL Inverted after each sample

UP DINT Up-counter, increased on each sample

END BOOL TRUE when up-counting ends

SINE REAL Sine signal (period = counting duration)
1402 ISaGRAF 5 Concrete Automation Model - Function Blocks

Automation Collaborative Platform 1403

STACKINT

Arguments:

Description:

Manages a stack of integer values. The STACKINT function block includes a rising edge
detection for both PUSH and POP commands. The maximum size of the stack is 128. The
application defined stack size N cannot be less than 1 or greater than 128. This function
manages invalid values as follows:

� if N<1, STACKINT assumes a size of 1

� if N>128, STACKINT assumes a size of 128

PUSH BOOL Push command (on rising edge only)
add the IN value on the top of the stack

POP BOOL Pop command (on rising edge only)
delete in the stack the last value pushed (top of the stack)

R1 BOOL Resets the stack to its empty state

IN DINT Pushed value

N DINT Application defined stack size

EMPT BOOL TRUE if the stack is empty

OFLO BOOL Overflow: TRUE if the stack is full

OUT DINT Value at the top of the stack
OUT equals 0 when OFLO is TRUE
1404 ISaGRAF 5 Concrete Automation Model - Function Blocks

Note: The OFLO value is valid only after a reset (R1 has been set to TRUE at least once and
back to FALSE).

Example

(* FBD program using the STACKINT block: error management *)

(* ST Equivalence: We suppose STACKINT1 is an instance of STACKINT block *)

STACKINT1(err_detect, acknowledge, manual_mode, err_code, max_err);

appli_alarm := auto_mode AND NOT(STACKINT1.EMPTY);

err_alarm := STACKINT1.OFLO;

last_error := STACKINT1.OUT;
Automation Collaborative Platform 1405

TOF

Arguments:

Description:

Increase an internal timer up to a given value.

While using the Enable EN/ENO option for LD POUs, execution disregards the TOF function
block when EN is FALSE. When EN toggles from FALSE to TRUE, the function block is not
reinitialized if IN is TRUE. To reinitialize the TOF function block, make sure IN is FALSE
before setting EN to TRUE.

Timing diagram:

IN BOOL If falling edge, starts increasing internal timer
If rising edge, stops and resets internal timer

PT TIME Maximum programmed time

Q BOOL If TRUE: total time is not elapsed

ET TIME Current elapsed time. Possible values range from 0ms to
1193h2m47s294ms.
1406 ISaGRAF 5 Concrete Automation Model - Function Blocks

Automation Collaborative Platform 1407

TON

Arguments:

Description:

Increase an internal timer up to a given value.

While using the Enable EN/ENO option for LD POUs, execution disregards the TON function
block when EN is FALSE. When EN toggles from FALSE to TRUE, the function block is not
reinitialized if IN is TRUE. To reinitialize the TON function block, make sure IN is FALSE
before setting EN to TRUE.

IN BOOL If rising edge, starts increasing internal timer
If falling edge, stops and resets internal timer

PT TIME Maximum programmed time

Q BOOL If TRUE, programmed time is elapsed

ET TIME Current elapsed time. Possible values range from 0ms to
1193h2m47s294ms.
1408 ISaGRAF 5 Concrete Automation Model - Function Blocks

Timing diagram:
Automation Collaborative Platform 1409

TP

Arguments:

Description:

Increase an internal timer up to a given value.

While using the Enable EN/ENO option for LD POUs, execution disregards the TP function
block when EN is FALSE. When EN toggles from FALSE to TRUE, the function block is not
reinitialized if IN is TRUE. To reinitialize the TP function block, make sure IN is FALSE
before setting EN to TRUE.

IN BOOL If rising edge, starts increasing internal timer (if not already increasing)
If FALSE and only if timer is elapsed, resets the internal timer
Any change on IN during counting has no effect.

PT TIME Maximum programmed time

Q BOOL If TRUE: timer is counting

ET TIME Current elapsed time. Possible values range from 0ms to
1193h2m47s294ms.
1410 ISaGRAF 5 Concrete Automation Model - Function Blocks

Timing diagram:
Automation Collaborative Platform 1411

URCV_S

Note: This function is only available for use with multi-task runtimes.

Arguments:

Description:

Receives a string from a remote or local virtual machine (of current Project or another Project).

Warning: Connect block must have been called in current cycle before the URCV_S call. This
CFB receives a string from one URCV_S instance. Previously received string is overwritten.
If string is successfully received then NDR is set to TRUE during one cycle. If an error occurs,
the ERROR output parameter is set to TRUE and the status is set in the STATUS parameter.

STATUS can have the following values:

EN_R BOOL Enable to receive data

ID DINT Identification of the communication Channel

R_ID STRING Identification of the remote SFB inside the Channel

NDR BOOL If TRUE, new string received in RD

ERR BOOL If TRUE, new non-zero STATUS received

STAT DINT Last detected status

RD STRING Received string
1412 ISaGRAF 5 Concrete Automation Model - Function Blocks

See example in the description of the CONNECT block.

See Also
USEND_S
CONNECT

STATUS Description

0 Receive successfully completed

1 Waiting for message

2 Invalid identifier

3 Not ready for receive

6 Waiting for message

7 Dialog has failed
Automation Collaborative Platform 1413

USEND_S

Note: This function is only available for use with multi-task runtimes.

Arguments:

Description:

Sends a string to a remote or local virtual machine (of current Project or another Project).

Warning: Connect block must have been called in current cycle before the USEND_S call.
This CFB sends a string to one URCV_S instance on rising edge of REQ. If string is
successfully sent then DONE is set. If an error occurs, the output parameter ERROR is set to
TRUE and the status is set in the STATUS parameter.

STATUS can have the following values:

REQ BOOL Send request on rising edge

ID DINT Identification of the communication channel

R_ID STRING Identification of the remote CFB inside the channel

SD STRING String to send

DONE BOOL If TRUE, function performed successfully

ERR BOOL If TRUE, new non-zero STATUS received

STAT DINT Last detected status

STATUS Description

0 Send successfully completed

1 Send in progress
1414 ISaGRAF 5 Concrete Automation Model - Function Blocks

If the send failed, a new send is not automatically done, a rising edge must be detected on REQ
parameter.

See example in the description of the CONNECT block.

See Also
URCV_S
CONNECT

2 Invalid identifier

3 Not ready to send

6 Dialog has failed

7 Send has failed
Automation Collaborative Platform 1415

1416 ISaGRAF 5 Concrete Automation Model - Function Blocks

Automation Collaborative Platform 1417

Normative Function Blocks
The IEC 61499 language enables the distribution of individual normative function blocks
belonging to an IEC 61499 program across multiple resources.

The IEC 61499 implementation is based on the Function blocks - Part 1: Architecture and
Function blocks - Part 2: Software Tools Requirements documents available from the
ANSI webstore.

ISaGRAF supports the following normative function blocks:

E_CTU Event-driven up counter

E_CYCLE Periodic (cyclic) generation of an event

E_D_FF D (Data latch) bistable

E_DELAY Delayed propagation of an event

E_DEMUX Generation of a finite train of separate events
(table driven)

E_F_TRIG Boolean falling edge detection

E_MERGE Merge (OR) of multiple events

E_N_TABLE Generation of a finite train of separate events
(table driven)

E_PERMIT Permissive propagation of an event

E_R_TRIG Boolean rising edge detection

E_REND Rendez-vous of two events

E_RESTART Generation of restart events

E_RS Event-driven bistable (Reset dominant)

E_SELECT Selection between two events

E_SPLIT Split an event

E_SR Event-driven bistable (Set dominant)

E_SWITCH Switching (demultiplexing) an event
Automation Collaborative Platform 1419

Note: When new function blocks are created, these can be called from any language.

E_TABLE Generation of a finite train of events (table
driven)

E_TABLE_CTRL Generation of a finite train of events (table
driven)

E_TRAIN Generation of a finite train of events

LocalEventInput Automatically assigned to normative function
block arguments having the event input
direction
1420 ISaGRAF 5 Concrete Automation Model - Normative Function Blocks

E_CTU

Event-driven up counter

Interface ECC/Algorithms/Service sequences

ALGORITHM R IN ST: (* Reset *)

CV:= 0;

Q:= 0;

END_ALGORITHM

ALGORITHM CU IN ST: (* Count up *)

CV:= CV+1;

Q:= (CV=PV);

END_ALGORITHM

When an event triggers the E_CTU counter function block, CV (Current Value) begins
incrementing from 0 to the maximum value, defined by PV (Programmed Value). When CV
reaches the maximum value, Q passes to TRUE and the counter stops incrementing. An
E_CTU counter cycle restarts when R (Reset) becomes TRUE.
Automation Collaborative Platform 1421

E_CYCLE

Related Topics
E_DELAY

Periodic (cyclic) generation of an event

Interface ECC/Algorithms/Service sequences

An event occurs at EO at an interval DT after
the occurrence of an event at START, and at
intervals of DT thereafter until the occurrence
of an event at STOP.

IEC 61499 FBD Definition
1422 ISaGRAF 5 Concrete Automation Model - Normative Function Blocks

E_D_FF
D (Data latch) bistable

Interface ECC/Algorithms/Service sequences

ALGORITHM LATCH IN ST :

Q := D ;

END_ALGORITHM
Automation Collaborative Platform 1423

E_DELAY
Delayed propagation of an event

An event at EO is generated at a time interval DT after the occurrence of an event at the
START input. The event delay is cancelled by an occurrence of an event at the STOP input. If
multiple events occur at the START input before the occurrence of an event at EO, only a
single event occurs at EO, at a time DT after the first event occurrence at the START input.
1424 ISaGRAF 5 Concrete Automation Model - Normative Function Blocks

E_DEMUX

Related Topics
E_N_TABLE

Generation of a finite train of separate events (table driven)

Interface ECC/Algorithms/Service sequences

Implementation using the E_DEMUX function block type as shown is not a normative
requirement. Equivalent functionality may be implemented by various means.
Automation Collaborative Platform 1425

E_F_TRIG

Related Topics
E_R_TRIG
E_D_FF
E_SWITCH

Boolean falling edge detection

Interface ECC/Algorithms/Service sequences

IEC 61499 FBD Definition
1426 ISaGRAF 5 Concrete Automation Model - Normative Function Blocks

E_MERGE

Related Topics
E_R_TRIG

Merge (OR) of multiple events

Interface ECC/Algorithms/Service sequences

The occurrence of an event at any of the inputs EI1, EI2,...,EIn causes the occurrence of an
event at EO (n=2 in the above example).
Automation Collaborative Platform 1427

E_N_TABLE
Generation of a finite train of separate events (table driven)

Interface ECC/Algorithms/Service sequences

An event occurs at EOO at an interval DT[0] after the occurrence of an event at EI. An event
occurs at EO2 an interval DT[1] after the occurrence of the event at EO1, etc., until N
occurrences have been generated or an event occurs at the STOP input.

NOTE - In this example implementation, N <= 4.

IEC 61499 FBD Definition
1428 ISaGRAF 5 Concrete Automation Model - Normative Function Blocks

Related Topics
E_TABLE
E_DEMUX
Automation Collaborative Platform 1429

E_PERMIT
Permissive propagation of an event

Interface ECC/Algorithms/Service sequences
1430 ISaGRAF 5 Concrete Automation Model - Normative Function Blocks

E_R_TRIG

Related Topics
E_F_TRIG

Boolean rising edge detection

Interface ECC/Algorithms/Service sequences

IEC 61499 FBD Definition
Automation Collaborative Platform 1431

E_REND
Rendezvous of two events

Interface ECC/Algorithms/Service sequences
1432 ISaGRAF 5 Concrete Automation Model - Normative Function Blocks

E_RESTART
Generation of restart events

Interface ECC/Algorithms/Service sequences

1. An event is issued at the COLD output upon "cold restart" of the associated resource.

2. An event is issued at the WARM output upon "warm restart" of the associated resource.

3. An event is issued at the STOP output (if possible) prior to "stopping" of the associated
resource.
Automation Collaborative Platform 1433

E_RS
Event-driven bistable (Reset dominant)

The output Q is set to 1 (TRUE) upon the occurrence of an event at the S input, and
is reset to 0 (FALSE) upon the occurrence of an event at the R input. If simultaneous
S and R events occur, the R input is dominant. An event is issued at the EO output
when the value of Q changes.

Interface ECC/Algorithms/Service sequences

NOTE - Algorithms SET and RESET are the same as for E_SR.
1434 ISaGRAF 5 Concrete Automation Model - Normative Function Blocks

E_SELECT
Selection between two events

Interface ECC/Algorithms/Service sequences
Automation Collaborative Platform 1435

E_SPLIT
Split an event

Interface ECC/Algorithms/Service sequences

ISaGRAF automatically performs the E_SPLIT operation during compilation for all event
and data outputs. Therefore, the diagram on the left, without the E_SPLIT function block, is
equivalent to the diagram on the right.
1436 ISaGRAF 5 Concrete Automation Model - Normative Function Blocks

E_SR

Event-driven bistable (Set dominant)

The output Q is set to 1 (TRUE) upon the occurrence of an event at the S input, and is reset to
0 (FALSE) upon the occurrence of an event at the R input. If simultaneous S and R events
occur, the S input is dominant. An event is issued at the EO output when the value of Q
changes.

Interface ECC/Algorithms/Service sequences

ALGORITHM SET IN ST : (* Set Q *)

Q := TRUE ;

END_ALGORITHM

ALGORITHM RESET IN ST : (* Reset Q *)

Q := FALSE ;

END_ALGORITHM
Automation Collaborative Platform 1437

E_SWITCH

Switching (demultiplexing) an event

Interface ECC/Algorithms/Service sequences
1438 ISaGRAF 5 Concrete Automation Model - Normative Function Blocks

E_TABLE

Generation of a finite train of events (table driven)

Interface ECC/Algorithms/Service sequences

An event occurs at EO at an interval DT[0] after the occurrence of an event at EI. A second
event occurs at an interval DT[1] after the first, etc., until N occurrences have been generated
or an event occurs at the STOP input. The current event count is maintained at the CV output.

In this example implementation, N <= 4.

IEC 61499 FBD Definition
Automation Collaborative Platform 1439

Related Topics
E_TABLE_CTRL
1440 ISaGRAF 5 Concrete Automation Model - Normative Function Blocks

E_TABLE_CTRL

Related Topics
E_TABLE

Generation of a finite train of events (table driven)

Interface ECC/Algorithms/Service sequences

This implementation using the E_TABLE_CTRL function block type is not a normative
requirement. Equivalent functionality may be implemented by various means.
Automation Collaborative Platform 1441

E_TRAIN
Generation of a finite train of events
Interface ECC/Algorithms/Service sequences

An event occurs at EO at an interval DT after the occurrence of an event at EI, and at
intervals of DT thereafter, until N occurrences have been generated or an event occurs at the
STOP input.
IEC 61499 FBD Definition

Related Topics
E_CTU
E_SWITCH
E_DELAY
Automation Collaborative Platform 1443

LocalEventInput
Normative function block arguments having the event input direction are automatically
assigned an instance of the LocalEventInput function block. The LocalEventInput
function block is defined as an IEC function block in the standard 61499 library.

LocalEventInput

{

input SINT counter

local SINT LocalCounter;

output BOOL Trigger;

If counter <> LocalCounter then

LocalCounter = counter;

Trigger = true;

Else

Trigger = false;

End_if;

}

1444 ISaGRAF 5 Concrete Automation Model - Normative Function Blocks

Glossary
The glossary contains terms used in ISaGRAF and their definitions.

To optimize a search for a definition, click one of the following letter groups in which you want
to search.

A - C D - H I - N O - R S - Z

A - C

AAM Abstract Automation Model. Common interfaces used to
access Concrete Automation Model data represented by IEC
61131 and IEC 61499 elements and concepts, as well as
Device Management

Access Control The use of password-protection to control access to projects,
devices, resources, POUs, and targets. For projects, devices,
resources, and POUs, access control can also limit access to
read mode.

ACP Automation Collaborative Platform. A set of software
components and services through which plug-ins
communicate.

Action A collection of operations to perform whose execution differs
for each programming language.

Add-in Also known as a plug-in, it is a utility, driver, or other software
added to a primary application. In the Visual Studio Integrated
Development Environment (IDE), an add-in is an
Automation-based application that extends the capabilities of
the IDE.

Address Optional hexadecimal address freely defined for each variable.
This address can be used by an external application to access
the value of the variable when the resource is executed by the
Target.
Automation Collaborative Platform 1445

Alias The property of a variable indicating a short name for a
variable. For graphical programs, aliases indicate the
parameters in functions and function blocks.

ANY Overloaded data type. Enables overloading "C" function block
inputs to support specified IEC 61131-3 data types as well as
specified complex types such as arrays and structures.

ANY_ELEMENTARY Overloaded data type enabling "C" function block inputs to
support all of the IEC 61131-3 elementary data types.

Application Built project using the Application Builder.

Application Builder An integrated development environment used to build control
applications, i.e. the workbench.

Array Set of elements of the same type referenced by one or more
indexes enclosed in square brackets and separated by commas.
The index is an integer. Examples: tabi[2] or tabij[2,4].

Attribute The property of a variable indicating whether a variable is
read, write, or read/write.

Basic Function Block An IEC 61499 function block type using SFC execution
control chart (ECC) elements to control the execution of
steps/code.

An IEC 61499 function block type using SFC elements to
develop an execution control chart (ECC).

Binding Bindings are directional links, i.e., access paths, between
variables located in different resources. One variable is
referred to as the producing variable and the other as the
consuming variable. ISaGRAF enables external bindings
between resources belonging to different projects.

Binding Error Variable Variables that enable the management of binding errors at the
consumer resource level.

Boolean (BOOL) Basic type that can be used to define a variable, a Parameter
(POU) or an I/O simple device. A Boolean can be TRUE (1) or
FALSE (0).
1446 ISaGRAF 5 Concrete Automation Model - Glossary

Boo Action A Boolean variable where the value corresponds to Step
activity (0=inactive and 1=active). Possible qualifiers are
Action (N), Reset (R), and Set (S).
See also Action

Breakpoint A mark placed by the user at particular sections of the code. In
Debug mode, the application stops when it encounters a
breakpoint. Breakpoint implementation varies for each
programming language.

BYTE Unsigned integer 8-bit format. Basic type that can be used to
define a variable, a Parameter (POU) or an I/O Device.

CAM (Concrete Automation Model) Concrete project model
allowing the usage of a device inside the ACF. Moreover, it
may include AAM implementation for IEC 61131 concepts
(Project data and POU body), AAM implementation for device
management interfaces, compiler, wizard data and templates,
deployment representation, and plug-ins specific to the CAM.

C Function Function written with the "C" language, called from POUs, in
a synchronous manner.

C Language High level literal language used to access particularities of the
target system. C language can be used to program C functions,
function blocks and conversion functions.

Call Stack Information which tracks stepping between POUs and called
functions. Debug information includes call stack. You can only
generate debug information for TIC POUs.

Cell Elementary area of the graphic matrix for graphic languages or
for the Dictionary.

CFB Indicates a C function block

CFU Indicates a C function

Channel A channel of an I/O simple device represents a hardware I/O
point. A channel is either an input or output. To enable use in
POUs, variables including directly represented variables are
connected to channels.
Automation Collaborative Platform 1447

Check In Sending the contents of ISaGRAF elements including projects,
I/O devices, resources, and POUs for storage in a version
source control database. Checked-in elements can be
recovered at a later time.

Child A program which is activated by its parent. The child program
has only one parent. Only the parent can start or stop child
program. A parent can have more than one child.

Clearing a Transition The forcing of the clearing of a transition whether the latter is
valid or not (i.e all previous steps are active or not). Tokens are
moved and actions are executed as for a usual transition
clearing. All tokens existing in the preceding steps are
removed. A token is created in each of the following steps.

CMG Short name for the Configuration Manager

Coil A graphic component representing the assignment of an output
or an internal variable.

Common Scope Scope of a declaration applying to all POUs within a Project.
(Only defined words and types can have common scope).

Complex Equipment See I/O Complex Device

Configuration See Device

Configuration Manager (ConfigurationManager.exe) The executable file providing
communication services between ISaGRAF and target.
Responsible for launching, killing, and giving the status of
running virtual machines.

Connection The link between networks and devices.

Constant Expression Literal expression used to describe a constant value.

Contact Depending on the type of contact, a graphic component
representing the value or function of an input or an internal
variable.

Contextual Menu Menu that is displayed under the mouse cursor by
right-clicking the mouse.

Conversion Filter attached to an input or output variable. The conversion is
automatically applied each time the input variable is read or
the output variable is refreshed.
1448 ISaGRAF 5 Concrete Automation Model - Glossary

Conversion Function "C" written Function which describes a conversion. Such a
conversion can be attached to any input or output, integer or
real variable.

CRC Cyclic redundancy checking

Cross Reference Browser A tool that finds all references to variables, i.e., cross
references, defined in the POUs of a project. The browser
provides a total view of the declared variables in the programs
of the project and where these are used.

CSV File Format (Comma Separated Values) A delimited data format having
each piece of information separated by commas and each line
ending with a carriage return. The CSV file format can be used
for importing or exporting variables data.

Cycle The virtual machine executes the programs of a resource as a
cycle. All programs of the resource are executed following the
order defined by the user, from the first program to the last and
again and again. Before the execution of the first program,
inputs are read. After the execution of the last program, the
outputs are refreshed.

Cycle Timing The amount of time given to each resource cycle. If a cycle is
completed within the cycle timing period, the system waits
until this period has elapsed before starting a new cycle. The
cycle consists of scanning the physical inputs of the process to
drive, executing the POUs of the resource, then updating
physical outputs. The cycle time can differ for each cycle
when no cycle timing is specified. When the cycle timing is
shorter, the virtual machine waits until this time has elapsed.
When the cycle time is longer, the virtual machine
immediately scans the inputs but signals with the "overflow"
that the programmed time has been exceeded. When the
trigger cycles property is false or the cycle time is 0, the virtual
machine does not wait to start a new cycle.

Cycle-to-cycle Mode Execution mode of a resource where cycles are executed one
by one, according to the orders given by the user during
debugging. Another execution mode for resources is real-time
mode.
Automation Collaborative Platform 1449

Cyclic Program A time independent program that is executed during each
cycle.

D - H

Database The collection of definitions making up a ISaGRAF project.
The version source control feature stores checked-in
information in a separate database.

DATE The format of a date is year-month-day, separated by hyphens.
Basic type that can be used to define a Variable, a Parameter
(POU) or a Device.

Debug Information For use when debugging using the step-by-step mode. Debug
information includes call stack information which tracks
stepping between POUs and called functions. You can only
generate debug information for TIC POUs.

Debugging The process of detecting defects in a project that includes
setting and clearing breakpoints, step-by-step debugging, and
cycle-to-cycle debugging.

Declared Array A user-defined array defined as a data type. See also
Undeclared Array

Declared Instance (of a
function block)

A function block having assigned instances, i.e., declared in
the dictionary.

Defined Word Word that is an expression. This word can be used in POUs. At
compiling time the word is replaced by the expression. A
defined word can not use a defined word.

Dependency (on a
library)

The state where a project uses, i.e., depends, on functions or
function blocks defined in a library.

Design (mode) An editing mode during which the Application Builder is not
connected to the runtime module.

Device A representation of the equipment, i.e., programmable logic
controller, running the virtual machines.
See also Target

Device Management Provides the communication infrastructure with the Run-time
Engine.
1450 ISaGRAF 5 Concrete Automation Model - Glossary

Dictionary The view displaying the variables, function and function block
parameters, types, and defined words used in the programs of a
Project.

Dimension The size (number of elements) of an array. For example:
[1..3,1..10] - represents a two-dimensional array containing a
total of 30 elements.

Direction Variables and I/O devices have a direction. For the property of
a variable, direction indicates whether a variable is an input,
output, or internal. The direction of an I/O device can be input
or output.

Directly Represented
Variable

A variable is generally declared before its use in one POU.
Inputs and outputs can be used without any declaration
respecting a defined syntax. It corresponds to direct
represented variables. Example: %QX1.6, %ID8.2

Double Integer (DINT) Signed double integer 32-bit format. Basic type that can be
used to define a variable, a Parameter (POU) or a Device.

Double Word (DWORD) Unsigned double word 32-bit format. Basic type that can be
used to define a variable, a Parameter (POU) or a Device.

Driver See I/O Driver, Network Driver

Dynamic Behavior Continuous and sequential execution of the steps and
operations of a program during an execution cycle.

Edge See Falling Edge, Rising Edge

ETCP (ETCP.exe) ISaGRAF network driver that uses the TCP / IP
stack.

Execution Control Initial
State (EC initial state)

The execution control state that is active upon initialization of
an execution control chart.

Execution Control State
(EC state)

The situation in which the behavior of a basic function block
with respect to its variables is determined by the algorithms
associated with a specified set of execution control actions.

Execution Control
Transition (EC
transition)

The means by which control passes from a predecessor
execution control state to a successor execution control state.
Automation Collaborative Platform 1451

Execution Mode The mode in which a resource is executed: real-time,
cycle-to-cycle, and step-by-step.

Expression Set of operators and identifiers.

Failover Mechanism A redundant operational mode where a secondary hardware
and software takes over when the primary system becomes
unavailable.

Falling Edge A falling edge of a boolean variable corresponds to a change
from TRUE (1) to FALSE (0).

FBD Function Block Diagram. Programming language.

File Mode The mode where you save version source control information
to a repository located on a local or remote computer.
See also Server Mode

Function POU which has input parameters and one output parameter. A
function can be called by a program, a function or a function
block. A function has no instance. It means that local data are
not stored, and are generally lost from one call to the other.

Function Block POU which has input and output parameters and works on
internal data (parameters). A program can call an instance of a
function block. A function block instance cannot be called by a
function (no internal data for a function). A function block can
call another function block (instantiation mechanism is
extended to the function blocks called).

Global Scope Scope of a declaration applying to all POUs of one resource.

Global Variable A variable whose scope is global.

Hidden Parameter Input parameters of a function block that are not displayed in
programs.

Hierarchy Architecture of a Project, divided into several POUs. The
hierarchy tree represents the links between parent programs
and children programs.
See also Parent Program

I - N

Identifier Unique word used to represent a variable or a literal
expression in the programming.
1452 ISaGRAF 5 Concrete Automation Model - Glossary

IFB Indicates an IEC 61131 function block

IFU Indicates an IEC 61131 function

Initial Situation Set of the initial steps which represents the context of the
program when it is started.

Initial Step A Step that is activated when the program starts.

Initial Value Value which has a variable when the virtual machine starts the
execution of the resource. The initial value of a variable can be
the default value, a value given by the user when the variable
is defined or the value of the retain variable after the virtual
machine has stopped.

Input Direction of a variable or an I/O device. An input variable is
connected to an input channel of an input device.

Input Parameter Input argument of a function or a function block. These
parameters can only be read by function or function block. A
parameter is characterized by a type.

Instance (of a Function
Block)

Copy of the internal data of a function block which persists
from one call to the other. This word is used, by extension, to
say that a program calls a function block instance and not the
function block itself.

Instruction An elementary operation of a program, entered on one line of
text.

Integer (INT) Signed integer 16-bit format. Basic type that can be used to
define a variable, a Parameter (POU) or a Device.

Internal Attribute of a variable, which is not linked to an I/O device.
Such a variable is called an internal variable.

I/O Channel See Channel
Automation Collaborative Platform 1453

I/O Complex Device Element grouping several simple I/O devices. This provides
the means for manufacturers to mix types and directions. The
implementation of the I/O driver of an I/O complex device
corresponds to the implementation of the drivers of all
contained I/O simple devices. OEM parameters enable
providing parameters to I/O complex devices.

I/O Device Element grouping several channels of the same type and
direction. These can be either an I/O Simple Device or an I/O
Complex Device.

I/O Driver "C" code which makes the interface between a virtual machine
and the devices. The driver can be statically linked to the
virtual machine or in a separate DLL (such as for the Windows
NT target). Two types of drivers are available for use in
ISaGRAF: generic and advanced.

I/O Simple Device An I/O simple device corresponds to a piece of equipment
having inputs or outputs, such as an I/O board.
OEM parameters enable providing parameters to I/O simple
devices. Integrators define I/O simple devices.

I/O Variable Variable connected to a channel of an I/O device. An array can
be connected to an I/O device if all elements are connected to
contiguous channels, the type of the array must be the same
type as the I/O device.

I/O Wiring Definition of the links between the variables of the Project and
the channels of the I/O devices existing on the Target system.

ISaRSI (IsaRSI.exe) Enhanced serial port driver. The network driver
that provides communication with ISaGRAF on a serial port.
Similar to ETCP.

ITA Indicates an array

ITS Indicates a structure

IXLSma Server (IxlSmaServer.exe) Provides service for performing IXL read
operations, using the HSD driver with the SMA method. This
method is independent from the virtual machine cycle and is
thus faster.

Keyword Reserved identifier of the language.
1454 ISaGRAF 5 Concrete Automation Model - Glossary

Label The identifier for an instruction within a program. Labels can
also be used for jump operations.

Language Container A workspace enabling the development of graphic or textual
POUs programmed using one of the available programming
languages. Individual language containers can only use one
programming language. When editing a container, the toolbox
displays the corresponding elements for the specific
programming language. The multi-language editor (MLGE)
enables the creation of language containers.

LD Ladder Diagram. Programming language.

LD Action An action where you program an LD diagram in the level 2
window of and SFC program or basic IEC 61499 function
block. Possible qualifiers are Action (N), Reset (R), Set (S),
Pulse on Deactivation, and Pulse on Activation.
See also Action

Library Special projects made up of devices and resources in which
you define functions and function blocks for reuse throughout
ISaGRAF projects. Libraries also enable you to modularize
projects and to isolate functions and function blocks so that
these can be validated separately.

Link A graphic component connecting elements in a diagram.

Literal A lexical unit that directly represents a value.

Local Scope Scope of a declaration applying to only one POU.

Locked I/O Input or output variable, disconnected logically from the
corresponding I/O device, by a "lock" command sent by the
user from the debugger.

Long Integer (LINT) Signed integer 64-bit format. Basic type that can be used to
define a variable, a Parameter (POU) or a Device.

Long Real (LREAL) Type of a variable, stored in a floating IEEE double precision
64-bit format. Basic type that can be used to define a variable,
a Parameter (POU) or a Device.

Long Word (LWORD) Unsigned long word 64-bit format. Basic type that can be used
to define a variable, a Parameter (POU) or a Device.
Automation Collaborative Platform 1455

Maximum time Time of the longest cycle since the virtual machine has started
the execution of the programs of a resource.

Memory for Retain Run-time setting for a resource indicating the location where
retained values are stored (the required syntax depends on the
implementation).

Message See STRING

MLGE Multi-language Editor.

Monitoring A process by which the user views virtual machine running
states, system events, target capability, network card status and
various online statistics in a read format.

MSI Windows installers (.msi) used to install applications and files
typically used by the end user of the application.

Network The term network is used in different contexts:
- The means of communication between the target platform
and their clients.
- For the execution order of graphic programs, a sequence of
connected blocks.

See also Sub-network

Network Driver "C" code which makes the interface between the Target
network layer and the network.

Non-stored Action A list of statements, executed at each Target cycle, when the
corresponding step is active.

O - R

OEM Original Equipment Manufacturer

OEM Parameter Parameters attached to an IO device. A parameter is
characterized by a type. An OEM parameter is defined by the
designer of the device. It can be a constant, or a variable
parameter entered by the user during the I/O connection.

Online Mode Mode in which the Application Builder is connected to a target
enabling target management, monitoring and debugging.

Operator Basic logical operation such as arithmetic, boolean,
comparator, and data conversion.
1456 ISaGRAF 5 Concrete Automation Model - Glossary

Output Direction of a variable or an I/O device. An output variable is
connected to an output channel of an output device.

Output Parameter Output argument of a function or function block. These
parameters can only be written by a function or function block.
A function has only one output parameter. A parameter is
characterized by a type.

Overflow Integer value which corresponds to the number of times the
cycle time has been exceeded. Always 0, if cycle time is 0.

Overloading Overloading a "C" function block input enables a function
block call to perform various tasks depending on the context.
The ANY and ANY_ELEMENTARY data types enable
overloading.

Package The Target Definition Builder enables OEMs to provide
packages containing the drivers of several I/O devices and/or
"C" functions and function blocks available for a specific
target.

Parameter (POU) See Input Parameter, Output Parameter, OEM Parameter, and
Hidden Parameter

Parent Program A program which controls other programs, called its children.
See also Child

Platform Builder Defines, configures and generates the source code making of
the runtime engine. The target will have the proper source
code, the PLC definition will be use by the application builder
to limit or add features, and to generate a report containing a
description of the final product contents. Custom functions,
function blocks, extended data types, field bus drivers, and
comments can be added with the platform builder.

PLC Programmable Logic Controller

Plug-in A module or package integrated into a bigger platform that
enables the extension of the application.

POU Program Organization Unit: set of instructions that are
programs, a functions or function blocks.

Power Rail Main left and right vertical rails at the extremities of a ladder
diagram.
Automation Collaborative Platform 1457

Primary Device For failover mechanisms, the device having the previously
downloaded application. By default, this device remains
active until a failure when the standby secondary device takes
over.

Program See POU. A program belongs to a resource. It is executed by
the virtual machine, depending on its location (order) in the
resource.

Project Set of devices and links between their resources.

Project Updater A program allowing to convert projects developed using
previous versions for use within the latest version. Each time
you upgrade to a newer version, you need to update projects.

PROPI PROPI is an interface enabling you to send commands directly
to ISaGRAF via a custom application. For instance, you could
use the PROPI interface when using ISaGRAF in the
background.

Pulse Action A list of statements executed only once when the
corresponding step is activated.

Qualifier Determines the way the action of a step is executed. The
qualifier can be N, S, R, P0 or P1.

Real Type of a variable, stored in a floating IEEE single precision
32-bit format. Basic type that can be used to define a variable,
a Parameter (POU) or a Device.

Real Device I/O device physically connected to an I/O driver on the target.
See also Virtual Device

Real-time Mode The run time normal execution mode of a resource where
target cycles are triggered by the cycle timing. Another
execution mode for resources is cycle-to-cycle mode.

Resource The POUs and definitions making up a virtual machine.

Resource Name The unique identifier of a resource within a device.

Retain Attribute of a variable. The value of a retain variable is saved
by the virtual machine at each cycle. The value stored is
restored if the virtual machine stops and restarts.
1458 ISaGRAF 5 Concrete Automation Model - Glossary

Return Graphic component of a program representing the conditional
end of a program.

Return Parameter See Output Parameter

Rising Edge A rising edge of a Boolean variable corresponds to a change
from FALSE (0) to TRUE (1).

Rung Graphic component of a program representing a group of
circuit elements leading to the activation of a coil in an
LD diagram.

Run-time Engine Solves application logic and drive I/O points. This portable
engine features modular architecture.

Run-time Error Application error detected by the Target system at run time.

S - Z

Scope See Global Scope, Common Scope, Local Scope

Secondary Device For failover mechanisms, the device having the duplicated
application. By default, this device remains on standby until
the primary active device fails.

Section Program, function and function block sections are where are
localized POU of a resource. POUs located in the Program
section are executed by the virtual machine.

Security State The indication of the level of access control that is applied to a
resource, a POU, or a target.

Selection List Also known as a 'combo-box'.

When a selection list is provided for a particular cell, clicking
on its right part (down arrow), displays the available choices.
To make a selection, perform one of the following operations:
- click on the item (use the scroll bar first if the required choice
is not visible)
- move in the list using the cursor keys and press Enter
- type the first letter (if more than one item starts with this
letter, press the letter again to select the next occurrence).

Separator Special character (or group of characters) used to separate the
identifiers in a literal language.
Automation Collaborative Platform 1459

Sequential Program A program that is executed according to the dynamic behavior
of the programming language and where the time variable
explicitly synchronizes operations.

Server Part of the target that receives requests from IXL to retrieve
information about the resource run by the virtual machine.

Server Mode (Client/server mode) The mode where you save version source
control information in a server repository. Before using this
mode, you need to set up the repository server and connect
with the server.
See also File Mode

SFB Indicates a function block

SFC Sequential Function Chart. Programming language.

SFC Action An action with an associated SFC child program. Possible
qualifiers are Action (N), Reset (R), and Set (S).
See also Action

SFU Indicates a function

Shape The spatial form or appearance of an object.

Short Integer (SINT) Signed integer 8-bit format. Basic type that can be used to
define a Variable, a Parameter (POU) or a Device.

Simulation Mode Mode in which virtual machines execute the code of individual
resources and the Windows platform performs aspects such as
POU execution.

SIT Indicates a Standard IEC 61131 type.

Solution Explorer A view with a tree-like structure enabling the management of
items such as devices, programs, functions, function blocks
and dictionaries.

ST Structured Text. Programming language.

ST Action An action where you define ST code in the level 2 window of
and SFC program or basic IEC 61499 function block. Possible
qualifiers are Action (N), Reset (R), Set (S), Pulse on
Deactivation, and Pulse on Activation.
See also Action
1460 ISaGRAF 5 Concrete Automation Model - Glossary

Standard IEC 61131
Types

Boolean (Bool), Short Integer (SINT), Unsigned Short Integer
(USINT), BYTE, Integer (INT), Unsigned Integer (UINT),
WORD, Double Integer (DINT), Unsigned Double Integer
(UDINT), Double Word (DWORD), Long Integer (LINT),
Unsigned Long Integer (ULINT), Long Word (LWORD),
Real, Long Real (LREAL), TIME, DATE, STRING.
See also Type

Statement Basic ST complete operation.

Step A basic graphic component representing a steady situation of
the process. A step is referenced by a name. The activity of a
step is used to control the execution of the corresponding
actions.
See also Action

Step-by-step Mode A mode used while debugging POUs where you set
breakpoints at specific lines of code or rungs causing the
application to stop when reached.

STRING Character string. Basic type that can be used to define a
Variable, a Parameter (POU) or a Device.

Structure Corresponds to a type which has previously been specified to
be a data structure, i.e. a type consisting of a collection of
named elements (or fields). Each field can be a basic type, a
basic structured type, a structure or an array. A field of a
variable with a structure type is accessible using the following
syntax: VarName.a, VarName.b[3], VarName.c.d

Sub-network For the execution order, a sequence of blocks encapsulated by
a region element.

See also Network

Sub-program A program called by a Parent Program. A sub-program is also
called a Child program. To call sub-programs written in
another language, use a function. A function can be called by
any POU.
Automation Collaborative Platform 1461

Symbol Table The file corresponding to the variables and function blocks
defined for a resource. This file is downloaded onto the target.
The symbol table is set to one of two formats: complete table
or reduced table. The complete table contains all defined
variables, whereas, the reduced symbol table only contains the
names of variables having a defined Address cell.

Symbols Monitoring
Information

When debugging or simulating, code required to enable
graphically displaying the output values of functions and
operators in graphical programs.

System Events Log of execution events occuring on the target platform.

System Variable System variables hold the current values of all system
variables for a resource. You can read from or write to system
variables. These variables are defined in the dsys0def.h file.
For example, the current cycle time is a system variable that
can only be read by a program.

Target The hardware platform onto which you download an
application.
See also Device

Target Definition Builder The Target Definition Builder enables the description of
targets (main definition and options of the embedded
software), complex data types (such as defined in IEC
languages), "C" functions, function blocks and conversion
functions, and I/O devices or network drivers for IXL
communication.

Target Management Operations that control the application of a target including
downloading, uploading, starting and stopping resources, and
performing online changes.

TIC Code Target Independent Code produced by the ISaGRAF compiler
for execution on virtual machines.

Timer (TIME) Unit of a timer is the millisecond. Basic type that can be used
to define a Variable, a Parameter (POU) or a Device.

Token (SFC) Graphical marker used to show the active steps of an SFC
program.
1462 ISaGRAF 5 Concrete Automation Model - Glossary

Toolbox The utility containing the elements and shapes available for
language and ISaVIEW containers. For language containers,
the available elements differ for the individual programming
languages.

Tool Window A standard Microsoft Windows control that enables
application creation and editing.

Top Level Program Program put at the top of the hierarchy tree. A top level
program is activated by the system.
See also Parent Program

Transition A basic graphic component representing the condition
between different steps. A transition is referenced by a name.
A Boolean condition is attached to each transition.

Trigger Cycles Resource property indicating whether a resource cycle
executes according to a defined cycle timing.

Type Data types are defined for many items in ISaGRAF projects:
- variables
- function or function block parameters
- I/O simple devices
See also Standard IEC 61131 Types, User Types

Undeclared Array An undeclared array is defined as a variable in a dictionary
instance. See also Declared Array

Unsigned Double Integer
(UDINT)

Unsigned double integer 32-bit format. Basic type that can be
used to define a variable, a Parameter (POU) or a Device.

Unsigned Integer (UINT) Unsigned integer 16-bit format. Basic type that can be used to
define a variable, a Parameter (POU) or a Device.

Unsigned Long Integer
(ULINT)

Unsigned integer 64-bit format. Basic type that can be used to
define a variable, a Parameter (POU) or a Device.

Unsigned Short Integer
(USINT)

Unsigned integer 8-bit format. Basic type that can be used to
define a Variable, a Parameter (POU) or a Device.

User Data User Data are any data of any format (file, list of values) which
have to be merged with the generated code of the resource in
order to download them into the target PLC. Such data are not
directly operated by the virtual machine and is commonly
dedicated to other software installed on the target PLC.
Automation Collaborative Platform 1463

User Types Types that the user can define using basic types or other user
types. User types can be arrays or structures.

User-Defined Function
Block

A custom function block. You create user-defined function
blocks in the Function Blocks section for a resource.

Validity of a Transition Attribute of a Transition. A transition is validated (or enabled)
when all the preceding steps are active.

Variable Unique identifier of elementary data which is used in the
programs of a Project.

Variable Group Grouping of variables enabling managing and logically sorting
these within a resource. Variable groups are displayed in the
dictionary’s variables tree.

Variable Name A unique identifier, defined in ISaGRAF, for a storage location
containing information used in exchanges between resources.

Version Source Control A tool that manages the changing versions of ISaGRAF
elements including projects, I/O devices, resources, and POUs
by saving them to a version source control database. Saving
these elements to a control database enables you to retrieve
older versions of the elements at a later time.

Virtual Device I/O device which is not physically connected to an I/O driver
on the target.
See also Real Device

Virtual Machine (IsaVM.exe) The operating system process or thread that
executes the previously downloaded application.

VS2008 Microsoft Visual Studio 2008.

Wiring The property of a variable indicating the I/O channel to which
the variable is wired.

WORD Unsigned word 16-bit format. Basic type that can be used to
define a variable, a Parameter (POU) or a Device.
1464 ISaGRAF 5 Concrete Automation Model - Glossary

Workstation A communication pathway to external systems and third party
tools connected across the field bus.

Zip Source An exchange file of 7-Zip (.7z) compressed format containing
XML files for exported ISaGRAF elements. From the
compilation options for a resource, you can choose to embed a
zip source file on the target. This source file can be uploaded
from the target at a later time.
Automation Collaborative Platform 1465

1466 ISaGRAF 5 Concrete Automation Model - Glossary

Licensing
ISaGRAF enables the creation of virtual machines running on hardware components, called
targets.

There are three types of software licenses available for ISaGRAF:

� Free version, delivered with the product and available for testing the product. This
version enables using only the ISaFREE_TPL project template with the ISAFREE-TGT
target and projects can have a maximum size of 3200 bytes.

� Integrated license, included in the installation of the ISaGRAF software. The product is
licensed upon installation. The Integrated license is available as a Full license or a
Limited license. A Full license is a fully operational version of the product while a
Limited license can only have one device.

� Engineering license, obtained by manually activating an unlicensed version of the
product. The Engineering license is available as a Full license or a Limited license. A Full
license is a fully operational version of the product while a Limited license can only have
one device.

The Integrated and Engineering licenses are available for the following activation periods:

� Lifetime (does not expire)

� 1 month

� 6 months

� 12 months

To access Licensing

1. From the Help menu, click Licensing CAM 5.

The Licensing for the ISaGRAF 5 Concrete Automation Model is displayed.
Automation Collaborative Platform 1467

To obtain an authorized Engineering license

1. From the Help menu, click Licensing CAM 5.

The Licensing for the ISaGRAF 5 Concrete Automation Model is displayed along with
three User Codes.

2. Send an e-mail containing the desired activation period and the three User Codes to the
support team:
support@ISaGRAF.com

3. The support team will email you back Registration Keys 1 and 2.

4. Insert the Registration Keys in their appropriate regions and click Validate.

ISaGRAF is now licensed.

To remove an authorized license

1. From the Help menu, click Licensing CAM 5.

The Licensing for the ISaGRAF 5 Concrete Automation Model is displayed along with
three User Codes.

2. Send an email containing the three User Codes to the support team:
support@ISaGRAF.com

3. The support team will email you back Registration Keys 1 and 2.

4. Insert the Registration Keys in their appropriate regions and click Validate.

A confirmation code appears.

5. Send an email containing the confirmation code to the support team:
support@ISaGRAF.com

ISaGRAF is no longer licensed.
1468 ISaGRAF 5 Concrete Automation Model - Licensing

Windows Runtime Modules

Windows run-time modules enable your control applications, developed with ISaGRAF on the
development platform, to execute on Windows® 7 or Windows® 8 target platforms. For these
operating systems, both the development platform and target platform can be the same. The
run-time modules form the containers into which the applications you build are deployed. The
Windows runtime modules for ISaGRAF 5.5x support the following additional features:

The Windows runtime module is available in the following format:

The IEC 61850 standard for electrical substation automation

For basic and composite IEC 61499 function blocks, enable performing the following online
changes:

- Add, delete, rename, and reorder programs

- Add, delete, and rename steps and transitions, as well as modify initial steps or flow
between elements

- Add, delete, and move actions blocks within steps of SFC programs. You can also change
the qualifier for action blocks.

- Add, delete, and move function blocks

- Add and delete function block instances

- Modify and rename user-defined functions and function blocks

- Add, delete, and modify the parameters of user-defined functions and function blocks

A Failover mechanism enabling the duplication of all resources belonging to a device where
these are attached to a second device running on a mirror target, completely independent of
the other.

The definition of the resource cycle time in microseconds, using a decimal point, for the
QNX 6, Linux, VXWorks, OS Mono, and OS Multi targets.

Virtual machines consider possible cycle time drift when calculating hard real-time.

Searches on targets for C functions and functions blocks, I/O drivers, and conversion
functions
Automation Collaborative Platform 1469

� ISAFREE_TGT, a multitask implementation where the virtual address is coded on 32 bits
but the code will then increase 50 percent
1470 Windows Runtime Modules

ISAFREE-TGT
The ISAFREE_TGT target uses the following files on the Windows® 7 or Windows® 8
platforms:

File Description

ISaGRAF.exe Configuration Manager. This is the file to be launched (manually or
during start-up) on your system in order to communicate with the
workbench. This task is responsible for launching, killing and giving the
state of the Kernels running on your system.

ISaGRAF will automatically launch ETCP.

IsaVM.exe Kernel or Virtual Machine. This is the "task" that executes the resource
code.

IsaRSI.exe The network driver used when developing an IXL client using serial
communication with the workbench. IsaRSI also manages the
communication between local Kernels and other remote Kernels . In this
case, The IsaRSI driver emulates the behavior of a field-bus. We can
speak of IsaRSI as a virtual field-bus.

ETCP.exe Enhanced TCP/IP protocol. Optional. The network driver used for the
communication with the workbench on Ethernet. In this case, The ETCP
driver emulates the behavior of a field-bus. We can speak of ETCP as a
virtual field-bus.

ISaIXL.dll This *.dll file appears only for the Windows and RTX targets. On other
systems (VxWorks, QNX, and Linux), this is statically linked to the
above components and does not appear in this directory. This corresponds
to the services used to communicate with Kernels.

ISaSys.dll This *.dll file appears only for the Windows and RTX targets. On other
systems (VxWorks, QNX, and Linux), this is statically linked to the
above components. This corresponds to the system layer. It is this
software layer that is ported by integrators to port the Kernel on other
systems.

IsaAFB.dll This *.dll file appears only for the Windows target. On other systems
(VxWorks, QNX, Linux, and RTX), this *.dll is statically linked to the
above components. Contains the advanced control functions and function
blocks, including C functions and C function blocks
Automation Collaborative Platform 1471

IsaSER.dll This *.dll file appears only for the Windows target. On other systems
(VxWorks, QNX, Linux, and RTX), this *.dll is statically linked to the
above components. contains serial communnication (TCP or RS232) C
functions.

IsaNDT.dll This *.dll file appears only for the Windows target. On other systems
(VxWorks, QNX, Linux, and RTX), this *.dll is statically linked to the
above components. Contains arithmetic and bit operation C functions
used with data types such as BYTE, WORD, DWORD, LWORD, and
LREAL.

ModbusTcpClient.dll This *.dll file appears only for the Windows target. On other systems
(QNX, Linux), this *.dll file is statically linked to the above components.
Contains a Modbus TCP/IP IO driver (client).

ModbusTcoServer.dll This *.dll file appears only for the Windows target. On other systems
(QNX, Linux), this *.dll file is statically linked to the above components.
Contains a Modbus TCP/IP IO driver (server)

isamsg.fcr Text file describing messages of errors that may occur in the Kernel
during the execution of resource code.

isamsg.wng Text file describing messages of warnings that may occur in the Kernel
during the execution of resource code.

isawnt.fcr Text file describing messages of errors that may occur in the standard
Kernel during the execution of resource code specific to the OS.

isawnt.wng Text file describing messages of warnings that may occur in the standard
Kernel during the execution of resource code specific to the OS.

File Description
1472 Windows Runtime Modules

Target Features
The following target features are available for the ISaGRAF 5.5x ISAFREE-TGT target:

Feature Description

Memory Size The memory size of the target.

Enhanced Target Enables the use of ISaGRAF 5.30 enhanced features.
Possible values are True or False.

Password Enables supporting passwords on a target. This prevents
any user from connecting to the target without the proper
password. Possible values are True or False.

Ladder Diagram Optimized Code Enables optimizing the code generated in the LD language
to improve performance. Possible values are True or False.

Binding Enables communication between targets through bindings.
Possible values are True or False.

Multiple Resources Enables setting the maximum number of resources
supported by the target. Only available for multi-task
porting. Possible values are True or False.

Online Change Enables online modifications during the execution of a
user application. Possible values are True or False.

Retain Enables retaining variable values so that each retained
variable persists through time. Possible values are True or
False.

Micro Cycle Time Enables microsecond precision for cycle time on the target
instead of millisecond precision. Possible values are True
or False.

Interrupts Enables the support of time-based or hardware-based user
interrupts. Possible values are True or False.

Flexible array and FB parameters
by reference

Enables passing input parameters and flexible array
parameters by reference to "C" function blocks. Possible
values are True or False.

POU TIC greater than 64 KB Removes the limitation of 64 KB per POU and is only
available for large memory targets. Possible values are
True or False.
Automation Collaborative Platform 1473

Note: Existing projects may contain older target versions not supporting all of these target
features.

To view the target features

You cannot modify the ISAFREE-TGT target features.

1. In the Solution Explorer, right-click the device, and then click Open.

2. From the Device View, in the breadcrumbs trail, click and select Target Features.

The target features are displayed in the Device View.

Binding Network Instances Enables the capacity to instantiate multiple networks (for
example enables using and configuring multiple ETCP
networks). Possible values are True or False.

SFC transition priority Enables supporting user-defined priorities for the parallel
branches of transitions. Possible values are True or False.

Wiring on complex variable
members

Enables connecting a member of a complex variable to an
I/O board channel. Possible values are True or False.

IO Device channel OEM
parameters

Enables defining OEM parameters on I/O channels.
Possible values are True or False.

Online change support for
initialization of C FB instances

Enables the target to support the addition or removal of
"C" function block instances having initialization or exit
functionality when performing online changes. Adding or
removing such function blocks while performing online
changes may impact cycle time or RAM consumption.
Possible values are True or False.

Partial access of ANY_BIT
variables

Enables read and write access on integer-type variables
and sub-variables using specific TICs. Possible values are
True or False.

Feature Description
1474 Windows Runtime Modules

Installing Windows Run-time Modules
You install Windows runtime modules by copying them, then pasting them onto the target
computer running either the Windows® 7 or Windows® 8 operating systems.

Note: When installing a run-time module, make sure that the complete path for the directory
contains no dashes.

Startup Parameters

You can specify startup parameters as entries in an initialization file (.ini) or in a command line.
When defining parameters, the initialization file name must match the executable file name.
For example, for the executable ISaGRAF.exe, you name the initialization file "ISaGRAF.ini".

Component
Name

Parameter Description

[ETCP] CruCnxTimeOut Timeout for connection.
The default value is 1.5s (1500 ms).

SockCruPortId CRU server TCP/IP port.
The default value is 1131.

ChNbr CRU server Number of channels.
The default value is 72.

SockVruPortId VRU server TCP/IP port.
The default value is 1113.

RctNb VRU Resource connection table size, the
number of remote producing resources for
local ETCP task,i.e., the number of binding
links pointing to the configuration.
The default value is 100, meaning that an
ETCP task can manage up to 100 remote
producing resources.
Automation Collaborative Platform 1475

IsctNb VRU Exported socket connection table size,
the number of remote producing resources.
However, each producing resource must only
be counted once if it produces to several local
resources.
The default value is 100, meaning that an
ETCP task can manage up to 100 remote
producers for all of its local consumers.

EsctNb VRU Resource binding information table, the
number of local producing resources
(resources producing to distant platforms
only) plus the number of distant consuming
resources:
- if both R1 and R2 on C1 consume data from
R3 on C2, there will only be one connection
between C1 and C2
- if R1 on C1 consumes data from R2 and R3
on C2, there will be two connections between
C1 and C2

EsctNb is also the number of binding links
pointing out of the configuration plus the
number of local producing resources
(resource producing to distant platforms
only).
The default value is 100 meaning that an
ETCP task can manage 100 remote
connections minus the number of local
producing resources.

RBitNb VRU Resource binding information table,
host data concerning each remote producer
This parameter value should be the same as
IsctNb value because an ISCT entry is used
jointly with a RBIT entry.
The default value is 100.
1476 Windows Runtime Modules

NCRBSize VRU None Converted reception buffer size,
the total amount of bound bytes the ETCP
task has to buffer for all remote producers
Each producer has a 12-byte header.
The default value is 512 meaning that the
ETCP task can handle 500 bound bytes for
each remote producer.

NbrSend VRU Number of emission.
The default value is 1.

Cycle ETCP server cycle
The value of this parameter is in milliseconds.
The default value is 1 ms.

PingTimeOut ETCP Ping time-out
The value of this parameter is in milliseconds
The default value is 60000 ms.

NbIxlClt ETCP Number of IXL Client
The default value is 3.

KVBETCP Mutex time out for management of shared
memory
The default value is 1000 ms.

SockMaxNbPendingCnx Max nb of pending cnx
The default is system dependant.

SockTcpNoDelay Naggle algorithm
The default is disabled to provide better
lattency times.
The default is Yes.

SockGenKeepAlive Generation of keep alive packet
By default, parameter does not generate keep
alives.

SockSendBuffSize Socket send buffer size
The default is 0.

SockRecvBuffSize Socket receive buffer size
The default is 0.

ConsNb Remote configuration consumer number
The default is 100.
Automation Collaborative Platform 1477

BindingPort The port number.
The default is 1113.

[HSD] MaxMsgConnect Maximum msg. in the cnx msg queue
The default value is 3.

RcvMaxMsg Maximum number of message in message
queue
The default value is 3.

SendMaxMsg Maximum number of message in message
queue
The default value is 3.

SndSz Size of exchanged messages
The default value is 16416 bytes
(.ISA_IXL_BUFCTSSZ +
2*ISA_IXL_MSGPROC_HDRSZ).

RcvSz Size of exchanged messages
The default value is 32800 bytes
(ISA_IXL_BUFSTCSZ +
2*ISA_IXL_MSGPROC_HDRSZ).

TimeOut The value of this parameter is in milliseconds.
The default value is 5000 ms.

NtfSignal Startup parameter for notification
management (signal)
The default value is 256.

Priority Priority of the cnx (0 High - 255 Low)
The default value is 10.

SemTimeOut Mutex time out for management of shared
memory
The value of this parameter is in milliseconds.
The default value is 11 ms.

[APP] stgMode Configuration manager starting mode
The default value is 1. /* Automatic
restoration */

CycleTimeMin Minimum cycle time for this task
The value of this parameter is in milliseconds.
The default value is 10 ms.
1478 Windows Runtime Modules

CycleTimeMax Maximum cycle time for this task
The value of this parameter is in milliseconds.
The default value is 50 ms.

ResNbr Number of resource on one config
The default value is 8.

MisNbr Maximum number of miscellaneous tasks
The default value is 8.

s Get number of resource to start

ETCP Extra startup parameters
No default value defined.

SyncTime Wait synchronization
The value of this parameter is in milliseconds.
The default value is 5000 ms.

RSI IsaRSI startup parameters.
No default value defined.

PrjPath Set project path
The default value is the path to the folder
containing the ISaGRAF.exe.

WngPeriod Get the warning period
The value of this parameter is in milliseconds.
The default value is 60000 ms.

NOETCP Disables ETCP
The default is ETCP active.

[IXL] SndSz Size of exchanged messages
The default value is 16416 bytes
(ISA_IXL_BUFCTSSZ +
2*ISA_IXL_MSGPROC_HDRSZ).

RcvSz Size of exchanged messages
The default value is 32800 bytes
(ISA_IXL_BUFSTCSZ +
2*ISA_IXL_MSGPROC_HDRSZ).

NtfSignal Startup parameter for notification
management (signal)
The default value is 256.
Automation Collaborative Platform 1479

DrvNbr Maximum number of drivers
The default value is 5.

CnxNbr Maximum number of connections
This is the number of connections between
the IXD (exchange dispatcher) to the resource
and the configuration manager. It opens 2
connection per resource + 1 for the CMG..
The default value is 24.

[IXS] DrvNbr Maximum number of drivers
The default value is 5.

CnxNbr Maximum number of connections
The default value is 24.

[ISXLETCP] IpcMsgLength Message size in IPC queues
The default value is 1024.

IpcMsgNbr Number of messages in IPC queues
The default value is 5.

SidMessageLength ISXL notified method emission & reception
message buffer
The default value is 2048.

NtfSignal Startup parameter for notification
management (signal)
The default value is 256.

NtfMessageLength ISXL notified method reception message
buffer
The default value is 2048.

SignalCode Max message queue size in-between ETCP
client-server
The default value is 0.

[ISXLRSI] IpcMsgLength Message size in IPC queues
The default value is 1024.

IpcMsgNbr Number of messages in IPC queues
The default value is 5.
1480 Windows Runtime Modules

SidMessageLength ISXL notified method emission & reception
message buffer
The default value is 2048.

NtfSignal Startup parameter for notification
management (signal)
The default value is 256.

NtfMessageLength ISXL notified method reception message
buffer
The default value is 2048.

SignalCode Max message queue size in-between ETCP
client-server
The default value is 0.

[IXD] ChNbr Maximum number of connections
The default value is 24.

DataMsgSize Size of buffer for message processing
The default value is default is 32800 bytes
(ISA_GETMAX(ISA_IXL_MSGPROC_BU
FRCVSZ,
ISA_IXL_MSGPROC_BUFSNDSZ)).

VarDescNbr Number of variables description
The default value is default is 3283
((ISA_GETMIN(ISA_IXL_MSGPROC_BU
FRCVSZ,
ISA_IXL_MSGPROC_BUFSNDSZ)) / 5).

MsgByChannel Pending message number per connection
The default value is 4.

IxlTimeout Ixl Timeout
The value of this parameter is in milliseconds.
The default value is 11000 ms.

IxsTimeout Ixs Timeout
The value of this parameter is in milliseconds
The default value is 11000 ms.

CnxTimeLoop Connection time loop
The value of this parameter is in milliseconds.
The default value is 1000 ms.
Automation Collaborative Platform 1481

Example of initialization file (ISaGRAF.ini)

[ETCP]

ChNbr=256

IsctNb=256

EsctNb=256

RBitNb=256

NCRBSize=16384

[APP]

ResNbr=100

RSI=COM1

[KERNEL] RtnRead Reads retain when start
The default value is 1. /* true */

bkupType Resource backup location type for restoration
The default value is 1. /* Load from hard
support (disk,...) */

[RSI] RSIAddress Slave RSI
The default value is 1.

Port Slave Port.
The default value is 0 /* Null */

CycleTime Cycle time. The value of this parameter is in
milliseconds
The default value is 1ms.

ChNbr Maximum number of channels
The default value is 50.

NbIxlClt RSI Number of IXL Client
The default value is 3.
1482 Windows Runtime Modules

[RSI]

PORT=COM1:19200:N:1:OFF

RSIAddress=1

To install a Windows runtime module

1. Copy the entire target directory.

2. On the target platform, paste the directory.

The Windows runtime module is ready.

See Also
Setting Networks and Connections
Automation Collaborative Platform 1483

Setting Networks and Connections
The ISAFREE_TGT target supports three types of networks:

� ETCP

� HSD

� ISaRSI
1484 Windows Runtime Modules

ETCP
The Enhanced TCP/IP protocol (ETCP) is the network driver used for communication with
ISaGRAF on Ethernet. In this case, the ETCP driver emulates the behavior of a field-bus. You
can consider ETCP as a virtual field-bus.

ETCP automatically starts with the target. However, you can choose to disable the ETCP when
installing a runtime module.

Startup Parameters

You can specify startup parameters as entries in the APP section of the driver initialization file
(ETCP.ini) or in a command line:

ChNbr CRU server Number of channels. The default value is 72.

IsctNb The number of remote producing resources. However, each producing
resource must only be counted once if it produces to several local
resources. The default value is 100, meaning that an ETCP task can
manage up to 100 remote producers for all of its local consumers.

EsctNb The number of local producing resources (producing to remote platforms
only) plus the number of distant consuming resources:

- If both R1 and R2 on C1 consume data from R3 on C2, there will only
be one connection between C1 and C2

- If R1 on C1 consumes data from R2 and R3 on C2, there will be two
connections between C1 and C2

RBitNb Host data concerning each remote producer. It should be the same as
IsctNb value because an ISCT entry is used jointly with a RBIT entry.
The default value is 100.

NCRBSize VRU Non-converted reception buffer size, the total amount of bound
bytes the ETCP task has to buffer for all remote producers. Each
producer has a 12-byte header. The default value is 512 meaning that the
ETCP task can handle 500 bound bytes for each remote producer.

NbIxlClt ETCP Number of IXL Client. The default value is 3.
Automation Collaborative Platform 1485

Network Properties

The ETCP network driver has no network properties.

Connection Properties

You specify connection properties by selecting the connection in the Deployment View and
entering the required values in the Properties window. The ETCP network driver has one
connection property:

Cycle ETCP server cycle time, in milliseconds. The default value is 1.

NbrSend VRU Number of emissions. The default value is 1.

IP Address The IP address or name of the computer.
1486 Windows Runtime Modules

HSD
The Host System Driver (HSD) is the IXL driver used for communication between local
processes with ISaGRAF. HSD network connections are used when defining bindings between
resources on the same device.

The ISaGRAF target automatically launches the HSD driver.

Startup Parameters

You can specify startup parameters as entries in the HSD section of the ISaGRAF target
initialization file (isagraf.ini) or in a command line:

Network Properties

The HSD driver has no network properties.

Connection Properties

The HSD driver has no connection properties.

MaxMsgConnect The maximum number of messages in the connection message queue.
The default value is 3.

RcvMaxMsg The maximum number of messages in the message queue. The default
value is 3.

SendMaxMsg The maximum number of messages in the message queue. The default
value is 3.

SndSz The size of the exchanged messages, in bytes. The default value is 544.

RcvSz The size of the exchanged messages, in bytes. The default value is 544.

TimeOut The time period before a timeout occurs, in milliseconds; the default
value is 5000 ms.
Automation Collaborative Platform 1487

ISaRSI
The network driver used when developing an IXL client using serial communication with ISaGRAF.

Startup Parameters

You can specify startup parameters as entries in the driver initialization file (ISaRSI.ini), the
ISaGRAF initialization file (ISaGRAF.ini), or in a driver command line:

Network Properties

You specify network properties by selecting the network in the Deployment View and entering
the required values in the Properties window.

Connection Properties

The ISaRSI network driver has no connection properties.

To start the ISaRSI network driver

� Double-click the executable file (ISaRSI.exe) located:

%PROGRAMFILES(X86)%\ISaGRAF\6.x\CAM ISaGRAF 5\5.3\ISaGRAF Free
RunTime

CycleTime Polling of the ISaRSI task, in milliseconds. The default value is 1.

Port The ISaGRAF communication port. The default value is COM1.

Baud Rate The baud data transfer rate. The default value is 19200.

Parity The type of parity used. Possible values are N for none, E for even,
and O for odd; The default value is N.

Stop Bit The number of stop bits used to indicate the end of a transmission.
Possible values are 1 or 2; The default value is 1.

HardwareFlowControl The control of the flow of data transmission between the network
hardware. Possible values are True or False; The default value is
False.
1488 Windows Runtime Modules

Configuring I/O Devices
When configuring I/O devices, you connect I/O variables to I/O channels. You connect these
variables and channels in the I/O wiring view. The hierarchical structure displayed in the I/O
wiring view appears the same with differences depending on the driver:

The following drivers are available for use with the Windows-TGT_L target:

� Modbus/TCP Client Implementation

� Modbus/TCP Server Implementation

Simple device

Parameters (Only displayed if the I/O device
has defined parameters)

Parameter_n

Wired Channel

Direct Alternatively: Reverse (for
Boolean values)

Gain =1/1 (* for Numeric Values *)

Offset =0 (* for Numeric Values *)

Conversion =None

Complex Device
Automation Collaborative Platform 1489

Modbus/TCP Client Implementation
The Modbus/TCP client driver includes twenty-six devices each dedicated to a particular data
type and using a particular Modbus message. A twenty-seventh device, called a status device
is not associated with a data variable but to a data structure describing the state of
communication.

A project has a maximum of 256 device instances. For each device, you need to specify
properties.

The data type must match the data sent by the Modbus server since the driver simply fills the
variable with the returned data. For example, the FLOAT type is used when the server sends
32-bit floating point data.

The Modbus/TCP protocol is Big-Endian, that is a number larger than one byte is sequenced
from highest to lowest byte. However, in the case of bad server implementation, the Endian
type of the data can be selected, big or little in the user parameters, except for BOOL type
devices.

When more than one channel is linked to a device, the driver simply writes the data received
sequentially from the Modbus server to the variable values.

The following table shows these devices, their name, data type and direction and their
associated Modbus message. The maximum channels indicates the greatest number of
variables that can be handled by the device (information extracted from the Schneider Electric
specification for the message).

Device Data Type Direction Modbus
message

Max
Chan.

Client_RC BOOL input Read Coils (fct 1) 2000

Client_RID BOOL input Read Input Discretes
(fct 2)

2000

Client_RMR_INT INT input Read Multiple
Registers (fct 3)

125

Client_RMR_UINT UINT input Read Multiple
Registers (fct 3)

125

Client_RMR_DINT DINT input Read Multiple
Registers (fct 3)

62
1490 Windows Runtime Modules

Client_RMR_UDINT UDINT input Read Multiple
Registers (fct 3)

62

Client_RMR_REAL REAL input Read Multiple
Registers (fct 3)

62

Client_RIR_INT INT input Read Input Registers
(fct 4)

125

Client_RIR_UINT UINT input Read Input Registers
(fct 4)

125

Client_RIR_DINT DINT input Read Input Registers
(fct 4)

62

Client_RIR_UDINT UDINT input Read Input Registers
(fct 4)

62

Client_RIR_REAL REAL input Read Input Registers
(fct 4)

62

Client_WC BOOL output Write Coil (fct 5) 1

Client_WSR_INT INT output Write Single Register
(fct 6)

1

Client_WSR_UINT UINT output Write Single Register
(fct 6)

1

Client_FMC BOOL output Force Multiple Coils
(fct 15)

800

Client_WMR_INT INT output Write Multiple
Registers (fct 16)

100

Client_WMR_UINT UINT output Write Multiple
Registers (fct 16)

100

Client_WMR_DINT DINT output Write Multiple
Registers (fct 16)

50

Client_WMR_UDINT UDINT output Write Multiple
Registers (fct 16)

50

Client_WMR_REAL REAL output Write Multiple
Registers (fct 16)

50

Client_RW_M_INT INT output Fct 3 normally – Fct 16
if value change

100
Automation Collaborative Platform 1491

The Read/Write (RW) drivers are bidirectional meaning that these behave as an output driver
when the data channel has changed, otherwise, these behave as an input driver. These driver
properties are the same as an output device except that they do not have the SendOnChange
property.

The ClientStatus device updates its values during each cycle of the ISaGRAF target. This
device completes the CLIENT_STAT structure shown below:

struct CLIENT_STAT

{

 uchar Connected;// Connected to a server or not

 uint32 MessageTxCount;// Client requests sent

 uint32 MessageRxCount;// Server response message received

 uint32 ExceptionRxCount;// Server sent back an Exception response

 uint32 TxErrorCount;// Transmit failures

 uint32 RxErrorCount;// Read failures

 int16 LastError;// Socket last error code

}

A project can have one of these structures per device.

Client_RW_M_UINT UINT output Fct 3 normally – Fct 16
if value change

100

Client_RW_M_DINT DINT output Fct 3 normally – Fct 16
if value change

50

Client_RW_M_UDINT UDINT output Fct 3 normally – Fct 16
if value change

50

Client_RW_M_REAL REAL output Fct 3 normally – Fct 16
if value change

50

ClientStatus CLIENT_STAT input n/a 256
1492 Windows Runtime Modules

Target Preparation

The ModbusTCP_Driver.DLL file must be copied in the directory where the executable file for
the target is located.

You start the target by executing the ISaGRAF process, located in the Cmds sub-directory for
the target.

The isagraf.ini initialization file can be used to specify some target parameters. Refer to the
Startup Parameters Configuration section in the ISaGRAF Development Kit Guide
documentation.
Automation Collaborative Platform 1493

Importation of Drivers in the Workbench

To enable access to the Modbus/TCP client driver, you need to import the definitions of the
Modbus devices into ISaGRAF, defined in the following file:

Windows_ModbusTcpClient.txt

Enter your project functionality and variables. Follow the instructions as described in the
manual to instantiate a driver. Then, connect the desired variables to the corresponding
Modbus device. ISaGRAF only allows connecting a variable whose type matches the data type
of the device.

To import the Plc definition file for Modbus devices

1. From the Solution Explorer, right-click the project, point to Import, and then click
Import Target Definitions.

2. In the Open dialog box, browse to locate the Windows_ModbusTcpClient.txt Plc
Definition file, then click Open.
1494 Windows Runtime Modules

Properties of Modbus/TCP Client Devices

You can change the properties of the device in the I/O Device tool of the workbench. You
access them by selecting the device in the browser located on the left side of the module
window. The following properties apply to devices depending on their type:

IPaddress The IP address of the Modbus server (slave) to communicate with. The
format of this property is String; its value ranges from 0.0.0.0 to
255.255.255.255; its default value is 127.0.0.1.

UnitIdentifier Formerly the slave address, sent on each message in the prefix. The
format of this property is Char; its value ranges from 0 to 255; its default
value is 1.

StartAddress The register offset of the data in the server. The format of this property is
WordHexa; its value ranges from 0 to 65535; its default value is 0.

TimeOut The time period in which to wait for a response, in milliseconds. The
format of this property is Word; its value ranges from 1 to 65535; its
default value is 2000.

SendOnChange Applies only to output devices. The indication that the message is sent
only when channel’s data has changed. The format of this property is
BOOL; possible values are TRUE or FALSE. FALSE indicates that the
message is sent at each cycle. The default value is TRUE.

DataIsBigEndian Applies only to input and output devices other than BOOL type as well as
read/write devices. The indication that the data read from the server is
interpreted as Big-endian. Possible values are TRUE or FALSE. FALSE
indicates that the data read is interpreted as Little-endian. The default
value is TRUE.

UseTCP The indication that the communication method for the transport layer
is TCP. The format of this property is BOOL; possible values are TRUE
or FALSE. FALSE indicates that the communication method for the
transport layer is UDP (not currently implemented). The default value is
TRUE.

PortNumber The transport layer port number to use. The format of this property is
WordHexa; its value ranges from 0 to 65535; its default value is 502.

RequestPeriod The time interval between sent Modbus requests, in milliseconds. The
format of this property is Word; its value ranges from 1 to 65535; its
default value is 1000.
Automation Collaborative Platform 1495

The ClientStatus device has no properties. A project has only one instance of this driver and
you need to hook as many CLIENT_STAT type channels as the largest ModbusTCP device
index in your project. For example, when a project has five ModbusTCP devices along with
other driver devices where the largest ModbusTCP device index is twenty-five, you need to
hook twenty-five CLIENT_STAT channels to a ClientStatus device in order to monitor all five
ModbusTCP devices.
1496 Windows Runtime Modules

Modbus/TCP Prefixes

Each Modbus/TCP message contains a seven-byte prefix:

Byte 0: transaction identifier - copied by server - usually 0

Byte 1: transaction identifier - copied by server - usually 0

Byte 2: protocol identifier = 0

Byte 3: protocol identifier = 0

Byte 4: length field (upper byte) = 0 (since all messages are smaller than 256)

Byte 5: length field (lower byte) = number of bytes following

Byte 6: unit identifier (previously ‘slave address’)

The following example shows the ‘read 1 register at offset 4 from UI 9’ transaction returning
a value of 5:

request: 00 00 00 00 00 06 09 03 00 04 00 01

response: 00 00 00 00 00 05 09 03 02 00 05

The MODBUS ‘slave address’ field is replaced by a single byte ‘Unit Identifier’ which may be
used to communicate via devices such as bridges and gateways which use a single IP address
to support multiple independent end units.

The transaction identifier will be a word variable that increments at each message sent. The
server shall respond with it in it’s response prefix.
Automation Collaborative Platform 1497

Modbus/TCP Message Descriptions

Read coils (FC 1)

Request

Byte 0: FC = 01

Byte 1-2: Reference number

Byte 3-4: Bit count (1-2000)

Response

Byte 0: FC = 01

Byte 1: Byte count of response (B=(bit count+7)/8)

Byte 2-(B+1): Bit values (least significant bit is first coil!)

Exceptions

Byte 0: FC = 81 (hex)

Byte 1: exception code = 01 or 02

Example

Read 1 coil at reference 0 (00001 in Modicon 984) resulting in value 1

01 00 00 00 01 => 01 01 01

The format of the return data is not consistent with a Big-Endian architecture. Also, this request
can be quite computation-intensive on the slave if the request calls for multiple words where
these are not aligned on 16-bit boundaries.
1498 Windows Runtime Modules

Read input discretes (FC 2)

Request

Byte 0: FC = 02

Byte 1-2: Reference number

Byte 3-4: Bit count (1-2000)

Response

Byte 0: FC = 02

Byte 1: Byte count of response (B=(bit count+7)/8)

Byte 2-(B+1): Bit values (least significant bit is first coil!)

Exceptions

Byte 0: FC = 82 (hex)

Byte 1: exception code = 01 or 02

Example

Read 1 discrete input at reference 0 (10001 in Modicon 984) resulting in value 1

02 00 00 00 01 => 02 01 01

The format of the return data is not consistent with a Big-Endian architecture. Also, this request
can be quite computation-intensive on the slave if the request calls for multiple words where
these are not aligned on 16-bit boundaries.

Read multiple registers (FC 3)

Request

Byte 0: FC = 03

Byte 1-2: Reference number
Automation Collaborative Platform 1499

Byte 3-4: Word count (1-125)

Response

Byte 0: FC = 03

Byte 1: Byte count of response (B=2 x word count)

Byte 2-(B+1): Register values

Exceptions

Byte 0: FC = 83 (hex)

Byte 1: exception code = 01 or 02

Example

Read 1 register at reference 0 (40001 in Modicon 984) resulting in value 1234 hex

03 00 00 00 01 => 03 02 12 34

Read input registers (FC 4)

Request

Byte 0: FC = 04

Byte 1-2: Reference number

Byte 3-4: Word count (1-125)

Response

Byte 0: FC = 04

Byte 1: Byte count of response (B=2 x word count)

Byte 2-(B+1): Register values

Exceptions
1500 Windows Runtime Modules

Byte 0: FC = 84 (hex)

Byte 1: exception code = 01 or 02

Example

Read 1 input register at reference 0 (30001 in Modicon 984) resulting in value 1234 hex

04 00 00 00 01 => 04 02 12 34

Write coil (FC 5)

Request

Byte 0: FC = 05

Byte 1-2: Reference number

Byte 3: = FF to turn coil ON, =00 to turn coil OFF

Byte 4: = 00

Response

Byte 0: FC = 05

Byte 1-2: Reference number

Byte 3: = FF to turn coil ON, =00 to turn coil OFF (echoed)

Byte 4: = 00

Exceptions

Byte 0: FC = 85 (hex)

Byte 1: exception code = 01 or 02

Example

Write 1 coil at reference 0 (00001 in Modicon 984) to the value 1
Automation Collaborative Platform 1501

05 00 00 FF 00 => 05 00 00 FF 00

Write single register (FC 6)

Request

Byte 0: FC = 06

Byte 1-2: Reference number

Byte 3-4: Register value

Response

Byte 0: FC = 06

Byte 1-2: Reference number

Byte 3-4: Register value

Exceptions

Byte 0: FC = 86 (hex)

Byte 1: exception code = 01 or 02

Example

Write 1 register at reference 0 (40001 in Modicon 984) of value 1234 hex

06 00 00 12 34 => 06 00 00 12 34

Force multiple coils (FC 15)

Request

Byte 0: FC = 0F (hex)

Byte 1-2: Reference number
1502 Windows Runtime Modules

Byte 3-4: Bit count (1-800)

Byte 5: Byte count (B = (bit count + 7)/8)

Byte 6-(B+5): Data to be written (least significant bit = first coil)

Response

Byte 0: FC = 0F (hex)

Byte 1-2: Reference number

Byte 3-4: Bit count

Exceptions

Byte 0: FC = 8F (hex)

Byte 1: exception code = 01 or 02

Example

Write 3 coils at reference 0 (00001 in Modicon 984) to values 0,0,1

0F 00 00 00 03 01 04 => 0F 00 00 00 03

The format of the input data is not consistent with a Big-Endian architecture. Also, that this
request can be quite computation-intensive on the slave if the request calls for multiple words
where these are not aligned on 16-bit boundaries.

Write multiple registers (FC 16)

Request

Byte 0: FC = 10 (hex)

Byte 1-2: Reference number

Byte 3-4: Word count (1-100)

Byte 5: Byte count (B=2 x word count)
Automation Collaborative Platform 1503

Byte 6-(B+5): Register values

Response

Byte 0: FC = 10 (hex)

Byte 1-2: Reference number

Byte 3-4: Word count

Exceptions

Byte 0: FC = 90 (hex)

Byte 1: exception code = 01 or 02

Example

Write 1 register at reference 0 (40001 in Modicon 984) of value 1234 hex

10 00 00 00 01 02 12 34 => 10 00 00 00 01
1504 Windows Runtime Modules

Modbus/TCP Server Implementation
The Modbus/TCP server has twenty-one devices each dedicated to a particular data type and
using a particular Modbus message. A twenty-second device, called a status device is not
associated with a data variable but to a data structure describing the state of the communication
for each device in the project.

A project has a maximum of 256 device instances. For each device, you need to specify
properties. A maximum of 256 responded Modbus requests per cycle are possible.

On a write, the data type must match the data sent by the Modbus client since the driver simply
fills the variable with the received data. For example, the FLOAT type is used when the server
sends 32-bit floating point data.

The Modbus/TCP protocol is Big-Endian, that is a number larger than one byte is sequenced
from highest to lowest byte. However, in the case of bad server implementation, the Endian
type of the data can be selected, big or little in the user parameters, except for BOOL type
devices.

When more than one channel is linked to a device, the driver simply writes the data received
sequentially from the Modbus server to the variable values.

The following table shows these devices, their name, data type and direction and their
associated Modbus message. The maximum channels indicates the greatest number of
variables that can be handled by the device (information extracted from the Schneider Electric
specification for the message).

Device Data Type Direction Modbus
message

Max
Chan.

Server_RC BOOL output Read Coils (fct 1) 2000

Server_RID BOOL output Read Input Discretes
(fct 2)

2000

Server_R_INT INT output Respond to RMR (Fct
3) or RIR (Fct 4)

125

Server_R_UINT UINT output Respond to RMR (Fct
3) or RIR (Fct 4)

125

Server_R_DINT DINT output Respond to RMR (Fct
3) or RIR (Fct 4)

62
Automation Collaborative Platform 1505

Server_R_UDINT UDINT output Respond to RMR (Fct
3) or RIR (Fct 4)

62

Server_R_REAL REAL output Respond to RMR (Fct
3) or RIR (Fct 4)

62

Server_WC BOOL input Write Coil (fct 5) 1

Server_WSR_INT INT input Write Single Register
(fct 6)

1

Server_WSR_UINT UINT input Write Single Register
(fct 6)

1

Server_FMC BOOL input Force Multiple Coils
(fct 15)

800

Server_WMR_INT INT input Write Multiple
Registers (fct 16)

100

Server_WMR_UINT UINT input Write Multiple
Registers (fct 16)

100

Server_WMR_DINT DINT input Write Multiple
Registers (fct 16)

50

Server_WMR_UDINT UDINT input Write Multiple
Registers (fct 16)

50

Server_WMR_REAL REAL input Write Multiple
Registers (fct 16)

50

Server_RW_INT INT output Respond to Fct 3 or Fct
4 or Fct 16

100

Server_RW_UINT UINT output Respond to Fct 3 or Fct
4 or Fct 16

100

Server_RW_DINT DINT output Respond to Fct 3 or Fct
4 or Fct 16

50

Server_RW_UDINT UDINT output Respond to Fct 3 or Fct
4 or Fct 16

50

Server_RW_REAL REAL output Respond to Fct 3 or Fct
4 or Fct 16

50

ServerStatus SERVER_STAT input n/a 256
1506 Windows Runtime Modules

The Read/Write (RW) drivers are bidirectional meaning that these are assigned to output free
variables and can respond to a read request (message function 3 or 4) or to a write request
(message function 16). Their parameters are the same as an output device.

The ServerStatus device has no parameters and update it’s values at each ISaGRAF target’s
cycle.

Because many different devices can respond to the same Modbus message, use different
addresses to differentiate them. For example, you can have a Server_R_INT device responding
to address 100 and a Server_RUINT device responding to address 500. Failing to do this
produces erroneous results, a Server_WMR_REAL device could respond to a
Client_WMR_DINT device.

If a request has an invalid range, for example, asking more registers than there are channels
hooked on a device or asking for an address outside the range of the server, a Modbus exception
is returned.

If two devices have an address overlap, only the first device instance responds to the requests.
For example, a Server_R_INT covering the address range 20000-20100 and a Server_R_INT
covering the address range 20050-20200, the requests in the overlap range 20050-20100 are
responded to by Server_R-_INT if the device index is less (instanced before) than
Server_R-_INT.

Two devices of different data types can have an address overlap. In the above example, if the
first device is a Server_R_INT and the second is a Server_R_UINT, both devices respond.

More than one client can send requests to a single server while there can be a maximum of 256
connected clients.

The ServerStatus device updates the values of the SERVER_STAT structure. One of these
structures exists for each device currently instantiated in your project.

struct SERVER_STAT

{

 char ClientCount;// Current number of client(s) connected

 uint32 MessageRxCount;// Client requests received

 uint32 ExceptionTxCount;// Exception message sent
Automation Collaborative Platform 1507

 uint32 TxErrorCount;// Transmit failures

 uint32 RxErrorCount;// Read failures

 int16 LastError;// Socket last error code
1508 Windows Runtime Modules

Target Preparation

The ModbusTcpServer.DLL file must be copied in the directory where the executable file for
the target is located.

You start the target by executing the ISaGRAF process, located in the Cmds sub-directory for
the target.

The isagraf.ini initialization file can be used to specify some target parameters. Refer to the
Startup Parameters Configuration section in the ISaGRAF Development Kit Guide
documentation.
Automation Collaborative Platform 1509

Importation of Drivers in the Workbench

To enable access to the Modbus/TCP server driver, you need to import the definitions of the
Modbus devices into ISaGRAF, defined in the following file:

Windows_ModbusTcpServer.txt

Enter your project functionality and variables. Follow the instructions as described in the
manual to instantiate a driver. Then, connect the desired variables to the corresponding
Modbus device. The workbench only allows connecting a variable whose type matches the data
type of the device.

To import the Plc definition file for Modbus devices

1. From the Solution Explorer, right-click the project, point to Import, and then click
Import Target Definitions.

2. In the Open dialog box, browse to locate the Windows_ModbusTcpServer.txt Plc
Definition file, then click Open.
1510 Windows Runtime Modules

Properties of Modbus/TCP Server Devices

When performing I/O Wiring, you can define the device properties. You access device
properties by selecting a device from the list of available devices. You modify the properties
for the selected device using the Properties window. The following properties apply to devices
depending on their type:

The ServerStatus device has no properties. A project has only one instance of this driver and
you need to hook as many SERVER_STAT type channels as the largest ModbusTCP device
index in your project. For example, when a project has five ModbusTCP devices along with
other driver devices where the largest ModbusTCP device index is twenty-five, you need to
hook twenty-five SERVER_STAT channels to a ServerStatus device in order to monitor all
five ModbusTCP devices. Those twenty-five SERVER_STAT channels can be made of
discrete variables or an array.

StartAddress The register offset of the data in the server. The format of this property is
WordHexa; its value ranges from 0 to 65535; its default value is 0.

TimeOut The time period in which to wait for a response, in milliseconds. The
format of this property is Word; its value ranges from 1 to 65535; its
default value is 2000.

DataIsBigEndian Applies only to devices other than BOOL type. The indication that the
data read from the server is interpreted as Big-endian. Possible values are
TRUE or FALSE. FALSE indicates that the data read is interpreted as
Little-endian. The default value is TRUE.

UseTCP The indication that the communication method for the transport layer is
TCP. The format of this property is BOOL; possible values are TRUE or
FALSE. FALSE indicates that the communication method for the
transport layer is UDP (not currently implemented). The default value is
TRUE.

PortNumber The transport layer port number to use. The format of this property is
WordHexa; its value ranges from 0 to 65535; its default value is 502.
Automation Collaborative Platform 1511

Modbus/TCP Prefixes

Each Modbus/TCP message contains a seven-byte prefix:

Byte 0: transaction identifier - copied by server - usually 0

Byte 1: transaction identifier - copied by server - usually 0

Byte 2: protocol identifier = 0

Byte 3: protocol identifier = 0

Byte 4: length field (upper byte) = 0 (since all messages are smaller than 256)

Byte 5: length field (lower byte) = number of bytes following

Byte 6: unit identifier (previously ‘slave address’)

An example transaction ‘read 1 register at offset 4 from UI 9’ returning a value of 5 is

request: 00 00 00 00 00 06 09 03 00 04 00 01

response: 00 00 00 00 00 05 09 03 02 00 05

The MODBUS ‘slave address’ field is replaced by a single byte ‘Unit Identifier’ which may be
used to communicate via devices such as bridges and gateways which use a single IP address
to support multiple independent end units.

The transaction identifier will be a word variable that increments at each message sent. The
server shall respond with it in it’s response prefix.
1512 Windows Runtime Modules

Modbus/TCP Message Descriptions

Read coils (FC 1)

Request

Byte 0: FC = 01

Byte 1-2: Reference number

Byte 3-4: Bit count (1-2000)

Response

Byte 0: FC = 01

Byte 1: Byte count of response (B=(bit count+7)/8)

Byte 2-(B+1): Bit values (least significant bit is first coil!)

Exceptions

Byte 0: FC = 81 (hex)

Byte 1: exception code = 01 or 02

Example

Read 1 coil at reference 0 (00001 in Modicon 984) resulting in value 1

01 00 00 00 01 => 01 01 01

The format of the return data is not consistent with a Big-Endian architecture. Also, this request
can be very computation-intensive on the slave if the request calls for multiple words and these
are not aligned on 16-bit boundaries.

Read input discretes (FC 2)

Request
Automation Collaborative Platform 1513

Byte 0: FC = 02

Byte 1-2: Reference number

Byte 3-4: Bit count (1-2000)

Response

Byte 0: FC = 02

Byte 1: Byte count of response (B=(bit count+7)/8)

Byte 2-(B+1): Bit values (least significant bit is first coil!)

Exceptions

Byte 0: FC = 82 (hex)

Byte 1: exception code = 01 or 02

Example

Read 1 discrete input at reference 0 (10001 in Modicon 984) resulting in value 1

02 00 00 00 01 => 02 01 01

The format of the return data is not consistent with a big-endian architecture. Also, this request
can be very computation-intensive on the slave if the request calls for multiple words and these
are not aligned on 16-bit boundaries.

Read multiple registers (FC 3)

Request

Byte 0: FC = 03

Byte 1-2: Reference number

Byte 3-4: Word count (1-125)

Response
1514 Windows Runtime Modules

Byte 0: FC = 03

Byte 1: Byte count of response (B=2 x word count)

Byte 2-(B+1): Register values

Exceptions

Byte 0: FC = 83 (hex)

Byte 1: exception code = 01 or 02

Example

Read 1 register at reference 0 (40001 in Modicon 984) resulting in value 1234 hex

03 00 00 00 01 => 03 02 12 34

Read input registers (FC 4)

Request

Byte 0: FC = 04

Byte 1-2: Reference number

Byte 3-4: Word count (1-125)

Response

Byte 0: FC = 04

Byte 1: Byte count of response (B=2 x word count)

Byte 2-(B+1): Register values

Exceptions

Byte 0: FC = 84 (hex)

Byte 1: exception code = 01 or 02
Automation Collaborative Platform 1515

Example

Read one input register at reference 0 (30001 in Modicon 984) resulting in value 1234 hex

04 00 00 00 01 => 04 02 12 34

Write coil (FC 5)

Request

Byte 0: FC = 05

Byte 1-2: Reference number

Byte 3: = FF to turn coil ON, =00 to turn coil OFF

Byte 4: = 00

Response

Byte 0: FC = 05

Byte 1-2: Reference number

Byte 3: = FF to turn coil ON, =00 to turn coil OFF (echoed)

Byte 4: = 00

Exceptions

Byte 0: FC = 85 (hex)

Byte 1: exception code = 01 or 02

Example

Write one coil at reference 0 (00001 in Modicon 984) to the value 1

05 00 00 FF 00 => 05 00 00 FF 00
1516 Windows Runtime Modules

Write single register (FC 6)

Request

Byte 0: FC = 06

Byte 1-2: Reference number

Byte 3-4: Register value

Response

Byte 0: FC = 06

Byte 1-2: Reference number

Byte 3-4: Register value

Exceptions

Byte 0: FC = 86 (hex)

Byte 1: exception code = 01 or 0

Example

Write one register at reference 0 (40001 in Modicon 984) of value 1234 hex

06 00 00 12 34 => 06 00 00 12 34

Force multiple coils (FC 15)

Request

Byte 0: FC = 0F (hex)

Byte 1-2: Reference number

Byte 3-4: Bit count (1-800)

Byte 5: Byte count (B = (bit count + 7)/8)
Automation Collaborative Platform 1517

Byte 6-(B+5):Data to be written (least significant bit = first coil)

Response

Byte 0: FC = 0F (hex)

Byte 1-2: Reference number

Byte 3-4: Bit count

Exceptions

Byte 0: FC = 8F (hex)

Byte 1: exception code = 01 or 02

Example

Write 3 coils at reference 0 (00001 in Modicon 984) to values 0,0,1

0F 00 00 00 03 01 04 => 0F 00 00 00 03

The format of the input data is not consistent with a Big-Endian architecture. Also, this request
can be very computation-intensive on the slave if the request calls for multiple words and these
are not aligned on 16-bit boundaries.

Write multiple registers (FC 16)

Request

Byte 0: FC = 10 (hex)

Byte 1-2: Reference number

Byte 3-4: Word count (1-100)

Byte 5: Byte count (B=2 x word count)

Byte 6-(B+5): Register values

Response
1518 Windows Runtime Modules

Byte 0: FC = 10 (hex)

Byte 1-2: Reference number

Byte 3-4: Word count

Exceptions

Byte 0: FC = 90 (hex)

Byte 1: exception code = 01 or 02

Example

Write one register at reference 0 (40001 in Modicon 984) of value 1234 hex

10 00 00 00 01 02 12 34 => 10 00 00 00 01
Automation Collaborative Platform 1519

Modbus/TCP Exception Codes

Slaves return a defined set of exception codes in the event of problems. Masters may send out
commands ‘speculatively’ and use the success or exception codes received to determine which
MODBUS commands the device is willing to respond to and to determine the size of the
various data regions available on the slave.

This is the description of the exceptions that ISaGRAF’s Modbus/TCP server driver can send.
For a description of the other exceptions, please refer to the Schneider Electric V1.0
specification document.

All exceptions are signaled by adding 0x80 to the function code of the request and following
this byte by a single reason byte for example as follows:

03 12 34 00 01 => 83 02

request read one register at index 0x1234 response exception type 2 - ‘illegal data address’

The list of exceptions follows:

01 ILLEGAL FUNCTlON

The function code received in the query is not an allowable action for the slave. This may be
because the function code is only applicable to newer controllers, and was not implemented in
the unit selected. It could also indicate that the slave is in the wrong state to process a request
of this type, for example because it is not configured and is being asked to return register
values.

02 ILLEGAL DATA ADDRESS

The data address received in the query is not an allowable address for the slave. More
specifically, the combination of reference number and transfer length is invalid. For a
controller having 100 registers, a request with offset 96 and length 4 would succeed, a request
with offset 96 and length 5 generates exception 02.

03 ILLEGAL DATA VALUE
1520 Windows Runtime Modules

15 ows Runtime Modules

A ult in the structure of the
re OT mean that a data item
su ce the MODBUS protocol
is
21 Automation Collaborative Platform - Wind

value contained in the query data field is not an allowable value for the slave. This indicates a fa
mainder of a complex request, such as that the implied length is incorrect. It specifically does N
bmitted for storage in a register has a value outside the expectation of the application program, sin
unaware of the significance of any particular value of any particular register.

15 ows Runtime Modules

D
W

Po

ET

Ha

G

RP

Te

FT
22 Automation Collaborative Platform - Wind

efining Ports Usage
hen using ISaGRAF, you may need to define ports for various usage.

rts usage specific to ISaGRAF

CP: 1131(CRU - Channel Replacement Unit) and 1113 (VRU - Variable Replacement Unit)

bDts: 5005 and 6001

eneral ports usage

C (Remote Procedure Call) : 111

lnet: 23, 24

P (File Transfer Protocol): 20, 21

15 ows Runtime Modules

E
Yo

�

�

Fo

Ev

C

K

I

e

E

I

I

Co

0x OCONFIG

0x OTIMPLEMENTED

0x ISKFULL
23 Automation Collaborative Platform - Wind

rror Messages
u can search for error messages relating to the following modules:

Events Logger

ISaGRAF Target

r the ISaGRAF target, you can also refine your search to the sub-module level:

ents Logger

onfiguration Manager Kernel

ernel Warning System Layer

/Os Host System Driver Binding

Xchange Dispatcher (IXD) eXchange Layer (IXL)

TCP Task ETCP Binding

SaRSI Task Common Errors

SaGRAF 3 Communication

de Description Probable Cause Diagnostic #define

00100001 Cannot read network
parameters of the device

Project not
compiled

Build project ISA_ER_EL_N

00100002 Not implemented on the
target

Old target Use ISaGRAF 4.20
Target

ISA_ER_EL_N

00100003 Disk full, logging interrupted Not enough space
on disk

Clear space on disk ISA_ER_EL_D

15 ows Runtime Modules

IS

0x ONNECTION

0x OMMUNICATION

0x ETEVENTS

0x ASSWDINVALID

Co

Co

0x KER_START

0x KER_ALREADYRUN

Co
24 Automation Collaborative Platform - Wind

aGRAF Target

00100004 Cannot connect to the target Cannot connect to
the target

Verify target and
network parameters

ISA_ER_EL_C

00100005 Cannot communicate with
the target

Cannot
communicate with
the target

Verify target ISA_ER_EL_C

00100006 Cannot retrieve events from
the target

Error while
retrieving events

Verify target and
communication

ISA_ER_EL_G

00100007 Device has an invalid
password

Password for the
device is invalid

Verify password ISA_ER_EL_P

nfiguration Manager

de Description Probable Cause Diagnostic #define

20000300 CMG: Cannot start new
kernel

The configuration
manager is
requesting to start
more resources than
supported

Increase the value
of the "Multi
Resources Max
Quantity" property
(found in TDBuild)
and regenerate the
dsys0tgt.h file

ISA_ER_CMG_

20000301 CMG: Kernel is already
running

A request has been
made to start an
already existing
resource or there is a
problem in the task
management

Review the
implementation

ISA_ER_CMG_
NING

de Description Probable Cause Diagnostic #define

15 ows Runtime Modules

0x KER_NOTRUNNING

0x MIS_START

K

Co

0x _KVB_CONSUME

0x _INIT_PRIV_BLOCK

0x _INIT_ALLOC

Co

Co
25 Automation Collaborative Platform - Wind

20000302 CMG: Kernel is not
running

A request has been
made to access a
task that does not
exist or there is
problem in the task
management

Review the
implementation

ISA_ER_CMG_

20000310 CMG: Cannot start task The configuration
manager is
requesting to start
more miscellaneous
tasks than supported

Increase the value
of
ISA_CMG_MISN
BR

ISA_ER_CMG_

ernel

de Description Probable Cause Diagnostic #define

1201000AUL Driver for the consumer
is in error state

Error during data
consumption in the
binding mechanism

Verify if the
producer is
disconnected or
review the driver
implementation

ISA_RC_DKER

22010001UL Private resources not
found or not initialized

Memory Data block
corrupted

Compare with
workbench files

ISA_RC_DKER

22010002UL Kernel data allocation
failed

Kernel Resource
Data Loading error

Verify the system
layer
implementation

ISA_RC_DKER

nfiguration Manager

de Description Probable Cause Diagnostic #define

15 ows Runtime Modules

0x _INIT_STD_C

0x _INIT_USR_C

0x _INIT_STD_FBL

0x _INIT_USR_FBL

0x _INIT_CONV_C

0x _INIT_IOS

0x _INIT_KVB

0x _INIT_DBG

K

Co
26 Automation Collaborative Platform - Wind

22010003UL Standard 'C function not
initialized

Changes made
outside the system
layer

Compare with the
original PRDK

ISA_RC_DKER

22010004UL User 'C' function not
initialized

Incorrect
implementation

Review the
implementation

ISA_RC_DKER

22010005UL Standard function block
not initialized

Changes made
outside the system
layer

Compare with the
original PRDK

ISA_RC_DKER

22010006UL User function block not
initialized

Incorrect
implementation

Review the
implementation

ISA_RC_DKER

22010007UL 'C' conversions functions
not initialized

Incorrect
implementation

Review the
implementation

ISA_RC_DKER

22010008UL IOs not initialized Incorrect
implementation

Review the
implementation

ISA_RC_DKER

22010009UL Driver for the bindings
failed to initialize

Creation of the
binding memory
space or
initialization of the
binding mechanism
failed

Review the
implementation

ISA_RC_DKER

2201000BUL Initialize Step by step
debugging management

File corrupted Compare with
workbench files

ISA_RC_DKER

ernel

de Description Probable Cause Diagnostic #define

15 ows Runtime Modules

0x _BADTGTNAME

0x _BADRDCCVERS

0x _BADRDBCRC

0x _BADMODNAME

0x _BADRESNAME

0x _CORRUPTMODULE

0x TGTNONSGMTD

K

Co
27 Automation Collaborative Platform - Wind

20000100 RDCC: Target name
mismatch.

Incorrect target type
selected in the
workbench

Compare
workbench target
type and real target
type

ISA_ER_RDCC

20000101 RDCC: Version of
generated code & conf
mismatch

Version mismatch
between the
application
downloaded on the
run-time and the
run-time itself

Determine if the
proper workbench
has been used to
develop the
application (an old
workbench cannot
download an
application on a
newer run-time)

ISA_ER_RDCC

20000102 RDCC: Data base CRC
mismatch.

File corrupted Compare with
workbench files

ISA_ER_RDCC

20000103 RDCC: Module name
mismatch.

File corrupted Compare with
workbench files

ISA_ER_RDCC

20000104 RDCC: Resource name
mismatch.

File corrupted Compare with
workbench files

ISA_ER_RDCC

20000105 RDCC: Corrupted
module.

File corrupted Compare with
workbench files

ISA_ER_RDCC

20000110 K_LDG: Target
segmentation mismatch.

Application too
large

Reduce the
application
resource

ISA_ER_LDG_

ernel

de Description Probable Cause Diagnostic #define

15 ows Runtime Modules

0x TOOMANYBLK

0x SYSVAOVERLAP

0x MEMTOOSHORT

0x DRIVERLOAD

0x DRVNOTLOADED

0x DRVINVALID

0x NOTINIT

0x ZERODATA

K

Co
28 Automation Collaborative Platform - Wind

20000111 K_LDG: Too many
blocks of memory to
allocate.

File corrupted Compare with
workbench files

ISA_ER_LDG_

20000112 K_LDG: System
variables overlap

File corrupted Compare with
workbench files

ISA_ER_LDG_

20000120 KVB: Memory allocated
is too short

File corrupted Compare with
workbench files

ISA_ER_KVB_

20000121 KVB: Cannot load driver Communication
driver error

Review the
implementation

ISA_ER_KVB_

20000122 KVB: Driver is not
loaded

Not in use Not applicable ISA_ER_KVB_

20000123 KVB: Invalid driver Communication
driver error

Review the
implementation

ISA_ER_KVB_

20000130 K_MDF: Online
modification not
initialized

Changes made
outside the system
layer

Compare with the
original PRDK

ISA_ER_MDF_

20000131 K_MDF: The “C”
function that allocates
new data space memory
has received from it’s
input parameter a size
equal to zero.

File corrupted Compare with
workbench files

ISA_ER_MDF_

ernel

de Description Probable Cause Diagnostic #define

15 ows Runtime Modules

0x MEMTOOSHORT

0x NOMODIF

0x CHKPOUOBJ

0x SAVENOCODE

0x NOTALLOWED

0x BL_SPC_PRESENT

0x BL_SPC_ALLOC

K

Co
29 Automation Collaborative Platform - Wind

20000132 K_MDF: Not enough
memory for online
modifications

Space reserved for
on-line modification
is not enough

Increase the Space
reserved for on-line
modification in the
workbench
application

ISA_ER_MDF_

20000133 K_MDF: No new
modifications to update

File corrupted Compare with
workbench files

ISA_ER_MDF_

20000134 K_MDF: Cannot update
POU (new objects within
it)

File corrupted Compare with
workbench files

ISA_ER_MDF_

20000135 K_MDF: Cannot save
modifications, code is
not saved

File corrupted Compare with
workbench files

ISA_ER_MDF_

20000136 SFCFBL: Changes are
not allowed

Required function
not implemented
(example: accepting
IO on-line change)

Review the
implementation

ISA_ER_MDF_

20000140 SFCFBL: Error when
initializing SFC function
block, space is present

Incorrect
implementation

Review the
implementation

ISA_ER_SFCF

20000141 SFCFBL: Error when
initializing SFC function
block, space allocation
failed

Unable to create
memory space

Verify the system
layer
implementation

ISA_ER_SFCF

ernel

de Description Probable Cause Diagnostic #define

15 ows Runtime Modules

0x BL_TBL_CORRUPTE

0x BADSLAVENUM

0x BADSTATE

0x BADPARAM

0x MEMORY

0x MSGQ

0x LENGTHBUFFER

0x DELCNX

0x FULLCONNECT

K

Co
30 Automation Collaborative Platform - Wind

20000142 SFCFBL: Table is
corrupted

File corrupted Compare with
workbench files

ISA_ER_SFCF
D

20000180 KER: Slave number not
allowed

Incorrect resource
number

Change the
resource number in
the workbench
application

ISA_ER_KER_

20000181 KER: Kernel is not in
appropriate state

No conf module
available

Compare with
workbench files

ISA_ER_KER_

20000182 KER: Bad parameters in
request

Changes made
outside the system
layer

Compare with the
original PRDK

ISA_ER_KMP_

20000200 SRV: Cannot allocate
memory for server.

Unable to create
memory space

Verify the system
layer
implementation

ISA_ER_SRV_

20000201 SRV: Cannot create
message queue for
connection to server

Unable to create
message queue

Verify the system
layer
implementation

ISA_ER_SRV_

20000202 SRV: Size of server
buffer is smaller than
connection message

Changes made
outside the system
layer

Compare with the
original PRDK

ISA_ER_SRV_

20000203 SRV: Cannot remove
connection from server

Changes made
outside the system
layer

Compare with the
original PRDK

ISA_ER_SRV_

20000204 SRV: No more
connections available

CnxNbr value not
enough

Change CnxNbr
parameter value

ISA_ER_SRV_

ernel

de Description Probable Cause Diagnostic #define

15 ows Runtime Modules

0x LINKMSGQ

0x BADCNX

0x MSGDISCARDED

0x RCVTIMEOUT

0x TRCERROR

K

Co

0x ARTUP

0x VACC

K

Co
31 Automation Collaborative Platform - Wind

20000205 SRV: Cannot link with
client's message queue

Unable to open
message queue

Verify the system
layer
implementation

ISA_ER_SRV_

20000206 SRV: Invalid connection
identifier, attempted to
read a message from an
invalid connection

Changes made
outside the system
layer

Compare with the
original PRDK

ISA_ER_SRV_

20000207 SRV: The question that
the server read is larger
than its buffer. The
question is discarded

Message queue
corrupted

Verify the system
layer
implementation

ISA_ER_SRV_

20000208 SRV: Time out in
received message

Not in use Not applicable ISA_ER_SRV_

20000209 SRV: Server replied with
a bad TRC

Not in use Not applicable ISA_ER_SRV_

ernel Warning

de Description Probable Cause Diagnostic #define

0001 Startup error Initialize Kernel
core System error

Verify the system
layer implementation

ISA_KWNG_ST

0002 Server communication
exchange: Accept error

Not in use Not applicable ISA_KWNG_SR

ernel

de Description Probable Cause Diagnostic #define

15 ows Runtime Modules

0x STORE

0x NINIT

0x NMEM

0x NCRC

0x NREAD

0x NWRITE

0x TAALLOC

0x TART

0x TOP

0x FSTDCALL_NOTIMP

K

Co
32 Automation Collaborative Platform - Wind

0003 Resource Restore error Unable to restore
saved resource

Verify the system
layer implementation

ISA_KWNG_RE

0004 Kernel Retain: Init error. Unable to initialize
retain

Verify the system
layer implementation

ISA_KWNG_RT

0005 Kernel Retain: Bad
memory description

Memory
description too long

Change memory
description in the
workbench
application

ISA_KWNG_RT

0006 Kernel Retain: CRC error File corrupted Verify the system
layer implementation

ISA_KWNG_RT

0007 Kernel Retain: Read error Unable to read Verify the system
layer implementation

ISA_KWNG_RT

0008 Kernel Retain: Write error Unable to write Verify the system
layer implementation

ISA_KWNG_RT

0009 Resource Data Allocation
error

File corrupted Compare with
workbench files

ISA_KWNG_DA

000A Resource Start Report Resource started
workbench

Verify the workbench
state

ISA_KWNG_RS

000B Resource Stop Report Resource stopped
by the workbench

Verify the workbench
state

ISA_KWNG_RS

000C Standard function not
implemented

Changes made
outside the system
layer

Compare with the
original PRDK

ISA_KWNG_US
LEM

ernel Warning

de Description Probable Cause Diagnostic #define

15 ows Runtime Modules

0x LSTDIINIT_NOTIMPL

0x LSTDIEXIT_NOTIMP

0x LSTDCALL_NOTIMP

0x F_FCTNOTFOUND

0x LIINIT_NOTIMPLEM

0x LIEXIT_NOTIMPLEM

0x LCALL_NOTIMPLEM

0x V_FCTNOTFOUND

K

Co
33 Automation Collaborative Platform - Wind

000D Standard function block
instance init not
implemented

Changes made
outside the system
layer

Compare with the
original PRDK

ISA_KWNG_FB
EM

000E Standard function block
instance exit not
implemented

Changes made
outside the system
layer

Compare with the
original PRDK

ISA_KWNG_FB
LEM

000F Standard function block
call not implemented

Changes made
outside the system
layer

Compare with the
original PRDK

ISA_KWNG_FB
LEM

0010 Function not implemented Declared in the
workbench but not
exist in the target

Review the
implementation

ISA_KWNG_US

0011 Function block instance
init required but not
implemented

Declared in the
workbench but not
exist in the target

Review the
implementation

ISA_KWNG_FB

0012 Function block instance
exit required but not
implemented

Declared in the
workbench but not
exist in the target

Review the
implementation

ISA_KWNG_FB

0013 Function block call not
implemented

Declared in the
workbench but not
exist in the target

Review the
implementation

ISA_KWNG_FB

0014 Function not implemented Declared in the
workbench but not
exist in the target

Review the
implementation

ISA_KWNG_CN

ernel Warning

de Description Probable Cause Diagnostic #define

15 ows Runtime Modules

0x SINIT

0x SDRV_FCTNOTFOUN

0x SDVC_FCTNOTFOUN

0x SDVCR_FCTNOTFOU

0x SDVCW_FCTNOTFO

0x SDVCCTL_FCTNOTF

0x SDRV_INITFAIL

0x SDVC_OPENFAIL

K

Co
34 Automation Collaborative Platform - Wind

0015 Initialize IO management
error

Declared in the
workbench but not
exist in the target

Review the
implementation

ISA_KWNG_IO

0016 Kernel IOs: Device
Open/Close fct(s) not
found

Declared in the
workbench but not
exist in the target

Review the
implementation

ISA_KWNG_IO
D

0017 Kernel IOs: Device
Open/Close fct(s) not
found

Declared in the
workbench but not
exist in the target

Review the
implementation

ISA_KWNG_IO
D

0018 Kernel IOs: Device read
Function not found

Declared in the
workbench but not
exist in the target

Review the
implementation

ISA_KWNG_IO
ND

0019 Device write Function no
found

Declared in the
workbench but not
exist in the target

Review the
implementation

ISA_KWNG_IO
UND

001A Kernel IOs: Device
Control fct not found

Declared in the
workbench but not
exist in the target

Review the
implementation

ISA_KWNG_IO
OUND

001B Kernel IOs: Driver Init fct
failure

Incorrect
implementation

Review the
implementation

ISA_KWNG_IO

001C Kernel IOs: Device Open
function failure

Incorrect
implementation

Review the
implementation

ISA_KWNG_IO

ernel Warning

de Description Probable Cause Diagnostic #define

15 ows Runtime Modules

0x BDRVNOTFOUND

0x BINIT

0x CDEC

0x CCNV

0x CBNDCHK

0x CSINTDIVZ

K

Co
35 Automation Collaborative Platform - Wind

001D Kernel Binding: Driver not
found

A binding driver
configured in an
application cannot
be found on the
run-time

Review the
implementation. Due
to a mistmach
between the TDB file
used by the
workbench and the
definition of the
run-time.

ISA_KWNG_KV

001E Kernel Binding: Init error Creation of the
binding memory
space or
initialization of the
binding mechanism
failed

Review the
implementation

ISA_KWNG_KV

001F Kernel TIC: Unknown tic
code

File corrupted Compare with
workbench files

ISA_KWNG_TI

0020 Unknown data type on
conversion

File corrupted Compare with
workbench files

ISA_KWNG_TI

0021 TIC Boundary check check
error

Access out of range
in the variable array

Review the
workbench
application

ISA_KWNG_TI

0022 Kernel TIC: SINT divided
by zero

Divided by zero Review the
workbench
application

ISA_KWNG_TI

ernel Warning

de Description Probable Cause Diagnostic #define

15 ows Runtime Modules

0x CDINTDIVZ

0x CREALDIVZ

0x CEVO

0x CACT

0x YOVERFLOW

0x CINIT

0x CINTDIVZ

0x CLINTDIVZ

K

Co
36 Automation Collaborative Platform - Wind

0023 Kernel TIC: DINT divided
by zero

Divided by zero Review the
workbench
application

ISA_KWNG_TI

0024 Kernel TIC: REAL divided
by zero

Divided by zero Review the
workbench
application

ISA_KWNG_TI

0025 Dynamic SFC behaviour:
Behaviour processing error

Incorrect
implementation

Review the
workbench
application

ISA_KWNG_SF

0026 Dynamic SFC behaviour:
Action Execution error

Changes made
outside the system
layer

Compare with the
original PRDK

ISA_KWNG_SF

0027 Cycle Time Overflow Cycle time too low Increase the cycle
time in the workbench
application

ISA_KWNG_TC

0028 Dynamic SFC behaviour:
Initialisation error

Declared in the
workbench but not
exist in the target

Review the
implementation

ISA_KWNG_SF

0029 Kernel TIC: INT divided
by zero

Divided by zero Review the
workbench
application

ISA_KWNG_TI

0030 Kernel TIC: LINT divided
by zero

Divided by zero Review the
workbench
application

ISA_KWNG_TI

ernel Warning

de Description Probable Cause Diagnostic #define

15 ows Runtime Modules

0x CUSINTDIVZ

0x CUINTDIVZ

0x CUDINTDIVZ

0x CULINTDIVZ

0x CLREALDIVZ

0x CCALLSTKOVERFLO

0x CSOFTWDOG

K

Co
37 Automation Collaborative Platform - Wind

0031 Kernel TIC: USINT
divided by zero

Divided by zero Review the
workbench
application

ISA_KWNG_TI

0032 Kernel TIC: UINT divided
by zero

Divided by zero Review the
workbench
application

ISA_KWNG_TI

0033 Kernel TIC: UDINT
divided by zero

Divided by zero Review the
workbench
application

ISA_KWNG_TI

0034 Kernel TIC: ULINT
divided by zero

Divided by zero Review the
workbench
application

ISA_KWNG_TI

0035 Kernel TIC: LREAL
divided by zero

Divided by zero Review the
workbench
application

ISA_KWNG_TI

0036 Kernel TIC: Call stack
overflow

The running
application requires
a call stack depth
higher than what is
supported by the
run-time

Review the
application

ISA_KWNG_TI
W

0037 Kernel TIC: Soft watch
dog called

The execution
cycle is higher than
the limit defined in
the run-time

Review run-time
implementation or
application

ISA_KWNG_TI

ernel Warning

de Description Probable Cause Diagnostic #define

15 ows Runtime Modules

Sy

Co

0x NYINIT

0x RNUM

0x UM

0x M

0x

0x

0x E

0x E_ALREADYEXIST

0x E
38 Automation Collaborative Platform - Wind

stem Layer

de Description Probable Cause Diagnostic #define

20000001 SYS: Too many
inits have been
done

Changes made
outside the system
layer

Compare with the
original PRDK

ISA_ER_SYS_TOOMA

20000002 SYS: Bad owner
number (generaly
to high)

Incorrect
implementation

Review the
implementation

ISA_ER_SYS_OWNE

20000003 SYS: Bad user
number (generaly
to high)

Incorrect
implementation

Review the
implementation

ISA_ER_SYS_USERN

20000004 SYS: Bad object
number (generaly
to high)

Incorrect
implementation

Review the
implementation

ISA_ER_SYS_OBJNU

20000010 SPC: Invalid space
identifier

Incorrect
implementation

Review the
implementation

ISA_ER_SPC_ID

20000011 SPC: Owner
number is not
available

Incorrect
implementation

Review the
implementation

ISA_ER_0x0011

20000012 SPC: Cannot create
memory block

Incorrect
implementation

Review the
implementation

ISA_ER_SPC_CREAT

20000013 SPC: Cannot create
memory block
when already exists

Incorrect
implementation

Review the
implementation

ISA_ER_SPC_CREAT

20000014 SPC: Cannot delete
memory block

Incorrect
implementation

Review the
implementation

ISA_ER_SPC_DELET

15 ows Runtime Modules

0x

0x K

0x

0x

0x NOTEXIST

0x REMOVE

0x

0x

Sy

Co
39 Automation Collaborative Platform - Wind

20000015 SPC: Cannot link
with memory
block. The memory
block has been
deleted or does not
exist.

Incorrect
implementation

Review the
implementation

ISA_ER_SPC_LINK

20000016 SPC: Cannot unlink
with memory block

Incorrect
implementation

Review the
implementation

ISA_ER_SPC_UNLIN

20000017 SPC: Cannot save
space

Incorrect
implementation

Review the
implementation

ISA_ER_SPC_SAVE

20000018 SPC: Cannot load
space into memory
block

Incorrect
implementation

Review the
implementation

ISA_ER_SPC_LOAD

20000019 SPC: Cannot load
space, space does
not exist

Incorrect
implementation

Review the
implementation

ISA_ER_SPC_LOAD_

2000001A SPC: Cannot
remove saved space

Incorrect
implementation

Review the
implementation

ISA_ER_SPC_BKUP_

20000020 SEM: Invalid
semaphore
identifier

Incorrect
implementation

Review the
implementation

ISA_ER_SEM_ID

20000021 SEM: Owner
number is not
available

Incorrect
implementation

Review the
implementation

ISA_ER_SEM_0x0021

stem Layer

de Description Probable Cause Diagnostic #define

15 ows Runtime Modules

0x E

0x E_ALREADYEXIST

0x E

0x

0x

0x

0x IMEOUT

0x

Sy

Co
40 Automation Collaborative Platform - Wind

20000022 SEM: Cannot
create semaphore

Incorrect
implementation

Review the
implementation

ISA_ER_SEM_CREAT

20000023 SEM: Semaphore
already exists,
semaphore already
exists

Incorrect
implementation

Review the
implementation

ISA_ER_SEM_CREAT

20000024 SEM: Cannot
delete semaphore

Incorrect
implementation

Review the
implementation

ISA_ER_SEM_DELET

20000025 SEM: Cannot link
with semaphore.
The sempahore has
been deleted or
does not exist.

Incorrect
implementation

Review the
implementation

ISA_ER_SEM_OPEN

20000026 SEM: Cannot close
semaphore

Incorrect
implementation

Review the
implementation

ISA_ER_SEM_CLOSE

20000027 SEM: Cannot take
semaphore

Incorrect
implementation

Review the
implementation

ISA_ER_SEM_TAKE

20000028 SEM: Time out is
reached taking
semaphore

Incorrect
implementation

Review the
implementation

ISA_ER_SEM_TAKET

20000029 SEM: Error
releasing
semaphore

Incorrect
implementation

Review the
implementation

ISA_ER_SEM_GIVE

stem Layer

de Description Probable Cause Diagnostic #define

15 ows Runtime Modules

0x

0x ATE

0x ATE_ALREADYEXIST

0x ATE_SIZE

0x ATE_MSGTOOLONG

0x

Sy

Co
41 Automation Collaborative Platform - Wind

20000030 MSGQ: Invalid
message queue
identifier

Incorrect
implementation

Review the
implementation

ISA_ER_MSGQ_ID

20000031 MSGQ: Cannot
create message
queue

Incorrect
implementation

Review the
implementation

ISA_ER_MSGQ_CRE

20000032 MSGQ: Cannot
create message
queue, message
queue already
exists

Incorrect
implementation

Review the
implementation

ISA_ER_MSGQ_CRE

20000033 MSGQ: Cannot
create message
queue, the size of
message queue is
too large

Incorrect
implementation

Review the
implementation

ISA_ER_MSGQ_CRE

20000034 MSGQ: Cannot
create message
queue, the length of
messages is too
large

Incorrect
implementation

Review the
implementation

ISA_ER_MSGQ_CRE

20000035 MSGQ: Cannot
delete message
queue

Incorrect
implementation

Review the
implementation

ISA_ER_MSGQ_DEL

stem Layer

de Description Probable Cause Diagnostic #define

15 ows Runtime Modules

0x

0x SE

0x

0x _TIMEOUT

0x _TOOLONG

0x _PRIORITY

Sy

Co
42 Automation Collaborative Platform - Wind

20000036 MSGQ: Cannot
link with message
queue. The
message queue has
been deleted or
does not exist

Incorrect
implementation

Review the
implementation

ISA_ER_MSGQ_OPEN

20000037 MSGQ: Cannot
close message
queue

Incorrect
implementation

Review the
implementation

ISA_ER_MSGQ_CLO

20000038 MSGQ: Cannot
send message to
message queue

Incorrect
implementation

Review the
implementation

ISA_ER_MSGQ_SEND

20000039 MSGQ: Cannot
send message, time
out reached

Incorrect
implementation

Review the
implementation

ISA_ER_MSGQ_SEND

2000003A MSGQ: Cannot
send message,
message is too
large

Incorrect
implementation

Review the
implementation

ISA_ER_MSGQ_SEND

2000003B MSGQ: Priority
parameter is
incorrect, message
priority is unknown

Incorrect
implementation

Review the
implementation

ISA_ER_MSGQ_SEND

stem Layer

de Description Probable Cause Diagnostic #define

15 ows Runtime Modules

0x

0x _TIMEOUT

0x ARDED

0x _OVERFLOW

0x L

0x

0x L

0x

Sy

Co
43 Automation Collaborative Platform - Wind

2000003C MSGQ: Cannot
read message from
message queue

Incorrect
implementation

Review the
implementation

ISA_ER_MSGQ_RCV

2000003D MSGQ: Time out is
reached receiving
message

Incorrect
implementation

Review the
implementation

ISA_ER_MSGQ_RCV

2000003E MSGQ: The
message is
discarded. The
buffer is too small.

Incorrect
implementation

Review the
implementation

ISA_ER_MSGQ_DISC

2000003F MSGQ: Cannot
send message, no
message available
from pool

Incorrect
implementation

Review the
implementation

ISA_ER_MSGQ_SEND

20000050 NTF: Cannot install
handler routine

Incorrect
implementation

Review the
implementation

ISA_ER_NTF_INSTAL

20000051 NTF: Cannot open
notification

Incorrect
implementation

Review the
implementation

ISA_ER_NTF_OPEN

20000052 NTF: Cannot send
notification, invalid
notif signal
identifier

Incorrect
implementation

Review the
implementation

ISA_ER_NTF_SIGNA

20000060 DSA: Invalid name Incorrect
implementation

Review the
implementation

ISA_ER_DSA_NAME

stem Layer

de Description Probable Cause Diagnostic #define

15 ows Runtime Modules

0x

0x VE

0x E

0x

0x

0x IST

0x

0x

0x NNING

0x E

0x NATE

0x E

Sy

Co
44 Automation Collaborative Platform - Wind

02030061 DSA: Cannot open
DSA

Incorrect
implementation

Review the
implementation

ISA_ER_DSA_OPEN

20000062 DSA: Cannot
remove DSA

Incorrect
implementation

Review the
implementation

ISA_ER_DSA_REMO

20000063 DSA: Cannot
create DSA

Incorrect
implementation

Review the
implementation

ISA_ER_DSA_CREAT

20000064 DSA: Cannot write
DSA

Incorrect
implementation

Review the
implementation

ISA_ER_DSA_WRITE

20000065 DSA: Cannot read
DSA

Incorrect
implementation

Review the
implementation

ISA_ER_DSA_READ

20000066 DSA: DSA does
not exist

Incorrect
implementation

Review the
implementation

ISA_ER_DSA_NOTEX

20000067 DSA: DSA does
not exist

Incorrect
implementation

Review the
implementation

ISA_ER_DSA_INIT

20000068 DSA: Error in
reading DSA

Incorrect
implementation

Review the
implementation

ISA_ER_DSA_SEEK

20000070 TSK: Task is not
running

Incorrect
implementation

Review the
implementation

ISA_ER_TSK_NOTRU

20000071 TSK: Cannot create
task.

Incorrect
implementation

Review the
implementation

ISA_ER_TSK_CREAT

20000072 TSK: Cannot
terminate task.

Incorrect
implementation

Review the
implementation

ISA_ER_TSK_TERMI

20000073 TSK: Cannot create
thread

Incorrect
implementation

Review the
implementation

ISA_ER_THR_CREAT

stem Layer

de Description Probable Cause Diagnostic #define

15 ows Runtime Modules

0x NATE

0x RT

0x

0x E

0x

0x

0x T

0x SS

0x CT

0x N

0x VE

Sy

Co
45 Automation Collaborative Platform - Wind

20000074 TSK: Cannot
terminate thread

Incorrect
implementation

Review the
implementation

ISA_ER_THR_TERMI

20000075 TSK: Cannot
restart a task

Incorrect
implementation

Review the
implementation

ISA_ER_TSK_RESTA

20000080 SOC: Socket
initialization failed

Incorrect
implementation

Review the
implementation

ISA_ER_SOC_INIT

20000081 SOC: Cannot create
socket

Incorrect
implementation

Review the
implementation

ISA_ER_SOC_CREAT

20000082 SOC: Cannot bind
socket

Incorrect
implementation

Review the
implementation

ISA_ER_SOC_BIND

20000083 SOC: Cannot listen
to socket

Incorrect
implementation

Review the
implementation

ISA_ER_SOC_LISTEN

20000084 SOC: Cannot
accept a socket,
connection failed

Incorrect
implementation

Review the
implementation

ISA_ER_SOC_ACCEP

20000085 SOC: Invalid
address

Incorrect
implementation

Review the
implementation

ISA_ER_SOC_ADDRE

20000086 SOC: Cannot
connect a socket

Incorrect
implementation

Review the
implementation

ISA_ER_SOC_CONNE

20000087 SOC: Connection is
broken

Incorrect
implementation

Review the
implementation

ISA_ER_SOC_BROKE

20000088 SOC: Error
receiving data from
socket

Incorrect
implementation

Review the
implementation

ISA_ER_SOC_RECEI

stem Layer

de Description Probable Cause Diagnostic #define

15 ows Runtime Modules

0x

0x N

0x PLEMENTED

I/O

Co

 0x BROFERR

0x EMCREATE

0x EMOPEN

0x EMTAKE

0x PCCREATE

0x PCDELETE

Sy

Co
46 Automation Collaborative Platform - Wind

20000089 SOC: Error sending
data on socket

Incorrect
implementation

Review the
implementation

ISA_ER_SOC_SEND

2000008A SOC: Change
option has failed

Incorrect
implementation

Review the
implementation

ISA_ER_SOC_OPTIO

2000008B SOC: Command
not implemented

Incorrect
implementation

Review the
implementation

ISA_ER_SOC_NOTIM

s

de Description Probable Cause Diagnostic #define

02050001UL Invalid number of
errors

Changes made
outside the system
layer

Compare with the
original PRDK

ISA_RC_DSYS_N

02050002UL Semaphore can’t be
created

Incorrect
implementation

Review the
implementation

ISA_RC_DSYS_S

02050003UL Open semaphore
failed

Incorrect
implementation

Review the
implementation

ISA_RC_DSYS_S

02050004UL Take semaphore
failed

Incorrect
implementation

Review the
implementation

ISA_RC_DSYS_S

02050005UL Space can be
created

Incorrect
implementation

Review the
implementation

ISA_RC_DSYS_S

02050006UL Space cannot be
deleted

Incorrect
implementation

Review the
implementation

ISA_RC_DSYS_S

stem Layer

de Description Probable Cause Diagnostic #define

15 ows Runtime Modules

0x PCLINK

0x PCUNLINK

0x NGSET

0x PCEMPTY

H

Co

0x B_CRC

0x B_TIMEOUT

I/O

Co
47 Automation Collaborative Platform - Wind

02050007UL Link to space failed Incorrect
implementation

Review the
implementation

ISA_RC_DSYS_S

02050008UL Unlink to space
failed

Incorrect
implementation

Review the
implementation

ISA_RC_DSYS_S

02050009UL Error if the space
failed

Incorrect
implementation

Review the
implementation

ISA_RC_DSYS_W

0205000AUL Warning stack is
empty

Incorrect
implementation

Review the
implementation

ISA_RC_DSYS_S

ost System Driver Binding

de Description Probable Cause Diagnostic #define

20000630 Host System Driver
Binding:
Incompatible
version of binding
table (Bad CRC)

CRC mismatch in
the data exchanged
through the binding

Review the
implementation

ISA_ER_HSD_KV

20000631 Host System Driver
Binding: Produced
variables are not
refresh since the
maximum time
allowed

Timeout occured
during binding
communication
over the HSD

Producer has been
switched off

ISA_ER_HSD_KV

s

de Description Probable Cause Diagnostic #define

15 ows Runtime Modules

0x B_KERNELSTOP

0x B_SERVICE

eX

Co

0x LINIT

0x SINIT

0x LOC

0x _NOT_FOUND

H

Co
48 Automation Collaborative Platform - Wind

20000632 Host System Driver
Binding: There is
no producer

The producing
resource has been
stopped or the
connection
properties are
incorrect

Restart the
producing resource
or review the
connection
properties

ISA_ER_HSD_KV

20000633 Host System Driver
Binding: Service
not implemented

Service not
implemented

Review the
implementation

ISA_ER_HSD_KV

change Dispatcher (IXD)

de Description Probable Cause Diagnostic #define

22070001 IXD: Initialization
of IXL failed

Changes made
outside the system
layer

Compare with the
original PRDK

ISA_RC_DIXD_IX

22070002 IXD: Initialization
of IXS failed

Changes made
outside the system
layer

Compare with the
original PRDK

ISA_RC_DIXD_IX

20000400 IXD: Allocation
error.

Incorrect
implementation

Review the
implementation

ISA_ER_IXD_AL

20000401 IXD: Trying to
connect to
unknown resource

Not in use Not applicable ISA_ER_IXD_RES

ost System Driver Binding

de Description Probable Cause Diagnostic #define

15 ows Runtime Modules

0x _NOT_LOAD

0x _NOT_FOUND

0x TEM

0x TA_TO_CLOSED_CX

0x _CNX_AVAILABLE

0x D_CNX_ID

eX

Co
49 Automation Collaborative Platform - Wind

20000402 IXD: Network
configuration not
loaded

Not in use Not applicable ISA_ER_IXD_CFG

20000403 IXD: Network
configuration not
found

Not in use Not applicable ISA_ER_IXD_CFG

20000404 IXD: Operation
fails due to system
error

Dialog not yet
established

Call StartDialog
before sending
requests over IXL

ISA_ER_IXD_SYS

20000405 IXD: Received data
for a closed
connection

Not in use Not applicable ISA_ER_IXD_DA

20000406 IXD: No more
connections are
available

No connection
available

Increase the value
of the
IXD_DEFAULT_C
HANNELNBR or
ISA_CNXNBR
define

ISA_ER_IXD_NO

20000407 IXD: Bad
connection
identifier

Bad connection
identifier used over
the communication

Disconnect and
reconnect to the
run-time

ISA_ER_IXD_BA

change Dispatcher (IXD)

de Description Probable Cause Diagnostic #define

15 ows Runtime Modules

0x OMANY_MSG_ATATI

0x GOVERFLOW

0x XTIMEOUT

0x TIMEOUT

0x OMANY_MSG_ATATI

eX

Co
50 Automation Collaborative Platform - Wind

20000408 IXD: Too many
pending message at
a time

Received too many
messages at once

Increase the value
of the
IXD_DEFAULT_
MSGBYCHANNE
L define

ISA_ER_IXD_TO
ME

20000409 IXD: IXD buffer is
too short.

Communication
buffer is too small

Increase the value
of the
IXD_DEFAULT_
MSGPROCSZ
define

ISA_ER_IXD_MS

2000040A IXD: Connection
timeout

Communication
timeout

Disconnect and
reconnect to the
run-time

ISA_ER_IXD_CN

2000040B IXD: Request
timeout

Communication
timeout

Disconnect and
reconnect to the
run-time

ISA_ER_IXD_NID

02070408 IXD: Too many
pending message at
a time.

Changes made
outside the system
layer

Compare with the
original PRDK

ISA_ER_IXD_TO
ME

change Dispatcher (IXD)

de Description Probable Cause Diagnostic #define

15 ows Runtime Modules

eX

Co

0x NFIG

0x NNECT

0x SCONNECT

0x AD

0x G_TOOLATE

0x NFIGPARAM

0x NNECTMEM

0x MEOUT
51 Automation Collaborative Platform - Wind

change Layer (IXL)

de Description Probable Cause Diagnostic #define

20000500 ISXL: Memory block
allocated for device is
too short

File corrupted Compare with
workbench files

ISA_ER_ISXL_CO

20000501 ISXL: Cannot establish
connection

Changes made
outside the system
layer

Compare with the
original PRDK

ISA_ER_ISXL_CO

20000502 ISXL: Cannot remove
connection

Changes made
outside the system
layer

Compare with the
original PRDK

ISA_ER_ISXL_DI

20000503 ISXL: Cannot read
variables

Changes made
outside the system
layer

Compare with the
original PRDK

ISA_ER_ISXL_RE

20000504 ISXL: Too late too
change device
(connection maybe
already established)

Changes made
outside the system
layer

Compare with the
original PRDK

ISA_ER_ISXL_CF

20000505 ISXL: Cannot set
device parameters

File corrupted Compare with
workbench files

ISA_ER_ISXL_CO

20000506 ISXL: The memory
block allocated for
connection is too short

Changes made
outside the system
layer

Compare with the
original PRDK

ISA_ER_ISXL_CO

20000507 ISXL: Time out Incorrect
implementation

Review the
implementation

ISA_ER_ISXL_TI

15 ows Runtime Modules

0x ANSPORTFAILED

0x

0x ERFLOW

0x TIFID

0x

0x LCNX

0x ADERTOOSMALL

0x KNOWNTYPE

eX

Co
52 Automation Collaborative Platform - Wind

20000508 ISXL: An error occurs
during the transport of
message.

Incorrect
implementation

Review the
implementation

ISA_ER_ISXL_TR

20000509 ISXL: The RQ code not
corresponding

Changes made
outside the system
layer

Compare with the
original PRDK

ISA_ER_ISXL_RQ

2000050A ISXL: The maximum
capacity of the buffer is
reached.

Changes made
outside the system
layer

Compare with the
original PRDK

ISA_ER_ISXL_OV

2000050B ISXL: The notification
identifier is wrong

Changes made
outside the system
layer

Compare with the
original PRDK

ISA_ER_ISXL_NO

2000050C ISXL: Bad return check
or error during the
transport

Changes made
outside the system
layer

Compare with the
original PRDK

ISA_ER_ISXL_RC

2000050D ISXL: Cannot remove
connection

Changes made
outside the system
layer

Compare with the
original PRDK

ISA_ER_ISXL_DE

2000050E ISXL: This function
required a header for
the buffer.

Changes made
outside the system
layer

Compare with the
original PRDK

ISA_ER_ISXL_HE

2000050F ISXL: Unknown type Changes made
outside the system
layer

Compare with the
original PRDK

ISA_ER_ISXL_UN

change Layer (IXL)

de Description Probable Cause Diagnostic #define

15 ows Runtime Modules

0x DVANUMBER

0x RTDLG

0x PDLG

0x RTDLGFAILED

0x PDLGFAILED

0x RTINPROG

0x PINPROG

0x G_NOT_STARTED

eX

Co
53 Automation Collaborative Platform - Wind

20000510 ISXL: Bad index
number

Changes made
outside the system
layer

Compare with the
original PRDK

ISA_ER_ISXL_BA

20000511 ISXL: Start dialog is
not allowed (maybe
dialog is already
established)

Changes made
outside the system
layer

Compare with the
original PRDK

ISA_ER_ISXL_ST

20000512 ISXL: Stop dialog is not
allowed

Changes made
outside the system
layer

Compare with the
original PRDK

ISA_ER_ISXL_ST

20000513 ISXL: Start dialog has
failed

Changes made
outside the system
layer

Compare with the
original PRDK

ISA_ER_ISXL_ST

20000514 ISXL: An error has
occurred during the stop
dialog procedure.

Changes made
outside the system
layer

Compare with the
original PRDK

ISA_ER_ISXL_ST

20000515 ISXL: Start not in
progress

Changes made
outside the system
layer

Compare with the
original PRDK

ISA_ER_ISXL_ST

20000516 ISXL: Stop not in
progress

Changes made
outside the system
layer

Compare with the
original PRDK

ISA_ER_ISXL_ST

20000518 ISXL: Dialog is not
established

Changes made
outside the system
layer

Compare with the
original PRDK

ISA_ER_ISXL_DL

change Layer (IXL)

de Description Probable Cause Diagnostic #define

15 ows Runtime Modules

0x RDESC

0x TH_NO_AVBLE

0x RVICE

0x TAOVERFLOW

0x X_1BYRESOURCE

0x X_EXTRAPARAM

0x EDWAIT

0x _FREE_CNX

eX

Co
54 Automation Collaborative Platform - Wind

20000519 ISXL: Error in variable
description

Changes made
outside the system
layer

Compare with the
original PRDK

ISA_ER_ISXL_VA

2000051A ISXL: Method not
provided by the driver
or invalid method

Changes made
outside the system
layer

Compare with the
original PRDK

ISA_ER_ISXL_M

2000051B ISXL: Service not
provided by the driver
or invalid service

Changes made
outside the system
layer

Compare with the
original PRDK

ISA_ER_ISXL_SE

2000051C ISXL: Size allowed for
this variable is too short

Changes made
outside the system
layer

Compare with the
original PRDK

ISA_ER_ISXL_DA

2000051D ISXL: Only one
connection by resource
and by method allowed

Changes made
outside the system
layer

Compare with the
original PRDK

ISA_ER_ISXL_CN

2000051F ISXL: Bad extra
parameters for
connection

Incorrect
implementation

Review the
implementation

ISA_ER_ISXL_CN

20000520 ISXL: Request cannot
be proceeded, retry later

Incorrect
implementation

Review the
implementation

ISA_ER_ISXL_NE

20000521 ISXS: Cannot establish
connection, no more
free IXS connections
available

Incorrect
implementation

Review the
implementation

ISA_ER_ISXS_NO

change Layer (IXL)

de Description Probable Cause Diagnostic #define

15 ows Runtime Modules

0x G_NOTIMPLEM

0x RITE

0x

0x MANYINIT

0x CLIENTNUM

0x ISTRATIONOK

0x ISTERNAME

0x ISTER

eX

Co
55 Automation Collaborative Platform - Wind

20000522 ISXL: Routing feature
is not implemented

Changes made
outside the system
layer

Compare with the
original PRDK

ISA_ER_ISXL_RT

20000523 ISXL: Cannot write
variables

Changes made
outside the system
layer

Compare with the
original PRDK

ISA_ER_ISXL_W

20000530 IXL: Invalid IXL
identifier

Changes made
outside the system
layer

Compare with the
original PRDK

ISA_ER_IXL_ID

20000531 IXL: Too many calls to
IXL init.

Changes made
outside the system
layer

Compare with the
original PRDK

ISA_ER_IXL_TOO

20000532 IXL: Clients cannot
have the same number

Incorrect
implementation

Review the
implementation

ISA_ER_IXL_INIT

20000533 IXL: The configuration
completed successfully.

All IXL drivers
have been
initialized properly

ISA_ER_IXL_REG

20000534 IXL: Cannot register
the driver, its name is
invalid

Incorrect
implementation

Review the
implementation

ISA_ER_IXL_REG

20000535 IXL: Cannot register
the driver, a parameter
is NULL

Incorrect
implementation

Review the
implementation

ISA_ER_IXL_REG

change Layer (IXL)

de Description Probable Cause Diagnostic #define

15 ows Runtime Modules

0x XDRV

0x FIGDRIVER

0x CNXID

0x XCNX

0x KNOWNDRV

0x GOVERFLOW

0x CAPS

eX

Co
56 Automation Collaborative Platform - Wind

20000536 IXL: Cannot register
driver, maximum driver
is reached

Incorrect
implementation

Review the
implementation

ISA_ER_IXL_MA

20000537 IXL: Cannot configure
all drivers

Incorrect
implementation.
The RSI driver in
the target may not
be configured. The
RSI driver (serial
driver) is not
mandatory for an
target.

Review the
implementation

ISA_ER_IXL_CON

20000538 IXL: Invalid connection
identifier

Incorrect
implementation

Review the
implementation

ISA_ER_IXL_BAD

20000539 IXL: Cannot establish
connection, maximum
connection is reached

Incorrect
implementation

Review the
implementation

ISA_ER_IXL_MA

2000053A IXL: Cannot establish
connection, driver is
unknown

Incorrect
implementation

Review the
implementation

ISA_ER_IXL_UN

2000053B IXL: IXL buffer is too
short

Incorrect
implementation

Review the
implementation

ISA_ER_IXL_MS

2000053C IXL: This capability is
not implemented.

Incorrect
implementation

Review the
implementation

ISA_ER_IXL_BAD

change Layer (IXL)

de Description Probable Cause Diagnostic #define

15 ows Runtime Modules

0x AM

0x

0x

0x _NOTLOADED

0x _ITERATIONMAX

0x _VAR_UNKNOWN

0x _TYP_UNKNOWN

0x _MISMATCH

0x _CRC

eX

Co
57 Automation Collaborative Platform - Wind

2000053D IXL: Parameters are
bad

Incorrect
implementation

Review the
implementation

ISA_ER_IXL_PAR

2000053E IXL: Bad RQ Incorrect
implementation

Review the
implementation

ISA_ER_IXL_RQ

2000053F IXL: Kernel problem in
executing request

Incorrect
implementation

Review the
implementation

ISA_ER_IXL_RC

20000540 IXL: Symbol table is
not loaded

Incorrect
implementation

Review the
implementation

ISA_ER_IXL_SYM

20000541 IXL: Maximum
iteration is reached in
symbol management

Changes made
outside the system
layer

Compare with the
original PRDK

ISA_ER_IXL_SYM

20000542 IXL: Variable is
unknown

Changes made
outside the system
layer

Compare with the
original PRDK

ISA_ER_IXL_SYM

20000543 IXL: Type or Sub-type
is unknown

Changes made
outside the system
layer

Compare with the
original PRDK

ISA_ER_IXL_SYM

20000544 IXL: Symbols
mismatch

Changes made
outside the system
layer

Compare with the
original PRDK

ISA_ER_IXL_SYM

20000545 IXL: Symbols
mismatch, bad CRC

Changes made
outside the system
layer

Compare with the
original PRDK

ISA_ER_IXL_SYM

change Layer (IXL)

de Description Probable Cause Diagnostic #define

15 ows Runtime Modules

0x _RESNAME

0x _END

0x _CORRUPTED

0x _ALREADYLOADE

0x _LOADING

0x _BADVERSION

0x _DEV_UNKNOWN

eX

Co
58 Automation Collaborative Platform - Wind

20000546 IXL: Symbols
mismatch, bad resource
name

Changes made
outside the system
layer

Compare with the
original PRDK

ISA_ER_IXL_SYM

20000547 IXL: End of symbols is
reached or stop is
required

Changes made
outside the system
layer

Compare with the
original PRDK

ISA_ER_IXL_SYM

20000548 IXL: Symbols are
corrupted

Changes made
outside the system
layer

Compare with the
original PRDK

ISA_ER_IXL_SYM

20000549 IXL: Symbols are
already loaded

Changes made
outside the system
layer

Compare with the
original PRDK

ISA_ER_IXL_SYM
D

2000054A IXL: Symbols are
currently loading

Changes made
outside the system
layer

Compare with the
original PRDK

ISA_ER_IXL_SYM

2000054B IXL: Both IXL versions
cannot coexist

Changes made
outside the system
layer

Compare with the
original PRDK

ISA_ER_IXL_SYM

2000054C IXL: Device is
unknown.

Changes made
outside the system
layer

Compare with the
original PRDK

ISA_ER_IXL_SYM

change Layer (IXL)

de Description Probable Cause Diagnostic #define

15 ows Runtime Modules

0x _BADSYNTAX

0x _NOTCOMPLETE

ET

Co

0x VB_ADDRESS

0x VB_RES_LOCAL

0x VB_NO_SERVER

eX

Co
59 Automation Collaborative Platform - Wind

2000054D IXL: Syntax error. File corrupted Compare with
workbench files

ISA_ER_IXL_SYM

2000054E IXL: Symbols table is
incomplete, it is
reduced one

File corrupted Compare with
workbench files

ISA_ER_IXL_SYM

CP Binding

de Description Probable Cause Diagnostic #define

20000730 ETCP-KVB: Host
address not resolved

Cannot resolve the
IP address provided
in the binding
configuration

Verify the device
connection to the
network and review
the state of the IP
stack

ISA_ER_ETCP_K

20000731 ETCP-KVB: No remote
resource found

The resource to be
connected is local
on the device

Review the
application to use
the HSD driver for
local resources.
The ETCP driver is
for use with remote
resources.

ISA_ER_ETCP_K

20000732 ETCP-KVB: ETCP
Server is not running

Cannot connect to
the ETCP task

Verify that the
ETCP task is
running

ISA_ER_ETCP_K

change Layer (IXL)

de Description Probable Cause Diagnostic #define

15 ows Runtime Modules

0x VB_NO_VARIABLES

0x VB_SERVICE

0x VB_VA_NOT_FOUND

0x VB_RES_NOT_FOUN

ET

Co

0x D_CH_ID

0x _TABLE_FULL

ET

Co
60 Automation Collaborative Platform - Wind

20000733 ETCP-KVB: This
resource has no variables
to bind.

No variables to
consume or
produce

Review the
application

ISA_ER_ETCP_K

20000734 ETCP-KVB: Service not
implemented

Service not
implemented

Review the
implementation

ISA_ER_ETCP_K

20000735 ETCP-KVB: This
variable is not bound by
the ETCP driver.

The variable
address cannot be
found

Review the
application, then
rebuild and
redownload it

ISA_ER_ETCP_K

20000736 ETCP-KVB: This
resource is not bound by
the ETCP driver.

The resource to
bind with cannot be
found

Review the
application, then
rebuild and
redownload it

ISA_ER_ETCP_K
D

CP Task

de Description Probable Cause Diagnostic #define

20000410 CRU: Bad channel
identifier

Changes made
outside the system
layer

Compare with the
original PRDK

ISA_ER_CRU_BA

20000411 CRU: Channel table full Changes made
outside the system
layer

Compare with the
original PRDK

ISA_ER_CRU_CH

CP Binding

de Description Probable Cause Diagnostic #define

15 ows Runtime Modules

0x _REFUSED

0x _EFFECT

0x OSED_CX

0x _IXD

0x T_OF_SPACE

0x D_PARAM

0x ERLOADED

ET

Co
61 Automation Collaborative Platform - Wind

20000412 CRU: Connection
refused

Changes made
outside the system
layer

Compare with the
original PRDK

ISA_ER_CRU_CX

20000413 CRU: Operation has no
effect

Changes made
outside the system
layer

Compare with the
original PRDK

ISA_ER_CRU_NO

20000414 CRU: Attempt to access
closed socket

Changes made
outside the system
layer

Compare with the
original PRDK

ISA_ER_CRU_CL

20000415 CRU: No IXD to accept
connection

Changes made
outside the system
layer

Compare with the
original PRDK

ISA_ER_CRU_NO

20000416 CRU: Connection
refused (out of space)

Changes made
outside the system
layer

Compare with the
original PRDK

ISA_ER_CRU_OU

20000417 CRU: Bad parameters
related to channel
operation

Incorrect
implementation

Review the
implementation

ISA_ER_CRU_BA

20000418 CRU: Server is
overloaded: Retry later

Incorrect
implementation

Review the
implementation

ISA_ER_CRU_OV

CP Task

de Description Probable Cause Diagnostic #define

15 ows Runtime Modules

0x S_FULL

0x ND_FAIL

0x D_PARAM

0x OSE

0x KESERVER

0x NNECT

0x AD

0x CEPT

ET

Co
62 Automation Collaborative Platform - Wind

20000420 VRU: Error during
binding: common Data
eXchange Space full

Not enough
memory to manage
connections

Increase either of
the following
defines:
ETCP_DEF_ESCT
_NB_ENTRIES,
ETCP_DEF_ISCT
_NB_ENTRIES,
ETCP_DEF_RBIT
_NB_ENTRIES, or
ETCP_DEF_RCT_
NB_ENTRIES

ISA_ER_VRU_DX

20000421 VRU: Cannot link to
producer

Incorrect
implementation

Review the
implementation

ISA_ER_VRU_BI

20000422 VRU: Bad binding
parameter

Not in use Not applicable ISA_ER_VRU_BA

20000701 TAL: Fail to close
socket.

Incorrect
implementation

Review the
implementation

ISA_ER_TAL_CL

20000702 TAL: Fails to launch
ISaGRAF server

Incorrect
implementation

Review the
implementation

ISA_ER_TAL_MA

20000703 TAL: Fail to connect to
remote node

Incorrect
implementation

Review the
implementation

ISA_ER_TAL_CO

20000704 TAL: Can't read in
socket

Incorrect
implementation

Review the
implementation

ISA_ER_TAL_RE

20000705 TAL: Error during
remote client connection

Incorrect
implementation

Review the
implementation

ISA_ER_TAL_AC

CP Task

de Description Probable Cause Diagnostic #define

15 ows Runtime Modules

0x TFAIL

0x GBLOCKING

0x OKEN_CX

0x ITE

0x D_ADR

0x P_CNX_ERR

0x IMEOUT

0x Q_ALREADY_CONN

0x O_CNX_AVALAIBLE

ET

Co
63 Automation Collaborative Platform - Wind

20000706 TAL: FAIL TO
INITIALIZE THE
TCP/IP STACK

Incorrect
implementation

Review the
implementation

ISA_ER_TAL_INI

20000707 TAL: Fail to change
socket status

Incorrect
implementation

Review the
implementation

ISA_ER_TAL_CH

20000708 TAL: Broken
connection

Incorrect
implementation

Review the
implementation

ISA_ER_TAL_BR

20000709 TAL: Error during
socket write

Incorrect
implementation

Review the
implementation

ISA_ER_TAL_WR

2000070A TAL: Received data are
not coherent

Incorrect
implementation

Review the
implementation

ISA_ER_TAL_BA

2000070B TAL: Remote ETCP
connection fails

Incorrect
implementation

Review the
implementation

ISA_ER_TAL_RE

20000710 ETCP: ETCP is in
Timeout mode

Incorrect
implementation

Review the
implementation

ISA_ER_ETCP_T

20000711 ETCP: The ETCP server
is already connected to a
default queue.

Incorrect
implementation

Review the
implementation

ISA_ER_ETCP_D
ECTED

20000712 ETCP: The ETCP server
is full.

Incorrect
implementation

Review the
implementation

ISA_ER_ETCP_N

CP Task

de Description Probable Cause Diagnostic #define

15 ows Runtime Modules

IS

Co

0x

0x N

0x D

0x ITE

0x PARAM

Co

Co

0x G_NOT_LOADED

0x S_NOT_FOUND

0x NVFAILED

0x EOUT
64 Automation Collaborative Platform - Wind

aRSI Task

de Description Probable Cause Diagnostic #define

20000640 RSI: Cannot initialize
serial device

Incorrect
implementation

Review the
implementation

ISA_ER_RSI_INIT

20000641 RSI: Cannot open serial
device

Incorrect
implementation

Review the
implementation

ISA_ER_RSI_OPE

20000642 RSI: Cannot read serial
device

Incorrect
implementation

Review the
implementation

ISA_ER_RSI_REA

20000643 RSI: Cannot write serial
device

Incorrect
implementation

Review the
implementation

ISA_ER_RSI_WR

20000644 RSI: Bad parameters Incorrect
implementation

Review the
implementation

ISA_ER_RSI_BAD

mmon Errors

de Description Probable Cause Diagnostic #define

20000430 NET-CFG: There is no
network device table.

Incorrect
implementation

Review the
implementation

ISA_ER_NET_CF

20000431 NET: Resource not
found

Incorrect
implementation

Review the
implementation

ISA_ER_NET_RE

20000432 NET: Variable
conversion failed.

Incorrect
implementation

Review the
implementation

ISA_ER_NET_CO

20000440 IPC: IPC is in Timeout
mode.

Incorrect
implementation

Review the
implementation

ISA_ER_IPC_TIM

15 ows Runtime Modules

0x _ALREADY_CONNEC

0x _CNX_AVALAIBLE

0x OSPORTACC

0x PL_GETTGTNM_NOT

0x PL_MODELMISMATC

0x PL_GETTGTVERSIO

0x PL_DLL_NOTLOADE

Co

Co
65 Automation Collaborative Platform - Wind

20000441 IPC: The IPC server is
already connected to a
default queue.

Incorrect
implementation

Review the
implementation

ISA_ER_IPC_DQ
TED

20000442 IPC: The IPC server is
full.

Incorrect
implementation

Review the
implementation

ISA_ER_IPC_NO

20008000 NT IOs: Call to device
for direct port access
failed

Incorrect
implementation

Review the
implementation

ISA_WNGWNT_I

20008001 NT IPL: Package not up
to date, it may have
hazardous behavior

Incorrect
implementation

Review the
implementation

ISA_WNGWNT_I
FOUND

20008002 NT IPL: Package
ignored, memory model
mismatch

Incorrect
implementation

Review the
implementation

ISA_WNGWNT_I
H

20008003 NT IPL: Package
ignored, version not
compatible

Windows specific
version mismatch
between the
run-time and the
loading .dll

Verify the .dll was
compiled with the
state of the
ITGTDEF_NEW_
ARRAY_AND_FB
define as the
run-time loading
the .dll

ISA_WNGWNT_I
N

20008004 NT IPL: Package
ignored, Windows
cannot load the dll

Could not load
DLL

Internal error
returned by
Windows

ISA_WNGWNT_I
D

mmon Errors

de Description Probable Cause Diagnostic #define

15 ows Runtime Modules

IS

Co

0x _APPL

0x EDIA_BUSY

Ba
66 Automation Collaborative Platform - Wind

aGRAF 3 Communication

de Description Probable Cause Diagnostic #define

20000740 ISA3: No application or
application inactive

Not in use Not applicable ISA_ER_ISA3_NO

20000741 ISA3: Media is busy,
retry later

Not in use Not applicable ISA_ER_ISA3_M

ck to top

Functions
The workbench supports the following functions and function blocks:

Arithmetic
Operations

ABS_LREAL Absolute value of a long real value

EXPT_LREAL,
POW_LREAL

Exponent, power calculation of long real
values

LOG_LREAL Logarithm of a long real value

SQRT_LREAL Square root of a long real value

TRUNC_LREAL Truncate decimal part of a long real value

ACOS_LREAL,
ASIN_LREAL,
ATAN_LREAL

Arc cosine, Arc sine, Arc tangent of a long
real value

COS_LREAL,
SIN_LREAL,
TAN_LREAL

Cosine, Sine, Tangent of a long real value

Binary Operations AND_MASK_BYTE BYTE bit-to-bit AND mask

AND_MASK_WORD WORD bit-to-bit AND mask

AND_MASK_DWORD DWORD bit-to-bit AND mask

AND_MASK_LWORD LWORD bit-to-bit AND mask

OR_MASK_BYTE BYTE bit-to-bit OR mask

OR_MASK_WORD WORD bit-to-bit OR mask

OR_MASK_DWORD DWORD bit-to-bit OR mask

OR_MASK_LWORD LWORD bit-to-bit OR mask

XOR_MASK_BYTE BYTE bit-to-bit Exclusive OR mask

XOR_MASK_WORD WORD bit-to-bit Exclusive OR mask

XOR_MASK_DWORD DWORD bit-to-bit Exclusive OR mask

XOR_MASK_LWORD LWORD bit-to-bit Exclusive OR mask

NOT_MASK_BYTE BYTE bit-to-bit negation

NOT_MASK_WORD WORD bit-to-bit negation
Automation Collaborative Platform 1567

NOT_MASK_DWORD DWORD bit-to-bit negation

NOT_MASK_LWORD LWORD bit-to-bit negation

ROL_BYTE, ROR_BYTE Rotate Left, Rotate Right a BYTE value

ROL_WORD,
ROR_WORD

Rotate Left, Rotate Right a WORD value

ROL_DWORD,
ROR_DWORD

Rotate Left, Rotate Right a DWORD value

ROL_LWORD,
ROR_LWORD

Rotate Left, Rotate Right an LWORD
value

SHL_BYTE, SHR_BYTE Shift Left, Shift Right a BYTE value

SHL_WORD,
SHR_WORD

Shift Left, Shift Right a WORD value

SHL_DWORD,
SHR_DWORD

Shift Left, Shift Right a DWORD value

SHL_LWORD,
SHR_LWORD

Shift Left, Shift Right an LWORD value

Process Control SET_PRIORITY Set virtual machine priority

Serial
Communications

ISA_SERIAL_CLOSE Closes the communication port

ISA_SERIAL_CONNECT Performs a serial connection with an
RS-232 or TCP-IP link

ISA_SERIAL_DISCONN
ECT

Disconnects the communication link

ISA_SERIAL_OPEN Opens a communication link

ISA_SERIAL_RECEIVE Receives data from the communication link

ISA_SERIAL_SEND Sends data on the communication link

ISA_SERIAL_SET Sets the parameters of an open
communication link

ISA_SERIAL_STATUS Returns a series of communication statuses

String
Manipulation

GET_TIME_STRING String representing the current time
1568 Windows Runtime Modules - Functions

ABS_LREAL

Arguments:

Description:

Gives the absolute (positive) value of a long real value.

Example

(* FBD Program using "ABS_LREAL" Function *)

(* ST Equivalence: *)

over := (ABS_LREAL (delta) > range);

IN IN LREAL Any signed long real value

ABS_LREAL Q LREAL Absolute long real value (always positive)
Automation Collaborative Platform 1569

ACOS_LREAL

Arguments:

Description:

Calculates the Arc cosine of a long real value.

Example

(* FBD Program using "COS_LREAL" and "ACOS_LREAL" Functions *)

(* ST Equivalence: *)

cosine := COS_LREAL (angle);

result := ACOS_LREAL (cosine); (* result is equal to angle *)

IN IN LREAL Must be in set [-1.0 .. +1.0]

ACOS_LREAL Q LREAL Arc-cosine of the input value (in set [0.0 .. PI])
= 0.0 for invalid input
1570 Windows Runtime Modules - Functions

AND_MASK_BYTE

Arguments:

Description:

BYTE AND bit-to-bit mask.

Example

(* FBD example with AND_MASK_BYTE Operators *)

(* ST Equivalence: *)

parity := AND_MASK_BYTE (xvalue, 1); (* 1 if xvalue is odd *)

result := AND_MASK_BYTE (16#abc, 16#f0f); (* equals 16#a0c *)

IN IN BYTE Must have BYTE format

MSK MSK BYTE Must have BYTE format

AND_MASK_BYTE Q BYTE Bit-to-bit logical AND between IN and MSK
Automation Collaborative Platform 1571

AND_MASK_DWORD

Arguments:

Description:

DWORD AND bit-to-bit mask.

Example

(* FBD example with AND_MASK_DWORD Operators *)

(* ST Equivalence: *)

parity := AND_MASK_DWORD (xvalue, 1); (* 1 if xvalue is odd *)

result := AND_MASK_DWORD (16#abc, 16#f0f); (* equals 16#a0c *)

IN IN DWORD Must have DWORD format

MSK MSK DWORD Must have DWORD format

AND_MASK_DWORD Q DWORD Bit-to-bit logical AND between IN and MSK
1572 Windows Runtime Modules - Functions

AND_MASK_LWORD

Arguments:

Description:

LWORD AND bit-to-bit mask.

Example

(* FBD example with AND_MASK_LWORD Operators *)

(* ST Equivalence: *)

parity := AND_MASK_LWORD (xvalue, 1); (* 1 if xvalue is odd *)

result := AND_MASK_LWORD (16#abc, 16#f0f); (* equals 16#a0c *)

IN IN LWORD Must have LWORD format

MSK MSK LWORD Must have LWORD format

AND_MASK_LWORD Q LWORD Bit-to-bit logical AND between IN and MSK
Automation Collaborative Platform 1573

AND_MASK_WORD

Arguments:

Description:

WORD AND bit-to-bit mask.

Example

(* FBD example with AND_MASK_WORD Operators *)

(* ST Equivalence: *)

parity := AND_MASK_WORD (xvalue, 1); (* 1 if xvalue is odd *)

result := AND_MASK_WORD (16#abc, 16#f0f); (* equals 16#a0c *)

IN IN WORD Must have WORD format

MSK MSK WORD Must have WORD format

AND_MASK_WORD Q WORD Bit-to-bit logical AND between IN and MSK
1574 Windows Runtime Modules - Functions

ASIN_LREAL

Arguments:

Description:

Calculates the Arc sine of a long real value.

Example

(* FBD Program using "SIN_LREAL" and "ASIN_LREAL" Functions *)

(* ST Equivalence: *)

sine := SIN_LREAL (angle);
result := ASIN_LREAL (sine); (* result is equal to angle *)

IN IN LREAL Must be in set [-1.0 .. +1.0]

ASIN_LREAL Q LREAL Arc-sine of the input value (in set [-PI/2 .. +PI/2])
= 0.0 for invalid input
Automation Collaborative Platform 1575

ATAN_LREAL

Arguments:

Description:

Calculates the arc tangent of a long real value.

Example

(* FBD Program using "TAN_LREAL" and "ATAN_LREAL" Function *)

(* ST Equivalence: *)

tangent := TAN_LREAL (angle);

result := ATAN_LREAL (tangent); (* result is equal to angle*)

IN IN LREAL Any LREAL value

ATAN_LREAL Q LREAL Arc-tangent of the input value (in set [-PI/2 .. +PI/2])
= 0.0 for invalid input
1576 Windows Runtime Modules - Functions

COS_LREAL

Arguments:

Description:

Calculates the cosine of a long real value.

Example

(* FBD Program using "COS_LREAL" and "ACOS_LREAL" Functions *)

(* ST Equivalence: *)

cosine := COS_LREAL (angle);

result := ACOS_LREAL (cosine); (* result is equal to angle *)

IN IN LREAL Any LREAL value

COS_LREAL Q LREAL Cosine of the input value (in set [-1.0 .. +1.0])
Automation Collaborative Platform 1577

EXPT_LREAL

Arguments:

Description:

Gives the long real result of the operation: (base exponent) 'base' being the first argument and
'exponent' the second one.

Example

(* FBD Program using "EXPT_LREAL" Function *)

(* ST Equivalence: *)

tb_size := ANY_TO_DINT (EXPT_LREAL (2.0, range));

IN IN LREAL Any signed long real value

EXP EXP DINT Integer exponent

EXPT_LREAL Q LREAL (IN EXP)
1578 Windows Runtime Modules - Functions

GET_TIME_STRING

Arguments:

Description:

Transforms a date given in seconds to a text format and adjusts the time to match the time zone
settings on your computer. The GET_TIME_STRUCT and NOW function blocks also perform
time-related operations.

The date

Example

(* ST equivalence: NOW1 is an instance of the NOW block. *)

NOW1();

number_seconds := NOW1.SEC;

number_nanos := NOW1.NSEC;

cur_date := GET_TIME_STRING(number_seconds, number_nanos);

SEC SEC DINT Number of seconds since 1970/01/01
00:00:00:000

NSEC NSEC DINT Number of nanoseconds from the beginning of
the second indicated by SEC

GET_TIME_STRING Q STRING Date, in the YYYY/MM/DD HH:MM:SS:MMM
format
Automation Collaborative Platform 1579

ISA_SERIAL_CLOSE

Note: The failover mechanism does not support the ISA_SERIAL functions.

Arguments:

Description:

Closes the communication port, causing the PCP_SER administrator to terminate or the
PCP_IP administrator and data sockets to close.

The workbench simulator does not support this function.

Example

To close the communication port for the HDLE communication link:

ISA_SERIAL_CLOSE(HDLE);

HANDLE HDLE DINT handle of the communication link

ISA_SERIAL_CLOSE ERR DINT status of the operation:
0 = operation succeeded
-1 = operation failed
1580 Windows Runtime Modules - Functions

ISA_SERIAL_CONNECT

Note: The failover mechanism does not support the ISA_SERIAL functions.

Arguments:

HANDLE HDLE DINT handle of the communication link

MODE MODE STRING
[6]

connection mode: 'SERVER' or 'CLIENT'
Automation Collaborative Platform 1581

BUFFER BUFF STRING
[252]

information required for the connection. This
information varies depending on the protocol
and connection mode. Four cases can occur:

PCP_SER CLIENT RTS/DTR signals are
asserted. To perform a
connection by modem,
enter the required
commands and the
self-dial telephone
number in BUFF. To
perform an immediate
connection (NULL
MODEM), put an
empty string in BUFF.

PCP_SER SERVER RTS/DTR signals are
asserted. To indicate a
valid connection, you
can use either the
CTS/DSR signal (by
putting an empty string
in BUFF) or the
modem’s DCD signal
(by putting any string
in BUFF).

PCP_IP CLIENT You have to insert the
server’s host name in
BUFF. A connection is
established with the
server, using the host
name (hosts).

PCP_IP SERVER You need to insert an
empty string in BUFF.
The host name for the
server is defined in the
hosts file.
1582 Windows Runtime Modules - Functions

Description:

Performs a serial connection with an RS-232 or TCP-IP link.

The workbench simulator does not support this function.

Example

To make on a valid connection in the SERVER connection mode:

error := ISA_SERIAL_CONNECT(handle, 'SERVER', '');
errorBool := LOG_MSG('ErrLog', 'Connect: '+ ANY_TO_STRING (error));
IF error = 0 THEN
(* No error: Proceed with the next step*)
END_IF;

To make a valid connection in the CLIENT connection mode:

error := ISA_SERIAL_CONNECT(handle, 'CLIENT', 'hostname');
errorBool := LOG_MSG('ErrLog', 'Connect: '+ ANY_TO_STRING (error));
IF error = 0 THEN
(* No error: Proceed with the next step*)
ELSE
error := ISA_SERIAL_CLOSE(handle);
END_IF;

ISA_SERIAL_CONNECT ERR DINT status of the operation:
0 = operation succeeded
-1 = operation failed
Automation Collaborative Platform 1583

ISA_SERIAL_DISCONNECT

Note: The failover mechanism does not support the ISA_SERIAL functions.

Arguments:

Description:

Disconnects the communication link.

The workbench simulator does not support this function.

Examples

To complete the transmission before stopping the HDLE communication link and place the
status of the operation in the ERR variable:
ERR:= ISA_SERIAL_DISCONNECT(HDLE, 'FLUSH');

To immediately disconnect the HDLE communication link disregarding the completion of the
transmission:
ISA_SERIAL_DISCONNECT(HDLE, '');

HANDLE HDLE DINT handle of the communication link

FLUSH FLSH STRING[5] indicates whether the data transmission
must be completed before stopping the
communication:
'FLUSH' complete the transmission
' ' disregard the completion of the
transmission. Any value having a
maximum of five characters.

ISA_SERIAL_DISCONNECT ERR DINT status of the operation:
0 = operation succeeded
-1 = operation failed
1584 Windows Runtime Modules - Functions

ISA_SERIAL_OPEN

Note: The failover mechanism does not support the ISA_SERIAL functions.

Arguments:

Description:

Warning: This function uses the Malloc dynamic memory allocation at run time.

Opens a communication link. You can start an RS-232 (PCP_SER) or TCP/IP (PCP_IP) link.
Each time a communication link is opened, a communication administrator is started.

The workbench simulator does not support this function.

Examples

To open a communication link using the PCP_SER protocol:

handle := ISA_SERIAL_OPEN('PCP_SER','/dev/ser1');
errorBool := LOG_MSG('ErrLog', 'Open: '+ ANY_TO_STRING (handle));
IF handle > 0 THEN
(* No error: Proceed with the next step*)
END_IF;

To open a communication link using the PCP_IP protocol:

SERVER SERV STRING[1] administrator used: 'PCP_SER' or 'PCP_IP'

PORT PORT STRING[252] varies depending on the administrator used in
SERVER:
PCP_SER, enter the name of the serial device
PCP_IP, enter the IP port number of the server

ISA_SERIAL_OPEN RES DINT handle of the communication link
Automation Collaborative Platform 1585

handle := ISA_SERIAL_OPEN('PCP_IP', '7500');
errorBool := LOG_MSG('ErrLog', 'Open: ' + ANY_TO_STRING (error));
IF handle > 0 THEN
(* No error: Proceed with the next step*)
END_IF;
1586 Windows Runtime Modules - Functions

ISA_SERIAL_RECEIVE

Note: The failover mechanism does not support the ISA_SERIAL functions.

Arguments:

Description:

Warning: This function uses the Malloc dynamic memory allocation at run time.

Receives data from the communication link. Reception stops when either the specified number
of bytes or the time-out is reached. If data contains a character string that will be used as such,
you must make sure that it finishes with a null terminator.

The workbench simulator does not support this function.

Examples

To receive data using a communication link:

HANDLE HDLE DINT handle of the communication link

DATA DATA STRING[252] received information

LENGTH LGTH DINT length of the data, in bytes. The
maximum length is 252 bytes.

TIMEOUT TIMO DINT maximum number of seconds during
which a receive block occurs

ISA_SERIAL_RECEIVE ERR DINT status of the operation:
0 = operation succeeded
-1 = operation failed
Automation Collaborative Platform 1587

error := ISA_SERIAL_RECEIVE(handle, data, 11, 0);
errorBool := LOG_MSG('ErrLog', 'Received data: '+ data);
IF error = -1 THEN
error := ISA_SERIAL_STATUS(handle, SocketError, stat1, stat2, stat3);
errorBool := LOG_MSG('ErrLog', 'Received error: '+ ANY_TO_STRING
(SocketError));
END_IF;
1588 Windows Runtime Modules - Functions

ISA_SERIAL_SEND

Note: The failover mechanism does not support the ISA_SERIAL functions.

Arguments:

Description:

Warning: This function uses the Malloc dynamic memory allocation at run time.

Sends data on the communication link.

The workbench simulator does not support this function.

Example

To send the string 'Hello world' on a communication link:

HANDLE HDLE DINT handle of the communication link

DATA DATA STRING[252] information to be transmitted

LENGTH LGTH DINT length of the data, in bytes. The maximum
length is 252 bytes.

ISA_SERIAL_SEND ERR DINT status of the operation:
0 = operation succeeded
-1 = operation failed
Automation Collaborative Platform 1589

error := ISA_SERIAL_SEND(handle, 'Hello world', 11);
IF error = -1 THEN
error := ISA_SERIAL_STATUS(handle, SocketError, stat1, stat2, stat3);
errorBool := LOG_MSG('ErrLog', 'Sent error: '+
ANY_TO_STRING(SocketError));
ELSE
errorBool := LOG_MSG('ErrLog', 'Data Sent: Hello World');
END_IF;
1590 Windows Runtime Modules - Functions

ISA_SERIAL_SET

Note: The failover mechanism does not support the ISA_SERIAL functions.

Arguments:

Description:

Sets the parameters of an open communication link. These parameters vary according to the
protocol and the serial communication standard.

The workbench simulator does not support this function.

HANDLE HDLE DINT handle of the communication link

ARG1 ARG1 DINT content varies depending on the protocol used:
For PCP_SER, handshake, echo, and trace *
For PCP_IP, trace
OFF = 0
ON = 1

ARG2 ARG2 DINT baud rate. Only used with PCP_SER protocol.

ARG3 ARG3 DINT number of stop bits (1 or 2). Only used with
PCP_SER protocol.

ARG4 ARG4 STRING[8] parity: even, odd, none. Only used with
PCP_SER protocol.

ISA_SERIAL_SET ERR DINT status of the operation:
0 = operation succeeded
-1 = operation failed
Automation Collaborative Platform 1591

* For PCP_SER, the value of ARG1 varies according to the serial communications standard.
If RS-232 is used, ARG1 holds the state of the trace: 1 = ON, 0 = OFF. On the other hand, with
RS-485, ARG1 holds the composite states of handshake, echo, and trace:

Examples

To set the parameters of the HDLE communication link using the PCP_SER protocol and the
RS-232 serial communication standard without trace, having a baud rate of 9600, 8 bits, and
even parity:

ERR:= ISA_SERIAL_SET(HDLE, 0, 9600, 8, 'even');

To set the parameters of the HDLE communication link using the PCP_IP
protocol with a trace:

ERR:= ISA_SERIAL_SET(HDLE, 1, 0, 0, '');

Handshake Echo Trace ARG1

0 0 0 0

0 0 1 1

0 1 0 2

0 1 1 3

1 0 0 4

1 0 1 5

1 1 0 6

1 1 1 7
1592 Windows Runtime Modules - Functions

ISA_SERIAL_STATUS

Note: The failover mechanism does not support the ISA_SERIAL functions.

Arguments:

Description:

Returns a series of communication statuses. These statuses vary depending on the protocol.

HANDLE HDLE DINT handle of the communication link

STA1 STA1 DINT error number. Refer to the target operating
system’s errno.h file.

STA2 STA2 DINT varies depending on the protocol used:

For PCP_SER, number of received characters

For PCP_IP, port number of the client if in
server mode, or port number of the server if in
client mode

STA3 STA3 DINT CD control bit. Only used for the PCP_SER
protocol.

STA4 STA4 STRING
[252]

address of the client if in server mode, or
address of the server if in client mode. Only
used for the PCP_IP protocol.

ISA_SERIAL_STATUS ERR DINT status of the operation:
0 = operation succeeded
-1 = operation failed
Automation Collaborative Platform 1593

The workbench simulator does not support this function.

Examples

To get the communication statuses of the HDLE communication link using the PCP_SER
protocol and place them in their respective variables:

ERR:= ISA_SERIAL_STATUS(HDLE, STA1, STA2, STA3, STA4);

To get the communication statuses of the HDLE communication link using
the PCP_IP protocol and place them in their respective variables:

ERR:= ISA_SERIAL_STATUS(HDLE, STA1, STA2, STA3, STA4);
1594 Windows Runtime Modules - Functions

LOG_LREAL

Arguments:

Description:

Calculates the logarithm (base 10) of a long real value.

Example

(* FBD Program using "LOG_LREAL" Function *)

(* ST Equivalence: *)

xpos := ABS_LREAL (xval);

xlog := LOG_LREAL (xpos);

IN IN LREAL Must be greater than zero

LOG_LREAL Q LREAL Logarithm (base 10) of the input value
Automation Collaborative Platform 1595

NOT_MASK_BYTE

Arguments:

Description:

BYTE bit-to-bit negation mask.

Example

(* FBD example with NOT_MASK_BYTE Operators *)

(*ST equivalence: *)

result := NOT_MASK_BYTE (16#1234);

(* result is 16#FFFF_EDCB *)

IN IN BYTE Must have BYTE format

NOT_MASK_BYTE Q BYTE Bit-to-bit negation on 8 bits of IN
1596 Windows Runtime Modules - Functions

NOT_MASK_DWORD

Arguments:

Description:

DWORD bit-to-bit negation mask.

Example

(* FBD example with NOT_MASK_DWORD Operators *)

(*ST equivalence: *)

result := NOT_MASK_DWORD (16#1234);

(* result is 16#FFFF_EDCB *)

IN IN DWORD Must have DWORD format

NOT_MASK_DWORD Q DWORD Bit-to-bit negation on 32 bits of IN
Automation Collaborative Platform 1597

NOT_MASK_LWORD

Arguments:

Description:

LWORD bit-to-bit negation mask.

Example

(* FBD example with NOT_MASK_LWORD Operators *)

(*ST equivalence: *)

result := NOT_MASK_LWORD (16#1234);

(* result is 16#FFFF_EDCB *)

IN IN LWORD Must have LWORD format

NOT_MASK_LWORD Q LWORD Bit-to-bit negation on 64 bits of IN
1598 Windows Runtime Modules - Functions

NOT_MASK_WORD

Arguments:

Description:

WORD bit-to-bit negation mask.

Example

(* FBD example with NOT_MASK_WORD Operators *)

(*ST equivalence: *)

result := NOT_MASK_WORD (16#1234);

(* result is 16#FFFF_EDCB *)

IN IN WORD Must have WORD format

NOT_MASK_WORD Q WORD Bit-to-bit negation on 16 bits of IN
Automation Collaborative Platform 1599

OR_MASK_BYTE

Arguments:

Description:

BYTE OR bit-to-bit mask.

Example

(* FBD example with OR_MASK_BYTE Operators *)

(* ST Equivalence: *)

parity := OR_MASK_BYTE (xvalue, 1); (* makes value always odd *)

result := OR_MASK_BYTE (16#abc, 16#f0f); (* equals 16#fbf *)

IN IN BYTE Must have BYTE format

MSK MSK BYTE Must have BYTE format

OR_MASK_BYTE Q BYTE Bit-to-bit logical OR between IN and MSK
1600 Windows Runtime Modules - Functions

OR_MASK_DWORD

Arguments:

Description:

DWORD OR bit-to-bit mask.

Example

(* FBD example with OR_MASK_DWORD Operators *)

(* ST Equivalence: *)

parity := OR_MASK_DWORD (xvalue, 1); (* makes value always odd *)

result := OR_MASK_DWORD (16#abc, 16#f0f); (* equals 16#fbf *)

IN IN DWORD Must have DWORD format

MSK MSK DWORD Must have DWORD format

OR_MASK_DWORD Q DWORD Bit-to-bit logical OR between IN and MSK
Automation Collaborative Platform 1601

OR_MASK_LWORD

Arguments:

Description:

LWORD OR bit-to-bit mask.

Example

(* FBD example with OR_MASK_LWORD Operators *)

(* ST Equivalence: *)

parity := OR_MASK_LWORD (xvalue, 1); (* makes value always odd *)

result := OR_MASK_LWORD (16#abc, 16#f0f); (* equals 16#fbf *)

IN IN LWORD Must have LWORD format

MSK MSK LWORD Must have LWORD format

OR_MASK_LWORD Q LWORD Bit-to-bit logical OR between IN and MSK
1602 Windows Runtime Modules - Functions

OR_MASK_WORD

Arguments:

Description:

WORD OR bit-to-bit mask.

Example

(* FBD example with OR_MASK_WORD Operators *)

(* ST Equivalence: *)

parity := OR_MASK_WORD (xvalue, 1); (* makes value always odd *)

result := OR_MASK_WORD (16#abc, 16#f0f); (* equals 16#fbf *)

IN IN WORD Must have WORD format

MSK MSK WORD Must have WORD format

OR_MASK_WORD Q WORD Bit-to-bit logical OR between IN and MSK
Automation Collaborative Platform 1603

POW_LREAL

Arguments:

Description:

Gives the long real result of the operation: (base exponent) 'base' being the first argument and
'exponent' the second one. The exponent is a long real value.

Example

(* FBD Program using "POW_LREAL" Function *)

(* ST Equivalence: *)

result := POW_LREAL (xval, power);

IN IN LREAL Long real number to be raised

EXP EXP LREAL Power (exponent)

POW_LREAL Q LREAL (IN EXP)
1.0 if IN is not 0.0 and EXP is 0.0
0.0 if IN is 0.0 and EXP is negative
0.0 if both IN and EXP are 0.0
0.0 if IN is negative and EXP does not correspond to an
integer
1604 Windows Runtime Modules - Functions

ROL_BYTE

Arguments:

Description:

Make the bits of an BYTE rotate to the left. Rotation is made on 8 bits:

Example

(* FBD Program using "ROL_BYTE" Function *)

(* ST Equivalence: *)

result := ROL_BYTE (register, 1);

(* register = 2#1011_0101*)

(* result = 2#0110_1011*)

IN IN BYTE Any BYTE value

NbR NbR BYTE Number of 1 bit rotations (in set [1..7])

ROL_BYTE Q BYTE Left rotated value
Automation Collaborative Platform 1605

ROL_DWORD

Arguments:

Description:

Make the bits of a DWORD rotate to the left. Rotation is made on 32 bits:

Example

(* FBD Program using "ROL_DWORD" Function *)

(* ST Equivalence: *)

result := ROL_DWORD (register, 1);

(* register = 2#1100_0110_0111_0100_1101_0011_0101_0000*)

(* result = 2#1000_1100_1110_1001_1010_0110_1010_0001*)

IN IN DWORD Any DWORD value

NbR NbR DWORD Number of 1 bit rotations (in set [1..31])

ROL_DWORD Q DWORD Left rotated value
1606 Windows Runtime Modules - Functions

ROL_LWORD

Arguments:

Description:

Make the bits of a LWORD rotate to the left. Rotation is made on 64 bits:

Example

(* FBD Program using "ROL_LWORD" Function *)

(* ST Equivalence: *)

result := ROL_LWORD (register, 1);

(* register = 2#1100_0110_0111_..._1101_0011_0101*)

(* result = 2#1000_1100_1110_..._1010_0110_1011*)

IN IN LWORD Any LWORD value

NbR NbR LWORD Number of 1 bit rotations (in set [1..63])

ROL_LWORD Q LWORD Left rotated value
Automation Collaborative Platform 1607

ROL_WORD

Arguments:

Description:

Make the bits of a WORD rotate to the left. Rotation is made on 16 bits:

Example

(* FBD Program using "ROL_WORD" Function *)

(* ST Equivalence: *)

result := ROL_WORD (register, 1);

(* register = 2#0100_1101_0011_0101*)

(* result = 2#1001_1010_0110_1010*)

IN IN WORD Any WORD value

NbR NbR WORD Number of 1 bit rotations (in set [1..15])

ROL_WORD Q WORD Left rotated value
1608 Windows Runtime Modules - Functions

ROR_BYTE

Arguments:

Description:

Make the bits of a BYTE rotate to the right. Rotation is made on 8 bits:

Example

(* FBD Program using "ROR_BYTE" Function *)

(* ST Equivalence: *)

result := ROR_BYTE (register, 1);

(* register = 2#0011_0101 *)

(* result = 2#1001_1010 *)

IN IN BYTE Any BYTE value

NbR NbR BYTE Number of 1 bit rotations (in set [1..7])

ROR_BYTE Q BYTE Right rotated value
Automation Collaborative Platform 1609

ROR_DWORD

Arguments:

Description:

Make the bits of a DWORD rotate to the right. Rotation is made on 32 bits:

Example

(* FBD Program using "ROR_DWORD" Function *)

(* ST Equivalence: *)

result := ROR_DWORD (register, 1);

(* register = 2#0111_0101_1100_0001_0100_1101_0011_0101 *)

(* result = 2#1011_1010_1110_0000_1010_0110_1001_1010 *)

IN IN DWORD Any DWORD value

NbR NbR DWORD Number of 1 bit rotations (in set [1..31])

ROR_DWORD Q DWORD Right rotated value
1610 Windows Runtime Modules - Functions

ROR_LWORD

Arguments:

Description:

Make the bits of an LWORD rotate to the right. Rotation is made on 64 bits:

Example

(* FBD Program using "ROR_LWORD" Function *)

(* ST Equivalence: *)

result := ROR_LWORD (register, 1);

(* register = 2#0111_0101_1100_0001_..._1101_0011_0101 *)

(* result = 2#1011_1010_1110_0000_..._0110_1001_1010 *)

IN IN LWORD Any LWORD value

NbR NbR LWORD Number of 1 bit rotations (in set [1..63])

ROR_LWORD Q LWORD Right rotated value
Automation Collaborative Platform 1611

ROR_WORD

Arguments:

Description:

Make the bits of a WORD rotate to the right. Rotation is made on 16 bits:

Example

(* FBD Program using "ROR_WORD" Function *)

(* ST Equivalence: *)

result := ROR_WORD (register, 1);

(* register = 2#0100_1101_0011_0101 *)

(* result = 2#1010_0110_1001_1010 *)

IN IN WORD Any WORD value

NbR NbR WORD Number of 1 bit rotations (in set [1..15])

ROR_WORD Q WORD Right rotated value
1612 Windows Runtime Modules - Functions

SET_PRIORITY

Arguments:

Description:

Changes the priority of a virtual machine in the target operating system.

The workbench simulator does not support this function.

Example

(* ST *)

old_priority := SET_PRIORITY(26);

INPUT IN SINT New priority for the virtual machine. Possible values are:
0: SET_PRIORITY() returns the current virtual machine
priority (no change)
1-29: new priority for the virtual machine

SET_PRIORITY Q SINT priority of the virtual machine before SET_PRIORITY was
called
Automation Collaborative Platform 1613

SHL_BYTE

Arguments:

Description:

Make the bits of a BYTE shift to the left. Shift is made on 8 bits:

Example

(* FBD Program using "SHL_BYTE" Function *)

(* ST Equivalence: *)

result := SHL_BYTE (register,1);

(* register = 2#0100_1101 *)

(* result = 2#1001_1010 *)

IN IN BYTE Any BYTE value

NbS NbS BYTE Number of 1 bit shifts (in set [1..7])

SHL_BYTE Q BYTE Left shifted value
1614 Windows Runtime Modules - Functions

SHL_DWORD

Arguments:

Description:

Make the bits of a DWORD shift to the left. Shift is made on 32 bits:

Example

(* FBD Program using "SHL_DWORD" Function *)

(* ST Equivalence: *)

result := SHL_DWORD (register,1);

(* register = 2#1010_1100_0011_1010_0100_1101_0011_0101 *)

(* result = 2#0101_1000_0111_0100_1001_1010_0110_1010 *)

IN IN DWORD Any DWORD value

NbS NbS DWORD Number of 1 bit shifts (in set [1..31])

SHL_DWORD Q DWORD Left shifted value
Automation Collaborative Platform 1615

SHL_LWORD

Arguments:

Description:

Make the bits of an LWORD shift to the left. Shift is made on 64 bits:

Example

(* FBD Program using "SHL_LWORD" Function *)

(* ST Equivalence: *)

result := SHL_LWORD (register,1);

(* register = 2#1010_1100_0011_1010_..._1101_0011_0101 *)

(* result = 2#0101_1000_0111_0100_..._1010_0110_1010 *)

IN IN LWORD Any LWORD value

NbS NbS LWORD Number of 1 bit shifts (in set [1..63])

SHL_LWORD Q LWORD Left shifted value
1616 Windows Runtime Modules - Functions

SHL_WORD

Arguments:

Description:

Make the bits of a WORD shift to the left. Shift is made on 16 bits:

Example

(* FBD Program using "SHL_WORD" Function *)

(* ST Equivalence: *)

result := SHL_WORD (register,1);

(* register = 2#0100_1101_0011_0101 *)

(* result = 2#1001_1010_0110_1010 *)

IN IN WORD Any WORD value

NbS NbS WORD Number of 1 bit shifts (in set [1..15])

SHL_WORD Q WORD Left shifted value
Automation Collaborative Platform 1617

SHR_BYTE

Arguments:

Description:

Make the bits of a BYTE shift to the right. Shift is made on 8 bits:

Example

(* FBD Program using "SHR_BYTE"Function *)

(* ST Equivalence: *)

result := SHR_BYTE (register,1);

(* register = 2#1100_1101_0011_0101 *)

(* result = 2#0110_0110_1001_1010 *)

IN IN BYTE Any BYTE value

NbS NbS BYTE Number of 1 bit shifts (in set [1..7])

SHR_BYTE Q BYTE Right shifted value
1618 Windows Runtime Modules - Functions

SHR_DWORD

Arguments:

Description:

Make the bits of a DWORD shift to the right. Shift is made on 32 bits:

Example

(* FBD Program using "SHR_DWORD"Function *)

(* ST Equivalence: *)

result := SHR_DWORD (register,1);

(* register = 2#1010_1100_0001_0101_1100_1101_0011_0101 *)

(* result = 2#0101_0110_0000_1010_1110_0110_1001_1010 *)

IN IN DWORD Any DWORD value

NbS NbS DWORD Number of 1 bit shifts (in set [1..31])

SHR_DWORD Q DWORD Right shifted value
Automation Collaborative Platform 1619

SHR_LWORD

Arguments:

Description:

Make the bits of an LWORD shift to the right. Shift is made on 64 bits:

Example

(* FBD Program using "SHR_LWORD"Function *)

(* ST Equivalence: *)

result := SHR_LWORD (register,1);

(* register = 2#1010_1100_0001_0101_..._1101_0011_0101 *)

(* result = 2#0101_0110_0000_1010_..._0110_1001_1010 *)

IN IN LWORD Any LWORD value

NbS NbS LWORD Number of 1 bit shifts (in set [1..63])

SHR_LWORD Q LWORD Right shifted value
1620 Windows Runtime Modules - Functions

SHR_WORD

Arguments:

Description:

Make the bits of a WORD shift to the right. Shift is made on 16 bits:

Example

(* FBD Program using "SHR_WORD"Function *)

(* ST Equivalence: *)

result := SHR_WORD (register,1);

(* register = 2#1100_1101_0011_0101 *)

(* result = 2#0110_0110_1001_1010 *)

IN IN WORD Any WORD value

NbS NbS WORD Number of 1 bit shifts (in set [1..15])

SHR_WORD Q WORD Right shifted value
Automation Collaborative Platform 1621

SIN_LREAL

Arguments:

Description:

Calculates the Sine of a long real value.

Example

(* FBD Program using "SIN_LREAL" and "ASIN_LREAL" Functions *)

(* ST Equivalence: *)

sine := SIN_LREAL (angle);

result := ASIN_LREAL (sine); (* result is equal to angle *)

IN IN LREAL Any LREAL value

SIN_LREAL Q LREAL Sine of the input value (in set [-1.0 .. +1.0])
1622 Windows Runtime Modules - Functions

SQRT_LREAL

Arguments:

Description:

Calculates the square root of a long real value.

Example

(* FBD Program using "SQRT_LREAL" Function *)

(* ST Equivalence: *)

xpos := ABS_LREAL (xval);

xroot := SQRT_LREAL (xpos);

IN IN LREAL Must be greater than or equal to zero

SQRT_LREAL Q LREAL Square root of the input value
Automation Collaborative Platform 1623

TAN_LREAL

Arguments:

Description:

Calculates the Tangent of a long real value.

Example

(* FBD Program using "TAN_LREAL" and "ATAN_LREAL" Functions *)

(* ST Equivalence: *)

tangent := TAN_LREAL (angle);

result := ATAN_LREAL (tangent); (* result is equal to angle*)

IN IN LREAL Cannot be equal to PI/2 modulo PI

TAN_LREAL Q LREAL Tangent of the input value
= 1E+38 for invalid input
1624 Windows Runtime Modules - Functions

TRUNC_LREAL

Arguments:

Description:

Truncates a long real value to have just the integer part.

Example

(* FBD Program using "TRUNC_LREAL" Function *)

(* ST Equivalence: *)

result := TRUNC_LREAL (+2.67) + TRUNC_LREAL (-2.0891);

(* means: result := 2.0 + (-2.0) := 0.0; *)

IN IN LREAL Any LREAL value

TRUNC_LREAL Q LREAL If IN>0, biggest integer less or equal to the input
If IN<0, least integer greater or equal to the input
Automation Collaborative Platform 1625

XOR_MASK_BYTE

Arguments:

Description:

BYTE exclusive OR bit-to-bit mask.

Example

(* FBD example with XOR_MASK_BYTE Operators *)

(* ST Equivalence: *)

crc32 := XOR_MASK_BYTE (prevcrc, nextc);

result := XOR_MASK_BYTE (16#012, 16#011); (* equals 16#003 *)

IN IN BYTE Must have BYTE format

MSK MSK BYTE Must have BYTE format

XOR_MASK_BYTE Q BYTE Bit-to-bit logical Exclusive OR between IN and
MSK
1626 Windows Runtime Modules - Functions

XOR_MASK_DWORD

Arguments:

Description:

DWORD exclusive OR bit-to-bit mask.

Example

(* FBD example with XOR_MASK_DWORD Operators *)

(* ST Equivalence: *)

crc32 := XOR_MASK_DWORD (prevcrc, nextc);

result := XOR_MASK_DWORD (16#012, 16#011); (* equals 16#003 *)

IN IN DWORD Must have DWORD format

MSK MSK DWORD Must have DWORD format

XOR_MASK_DWORD Q DWORD Bit-to-bit logical Exclusive OR between IN
and MSK
Automation Collaborative Platform 1627

XOR_MASK_LWORD

Arguments:

Description:

LWORD exclusive OR bit-to-bit mask.

Example

(* FBD example with XOR_MASK_LWORD Operators *)

(* ST Equivalence: *)

crc32 := XOR_MASK_LWORD (prevcrc, nextc);

result := XOR_MASK_LWORD (16#012, 16#011); (* equals 16#003 *)

IN IN LWORD Must have LWORD format

MSK MSK LWORD Must have LWORD format

XOR_MASK_LWORD Q LWORD Bit-to-bit logical Exclusive OR between IN
and MSK
1628 Windows Runtime Modules - Functions

XOR_MASK_WORD

Arguments:

Description:

WORD exclusive OR bit-to-bit mask.

Example

(* FBD example with XOR_MASK_WORD Operators *)

(* ST Equivalence: *)

crc32 := XOR_MASK_WORD (prevcrc, nextc);

result := XOR_MASK_WORD (16#012, 16#011); (* equals 16#003 *)

IN IN WORD Must have WORD format

MSK MSK WORD Must have WORD format

XOR_MASK_WORD Q WORD Bit-to-bit logical Exclusive OR between IN and
MSK
Automation Collaborative Platform 1629

1630 Windows Runtime Modules - Functions

Function Blocks
ISaGRAF supports many types of function blocks:

� Basic Operations

� Advanced Control

� Matrix2 Operations

� Matrix Operations

Basic Operations

Basic function blocks perform various basic operations:

Advanced Control

Advanced Control function blocks perform various process control operations:

Time Operations GET_TIME_STRUCT Current time, in the date's parts

NOW Current time, in seconds

Alarms Management ANALOGALARM Provides alarm conditions for an
analog input

DIGITALALARM Provides alarm conditions for a
digital input

Boolean Operations FLIPFLOP Provides a flip-flop function

Comparator Operations COMPARATOR Compares an input signal with a
value and indicates when the value
is exceeded

Process Control BATCHSWITCH Eliminates overshoot during startup
conditions when using the
IPIDCONTROLLER function block
Automation Collaborative Platform 1631

BATCHTOTALIZER Integrates an analog input with
alarms on presets and provides a
pulse output to drive a remote
counter

BIAS Provides a means to bias a signal,
such as the setpoint in an external set
application

BIASCALIBRATION Calibrates a BIAS value while
tracking an input signal

CHARACTERIZER Provides segments that can
characterize an input signal

IPIDCONTROLLER An interacting PID controller

LEADLAGCONTROLLER A lead/lag controller

LEADLAGBACONTROLL
ER

A lead/lag bilinear approximation
controller

LIMITER Limits an input value to a range
between a low and high limit

PID_AL To be defined

RATELIMITER Limits the rate of change for an
input signal

RATIO Provides a means of setting a ratio in
an external setpoint application

RATIOCALIBRATION Calibrates RATIO by tracking an
input signal

RETENTIVEONTIMER Performs an on-delay timing
function with output states
determined by input values used to
start and enable a timer

SCALER Scales an input value according to
an output range
1632 Windows Runtime Modules - Function Blocks

SETPOINT Multi-action setpoint command
having six different settings and
adjustments of setpoint for
controller

SIGNALSELECTOR Selects either the highest or lowest
signal value from three input signals

TRACKANDHOLD Holds an initial value transferred to
an output on first scan then either
tracks the input signal or holds the
last output value

TRANSFERSWITCH Selects a signal between two input
signals
Automation Collaborative Platform 1633

GET_TIME_STRUCT

Arguments:

Description:

Converts a date into a series of DINT values representing the date's parts.
GET_TIME_STRUCT adjusts the time to match the time zone settings on your computer. The
GET_TIME_STRING function and NOW function block also perform time-related
operations.

SEC SEC DINT Number of seconds since 1970/01/01 00:00:00:000

NSEC NSEC DINT Number of nanoseconds from the beginning of the second
indicated by SEC

YEAR YEAR DINT Year of the date, in a four-digit format

MONTH MON. DINT Month of the date (1-12)

DAY DAY DINT Day of the date (1-31)

HOUR HOUR DINT Hour of the date (0-23)

MINUTE MIN DINT Minute of the date (0-59)

SECOND SEC DINT Second of the date (0-59)

MSEC MSEC DINT Millisecond of the date, from the beginning of SECOND
(0-999)
1634 Windows Runtime Modules - Function Blocks

Example

(* ST equivalence: NOW1 is an instance of the NOW block; GET_TIME_STRUCT1 is an
instance of the GET_TIME_STRUCT block. *)

NOW1();

number_seconds := NOW1.SEC;

number_nanos := NOW1.NSEC;

GET_TIME_STRUCT1(number_seconds, number_nanos);

cur_year := GET_TIME_STRUCT1.YEAR;

cur_month := GET_TIME_STRUCT1.MONTH;

cur_day := GET_TIME_STRUCT1.DAY;

cur_hour := GET_TIME_STRUCT1.HOUR;

cur_minute := GET_TIME_STRUCT1.MINUTE;

cur_second := GET_TIME_STRUCT1.SECOND;

cur_msec := GET_TIME_STRUCT1.MSEC;
Automation Collaborative Platform 1635

NOW

Arguments:

Description:

Gets the current time since 1970/01/01 00:00:00:000, in seconds. The GET_TIME_STRING
function and GET_TIME_STRUCT function block also perform time-related operations.
The ANY_TO_DATE function enables the conversion of NSEC to a date format.

Example

(* ST equivalence: NOW1 is an instance of the NOW block. *)

NOW1();

number_seconds := NOW1.SEC;

number_nanos := NOW1.NSEC;

SEC SEC DINT Number of seconds since 1970/01/01 00:00:00:000

NSEC NSEC DINT Number of nanoseconds from the beginning of the second
indicated by SEC
1636 Windows Runtime Modules - Function Blocks

ANALOGALARM

Arguments:

InputA INA REAL Input signal A

InputB INB REAL Input signal B for deviation alarms
calculation

OutputEnable ENB BOOL[0..2] OutputEnable. For each entry, possible
values are True or False:

0 High/Low Limit, High/Low
Alarm, High/Low Warning

1 Deviation High and Deviation
Low

2 Rate of Change Up and Rate of
Change Down

Acknowledge ACK BOOL[0..2] Acknowledge. For each entry, possible
values are True or False:

0 High/Low Limit, High/Low
Alarm, High/Low Warning

1 Deviation High and Deviation
Low

2 Rate of Change Up and Rate of
Change Down

AlarmSetting SET ALARMSETTING AlarmSetting.
See ALARMSETTING structure
Automation Collaborative Platform 1637

ErrorMode ERR DINT ErrorMode. Mode used to handle errors of
the different types:

RateOfChangePeriod <= 0.0. Possible
values are:
1 prints message in ErrorLog and

stops resource code execution
0 sets RateOfChangeUpEnable

and
RateOfChangeDownEnable to
FALSE

RateOfChangeUp <= 0.0. Possible values
are:
1 prints message in ErrorLog and

stops resource code execution
0 sets RateOfChangeUpEnable to

FALSE
RateOfChangeDown <= 0.0. Possible values
are:
1 prints message in ErrorLog and

stops resource code execution
0 sets

RateOfChangeDownEnable to
FALSE

HighDeviation < 0.0. Possible values are:
1 prints message in ErrorLog and

stops resource code execution
0 sets HighDeviationEnable to

FALSE
LowDeviation < 0.0. Possible values are:
1 prints message in ErrorLog and

stops resource code execution
0 sets LowDeviationEnable to

FALSE
1638 Windows Runtime Modules - Function Blocks

Description:

Provides 10 alarm conditions for an analog input. There are three outputs, one for each alarm
category: High/Low alarms, deviation alarms, and rate of change alarms.

ALARMSETTING structure:

OutputA OUTA DINT (OutputA) Output for High/Low Limit,
High/Low Alarm, High/Low Warning
alarms

OutputB OUTB DINT (OutputB) Output for Deviation High and
Deviation Low alarms

OutputC OUTC DINT (OutputC) Output for Rate of Change Up
and Rate of Change Down alarms

HighLimit REAL Value for which InputA exceeds the maximum range

HighAlarm REAL Value above which InputA is in high alarm condition

HighWarning REAL Value above which InputA is in warning alarm
condition

LowWarning REAL Value below which InputA is in warning alarm
condition

LowAlarm REAL Value below which InputA is in high alarm condition

LowLimit REAL Value for which InputA exceed is out of minimum
range

DeadBand REAL Value for which InputA must be changed to get out of
alarm condition

HighDeviation REAL Maximum acceptable difference in value from
InputA to InputB

LowDeviation REAL Maximum acceptable difference in value from
InputB to InputA

RateOfChangePeriod REAL Time interval used to calculate RateOfChange
alarms, in seconds

RateOfChangeUp REAL Maximum increase in value of InputA during the
RateOfChangePeriod triggering a rate of change up
alarm
Automation Collaborative Platform 1639

High/Low Alarms

RateOfChangeDown REAL Minimum decrease in value of InputA during the
RateOfChangePeriod triggering a rate of change
down alarm

DelayInTime REAL Minimum period of time, in seconds, during which a
condition is present before activating alarms (High
and Low Limit, Alarm, Warning, and Deviation)

DelayOutTime REAL Minimum period of time, in seconds, during which a
condition is absent before deactivating alarms (High
and Low Limit, Alarm, Warning and Deviation)

HighLimitEnable BOOL Bit enabling HighLimit alarm check

HighAlarmEnable BOOL Bit enabling HighAlarm alarm check

HighWarningEnable BOOL Bit enabling HighWarning alarm check

LowWarning Enable BOOL Bit enabling LowWarning alarm check

LowAlarmEnable BOOL Bit enabling LowAlarm alarm check

LowLimitEnable BOOL Bit enabling LowLimit alarm check

HighDeviationEnable BOOL Bit enabling HighDeviation alarm check

LowDeviationEnable BOOL Bit enabling LowDeviation alarm check

RateOfChangeUpEnable BOOL Bit enabling RateOfChangeUp alarm check

RateOfChangeDown Enable BOOL Bit enabling RateOfChangeDown alarm check

RingBack BOOL Bit enabling the Not-Present Not-Acknowledge state
when a condition alarm goes out

Conditions making high/low alarms switch from not present to present

High Limit HighLimitEnable is TRUE and InputA has been greater than
HighLimit for a period of time greater than DelayInTime

High Alarm HighAlarmEnable is TRUE and InputA has been greater than
HighAlarm and lower than HighLimit for a period of time greater than
DelayInTime

High Warning HighWarningEnable is TRUE and InputA has been greater than
HighWarning and lower than HighAlarm for a period of time greater
than DelayInTime
1640 Windows Runtime Modules - Function Blocks

OutputA Values:

Low Warning LowWarningEnable is TRUE and InputA has been lower than
LowWarning and higher than LowAlarm for a period of time greater
than DelayInTime

Low Alarm LowAlarmEnable is TRUE and InputA has been lower than
LowAlarm and higher than LowLimit for a period of time greater than
DelayInTime

Low Limit LowLimitEnable is TRUE and InputA has been lower than LowLimit
for a period of time greater than DelayInTime

Conditions making high/low alarms switch from present to not present

High Limit HighLimitEnable is TRUE and InputA has been lower than HighLimit
minus DeadBand for a period of time greater than DelayOutTime

High Alarm HighAlarmEnable is TRUE and InputA has been lower then
HighAlarm minus DeadBand for a period of time greater than
DelayOutTime

High Warning HighWarningEnable is TRUE and InputA has been lower than
HighWarning minus DeadBand for a period of time greater than
DelayOutTime

Low Warning LowWarningEnable is TRUE and InputA has been greater than
LowWarning plus DeadBand for a period of time greater than
DelayOutTime

Low Alarm LowAlarmEnable is TRUE and InputA has been greater than
LowAlarm plus DeadBand for a period of time greater than
DelayOutTime

Low Limit LowLimitEnable is TRUE and InputA has been greater than LowLimit
plus DeadBand for a period of time greater than DelayOutTime

State Value

No Alarm 0

Present yes yes no(1)

Conditions making high/low alarms switch from not present to present
Automation Collaborative Platform 1641

When OutputEnable[0] is FALSE, then the value of OutputA equals 0 (no alarm). The alarm
is still processed but the value is kept internally.

If RingBack is TRUE, when an alarm state is Present-Acknowledge, the next step is
Not-Present-Not-Acknowledge instead of no alarm. This causes a previously acknowledged
alarm to require acknowledgment when the alarms clears.

Alarm Priority

If the condition of a higher priority alarm is met while the current alarm is not acknowledged,
the value of Output will be changed to reflect the higher alarm state.

Acknowledged no yes no(1)

HighLimit 1 11 21

HighAlarm 2 12 22

HighWarning 3 13 23

LowWarning 4 14 24

LowAlarm 5 15 25

LowLimit 6 16 26

High Priority High Limit – Low Limit
High Alarm – Low Alarm

Low Priority High Warning – Low Warning

Conditions making deviation alarms switch from not present to present

DeviationHigh HighDeviationEnable is TRUE and InputA has been greater than
InputB plus HighDeviation for a period of time greater than
DelayInTime

DeviationLow LowDeviationEnable is TRUE and InputA has been lower than InputB
minus LowDeviation for a period of time greater than DelayInTime

State Value
1642 Windows Runtime Modules - Function Blocks

OutputB values:

When OutputEnable[0] is FALSE, then the value of OutputB equals 0 (no alarm). The alarm
is still processed but the value is kept internally.

(1) If RingBack is TRUE, when an alarm state is Present-Acknowledge the next step is
Not-Present-Not-Acknowledge instead of no alarm. This causes a previously acknowledged
alarm to require acknowledgment when the alarms clears.

Rate of Change Alarms

Conditions making deviation alarms switch from present to not present

DeviationHigh HighDeviationEnable is TRUE and InputA has been lower than
InputB plus HighDeviation minus DeadBand for a period of time
greater than DelayOutTime

DeviationLow LowDeviationEnable is TRUE and InputA has been greater than
InputB minus LowDeviation plus DeadBand for a period of time
greater than DelayOutTime

State Value

No Alarm 0

Present yes yes no(1)

Acknowledged no yes no(1)

DeviationHigh 1 11 21

DeviationLow 2 12 22

Conditions making rate of change alarms switch from not present to present

RateOfChangeUp RateOfChangeUpEnable is TRUE and InputA increases more than the
value of RateOfChangeUp during RateOfChangePeriod

RateOfChangeDown RateOfChangeDownEnable is TRUE and InputA decreases more than
the value of RateOfChangeDown during RateOfChangePeriod
Automation Collaborative Platform 1643

OutputC Values:

When OutputEnable[0] is FALSE, then the value of OutputC equals 0 (no alarm). The alarm
is still processed but the value is kept internally.

(1) If RingBack is TRUE, when an alarm state is Present-Acknowledge, the next step is
Not-Present-Not-Acknowledge instead of no alarm. This will causes a previously
acknowledged alarm to require acknowledgment when the alarms clears.

Example

(* ST equivalence: ANALOGALARM1 is an instance of ANALOGALARM block *)

ANALOGALARM1(Signal_InA, Signal_InB, Enable, Ack, AlarmSetting, 0);

CASE ANALOGALARM.OutputA OF

1: Message1 := 'Alarm High Limit for Signal_InA';

2: Message1 := 'Alarm High Alarm for Signal_InA';

3: Message1 := 'Alarm High Warning for Signal_InA';

4: Message1 := 'Alarm Low Warning for Signal_InA';

5: Message1 := 'Alarm Low Alarm for Signal_InA';

Conditions making rate of change alarms switch from present to not present

RateOfChangeUp RateOfChangeUpEnable is TRUE and InputA up variation over a
period of RateOfChangePeriod is lower then RateOfChangeUp

RateOfChangeDown RateOfChangeDownEnable is TRUE and InputA down variation over
a period of RateOfChangePeriod is lower then RateOfChangeDown

State Value

No Alarm 0

Present yes yes no(1)

Acknowledged no yes no(1)

RateOfChangeUp 1 11 21

RateOfChangeDown 2 12 22
1644 Windows Runtime Modules - Function Blocks

6: Message1 := 'Alarm Low Limit for Signal_InA';

11: Message1 := 'Alarm High Limit for Signal_InA Acknowledged';

12: Message1 := 'Alarm High Alarm for Signal_InA Acknowledged';

13: Message1 := 'Alarm High Warning for Signal_InA Acknowledged';

14: Message1 := 'Alarm Low Warning for Signal_InA Acknowledged';

15: Message1 := 'Alarm Low Alarm for Signal_InA Acknowledged';

16: Message1 := 'Alarm Low Limit for Signal_InA Acknowledged';

21: Message1 := 'Alarm High Limit for Signal_InA Done';

22: Message1 := 'Alarm High Alarm for Signal_InA Done';

23: Message1 := 'Alarm High Warning for Signal_InA Done';

24: Message1 := 'Alarm Low Warning for Signal_InA Done';

25: Message1 := 'Alarm Low Alarm for Signal_InA Done';

26: Message1 := 'Alarm Low Limit for Signal_InA Done';

END_CASE;
Automation Collaborative Platform 1645

BATCHSWITCH

Arguments:

Description:

Eliminates overshoot during startup conditions when using the IPIDCONTROLLER function
block. When placed in the feedback path of the controller it causes the reset component of the
controller to be reduced (if controller action is Reverse). Without the use of batch switch during
startup, the controller output will equal full output since the reset will wind up. This requires
the process to overshoot the setpoint in order to bring the controller output back down. With a
batch switch in the feedback path, a lower reset value will be present when crossover occurs,
thus reducing or eliminating overshoot.

As input equals or exceeds the high or low limit setting, the output of the batch switch will
either be decreased (HighLimit) or increased (LowLimit), changing the feedback signal and
therefore the controller reset signal. This maintains controller output at the batch switch limit
setting and eliminates reset windup.

Input IN REAL Input signal

HighLimit HLIM REAL High limit for input signal

LowLimit LLIM REAL Low limit for input signal

PreLoad PREL REAL (PreLoad) Limit on adjusting controller feedback
signal

Gain GAIN REAL Gain value

Output OUT REAL Output signal
1646 Windows Runtime Modules - Function Blocks

If a controller has a large proportional gain setting, the reset can be modified too much, such
that the process may undershoot the setpoint during a startup condition. The PreLoad is
adjusted to optimize the controller for startup conditions by limiting how much the batch
switch to add additional compensation, very similar to derivative action, only during start up.

Example

(* ST equivalence: BATCHSWITCH1 is an instance of BATCHSWITCH block *)

BATCHSWITCH1(Feedback_Out_Process, 250.0, 0.0, 50.0, 2.0);

Feedback_In_Pid := BATCHSWITCH1.Output;
Automation Collaborative Platform 1647

BATCHTOTALIZER

Arguments:

Input IN REAL Input signal

InitialValue INIT REAL Initial value

Preset1 PRE1 REAL (Preset1) Value used to activate Alarm1 when Total equals
Preset1

Preset2 PRE2 REAL (Preset2) Value used to activate Alarm2 when Total equals
Preset2

ZeroDropOut ZERO REAL (ZeroDropOut) Small positive value used as zero point for
Input to stop totalling

PulseScaling PSCL REAL (PulseScaling) Value to scale Pulse output
1648 Windows Runtime Modules - Function Blocks

Description:

Integrates an analog input with alarms on presets and provides a pulse output to drive a remote
counter.

Example

(* ST equivalence: BATCHTOTALIZER1 is an instance of BATCHTOTALIZER
block *)

TimeBase TBAS DINT TimeBase. Possible values are:
1 second
2 minute
3 hour
4 day
5 week

Stop STOP BOOL Stops totalling

Reset RST BOOL (Reset) Reinitialize Total to InitialValue

DirectActing DA BOOL (DirectActing) The indication of whether totalling is
incremental or decremental:
TRUE totalling is incremental
FALSE totalling is decremental

ErrorMode ERR DINT (ErrorMode) Mode used to handle errors of type TimeBase
< 1 or TimeBase > 5. Possible values are:
1 prints message in ErrorLog and stops

resource code execution
0 sets Total to 0.0, Alarm1 to TRUE, and

Alarm2
to TRUE

Total TOT REAL (Total) Batch total value

Alarm1 ALM1 BOOL (Alarm1) TRUE when Preset1 is reached

Alarm2 ALM2 BOOL (Alarm2) TRUE when Preset2 is reached

Pulse PULS BOOL Pulse output integrates the input signal using TimeBase
and output pulse at the rate determined by PulseScaling.
The Pulse output operates on the absolute value of Input.
Automation Collaborative Platform 1649

BATCHTOTALIZER1(Signal_In,

Init_Val,

PreSet1,

PreSet2,

0.0,

10.0,

1,

Stop_Batch,

Reset_Batch,

TRUE,

0);

Pulse_Out := BATCHTOTALIZER1.Pulse ;

Batch_Tot := BATCHTOTALIZER1.Total ;

Done_1 := BATCHTOTALIZER1.Alarm1 ;

Done_2 := BATCHTOTALIZER1.Alarm2 ;
1650 Windows Runtime Modules - Function Blocks

BIAS

Arguments:

Description:

Provides a means to bias a signal, such as the setpoint in an external set application. Input
signal A and input signal E are summed and then added to the operator adjustable BIAS. The
BIASCALIBRATION function block calibrates BIAS using a tracked input signal.

Example

(* ST equivalence: BIAS1 is an instance of BIAS block and
BIASCALIBRATION1 is an instance of BIASCALIBRATION block *)

BIAS1(Signal_InA, Signal_InE, BIASCALIBRATION1.BIAS);

Out_Value := BIAS1.Output ;

InputA INA REAL Input signal A

InputE INE REAL Input signal E

Bias BIAS REAL BIAS value

Output OUT REAL Output value. Output = (BIAS) + InputA + InputE.
Automation Collaborative Platform 1651

BIASCALIBRATION

Arguments:

Description:

InputA INA REAL Input signal A

InputE INE REAL Input signal E

Initial INIT REAL (Initial) BIAS value at first scan

High_Limit HLIM REAL High Limit for RATIO

Low_Limit LLIM REAL Low Limit for RATIO

TrackVariable TV REAL (TrackVariable) Input Signal to track

TrackCommand TC BOOL (TrackCommand) Indication of whether the value of
TrackVariable is tracked:
TRUE TrackVariable’s value is tracked
FALSE TrackVariable’s value is not tracked

Bias BIAS REAL BIAS value

TrackOutput TO REAL (TrackOutput) Value of TrackOutput dependent on
whether TrackCommand is initiated. When
TrackCommand is FALSE, TrackOutput equals 0.0.
When TrackCommand is TRUE, TrackOutput equals
(TrackVariable) - (InputA + BIAS)
1652 Windows Runtime Modules - Function Blocks

Calibrates BIAS using TrackVariable. When TrackCommand is FALSE, BIAS equals the last
BIAS value and TrackOutput is 0.0. When TrackCommand is TRUE, BIAS = (TrackVariable)
- (InputA + InputE); TrackOutput = (TrackVariable) - (InputA + BIAS) also BIAS will be
limited by HighLimit and LowLimit. The BIAS function block provides a means to bias a
signal such as the setpoint in an external set application.

Example

(* ST equivalence: BIAS1 is an instance of BIAS block and
BIASCALIBRATION1 is an instance of BIASCALIBRATION block *)

BIASCALIBRATION1(Signal_InA,

Signal_InE,

0.2,

300.0,

10.0,

Flow_Water,

TK);

BIAS1(Signal_InA, Signal_InE, BIASCALIBRATION1.BIAS);

Out_Value := BIAS1.Output ;
Automation Collaborative Platform 1653

CHARACTERIZER

Arguments:

Description:

Provides 10 segments that can characterize the input signal. Segments are configured by
entering the Xn, Yn, Xn+1, and Yn+1 points. All Xn+1 points must be greater than the Xn
points.

Example

(* ST equivalence: CHARACTERIZER1 is an instance of CHARACTERIZER
block, Table_X and Table_Y are defined as REAL with dimension [0..10]
in dictionary *)

Input IN REAL Input X signal

X0_10 X REAL[0..10] (X0_X10) Inputs coordinates segments

Y0_10 Y REAL[0..10] (Y0_Y10) Outputs coordinates segments

Output OUT REAL Output Y signal
1654 Windows Runtime Modules - Function Blocks

CHARACTERIZER1(Signal_In, Table_X, Table_Y) ;

Characterized_Value := CHARACTERIZER1.Output ;
Automation Collaborative Platform 1655

COMPARATOR

Arguments:

Description:

Compares the input with a limit value and gives a TRUE output when the limit is exceeded.

Example

(* ST equivalence: COMPARATOR1 is an instance of COMPARATOR block *)

COMPARATOR1(Signal_In , Limit, 5.0 , TRUE) ;
Limit_Exceeded := COMPARATOR1.Output ;

Input IN REAL Input signal

LimitValue LIM REAL Limit value

DeadBand DB REAL Dead band value depending on setting of DirectActing.
When DirectActing is TRUE, the Output switches from
TRUE to FALSE when the input is lower than Limit –
DeadBand. When DirectActing is FALSE, the Output
switches from TRUE to FALSE when the input is more
than Limit + DeadBand.

DirectActing DIR BOOL (DirectActing) The indication of whether the function
block operates in direct acting or reverse acting mode:
TRUE block is in direct acting mode and Output is

TRUE when Input Limit
FALSE block is in reverse acting mode and Output is

TRUE when InputLimit

Output OUT BOOL Output signal
1656 Windows Runtime Modules - Function Blocks

DIGITALALARM

Arguments:

InputA INA BOOL Input signal A

OutputEnable ENB BOOL (OutputEnable) Enable alarm processing

Acknowledge ACK BOOL Acknowledge signal when TRUE
Automation Collaborative Platform 1657

Description:

Provides six alarm conditions for a digital input. Alarm conditions are High state, Low state,
Rising edge, Falling edge, Change of state, Rising Rate of change, and Falling Rate of change.

Output values:

Mode MODE DINT The conditions triggering an alarm for Output. Possible
values are:
0 Output goes in alarm when input signal A is

TRUE (High state)
1 Output goes in alarm when input signal A is

FALSE (Low state)
2 Output goes in alarm when input signal A

changes from FALSE to TRUE (Rising edge)
3 Output goes in alarm when input signal A

changes from TRUE to FALSE (Falling edge)
4 Output goes in alarm when input signal A

changes from FALSE to TRUE or TRUE to
FALSE (change of state)

5 Output goes in alarm when input signal A
changes from FALSE to TRUE more than
once during Period (Raising Rate Of Change)

6 Output go in alarm when input signal A
changes from TRUE to FALSE more than
once during Period (Falling Rate Of Change)

RingBack RB BOOL (RingBack) Bit enabling the Not-Present
Not-Acknowledge state when a condition alarm goes out

Period PER REAL Period of time to calculate Rate Of Change alarms, in
seconds

ErrorMode ERR DINT (ErrorMode) Mode used to handle errors of type invalids
Mode. Possible values are:
1 prints message in ErrorLog and stops resource

code execution
0 sets Output to zero

Output OUT DINT (Output) Alarm value = 0 when no alarm and 1 or 11 or 21
in alarm (see Output values below).
1658 Windows Runtime Modules - Function Blocks

When OutputEnable is FALSE, then Output equals 0 (no alarm). The alarm is still processed
but the value is kept internally.

(1) If RingBack is TRUE, when an alarm state is Present-Acknowledge, the next step is
Not-Present-Not-Acknowledge instead of no alarm. This causes a previously acknowledged
alarm to require acknowledgment when the alarms clears.

Example

(* ST equivalence: DIGITALALARM1 is an instance of DIGITALALARM block*)

DIGITALALARM1(Digit_InA, Enable, Ack, Mode, RingBack, 10, 0);

CASE Mode OF

0:

CASE DIGITALALARM1.Output OF

1:Message2:= 'Alarm High State for Digit_InA';

11:Message2:= 'Alarm High State for Digit_InA Acknowledged';

 21:Message2:= 'Alarm High State for Digit_InA Done';

END_CASE;

1:

State Value

No Alarm 0

Present yes yes no(1)

Acknowledged no yes no(1)

DIGITALALARM
Output

1 11 21
Automation Collaborative Platform 1659

CASE DIGITALALARM1.Output OF

1:Message2:= 'Alarm Low State for Digit_InA';

11:Message2:= 'Alarm Low State for Digit_InA Acknowledged';

 21:Message2:= 'Alarm Low State for Digit_InA Done';

END_CASE;

2:

CASE DIGITALALARM1.Output OF

1:Message2:='Alarm Rising edge for Digit_InA';

11:Message2:='Alarm Rising edge for Digit_InA Acknowledged';

 21:Message2:='Alarm Rising edge for Digit_InA Done';

END_CASE;

3:

CASE DIGITALALARM1.Output OF

1:Message2:='Alarm Falling edge for Digit_InA';

11:Message2:='Alarm Falling edge for Digit_InA Acknowledged';

 21:Message2:='Alarm Falling edge for Digit_InA Done';

END_CASE;

4:

CASE DIGITALALARM1.Output OF

1:Message2:='Alarm C.O.S. for Digit_InA';

11:Message2:='Alarm C.O.S. for Digit_InA Acknowledged';

 21:Message2:='Alarm C.O.S. for Digit_InA Done';

END_CASE;

5:
1660 Windows Runtime Modules - Function Blocks

CASE DIGITALALARM1.Output OF

1:Message2:='Alarm Rising ROC for Digit_InA';

11:Message2:='Alarm Rising ROC for Digit_InA Acknowledged';

 21:Message2:='Alarm Rising ROC for Digit_InA Done';

END_CASE;

6:

CASE DIGITALALARM1.Output OF

1:Message2:='Alarm Falling ROC for Digit_InA';

11:Message2:='Alarm Falling ROC for Digit_InA Acknowledged';

 21:Message2:='Alarm Falling ROC for Digit_InA Done';

END_CASE;

END_CASE;
Automation Collaborative Platform 1661

FLIPFLOP

Arguments:

Description:

Provides a flip-flop function as detailed in the truth table below:

Example

(* ST equivalence: FLIPFLOP1 is an instance of FLIPFLOP block *)

FLIPFLOP1(Reset, Set) ;

Set SET BOOL Set input signal

Reset RES BOOL Reset input signal

Output OUT BOOL Output signal

R S LO O

1 X X 0

0 ¸ 1 0

0 ¸ 0 1

0 0 0 0

0 0 1 1

 R = Reset input

 S = Set input

 X = any state

 ¸ = rising edge
1662 Windows Runtime Modules - Function Blocks

Out_Value := FLIPFLOP1.Output ;
Automation Collaborative Platform 1663

IPIDCONTROLLER

Arguments:

Process P REAL Process value, measured from the output of the
controller process

SetPoint SP REAL Set point value

Feedback FB REAL Feed Back signal, measured from control input to a
process

Auto AUTO BOOL The operation mode of the PID controller:
TRUE controller runs in normal mode
FALSE controller output value equals
feedback value

Initialize INIT BOOL A change in value (TRUE to FALSE or FALSE to
TRUE) causes the controller to eliminate any
proportional gain during that cycle. Also initializes
autotune sequences.

Gains GNS GAIN_PID Gains PID for IPIDCONTROLLER
(see GAIN_PID structure)
1664 Windows Runtime Modules - Function Blocks

GAIN_PID structure:

AutoTune ATUN BOOL Starts the Autotune sequence. See To perform an
AutoTune sequence.
Autotune is available when using the IPID in
direct acting systems. The current Autotune
algorithm cannot calculate gains in reverse acting
system.
Autotune is unable to calculate gains on
slow-reaction or unstable systems. In such cases,
Autotune ends in timeout.

ATParameters ATPA AT_Param AutoTune Parameters (see AT_Param structure)

ErrorMode ERR DINT Mode used to handle errors. Possible values are:
0 no error messages ErrLog file
1 prints error messages level 1 in

ErrLog file
2 prints error messages level 1 and level

2 in ErrLog file

Output OUT REAL Output value from controller

AbsoluteError AERR REAL Absolute Error (Process – SETPOINT) from
controller

ATWarning ATW DINT Warning for Autotune sequence. Possible values
are:
0 no autotune done
1 autotuning in progress
2 autotuning done
-1 ERROR 1 input Auto set to TRUE, no

autotune possible
-2 ERROR 2 autotune error,

ATDynaSet expired

OutGains OGNS GAIN_PID Gains calculated after AutoTune sequences
(see GAIN_PID structure)
Automation Collaborative Platform 1665

AT_Param structure:

Description:

DirectActing BOOL The type of acting:
TRUE direct acting
FALSE reverse acting

ProportionalGain REAL Proportional gain for PID (>= 0.0001)

TimeIntegral REAL Time integral value for PID (>= 0.0001)

TimeDerivative REAL Time derivative value for PID (> 0.0)

When setting TimeDerivative to 0.0, the
IPIDCONTROLLER forces DerivativeGain to 1.0 then
works as a PI controller.

DerivativeGain REAL Derivative gain for PID (> 0.0)

Load REAL Load parameter for auto tuning. This is the output value
when starting AutoTune.

Deviation REAL Deviation for auto tuning. This is the standard deviation
used to evaluate the noise band needed for AutoTune

(noise band = 3*Deviation)(1).
Step REAL Step value for AutoTune. Must be greater than noise band

and less than ½ Load.

ATDynamSet REAL Time to wait for stabilization after the step test, in
seconds. The AutoTune process stops when ATDynamSet
time expires.

ATReset BOOL The indication of whether the Output value is reset to zero
after an AutoTune sequence:
TRUE resets Output to zero
FALSE leaves Output at Load value

(1)The application engineer can estimate the value of Deviation by observing the value of
Process input. For example, in a project involving the control of temperature, if the
temperature stabilizes around 22 °C, and a fluctuation of 21.7…22.5 °C is observed, the value
of Deviation will be (22.5-21.7)/2=0.4.
1666 Windows Runtime Modules - Function Blocks

The Interacting PID controller (IPIDCONTROLLER) is based on the following function
block:

In the HMI, the IPID faceplate is available for use with the IPIDCONTROLLER function
block.

When Auto is TRUE, the IPIDCONTROLLER enables tracking and runs in normal auto mode.
When Auto is FALSE, the controller output value equals the feedback value. This forces the
IPIDCONTROLLER Output to track the feedback within the IPIDCONTROLLER limits and
allows the controller to switch back to auto without bumping the Output.

For Initialize, changing from FALSE to TRUE or TRUE to FALSE when AutoTune is FALSE
causes the IPIDCONTROLLER to eliminate any proportional gain action during that cycle (i.e
Initialize). This can be used to prevent bumping the Output when changes are made to the
SETPOINT using a switch function block.

with A: Acting (+/- 1)

PG: Proportional Gain

DG: Derivative Gain

ãD: Time Derivative

ãI: Time Integral
Automation Collaborative Platform 1667

IPID Autotuning for First and Second Order Systems

The IPIDCONTROLLER autotune is only functional on first and second order systems.

A first order system is a single independent energy storage element. A first order system can
be written in a standard form such as f(t) = dy/dt + y(t), where is the system time constant,
f is the forcing function, and y is the system state variable.

The cooling of a fluid tank, mentioned below in the table of first order system examples, can
be modeled by the thermal capacitance (C) of the fluid and thermal resistance (R) of the tank
walls. In this case, the system time constant is RC, the forcing function is the ambient
temperature, and the system state variable is the fluid temperature.

(* Examples of first order systems *)

A second order system consists of two independent energy storage elements exchanging stored
energy.

(* Examples of second order systems *)

Motor drive systems and heating systems can be typically modeled by the LR and C electric
circuit.

First order system Energy storage element

Cooling of a fluid tank Heat energy

Flow of a fluid tank Potential energy

Motor having constant torque
driving a disk flywheel

Rotational kinetic energy

Electric RC lead network Capacitive storage energy

Second order system Energy storage element

Motor driving a disk flywheel with the motor coupled
to the flywheel via a shaft with torsional stiffness

Rotational kinetic energy and
torsion spring energy

Electric circuit composed of a current source driving
a series LR (inductor and resistor) with a shunt C
(capacitor)

Inductive and capacitive storage
energy
1668 Windows Runtime Modules - Function Blocks

How Autotune Works

The autotune process begins when Initialize is set to FALSE (step 6). Once started, the control
output increases by the Step value and the process waits until the Process value reaches or
exceeds the "first peak".

The "first peak" is defined as:

For Direct Operation: First peak = PV1 - (12*Deviation)
For Reverse Operation: First peak = PV1 + (12*Deviation)
Where PV1 is the process value when Initialize is set to FALSE.

Once the process value reaches the first peak, the control output reduces by the Step value and
waits for the process value to drop to the second peak.

The "second peak" is defined as:

For Direct Operation: Second peak = PV1 - (3*Deviation)
For Reverse Operation: Second peak = PV1 + (3*Deviation)
Once the process value reaches or falls below the second peak, calculations begin and a set of
gains is generated to the OutGains parameter.

IMPORTANT

User program scan time is important. The autotuning method needs to cause the oscillation of
the control loop output. To identify the oscillation period, the IPIDCONTROLLER must be
called at frequent intervals enabling adequate sampling of the oscillation. The scan time of the
user program must be less than half the oscillation period. You must adhere to the
Nyquist-Shannon sampling theorem.

In addition, it is important to execute the function block at relatively constant time intervals.

Actions to Perform before Running AutoTune

Before running an Autotune sequence you need to perform the following:

� Verify the system is constant when there is no control. For example, the Process value
should remain at room temperature for a temperature control system when there is no
control output.
Automation Collaborative Platform 1669

� Configure SetPoint to 0

� Set Auto to FALSE

� Set the Gains parameters to have the following values:

� Set the ATParameters parameters to have the following values:

Gains Parameters Value

DirectActing According to operation. For example,
TRUE for cooling operations and FALSE
for heating operations.

DerivativeGain Typically set to 0.1 or 0.0

ProportionalGain 0.0001

TimeIntegral 0.0001

TimeDerivative 0.0

ATParameters Parameters Recommendation

Load Every Load parameter provides a saturated process value over a
period of time. Adjust Load to the value required for the saturated
process value.

IMPORTANT: If a load of 40 results in a process value of 30 ºC
over a period of time, to tune your system to 30 ºC, set the load to
40.

Deviation The Deviation parameter plays a significant role in the autotune
process.
You are not required to set the Deviation parameter prior to
autotuning. However you can set the deviation if you know the
required value.

Step The Step parameter value ranges between 3*Deviation and
½ load. The Step parameter provides an offset for the Load during
autotuning. The parameter should be set to a value high enough to
create significant change in the Process value.
1670 Windows Runtime Modules - Function Blocks

To perform an AutoTune sequence

1. Set Initialize to TRUE.

2. Set AutoTune to TRUE.

3. Wait for Process to stabilize or reach a steady state, then note the fluctuation of the
Process value.

4. Calculate the Deviation value with regards to the fluctuation value. For example, if the
temperature stabilizes around 22 ºC (72 ºF) with a fluctuation of 21.7 - 22.5 ºC (71 -
72.5 ºF), the Deviation value is:

5. Set the Deviation value.

6. Set Initialize to FALSE.

7. Wait until the ATWarning output value is 2, meaning the Autotune process has completed
successfully.

8. Get the autotuned value displayed in the OutGains output.

ATDynamSet Set the ATDynamSet parameter value to a reasonably long time
for the autotune process. Since every system is different, specify
more time for systems having process values slower in reacting to
change.

ATReset Set the ATReset parameter to TRUE to reset the output to 0 after
the completion of the autotune process.
Set the parameter to FALSE to keep the output at Load value after
the completion of the autotune process.

For ºC For ºF

(22.5-21.7)/2=0.4 (72.5-71)/2=0.75

ATParameters Parameters Recommendation
Automation Collaborative Platform 1671

Troubleshooting the Autotune Process

The sequences of control output enable knowing what is happening behind the autotune
process. The following table displays some known sequences of control output, the autotune
result, and what actions to perform if autotune fails:

To finalize the tuning, some fine tuning may be needed depending on the processes and needs.

(* For the following Load is equal to 50 and Step is equal to 20 *)

Output Sequence 1: 50 -> 70 -> 30

Sequence Condition Autotune Result Action when Autotune Fails

Process value reached "first
peak" and "second peak" in
the required time

Likely successful N/A

Output Sequence 2: 50 -> 70 -> 50

Sequence Condition Autotune Result Action when Autotune Fails

Process value unable to reach
"first peak"

Likely
unsuccessful

Reduce Deviation or increase Step value

Output Sequence 3: 50 -> 70 -> 30 -> 50

Sequence Condition Autotune Result Action when Autotune Fails

Process value unable to reach
"second peak"

Likely
unsuccessful

Increase Deviation or increase Step value

Output Sequence 4: 50 -> 70

Sequence Condition Autotune Result Action when Autotune Fails

Process value unable to reach
"first peak" in the required
time

Likely
unsuccessful

Increase ATDynamSet value
1672 Windows Runtime Modules - Function Blocks

Example

(* ST equivalence: IPIDCONTROLLER1 is an instance of IPIDCONTROLLER
block *)

IPIDCONTROLLER1(Proc,

 SP,
 FBK,
 Auto,
 Init,
 G_In,
 A_Tune,
 A_TunePar,
 Err);

Out_process := IPIDCONTROLLER1.Output;

A_Tune_Warn := IPIDCONTROLLER1.ATWarning;

Gain_Out := IPIDCONTROLLER1.OutGains;
Automation Collaborative Platform 1673

LEADLAGCONTROLLER

Arguments:

Input IN REAL Input signal

TimeLead Lead REAL Time constant for lead controller, in seconds

A A REAL Gain for lead controller (a > 1 and a x b = 1)

TimeLag Lag REAL Time constant for lag controller, in seconds

B B REAL Gain for lag controller (b < 1 and a x b = 1)

Enable ENB BOOL Enables the LEADLAGCONTROLLER. If set to FALSE,
Output = 0.0

ErrorMode ERR DINT Mode used to handle the various types of errors:
a < 1.0
1 prints message in ErrorLog and stops resource

code execution
0 sets a to 1.0001
b > 1.0
1 prints message in ErrorLog and stops resource

code execution
0 sets b to 0.9999
TimeLag < 0
1 prints message in ErrorLog, stops resource code

execution, and sets Status output to 1
0 sets Status output to 1
1674 Windows Runtime Modules - Function Blocks

Description:

The LEADLAGCONTROLLER is based on the transfer function from Automatic control
systems by Benjamin C.Kuo:

The lead controller gain a must be greater than 1.0, the lag controller gain b must be less
than 1.0, and a multiplied by b must equal 1.0. If a x b does not equal 1.0, the controller will
use b = 1/a.

With TimeLead set to zero, the controller will act as a Lag controller.

For entry errors, ErrorMode gives you the possibility to stop the resource.

For error of type division by zero or square root with negative argument, the controller sets the
Status output to 2 or 3 respectively. The Output for those cases will be 0.0.

Discretization method: Zero-Order Hold

The Zero-Order Hold method is used by the function block to provide a match between the
continuous and discrete time systems in the time domain discretization.

The following steps illustrate the summary of the calculus:

1. Conversion: continuous time to discrete time:

Output OUT REAL LEADLAGCONTROLLER output

Status STAT DINT Status for LEADLAGCONTROLLER:
0 OK
1 TimeLag < 0.0
2 Divided by zero
3 Square root error (negative argument)
Automation Collaborative Platform 1675

Where
z = the transform operator
s = the Laplace operator

2. Partial fraction decomposition:

The equation from step 1 could be written after development of denominator as:

Where R and Q are the solutions of the quadratic equation:

Then C(z) could be written as:

3. Factors A, B and C:
1676 Windows Runtime Modules - Function Blocks

LEADLAGBACONTROLLER

Arguments:

Input IN REAL Input signal

TimeLead Lead REAL Time constant for lead controller, in seconds

A A REAL Gain for lead controller (a > 1 and a x b = 1)

TimeLag Lag REAL Time constant for lag controller, in seconds

B B REAL Gain for lag controller (b < 1 and a x b = 1)

Enable ENB BOOL Enables the LEADLAGBACONTROLLER. If set to FALSE,
Output = 0.0
Automation Collaborative Platform 1677

Description:

The LEADLAGBACONTROLLER is based on the transfer function from Automatic control
systems by Benjamin C.Kuo:

ErrorMode ERR DINT Mode used to handle the various types of errors:
a < 1.0
1 prints message in ErrorLog and stops resource

code execution
0 sets A to 1.0001
b > 1.0
1 prints message in ErrorLog and stops resource

code execution
0 sets B to 0.9999
TimeLag < 0
1 prints message in ErrorLog, stops resource code

execution, and sets Status output to 1
0 sets Status output to 1

Output OUT REAL LEADLAGBACONTROLLER output

Status STAT DINT Status for LEADLAGBACONTROLLER:
0 OK
1 TimeLag < 0.0
2 Divided by zero
3 Square root error (negative argument)
1678 Windows Runtime Modules - Function Blocks

Where
s = Laplace transform complex variable
a = Lead compensator gain
b = Lag compensator gain
Tld = Lead compensator time constant, in seconds
Tlg = Lag compensator time constant, in seconds
C(s) = Output to input transfer function

The lead controller gain a must be greater than 1.0, the lag controller gain b must be less than
1.0, and a multiplied by b must equal 1.0. If a x b does not equal 1.0, the controller will use b
= 1/a.

With TimeLead set to zero, the controller will act as a Lag controller.

For entry errors, ErrorMode gives you the possibility to stop the resource.

For error of type division by zero or square root with negative argument, the controller sets the
Status output to 2 or 3 respectively. The Output for those cases will be 0.0.

Discretization method: Bilinear Approximation (also called Tustin Approximation)

The Bilinear Approximation method is used by the function block to provide a match between
the continuous and discrete time systems in the time domain discretization.

To convert from the analog domain to the digital domain we apply a bilinear transform:

where
s = Laplace transform complex variable
z = Z transform complex variable
T = Sampling period, in seconds

Substituting this “s” with C(s) and simplification results in Z transform of the Lead-Lag
compensator:
Automation Collaborative Platform 1679

Obviously we want the time domain filter to have the form:

Without going in calculation details the end results from Z transform to Time domain we get:

y(n) = 1/K7 [x(n) + 2 x(n–1) + K5 x(n) + x(n-2) – K5 x(n-2) + K6 x(n) + K4 x(n) – 2 K4 x(n-1)
– K6 x(n-2) + K4 x(n-2) – 2 y(n-1) + 2 K3 y(n-1) – y(n-2) + K1 y(n-2) + K2 y(n-2) – K3 y(n-2)]

Where
K1 = (2 Tld)/T
K2 = (2 Tlg)/T
K3 = K1 K2
K4 = a b K3
K5 = a K1
K6 = b K2
K7 = 1 + K1 + K2 + K3
T = VM cycle time
y = filter output
x = filter input
1680 Windows Runtime Modules - Function Blocks

LIMITER

Arguments:

Description:

Tracks Input value and limits it to a value between LowLimit and HighLimit

Example

(* ST equivalence: LIMITER1 is an instance of LIMITER block *)

LIMITER1(InputA, 250.0, 25.0, 0);

OutputB := LIMITER1.Output ;

High_Limit := LIMITER1.HighStatus ;

Low_Limit := LIMITER1.LowStatus ;

Input IN REAL Real value on which to limit the value

HighLimit HLIM REAL High limit value

LowLimit LLIM REAL Low limit value

ErrorMode ERR DINT Mode used to handle errors of type HighLimit
LowLimit. Possible values are:
1 prints message in ErrorLog and stops

resource code execution
0 sets Output = Input if HighLimitLowLimit

Output OUT REAL Tracks Input up to HighLimit and down to LowLimit

HighStatus HSTS BOOL TRUE when Input > HighLimit

LowStatus LSTS BOOL TRUE when Input < LowLimit
Automation Collaborative Platform 1681

PID_AL

Arguments:

AUTO BOOL The operation mode of the PID controller:
TRUE controller runs in automatic mode
FALSE controller runs in manual mode. At
initialisation, set the operation mode to FALSE.

Pv REAL Process output value

Sp REAL Setpoint value, i.e., value required at the output

X0 REAL Adjustment value. When running in manual mode,
in the case of an open loop, is the non-regulated
value entering the system where the output value
of the PID controller is equal to X0.

Kp REAL Proportionality constant

Ti REAL Integral time constant

Td REAL Derivative time constant
1682 Windows Runtime Modules - Function Blocks

Description:

The PID_AL function block is a proportional–integral–derivative controller (PID controller)
using a generic control loop feedback mechanism (controller). This function block calculates
an error value as the difference between a measured process variable and a desired setpoint.
The block attempts to minimize the error by adjusting the process control inputs while
implementing a bumpless compensation algorithm allowing the modification of PID
coefficients at run-time.

While in Auto mode, the PID_AL function block is a PID process regulator using the feedback
concept where an output is regulated according to the difference between its actual value and
the expected value. While in Manual mode, the PID_AL function block is a non regulated
system enabling the performance of tests and adjustments.

The PID_AL function block is implemented using the following PID model:

Ts TIME Sampling period

Xmin REAL Minimum possible value

Xmax REAL Maximum possible value

Xout REAL Command. In the case of a closed loop with
regulation, is the regulated value entering the
system.
Automation Collaborative Platform 1683

where
Ti is the integral time
Td is the derivative time
1684 Windows Runtime Modules - Function Blocks

RATELIMITER

Arguments:

Description:

Limits the rate of change for an input signal:

Enable = TRUE:

When the Input signal increases, the RisingLimit is TRUE and Output changes at the UpRate
rate. When the Input signal decreases, the FallingLimit is TRUE and Output changes at the
DownRate rate. When the Input signal changes at a rate between UpRate and DownRate,
Output tracks Input.

Enable = FALSE:

The Output tracks the Input.

Input IN REAL Real value on which to limit the rate variation

UpRate UP REAL The upper limit rate, in units/minute

DownRate DOWN REAL The lower limit rate, in units/minute

Enable ENB BOOL TRUE enables rate limitation action

Output OUT REAL When Enable is FALSE, Output equals Input. When
Enable is TRUE, Output rate is limited by UpRate or
DownRate.

RaisingLimit RL BOOL TRUE when block limits a rising Input

FallingLimit FL BOOL TRUE when block limits a falling Input
Automation Collaborative Platform 1685

Example

(* ST equivalence: RATELIMITER1 is an instance of the RATELIMITER
block; *)

RATELIMITER1(InputA, 5.0 , 1.0 , Enable_Bit) ;

OutputB := RATELIMITER1.Output ;

Limiting_Up_Rate := RATELIMITER1.RisingLimit ;

Limiting_Down_Rate := RATELIMITER1.FallingLimit ;
1686 Windows Runtime Modules - Function Blocks

RATIO

Arguments:

Description:

Provides a means of setting a ratio in an external setpoint control. For example, controlling a
captive flow while maintaining the ratio between a wild flow and the captive flow at the desired
value. Input signal A, input signal E (external ratio), and the operator set RATIO values are
multiplied and become the function block Output. The RATIOCALIBRATION function block
calibrates RATIO using a tracked input signal.

Example

(* ST equivalence: RATIO1 is an instance of RATIO block and
RATIOCALIBRATION1 is an instance of RATIOCALIBRATION block *)

RATIO1(Signal_InA, Signal_InE, RATIOCALIBRATION1.Ratio);

Out_Value := RATIO1.Output ;

InputA INA REAL Input signal A

InputE INE REAL Input signal E

Ratio RAT REAL RATIO value

Output OUT REAL Output value. Output = (RATIO) x InputA x InputE
Automation Collaborative Platform 1687

RATIOCALIBRATION

Arguments:

Description:

Calibrates RATIO using TrackVariable. When TrackCommand is FALSE, RATIO equals last
RATIO value and TrackOutput is 0.0. When TrackCommand is TRUE, RATIO equals
(TrackVariable) / (InputA * InputE); TrackOutput = (TrackVariable) / (InputA * RATIO) also
RATIO will be limited by HighLimit and LowLimit. The RATIO function block provides a
means of setting a ratio in an external setpoint application.

InputA INA REAL Input signal A

InputE INE REAL Input signal E

Initial INIT REAL RATIO value at first scan

HighLimit HLIM REAL High Limit for RATIO

LowLimit LLIM REAL Low Limit for RATIO

TrackVariable TV REAL Input Signal to track

TrackCommand TC BOOL Command to initiate TrackVariable tracking

Ratio RAT REAL RATIO value

TrackOutput TO REAL When TrackCommand = FALSE , TrackOutput = 0.0
When TrackCommand = TRUE, TrackOutput =
(TrackVariable) / (InputA * RATIO)
1688 Windows Runtime Modules - Function Blocks

Example

(* ST equivalence: RATIO1 is an instance of RATIO block and
RATIOCALIBRATION1 is an instance of RATIOCALIBRATION block *)

RATIOCALIBRATION1(Signal_InA,

Signal_InE,

0.2,

300.0,

10.0,

Flow_Water,

TK);

RATIO1(Signal_InA, Signal_InE, RATIOCALIBRATION1.RATIO);

Out_Value := RATIO1.Output ;
Automation Collaborative Platform 1689

RETENTIVEONTIMER

Arguments:

Description:

Performs an on-delay timing function with output states determined by InputOn and
InputEnable. When InputEnable is FALSE, Output and OutputNot are FALSE,
RemainingTime equals DelayTime. When InputEnable is TRUE, Output and OutputNot are
determined by InputOn and RemainingTime.

InputOn INO BOOL Input to start timer

InputEnable INE BOOL Input to enable timer

DelayTime DTIM REAL Delay time in seconds

ErrorMode ERR DINT Mode used to handle errors of type: DelayTime < 0.0:
1 prints message in ErrorLog and stops resource

code execution
0 sets Output to TRUE, OutputNot to FALSE,

ElapseTime to 0.0, and RemainingTime = 0.0

Output OUT BOOL Signal = TRUE when RemainingTime >= 0.0

OutputNot ONOT BOOL Signal = FALSE when RemainingTime >= 0.0

ElapseTime ETIM REAL Time elapsed since the timer started

RemainingTime RTIM REAL Time remaining before Output changes to TRUE.
1690 Windows Runtime Modules - Function Blocks

When InputOn is TRUE, ElapseTime starts to increase and RemainingTime starts to decrease.
Output changes to TRUE after RemainingTime <= 0.0. If InputOn changes to FALSE,
RemainingTime and ElapseTime stop at their current value and continue when InputOn returns
to TRUE. ElapseTime returns to 0.0 when InputEnable is FALSE. OutputNot is TRUE if
InputEnable is TRUE and Output is FALSE.

Example

(* ST equivalence: RETENTIVEONTIMER1 is an instance of RETENTIVEONTIMER
block *)

RETENTIVEONTIMER1(On_Tmr, En_Tmr, 300.0, 0);

Timer_Done := RETENTIVEONTIMER1.Output ;

Timer_Not_Done := RETENTIVEONTIMER1.OutputNot ;

Time_To_Count := RETENTIVEONTIMER1.RemainingTime ;

Time_Counted := RETENTIVEONTIMER1.ElapseTime ;
Automation Collaborative Platform 1691

SCALER

Arguments:

Description:

Scales the input value according to the output range:

Example

(* ST equivalence: SCALER1 is an instance of SCALER block *)

SCALER1(Signal_In, 4.0, 20.0 , 0.0 , 150.0) ;

Out_Temp := SCALER1.Output ;

Input IN REAL Input signal

InputMin IMIN REAL Minimum value of Input

InputMax IMAX REAL Maximum value of Input

OutputMin OMIN REAL Minimum value of Output

OutputMax OMAX REAL Maximum value of Output

Output OUT REAL Output value
1692 Windows Runtime Modules - Function Blocks

SETPOINT

Arguments:

TrackVariable TV REAL Variable to track

TargetSetpoint TS REAL Value to attain for setpoint

RampRate RR REAL Ramp rate value, per second

RampTime RT REAL Ramp time value, in seconds

Command CMD DINT Command for SETPOINT. Possible values are:
0 Output equals last output
1 Output equals TrackVariable
2 Output changes from current value to

TargetSetpoint at RampRate rate
3 Output changes from current value to

TargetSetpoint at (TargetSetpoint – Initial
value) /RampTime rate

PulseUp PU BOOL Increment output for PulseRate value upon detection of
upward pulses

PulseDown PD BOOL Decrement output for PulseRate value upon detection of
downward pulses
Automation Collaborative Platform 1693

Description:

Multi-action setpoint command having six different settings and adjustment of SETPOINT for
controller. On first scan, output equals TrackVariable. Using a different Command, the
setpoint can be adjusted to last Output, TrackVariable, or TargetSetpoint. At any time, the two
pulse entries can be used to increment or decrement the output (for example, via an HMI or a
pulse switch).

Example

(* ST equivalence: SETPOINT1 is an instance of SETPOINT block *)

SETPOINT1(Signal_In, SETPOINTValue, 10.0, 25.0, UserCommand, RemoteUp,
RemoteDown, 5, 0);

ProcessSETPOINT := SETPOINT1.Output ;

PulseRate PR DINT Pulse rate value, per second

ErrorMode ERR DINT Mode used to handle errors of type negative RampRate
and negative RampTime. Possible values are:
1 prints message in ErrorLog and stops

resource code execution
0 sets output to zero

Output OUT REAL Current setpoint value
1694 Windows Runtime Modules - Function Blocks

SIGNALSELECTOR

Arguments:

Description:

Selects either the highest or lowest signal value from three input signals. When Selector is
FALSE, the lowest signal value between input A, input B, and input C is sent to Output. When
Selector is TRUE, the highest signal value between input A, input B, and input C is sent
to Output.

Example

(* ST equivalence: SIGNALSELECTOR1 is an instance of SIGNALSELECTOR
block *)

SIGNALSELECTOR1(InA, InB, InC, Sel) ;

Selected_Signal := SIGNALSELECTOR1.Output ;

InputA INA REAL Input signal A

InputB INB REAL Input signal B

InputC INC REAL Input signal C

Selector SEL BOOL (Selector) Indication of whether the highest or lowest signal
value is selected. Possible values are:
TRUE selects highest signal value
FALSE selects lowest signal value

Output OUT REAL (Output) Selected signal
Automation Collaborative Platform 1695

TRACKANDHOLD

Arguments:

Description:

Holds an initial value transferred to output on first scan. Tracks the TrackVariable when
TrackCommand is TRUE and holds the last output value when FALSE.

Example

(* ST equivalence: TRACKANDHOLD1 is an instance of TRACKANDHOLD block
*)

TRACKANDHOLD1(25.0, Signal_To_Track, Command);

Out_Value := TRACKANDHOLD1.Output ;

Initial INIT REAL Initial value to transfer to Output

TrackVariable TV REAL (TrackVariable) Input signal to track

TrackCommand TC BOOL (Track command) When TRUE, Output tracks the
TrackVariable. When FALSE, Output stays the same as
the last Output value.

Output OUT REAL Output signal
1696 Windows Runtime Modules - Function Blocks

TRANSFERSWITCH

Arguments:

Description:

Selects a signal between two inputs with the switch command.

Example

(* ST equivalence: TRANSFERSWITCH1 is an instance of TRANSFERSWITCH
block *)

TRANSFERSWITCH1(Signal_A, Signal_B, Switch_Command);

Out_value := TRANSFERSWITCH1.Output;

InputA INA REAL Input signal A

InputB INB REAL Input signal B

Command CMD BOOL (Command) Indication of which signal to select:
FALSE selects InputA
TRUE selects InputB

Output OUT REAL Output signal
Automation Collaborative Platform 1697

Matrix2 Operations
A matrix is a two-dimensional array variable made up of rows and columns. It is mainly used
to perform complex calculations involving the data of the running application. The Matrix2
function block performs all of these operations. However, each operation has a specific
identifier and requires different inputs. The outputs other than those specified for the function
do not contain valid information. All Matrix2 operations are executed on a change in value
greater than 0.

The intersection of a row and a column is called a cell; cells hold the matrix values. The number
of the first row of a matrix is 0; the number of its first column is also 0.

The Workbench offers the Matrix2 built-in function block performing multiple operations for
filling and manipulating matrices. Each of the available operations is indicated by a number
ranging from 0 to 10. Furthermore, the Matrix2 block performs an operation on a change in
value (increasing or decreasing). Therefore, to repeat a specific operation, the block operation
number must increase or decrease before resuming a previous operation number.

The available Matrix2 operations are the following:

NULLIFY_OPERATION 0 Nullifies an operation to enable repeating one
of the other possible Matrix2 operations.

COPY_ROW_MATRIX 7 Copies a row from a matrix into a row of the
same size in another matrix. The cell value
type must be the same in both matrices
(Index1 and Index2 are used).

COPY_COL_MATRIX 8 Copies a column from a matrix into a row of
the same size in another matrix. The cell value
type must be the same in both matrices
(Index1 and Index2 are used).

TRANSPOSE_MATRIX 1 Swaps the rows and columns of an existing
matrix into another existing matrix called a
transpose

INVERT_MATRIX 2 Computes the inverse of a float (REAL)
matrix

ADD_MATRIX 3 Adds up two existing matrices and places the
result in a third matrix
1698 Windows Runtime Modules - Function Blocks

The examples for the individual Matrix2 operations are based on the variables from the
following definitions:

SUBTRACT_MATRIX 4 Subtracts an existing matrix from another
existing matrix and places the result in a third
matrix

MULTIPLY_MATRIX 5 Multiplies two existing matrices and places
the result in a third matrix

SCALAR_MATRIX 6 Multiplies each cell value of a float (REAL)
matrix by a float (REAL) value

PRINT_MATRIX 9 Prints the contents of all matrices on the
console

GET_VERSION 10 Returns the version number of the function
block
Automation Collaborative Platform 1699

COPY_ROW_MATRIX

Arguments:

The outputs other than those specified for the function do not contain valid information.

Operation DINT Number indicating the operation. The
value of this operation is 7.

In_Matrix1 ANY_ELEMENTARY Array variable for the source matrix

In_Matrix2 ANY_ELEMENTARY Array variable for the destination matrix.
This must not be the source matrix.

Index1 DINT Number of the row, in the source matrix,
that is copied. The possible values range
from 0 to N-1, N being the total number
of rows.

Index2 DINT Number of the row, in the destination
matrix, that receives a row. The possible
values range from 0 to N-1, N being the
total number of rows.

Error_Code DINT Status of the operation:
0 = No error
3 = Type mismatch
5 = Column mismatch
7 = Index out of range
1700 Windows Runtime Modules - Function Blocks

Description:

Copies a row from a matrix into a row of the same size in another matrix. The cell value type
must be the same in both matrices.

Example

To copy the contents of a row from a matrix and place it into a row of another matrix. For a list
of variable definitions used in the following example, refer to the Matrix2 Operations page.

IF (Copy_row_7)

THEN

 (* Copies a row from a matrix into a row of the same size in another
matrix or into the same matrix. *)

 Copy_row_7 := FALSE;

 IF (Use_Int_Matrix) THEN op1 := cmd7_copy_row; ELSE op2 :=
cmd7_copy_row; END_IF;

END_IF;

(* FB for DINT operations *)

fbm1(op1, mat1, mat2, mat3, idx11, idx12, in1i);

err1 := fbm1.Error_code;

out1i := fbm1.OUT_INTEGER_VALUE;

out1r := fbm1.OUT_FLOAT_VALUE;

op1 := 0;

(* FB for REAL operations *)

fbm2(op2, matR1, matR2, matR3, idx21, idx22, in2r);

err2 := fbm2.Error_code;

out2i := fbm2.OUT_INTEGER_VALUE;

out2r := fbm2.OUT_FLOAT_VALUE;
Automation Collaborative Platform 1701

op2 := 0;
1702 Windows Runtime Modules - Function Blocks

COPY_COL_MATRIX

Arguments:

The outputs other than those specified for the function do not contain valid information.

Operation DINT Number indicating the operation. The
value of this operation is 8.

In_Matrix1 ANY_ELEMENTARY Array variable for the source matrix

In_Matrix2 ANY_ELEMENTARY Array variable for the destination matrix.
This must not be the source matrix.

Index1 DINT Number of the column, in the source
matrix, that is copied. The possible values
range from 0 to N-1, N being the total
number of columns.
Automation Collaborative Platform 1703

Description:

Copies a column from a matrix into a column of the same size in another matrix. The cell value
type must be the same in both matrices.

Example

To copy the contents of a column from a matrix and place it into a column of another matrix.
For a list of variable definitions used in the following example, refer to the Matrix2 Operations
page.

IF (Copy_col_8)

THEN

 (* Copies a column from a matrix into a row of the same size in another
matrix or into the same matrix. *)

 Copy_col_8 := FALSE;

 IF (Use_Int_Matrix) THEN op1 := cmd8_copy_col; ELSE op2 :=
cmd8_copy_col; END_IF;

END_IF;

(* FB for DINT operations *)

fbm1(op1, mat1, mat2, mat3, idx11, idx12, in1i);

err1 := fbm1.Error_code;

Index2 DINT Number of the column, in the destination
matrix, that receives a column. The
possible values range from 0 to N-1, N
being the total number of columns.

Error_Code DINT Status of the operation:
0 = No error
2 = Invalid type
3 = Type mismatch
5 = Column mismatch
7 = Index out of range
1704 Windows Runtime Modules - Function Blocks

out1i := fbm1.OUT_INTEGER_VALUE;

out1r := fbm1.OUT_FLOAT_VALUE;

op1 := 0;

(* FB for REAL operations *)

fbm2(op2, matR1, matR2, matR3, idx21, idx22, in2r);

err2 := fbm2.Error_code;

out2i := fbm2.OUT_INTEGER_VALUE;

out2r := fbm2.OUT_FLOAT_VALUE;

op2 := 0;
Automation Collaborative Platform 1705

TRANSPOSE_MATRIX

Arguments:

The outputs other than those specified for the function do not contain valid information.

Description:

Swaps the rows and columns of an existing matrix into another matrix called a transpose. For
instance, the transpose of a matrix having three rows and five columns has five rows and three
columns. The transpose matrix is created with the required row-column structure and data type.
You place the transposed matrix into an existing matrix.

Operation DINT Number indicating the operation. The
value of this operation is 1.

In_Matrix1 ANY_ELEMENTARY Array variable for the matrix to be
transposed (source)

Out_Matrix3 ANY_ELEMENTARY Array variable for the matrix to receive
the resulting transposed matrix. This must
not be the source matrix.

Error_Code DINT Status of the operation:
0 = No error
1 = Not enough memory
6 = Dimension mismatch
7 = Index out of range
1706 Windows Runtime Modules - Function Blocks

Example

To swap the rows and columns of an existing matrix into another existing matrix called a
transpose. For a list of variable definitions used in the following example, refer to the Matrix2
Operations page.

IF (Transpose_1)

THEN

 (* Transpose the matrix *)

 Transpose_1 := FALSE;

 IF (Use_Int_Matrix) THEN op1 := cmd1_transpose; ELSE op2 :=
cmd1_transpose; END_IF;

END_IF;

(* FB for DINT operations *)

fbm1(op1, mat1, mat2, mat3, idx11, idx12, in1i);

err1 := fbm1.Error_code;

out1i := fbm1.OUT_INTEGER_VALUE;

out1r := fbm1.OUT_FLOAT_VALUE;

op1 := 0;

(* FB for REAL operations *)

fbm2(op2, matR1, matR2, matR3, idx21, idx22, in2r);

err2 := fbm2.Error_code;

out2i := fbm2.OUT_INTEGER_VALUE;

out2r := fbm2.OUT_FLOAT_VALUE;

op2 := 0;
Automation Collaborative Platform 1707

INVERT_MATRIX

Arguments:

The outputs other than those specified for the function do not contain valid information.

Operation DINT Number indicating the operation. The
value of this operation is 2.

In_Matrix1 ANY_ELEMENTARY Array variable for the matrix to be
inverted (source). The cell value type
must be float (REAL).

Out_Matrix3 ANY_ELEMENTARY Array variable for the matrix to receive
the resulting inverted matrix. This must
not be the source matrix. The cell value
type must be float (REAL).

Error_Code DINT Status of the operation:
0 = No error
1 = Not enough memory
2 = Invalid type
3 = Type mismatch
6 = Dimension mismatch
7 = Index out of range
8 = Not square
9 = Mathematical error
1708 Windows Runtime Modules - Function Blocks

Description:

Computes the inverse of a matrix. The source matrix must be square (i.e., have the same
number of rows and columns) and its cell value type must be float (REAL). The inverse matrix
will be created with the required row-column structure and data type.

You place the transposed matrix into an existing matrix.

Note: Not all matrices are invertible. Invertible matrices are those whose determinant is not
equal to 0.

Example

To invert a source matrix and place the result in a destination matrix. For a list of variable
definitions used in the following example, refer to the Matrix2 Operations page.

IF (Invert_2)

THEN

 (* Invert the matrix - This operation is only for floats *)

 Invert_2 := FALSE;

 op2 := cmd2_invert;

END_IF;

(* FB for DINT operations *)

fbm1(op1, mat1, mat2, mat3, idx11, idx12, in1i);

err1 := fbm1.Error_code;

out1i := fbm1.OUT_INTEGER_VALUE;

out1r := fbm1.OUT_FLOAT_VALUE;

op1 := 0;

(* FB for REAL operations *)

fbm2(op2, matR1, matR2, matR3, idx21, idx22, in2r);

err2 := fbm2.Error_code;
Automation Collaborative Platform 1709

out2i := fbm2.OUT_INTEGER_VALUE;

out2r := fbm2.OUT_FLOAT_VALUE;

op2 := 0;
1710 Windows Runtime Modules - Function Blocks

ADD_MATRIX

Arguments:

The outputs other than those specified for the function do not contain valid information.

Operation DINT Number indicating the operation. The
value of this operation is 3.

In_Matrix1 ANY_ELEMENTARY Array variable for the first matrix in the
addition

In_Matrix2 ANY_ELEMENTARY Array variable for the other matrix in the
addition
Automation Collaborative Platform 1711

Description:

Adds up two existing matrices then places the result in a third matrix. The summation is
performed cell by cell, with the result occupying the same cell position in the third matrix. The
matrices that are added up must have the same dimensions and cell value type.

You place the result into an existing matrix.

Example

To add two matrices then place the result in a third matrix. For a list of variable definitions used
in the following example, refer to the Matrix2 Operations page.

IF (Add_3)

THEN

 (* Add the matrices *)

 Add_3 := FALSE;

 IF (Use_Int_Matrix) THEN op1 := cmd3_add; ELSE op2 := cmd3_add;
END_IF;

END_IF;

(* FB for DINT operations *)

Out_Matrix3 ANY_ELEMENTARY Array variable for the existing matrix that
will receive the operation result. This
must not be one of the matrices indicated
in In_Matrix1 or In_Matrix2.

Error_Code DINT Status of the operation:
0 = No error
1 = Not enough memory
2 = Invalid type
3 = Type mismatch
4 = Row mismatch
5 = Column mismatch
6 = Dimension mismatch
7 = Index out of range
1712 Windows Runtime Modules - Function Blocks

fbm1(op1, mat1, mat2, mat3, idx11, idx12, in1i);

err1 := fbm1.Error_code;

out1i := fbm1.OUT_INTEGER_VALUE;

out1r := fbm1.OUT_FLOAT_VALUE;

op1 := 0;

(* FB for REAL operations *)

fbm2(op2, matR1, matR2, matR3, idx21, idx22, in2r);

err2 := fbm2.Error_code;

out2i := fbm2.OUT_INTEGER_VALUE;

out2r := fbm2.OUT_FLOAT_VALUE;

op2 := 0;
Automation Collaborative Platform 1713

SUBTRACT_MATRIX

Arguments:

The outputs other than those specified for the function do not contain valid information.

Operation DINT Number indicating the operation. The
value of this operation is 4.

In_Matrix1 ANY_ELEMENTARY Array variable for the first matrix in the
subtraction

In_Matrix2 ANY_ELEMENTARY Array variable for the other matrix in the
subtraction
1714 Windows Runtime Modules - Function Blocks

Description:

Subtracts an existing matrix from another existing matrix then places the result in a third
matrix. The difference is performed cell by cell, with the result occupying the same cell
position in the third matrix. The matrices involved in the subtraction must have the same
dimensions and cell value type.

You place the result into an existing matrix.

Example

To subtract a matrix from another matrix then place the result in a third matrix. For a list of
variable definitions used in the following example, refer to the Matrix2 Operations page.

IF (Sub_4)

THEN

 (* Subtract the matrices *)

 Sub_4 := FALSE;

 IF (Use_Int_Matrix) THEN op1 := cmd4_sub; ELSE op2 := cmd4_sub;
END_IF;

END_IF;

Out_Matrix3 ANY_ELEMENTARY Array variable for the existing matrix that
will receive the operation result. This
must not be one of the matrices indicated
in In_Matrix1 or In_Matrix2.

Error_Code DINT Status of the operation:
0 = No error
1 = Not enough memory
2 = Invalid type
3 = Type mismatch
4 = Row mismatch
5 = Column mismatch
6 = Dimension mismatch
7 = Index out of range
Automation Collaborative Platform 1715

(* FB for DINT operations *)

fbm1(op1, mat1, mat2, mat3, idx11, idx12, in1i);

err1 := fbm1.Error_code;

out1i := fbm1.OUT_INTEGER_VALUE;

out1r := fbm1.OUT_FLOAT_VALUE;

op1 := 0;

(* FB for REAL operations *)

fbm2(op2, matR1, matR2, matR3, idx21, idx22, in2r);

err2 := fbm2.Error_code;

out2i := fbm2.OUT_INTEGER_VALUE;

out2r := fbm2.OUT_FLOAT_VALUE;

op2 := 0;
1716 Windows Runtime Modules - Function Blocks

MULTIPLY_MATRIX

Arguments:

The outputs other than those specified for the function do not contain valid information.

Operation DINT Number indicating the operation. The
value of this operation is 5.

In_Matrix1 ANY_ELEMENTARY Array variable for the first matrix in the
multiplication

In_Matrix2 ANY_ELEMENTARY Array variable for the other matrix in the
multiplication

Out_Matrix3 ANY_ELEMENTARY Array variable for the existing matrix that
will receive the operation result. This
must not be one of the matrices indicated
in In_Matrix1 or In_Matrix2.

Error_Code DINT Status of the operation:
0 = No error
1 = Not enough memory
2 = Invalid type
3 = Type mismatch
6 = Dimension mismatch
7 = Index out of range
Automation Collaborative Platform 1717

Description:

Multiplies two existing matrices then places the result in a third matrix. The number of columns
in the first matrix must be equal to the number of rows in the second matrix. The resulting
matrix has the same number of rows as the first matrix and the same number of columns as the
second matrix. For example, you can multiply a 3x4 matrix with a 4x2 matrix; the result will
be a 3x2 matrix; however, you cannot multiply two 3x4 matrices. The matrices being
multiplied must have the same cell value type.

The resulting matrix will be created with the required row-column structure and data type. You
can place the result into an existing matrix.

Example

To multiply two matrices then place the result in a third matrix. For a list of variable definitions
used in the following example, refer to the Matrix2 Operations page.

IF (Mult_5)

THEN

 (* Multiply the matrices *)

 Mult_5 := FALSE;

 IF (Use_Int_Matrix) THEN op1 := cmd5_mult; ELSE op2 := cmd5_mult;
END_IF;

END_IF;

(* FB for DINT operations *)

fbm1(op1, mat1, mat2, mat3, idx11, idx12, in1i);

err1 := fbm1.Error_code;

out1i := fbm1.OUT_INTEGER_VALUE;

out1r := fbm1.OUT_FLOAT_VALUE;

op1 := 0;

(* FB for REAL operations *)
1718 Windows Runtime Modules - Function Blocks

fbm2(op2, matR1, matR2, matR3, idx21, idx22, in2r);

err2 := fbm2.Error_code;

out2i := fbm2.OUT_INTEGER_VALUE;

out2r := fbm2.OUT_FLOAT_VALUE;

op2 := 0;
Automation Collaborative Platform 1719

SCALAR_MATRIX

Arguments:

The outputs other than those specified for the function do not contain valid information.

Operation DINT Number indicating the operation. The
value of this operation is 6.

In_Matrix1 ANY_ELEMENTARY Array variable for the first matrix in the
scalar operation. The cell value type must
be float (REAL).

In_Matrix2 ANY_ELEMENTARY Array variable for the other matrix in the
scalar operation. The cell value type must
be float (REAL).

Out_Matrix3 ANY_ELEMENTARY Array variable for the existing matrix that
will receive the operation result. The cell
value type must be float (REAL). This
must not be one of the matrices indicated
in In_Matrix1 or In_Matrix2.
1720 Windows Runtime Modules - Function Blocks

Description:

Multiplies each cell value of a float matrix by a float value then places the result in another
matrix. This operation is called scalar multiplication.

You place the result into an existing matrix.

Example

To multiply each cell of a float matrix by a float value then place the result in another matrix.
For a list of variable definitions used in the following example, refer to the Matrix2 Operations
page.

IF (Scalar_6)

THEN

 (* Multiply each cell value of a float matrix by a value *)

 Scalar_6 := FALSE;

 IF (Use_Int_Matrix) THEN op1 := cmd6_scalar; ELSE op2 := cmd6_scalar;
END_IF;

END_IF;

(* FB for DINT operations *)

fbm1(op1, mat1, mat2, mat3, idx11, idx12, in1i);

err1 := fbm1.Error_code;

Multiplier ANY_ELEMENTARY Number by which cell values are
multiplied. This multiplier must be a float
(REAL) value.

Error_Code DINT Status of the operation:
0 = No error
1 = Not enough memory
3 = Type mismatch
6 = Dimension mismatch
7 = Index out of range
Automation Collaborative Platform 1721

out1i := fbm1.OUT_INTEGER_VALUE;

out1r := fbm1.OUT_FLOAT_VALUE;

op1 := 0;

(* FB for REAL operations *)

fbm2(op2, matR1, matR2, matR3, idx21, idx22, in2r);

err2 := fbm2.Error_code;

out2i := fbm2.OUT_INTEGER_VALUE;

out2r := fbm2.OUT_FLOAT_VALUE;

op2 := 0;
1722 Windows Runtime Modules - Function Blocks

PRINT_MATRIX

Arguments:

The outputs other than those specified for the function do not contain valid information.

Description:

Prints the contents of matrices to a standard output, i.e., a console window.

Operation DINT Number indicating the operation. The
value of this operation is 9.

In_Matrix1 ANY_ELEMENTARY Array variable for the matrix

In_Matrix2 ANY_ELEMENTARY Array variable for the matrix

Out_Matrix3 ANY_ELEMENTARY Array variable for the matrix having the
results of an operation executed on
In_Matrix1 and In_Matrix2.

Error_Code DINT Status of the operation:
0 = No error
2 = Invalid type
Automation Collaborative Platform 1723

Example

To print the contents of all matrices onto a console window. For a list of variable definitions
used in the following example, refer to the Matrix2 Operations page.

IF (Print_9)

THEN

 (* Prints the content of the matrix *)

 Print_9 := FALSE;

 IF (Use_Int_Matrix) THEN op1 := cmd9_print; ELSE op2 := cmd9_print;
END_IF;

END_IF;

(* FB for DINT operations *)

fbm1(op1, mat1, mat2, mat3, idx11, idx12, in1i);

err1 := fbm1.Error_code;

out1i := fbm1.OUT_INTEGER_VALUE;

out1r := fbm1.OUT_FLOAT_VALUE;

op1 := 0;

(* FB for REAL operations *)

fbm2(op2, matR1, matR2, matR3, idx21, idx22, in2r);

err2 := fbm2.Error_code;

out2i := fbm2.OUT_INTEGER_VALUE;

out2r := fbm2.OUT_FLOAT_VALUE;

op2 := 0;
1724 Windows Runtime Modules - Function Blocks

GET_VERSION

Arguments:

The outputs other than those specified for the function do not contain valid information.

Description:

Gets the version number for the function block. The version number is a 2-byte integer
representing a major and minor version. For example, 16#0203 means v2.3.

Example

To get the version number of the MATRIX2 function block. For a list of variable definitions
used in the following example, refer to the Matrix2 Operations page.

IF (Get_ver_10)

Operation DINT Number indicating the operation. The
value of this operation is 10.

Error_Code DINT Status of the operation:
0 = No error
2 = Invalid type

OUT_INTEGER_VALUE DINT Version number of the function block
Automation Collaborative Platform 1725

THEN

 (* Get FB version *)

 Get_ver_10 := FALSE;

 IF (Use_Int_Matrix) THEN op1 := cmd10_get_ver; ELSE op2 :=
cmd10_get_ver; END_IF;

END_IF;

(* FB for DINT operations *)

fbm1(op1, mat1, mat2, mat3, idx11, idx12, in1i);

err1 := fbm1.Error_code;

out1i := fbm1.OUT_INTEGER_VALUE;

out1r := fbm1.OUT_FLOAT_VALUE;

op1 := 0;

(* FB for REAL operations *)

fbm2(op2, matR1, matR2, matR3, idx21, idx22, in2r);

err2 := fbm2.Error_code;

out2i := fbm2.OUT_INTEGER_VALUE;

out2r := fbm2.OUT_FLOAT_VALUE;

op2 := 0;
1726 Windows Runtime Modules - Function Blocks

Matrix Operations
A matrix is a two-dimensional array made up of rows and columns. It is mainly used to perform
complex calculations involving the data of the running application. The matrix function block
performs all of these operations. However, each operation has a specific identifier and requires
different inputs. The outputs other than those specified for the function do not contain valid
information.

The intersection of a row and a column is called a cell; cells hold the matrix values. The number
of the first row of a matrix is 0; the number of its first column is also 0.

The Workbench offers built-in function blocks for creating, filling, and manipulating matrices.
Each of the functions has an operation number ranging from 0 to 20.

You can create as many matrices as required per program.

The available Matrix operations are the following:

NEW_MATRIX Creates a matrix

FREE_MATRIX Closes a matrix

PUT_I_MATRIX Inserts an integer into a cell of an integer
matrix

GET_I_MATRIX Reads the value of a cell in an integer matrix

PUT_F_MATRIX Inserts a float value into a cell of a float
matrix

GET_F_MATRIX Reads the value of a cell in a float matrix

DUP_MATRIX Creates a duplicate of an existing matrix

COPY_MATRIX Copies the contents of a matrix into an
existing matrix having the same row-column
structure and cell value type

COPY_ROW_MATRIX Copies a row from a matrix into a row of the
same size in another matrix or into the same
matrix

COPY_COL_MATRIX Copies a column from a matrix into a row of
the same size in another matrix or into the
same matrix
Automation Collaborative Platform 1727

TYPE_MATRIX Returns the data type of the cell values of a
matrix

ROWS_MATRIX Returns the number of rows in a matrix

COLS_MATRIX Returns the number of columns in a matrix

TRANSPOSE_MATRIX Swaps the rows and columns of an existing
matrix into another matrix

INVERT_MATRIX Computes the inverse of a matrix

ADD_MATRIX Adds up two existing matrices

SUBTRACT_MATRIX Subtracts an existing matrix from another
existing matrix

MULTIPLY_MATRIX Multiplies two existing matrices

SCALAR_I_MATRIX Multiplies each cell value of an integer matrix
by an integer value

SCALAR_F_MATRIX Multiplies each cell value of a float matrix by
a float value

PRINT_MATRIX Sends the contents of a matrix to the errlog
1728 Windows Runtime Modules - Function Blocks

NEW_MATRIX

Note: The failover mechanism does not support the Matrix function blocks.

Arguments:

You need to enter a value for each input parameter that appears blank. All blank inputs require
a 0 except for the FLT which requires 0.0. The outputs other than those specified for the
function do not contain valid information.

OPERATION OP DINT Number indicating the operation. This operation
number is 0.

INDEX_1 IDX1 DINT Number of rows. The possible values range from
0 to N-1, N being the total number of rows.

INDEX_2 IDX2 DINT Number of columns. The possible values range
from 0 to M-1, M being the total number of
columns.

IN_INTEGER_VALUE INT DINT Number indicating the type of matrix:
0 = Integer
1 = Float
Automation Collaborative Platform 1729

Description:

Warning: This function uses the Malloc dynamic memory allocation at run time.

Creates a matrix. The data type of all cells is the same for any matrix. Therefore, an integer
matrix contains only integer values, and a float matrix, float values.

Examples

To create a float-type matrix having three columns and three rows:

To create an integer-type matrix having two columns and two rows:

MATRIX_RESULT RES DINT Handle of the new matrix

ERROR_CODE ERR DINT Status of the operation:
1 = Not enough memory
2 = Invalid type

matrix_fbl(0, 0, 0, 0, 3, 3, 1, 0.0); (* new float matrix 3 x 3*)

if matrix_fbl.ERROR_CODE = 0 then

mat[1] := matrix_fbl.MATRIX_RESULT;

else

RESULT := log_msg('ErrLog','unable to allocate matrix ' +
any_to_string(matrix_fbl.ERROR_CODE));

end_if;

matrix_fbl(0, 0, 0, 0, 2, 2, 0, 0.0); (* new integer matrix 2 x 2*)

if matrix_fbl.ERROR_CODE = 0 then

mat[2] := matrix_fbl.MATRIX_RESULT;

else

RESULT := log_msg('ErrLog','unable to allocate matrix
' + any_to_string(matrix_fbl.ERROR_CODE));

end_if;
1730 Windows Runtime Modules - Function Blocks

FREE_MATRIX

Note: The failover mechanism does not support the Matrix function blocks.

Arguments:

You need to enter a value for each input parameter that appears blank. All blank inputs require
a 0 except for the FLT which requires 0.0. The outputs other than those specified for the
function do not contain valid information.

Description:

Closes a matrix.

OPERATION OP DINT Number indicating the operation. The value of this
operation is 1.

MATRIX_1 MAT1 DINT Handle of the matrix

ERROR_CODE ERR DINT Status of the operation:
0 = No error
6 = Index out of range
Automation Collaborative Platform 1731

Example

To close the matrix having the handle indicated by the index variable:

FOR index := 1 TO 10 BY 1 DO
if mat[index] > 0 then
matrix_fbl(1, mat[index], 0, 0, 0, 0, 0, 0.0); (* free mat[index] *)
if matrix_fbl.ERROR_CODE > 0 then
RESULT := log_msg('ErrLog','unable to free matrix ' +
any_to_string(matrix_fbl.ERROR_CODE));
end_if;
end_if;
END_FOR;
1732 Windows Runtime Modules - Function Blocks

GET_I_MATRIX

Note: The failover mechanism does not support the Matrix function blocks.

Arguments:

You need to enter a value for each input parameter that appears blank. All blank inputs require
a 0 except for the FLT which requires 0.0. The outputs other than those specified for the
function do not contain valid information.

Description:

OPERATION OP DINT Number indicating the operation. This
operation number is 3.

MATRIX_1 MAT1 DINT Handle of the matrix

INDEX_1 IDX1 DINT Row number of the cell. The possible values
range from 0 to N-1, N being the total number
of rows.

INDEX_2 IDX2 DINT Column number of the cell. The possible
values range from 0 to M-1, M being the total
number of columns.

OUT_INTEGER_VALUE INTG DINT Integer value contained in the cell
Automation Collaborative Platform 1733

Reads the value of a cell in an integer matrix.

Example

To get the integer value held in the cell located in the first column and first row of the matrix
having the handle 2 and place it into the ivalue variable:

matrix_fbl(3, mat[2], 0, 0, 1, 2, 0, 0.0); (* ivalue = mat[1][1,2] *)
ivalue := matrix_fbl.out_integer_value;
1734 Windows Runtime Modules - Function Blocks

PUT_I_MATRIX

Note: The failover mechanism does not support the Matrix function blocks.

Arguments:

You need to enter a value for each input parameter that appears blank. All blank inputs require
a 0 except for the FLT which requires 0.0. The outputs other than those specified for the
function do not contain valid information.

OPERATION OP DINT Number indicating the operation. This
operation number is 2.

MATRIX_1 MAT1 DINT Handle of the matrix

INDEX_1 IDX1 DINT Row number of the cell. The possible values
range from 0 to N-1, N being the total number
of rows.

INDEX_2 IDX2 DINT Column number of the cell. The possible
values range from 0 to M-1, M being the total
number of columns.
Automation Collaborative Platform 1735

Description:

Inserts an integer into a cell of an integer matrix.

Example

To set the values of the cells in the first and second columns of the first row to 2 and -1
respectively:

matrix_fbl(2, mat[2], 0, 0, 0,0, 2, 0.0);
matrix_fbl(2, mat[2], 0, 0, 0,1, -1, 0.0)

IN_INTEGER_VALUE INT DINT Value to be inserted

ERROR_CODE ERR DINT Status of the operation:
0 = No error
3 = Type mismatch
6 = Index out of range
1736 Windows Runtime Modules - Function Blocks

GET_F_MATRIX

Note: The failover mechanism does not support the Matrix function blocks.

Arguments:

You need to enter a value for each input parameter that appears blank. All blank inputs require
a 0 except for the FLT which requires 0.0. The outputs other than those specified for the
function do not contain valid information.

Description:

OPERATION OP DINT Number indicating the operation. This operation
number is 5.

MATRIX_1 MAT1 DINT Handle of the matrix

iNDEX_1 IDX1 DINT Row number of the cell. The possible values range
from 0 to N-1, N being the total number of rows.

iNDEX_2 IDX2 DINT Column number of the cell. The possible values
range from 0 to M-1, M being the total number of
columns.

OUT_FLOAT_VALUE FLT REAL Returns the float value contained in the cell
Automation Collaborative Platform 1737

Reads the value of a cell in a float matrix.

Example

To get the float value from the cell in the second row and third column of the matrix having the
handle 1 and place it in the fvalue variable:

matrix_fbl(5, mat[1], 0, 0, 1, 2, 0, 0.0); (* fvalue =mat[1][1,2]*)
fvalue := matrix_fbl.out_float_value;
1738 Windows Runtime Modules - Function Blocks

PUT_F_MATRIX

Note: The failover mechanism does not support the Matrix function blocks.

Arguments:

You need to enter a value for each input parameter that appears blank. All blank inputs require
a 0 except for the FLT which requires 0.0. The outputs other than those specified for the
function do not contain valid information.

OPERATION OP DINT Number indicating the operation. This operation
number is 4.

MATRIX_1 MAT1 DINT Handle of the matrix

INDEX_1 IDX1 DINT Row number of the cell. The possible values range
from 0 to N-1, N being the total number of rows.

INDEX_2 IDX2 DINT Column number of the cell. The possible values
range from 0 to M-1, M being the total number of
columns.
Automation Collaborative Platform 1739

Description:

Inserts a float value into a cell of a float matrix.

Example

To place the value 2.0 into the cell in the first row and first column in the matrix having the
handle 1:

matrix_fbl(4, mat[1], 0, 0, 0, 0, 0, 2.0)

IN_FLOAT_VALUE FLT REAL Value to be inserted

ERROR_CODE ERR DINT Status of the operation:
0 = No error
3 = Type mismatch
6 = Index out of range
1740 Windows Runtime Modules - Function Blocks

DUP_MATRIX

Note: The failover mechanism does not support the Matrix function blocks.

Arguments:

You need to enter a value for each input parameter that appears blank. All blank inputs require
a 0 except for the FLT which requires 0.0. The outputs other than those specified for the
function do not contain valid information.

Description:

Warning: This function uses the Malloc dynamic memory allocation at run time.

OPERATION OP DINT Number indicating the operation. The value of this
operation is 6.

MATRIX_1 MAT1 DINT Handle of the matrix

MATRIX_RESULT RES DINT Handle of the new matrix

ERROR_CODE ERR DINT Status of the operation:
0 = No error
1 = Not enough memory
7 = Out of range
Automation Collaborative Platform 1741

Creates a duplicate of an existing matrix. The duplicate matrix will have the same structure and
contents as the original one. The duplicate matrix will be created with the required row-column
structure and data type. If the matrix already exists, it will be deleted then recreated.

Example

To duplicate the matrix having the handle 1:

matrix_fbl(6, mat[1], 0, 0, 0, 0, 0, 0.0); (* duplicate mat[1] *)
if matrix_fbl.ERROR_CODE = 0 then
mat[3] := matrix_fbl.MATRIX_RESULT;
else
RESULT := log_msg('ErrLog','unable to duplicate matrix ' +
any_to_string(matrix_fbl.ERROR_CODE));
end_if
1742 Windows Runtime Modules - Function Blocks

COPY_MATRIX

Note: The failover mechanism does not support the Matrix function blocks.

Arguments:

You need to enter a value for each input parameter that appears blank. All blank inputs require
a 0 except for the FLT which requires 0.0. The outputs other than those specified for the
function do not contain valid information.

OPERATION OP DINT Number indicating the operation. The value of this
operation is 7.

MATRIX_1 MAT1 DINT Handle of the source matrix

MATRIX_2 MAT2 DINT Handle of the destination matrix. This must not be the
source matrix.

ERROR_CODE ERR DINT Status of the operation:
0 = No error
3 = Type mismatch
4 = Row mismatch
5 = Column mismatch
6 = Dimension mismatch
7 = Index out of range
Automation Collaborative Platform 1743

Description:

Copies the contents of a matrix into an existing matrix having the same row-column structure
and cell value type.

Example

To copy the contents of the matrix having the handle 1 and place it into the matrix having the
handle 3:

matrix_fbl(7, mat[1], mat[3], 0, 0, 0, 0, 0.0); (* mat[3]=mat[1] *)
if matrix_fbl.ERROR_CODE = 0 then
mat[3] := matrix_fbl.MATRIX_RESULT;
else
RESULT := log_msg('ErrLog','unable to duplicate matrix ' +
any_to_string(matrix_fbl.ERROR_CODE));
end_if
1744 Windows Runtime Modules - Function Blocks

COPY_ROW_MATRIX

Note: The failover mechanism does not support the Matrix function blocks.

Arguments:

You need to enter a value for each input parameter that appears blank. All blank inputs require
a 0 except for the FLT which requires 0.0. The outputs other than those specified for the
function do not contain valid information.

OPERATION OP DINT Number indicating the operation. The value of this
operation is 8.

MATRIX_1 MAT1 DINT Handle of the source matrix

INDEX_1 IDX1 DINT Number of the row, in the source matrix, that is copied.
The possible values range from 0 to N-1, N being the
total number of rows.

MATRIX_2 MAT2 DINT Handle of the destination matrix. This must not be the
source matrix.
Automation Collaborative Platform 1745

Description:

Copies a row from a matrix into a row of the same size in another matrix or into the same
matrix. The cell value type must be the same in both matrices.

Example

To copy the contents of the second row of the matrix having the handle 1 and place it into the
third row of the matrix having the handle 3:

matrix_fbl(8, mat[1], mat[3], 1, 2, 0, 0, 0.0); (* mat[3][2,0..M] =
mat[1][1,0..M] *)
if matrix_fbl.ERROR_CODE > 0 then
RESULT := log_msg('ErrLog','unable to copy row matrix ' +
any_to_string(matrix_fbl.ERROR_CODE));
end_if

INDEX_2 IDX2 DINT Number of the row, in the destination matrix, that
receives a row. The possible values range from 0 to N-1,
N being the total number of rows.

ERROR_CODE ERR DINT Status of the operation:
0 = No error
3 = Type mismatch
5 = Column mismatch
6 = Index out of range
1746 Windows Runtime Modules - Function Blocks

COPY_COL_MATRIX

Note: The failover mechanism does not support the Matrix function blocks.

Arguments:

You need to enter a value for each input parameter that appears blank. All blank inputs require
a 0 except for the FLT which requires 0.0. The outputs other than those specified for the
function do not contain valid information.

OPERATION OP DINT Number indicating the operation. The value of this
operation is 9.

MATRIX_1 MAT1 DINT Handle of the source matrix

INDEX_1 IDX1 DINT Number of the column, in the source matrix, that is
copied. The possible values range from 0 to M-1, M
being the total number of columns.

MATRIX_2 MAT2 DINT Handle of the destination matrix. This must not be the
source matrix.
Automation Collaborative Platform 1747

Description:

Copies a column from a matrix into a row of the same size in another matrix or into the same
matrix. The cell value type must be the same in both matrices.

Example

To copy the contents of the second column of the matrix having the handle 1 and place it into
the third column of the matrix having the handle 3:

matrix_fbl(9, mat[1], mat[3], 1, 2, 0, 0, 0.0); (* mat[3][0..N,2] =
mat[1][0..N,1] *)
if matrix_fbl.ERROR_CODE > 0 then
RESULT := log_msg('ErrLog','unable to copy col matrix ' +
any_to_string(matrix_fbl.ERROR_CODE));
end_if

INDEX_2 IDX2 DINT Number of the row, in the destination matrix, that
receives a column. The possible values range from 0 to
M-1, M being the total number of columns.

ERROR_CODE ERR DINT Status of the operation:
0 = No error
2 = Invalid type
3 = Type mismatch
4 = Row mismatch
6 = Index out of range
1748 Windows Runtime Modules - Function Blocks

TYPE_MATRIX

Note: The failover mechanism does not support the Matrix function blocks.

Arguments:

You need to enter a value for each input parameter that appears blank. All blank inputs require
a 0 except for the FLT which requires 0.0. The outputs other than those specified for the
function do not contain valid information.

Description:

Returns the data type of the cell values of a matrix.

OPERATION OP DINT Number indicating the operation. The value of this
operation is 10.

MATRIX_1 MAT1 DINT Handle of the matrix. This number is the result of the
NEW_MATRIX operation, when the matrix was
created.

MATRIX_TYPE TYPE DINT Data type of the cells:
0 = Integer
1 = Float
Automation Collaborative Platform 1749

Example

To get the type of cells contained in the matrix having the handle 1 and place it in the
mat_type variable:

matrix_fbl(10, mat[1], 0, 0, 0, 0, 0, 0.0); (* get mat[1] type
(integer/float)*)
mat_type := matrix_fbl.matrix_type
1750 Windows Runtime Modules - Function Blocks

ROWS_MATRIX

Note: The failover mechanism does not support the Matrix function blocks.

Arguments:

You need to enter a value for each input parameter that appears blank. All blank inputs require
a 0 except for the FLT which requires 0.0. The outputs other than those specified for the
function do not contain valid information.

Description:

Returns the number of rows in a matrix.

OPERATION OP DINT Number indicating the operation. The value of this
operation is 11.

MATRIX_1 MAT1 DINT Handle of the matrix

MATRIX_ROWS ROWS DINT Number of rows in the matrix. The possible values
range from 0 to N-1, N being the total number of
rows.
Automation Collaborative Platform 1751

Example

To get the number of rows contained in the matrix having the handle 1:

matrix_fbl(11, mat[1], 0, 0, 0, 0, 0, 0.0); (* get mat[1] number of
rows *)
rows := matrix_fbl.matrix_rows
1752 Windows Runtime Modules - Function Blocks

COLS_MATRIX

Note: The failover mechanism does not support the Matrix function blocks.

Arguments:

You need to enter a value for each input parameter that appears blank. All blank inputs require
a 0 except for the FLT which requires 0.0. The outputs other than those specified for the
function do not contain valid information.

Description:

Returns the number of columns in a matrix.

OPERATION OP DINT Number indicating the operation. The value of this
operation is 12.

MATRIX_1 MAT1 DINT Handle of the matrix

MATRIX_COLS COLS DINT Number of columns in the matrix. The possible values
range from 0 to M-1, M being the total number of
columns.
Automation Collaborative Platform 1753

Example

To get the number of columns contained in the matrix having the handle 1:

matrix_fbl(12, mat[1], 0, 0, 0, 0, 0, 0.0); (* get mat[1] number of
columns *)
cols := matrix_fbl.matrix_cols
1754 Windows Runtime Modules - Function Blocks

TRANSPOSE_MATRIX

Note: The failover mechanism does not support the Matrix function blocks.

Arguments:

You need to enter a value for each input parameter that appears blank. All blank inputs require
a 0 except for the FLT which requires 0.0. The outputs other than those specified for the
function do not contain valid information.

OPERATION OP DINT Number indicating the operation. The value of this
operation is 13.

MATRIX_1 MAT1 DINT Handle of the matrix to be transposed (source)

MATRIX_2 MAT2 DINT Handle of the matrix to receive the resulting
transposed matrix. This must not be the source
matrix. A value of 0 indicates that a new matrix will
be created.
Automation Collaborative Platform 1755

Description:

Swaps the rows and columns of an existing matrix into another matrix called a transpose. For
instance, the transpose of a matrix having three rows and five columns has five rows and three
columns. The transpose matrix will be created with the required row-column structure and data
type. You can choose to place the transposed matrix into an existing matrix or create a new one.

Example

To swap the rows and columns of the matrix having the handle 1 and place the result in a new
matrix:

matrix_fbl(13, mat[1], 0, 0, 0, 0, 0, 0.0); (* transpose mat[1] *)
if matrix_fbl.ERROR_CODE = 0 then
mat[4] := matrix_fbl.MATRIX_RESULT;
else
RESULT := log_msg('ErrLog','unable to transpose matrix ' +
any_to_string(matrix_fbl.ERROR_CODE));
end_if

MATRIX_RESULT RES DINT Handle of the resulting transposed matrix

ERROR_CODE ERR DINT Status of the operation:
0 = No error
1 = Not enough memory
6 = Dimension mismatch
7 = Index out of range
1756 Windows Runtime Modules - Function Blocks

INVERT_MATRIX

Note: The failover mechanism does not support the Matrix function blocks.

Arguments:

You need to enter a value for each input parameter that appears blank. All blank inputs require
a 0 except for the FLT which requires 0.0. The outputs other than those specified for the
function do not contain valid information.

OPERATION OP DINT Number indicating the operation. The value of this
operation is 14.

MATRIX_1 MAT1 DINT Handle of the matrix to be inverted (source)

MATRIX_2 MAT2 DINT Handle of the matrix to receive the resulting inverted
matrix. This must not be the source matrix. A value
of 0 indicates that a new matrix will be created.
Automation Collaborative Platform 1757

Description:

Warning: This function uses the Malloc dynamic memory allocation at run time.

Computes the inverse of a matrix. The source matrix must be square (i.e., have the same
number of rows and columns) and its cell value type must be float. The inverse matrix will be
created with the required row-column structure and data type.

You can choose to place the inverted matrix into an existing matrix or create a new one.

Note: Not all matrices are invertible. Invertible matrices are those whose determinant is not
equal to 0.

Example

To invert the matrix having the handle 1 and place the result in a new matrix:

matrix_fbl(14, mat[1], 0, 0, 0, 0, 0, 0.0); (* invert mat[1] *)
if matrix_fbl.ERROR_CODE = 0 then
mat[4] := matrix_fbl.MATRIX_RESULT;
else
RESULT := log_msg('ErrLog','unable to inverse matrix ' +
any_to_string(matrix_fbl.ERROR_CODE));
end_if

MATRIX_RESULT RES DINT Handle of the resulting inverted matrix

ERROR_CODE ERR DINT Status of the operation:
0 = No error
1 = Not enough memory
2 = Invalid type
3 = Type mismatch
6 = Dimension mismatch
7 = Index out of range
8 = Not square
9 = Mathematical error
1758 Windows Runtime Modules - Function Blocks

ADD_MATRIX

Note: The failover mechanism does not support the Matrix function blocks.

Arguments:

You need to enter a value for each input parameter that appears blank. All blank inputs require
a 0 except for the FLT which requires 0.0. The outputs other than those specified for the
function do not contain valid information.

OPERATION OP DINT Number indicating the operation. The value of this
operation is 15.

MATRIX_1 MAT1 DINT Handle of the first matrix in the addition

MATRIX_2 MAT2 DINT Handle of the other matrix in the addition

MATRIX_3 MAT3 DINT Handle of the existing matrix that will receive the
operation result. This must not be one of the
matrices indicated in MAT_1 or MAT_2. A value
of 0 indicates that result of the operation is sent to a
new matrix.
Automation Collaborative Platform 1759

Description:

Adds up two existing matrices then places the result in a third matrix. The summation is
performed cell by cell, with the result occupying the same cell position in the third matrix. The
matrices that are added up must have the same dimensions and cell value type.

You can choose to place the result into an existing matrix or create a new one.

Example

To add the matrix having the handle 1 and another having the handle 4 then place the result in
a new matrix:

matrix_fbl(15, mat[1], mat[4], 0, 0, 0, 0, 0.0); (* mat[1]+mat[4]*)
if matrix_fbl.ERROR_CODE = 0 then
mat[5] := matrix_fbl.MATRIX_RESULT;
else
RESULT := log_msg('ErrLog','unable to add matrix ' +
any_to_string(matrix_fbl.ERROR_CODE));
end_if

MATRIX_RESULT RES DINT Handle of the resulting matrix

ERROR_CODE ERR DINT Status of the operation:
0 = No error
1 = Not enough memory
2 = Invalid type
3 = Type mismatch
4 = Row mismatch
5 = Column mismatch
6 = Dimension mismatch
7 = Index out of range
1760 Windows Runtime Modules - Function Blocks

SUBTRACT_MATRIX

Note: The failover mechanism does not support the Matrix function blocks.

Arguments:

You need to enter a value for each input parameter that appears blank. All blank inputs require
a 0 except for the FLT which requires 0.0. The outputs other than those specified for the
function do not contain valid information.

OPERATION OP DINT Number indicating the operation. The value of
this operation is 16.

MATRIX_1 MAT1 DINT Handle of the first matrix in the subtraction

MATRIX_2 MAT2 DINT Handle of the other matrix in the subtraction

MATRIX_3 MAT3 DINT Handle of the existing matrix that will receive the
operation result. This must not be one of the
matrices indicated in MAT_1 or MAT_2. A value
of 0 indicates that result of the operation is sent to
a new matrix.
Automation Collaborative Platform 1761

Description:

Subtracts an existing matrix from another existing matrix then places the result in a third
matrix. The difference is performed cell by cell, with the result occupying the same cell
position in the third matrix. The matrices involved in the subtraction must have the same
dimensions and cell value type.

You can choose to place the result into an existing matrix or create a new one.

Example

To subtract the matrix having the handle 4 from the matrix having the handle 1 then place the
result in a new matrix:

matrix_fbl(16, mat[1], mat[4], 0, 0, 0, 0, 0.0); (* mat[1]-mat[4]*)
if matrix_fbl.ERROR_CODE = 0 then
mat[6] := matrix_fbl.MATRIX_RESULT;
else
RESULT := log_msg('ErrLog','unable to sub matrix ' +
any_to_string(matrix_fbl.ERROR_CODE));
end_if

MATRIX_RESULT RES DINT Handle of the resulting matrix

ERROR_CODE ERR DINT Status of the operation:
0 = No error
1 = Not enough memory
2 = Invalid type
3 = Type mismatch
4 = Row mismatch
5 = Column mismatch
6 = Dimension mismatch
7 = Index out of range
1762 Windows Runtime Modules - Function Blocks

MULTIPLY_MATRIX

Note: The failover mechanism does not support the Matrix function blocks.

Arguments:

You need to enter a value for each input parameter that appears blank. All blank inputs require
a 0 except for the FLT which requires 0.0. The outputs other than those specified for the
function do not contain valid information.

OPERATION OP DINT Number indicating the operation. The value of this
operation is 17.

MATRIX_1 MAT1 DINT Handle of the first matrix in the multiplication

MATRIX_2 MAT2 DINT Handle of the other matrix in the multiplication

MATRIX_3 MAT3 DINT Handle of the existing matrix that will receive the
operation result. This must not be one of the
matrices indicated in MAT_1 or MAT_2. A value
of 0 indicates that result of the operation is sent to
a new matrix.
Automation Collaborative Platform 1763

Description:

Multiplies two existing matrices then places the result in a third matrix. The number of columns
in the first matrix must be equal to the number of rows in the second matrix. The resulting
matrix has the same number of rows as the first matrix and the same number of columns as the
second matrix. For example, you can multiply a 3x4 matrix with a 4x2 matrix; the result will
be a 3x2 matrix; however, you cannot multiply two 3x4 matrices. The matrices being
multiplied must have the same cell value type.

The resulting matrix will be created with the required row-column structure and data type. You
can choose to place the result into an existing matrix or create a new one.

Example

To multiply the matrix having the handle 1 and the matrix having the handle 4 then place the
result in a new matrix:

matrix_fbl(17, mat[1], mat[4], 0, 0, 0, 0, 0.0); (* mat[1]*mat[4]*)
if matrix_fbl.ERROR_CODE = 0 then
mat[7] := matrix_fbl.MATRIX_RESULT;
else
RESULT := log_msg('ErrLog','unable to multiply matrix ' +
any_to_string(matrix_fbl.ERROR_CODE));
end_if

MATRIX_RESULT RES DINT Handle of the resulting matrix

ERROR_CODE ERR DINT Status of the operation:
0 = No error
1 = Not enough memory
2 = Invalid type
3 = Type mismatch
6 = Dimension mismatch
7 = Index out of range
1764 Windows Runtime Modules - Function Blocks

SCALAR_I_MATRIX

Note: The failover mechanism does not support the Matrix function blocks.

Arguments:

You need to enter a value for each input parameter that appears blank. All blank inputs require
a 0 except for the FLT which requires 0.0. The outputs other than those specified for the
function do not contain valid information.

OPERATION OP DINT Number indicating the operation. The value of
this operation is 18.

MATRIX_1 MAT1 DINT Handle of the first matrix in the scalar operation

MATRIX_2 MAT2 DINT Handle of the other matrix in the scalar operation

MATRIX_3 MAT3 DINT Handle of the existing matrix that will receive the
operation result. This must not be one of the
matrices indicated in MAT_1 or MAT_2. A value
of 0 indicates that result of the operation is sent to
a new matrix.

IN_INTEGER_VALUE INT DINT Number by which cell values are multiplied
Automation Collaborative Platform 1765

Description:

Warning: This function uses the Malloc dynamic memory allocation at run time.

Multiplies each cell value of an integer matrix by an integer value then places the result in
another matrix. This operation is called scalar multiplication.

You can choose to place the result into an existing matrix or create a new one.

Example

To multiply each cell of the matrix having the handle 2 by the value 4 then place the result in
a new matrix:

matrix_fbl(18, mat[2], 0 , 0, 0, 0, 4, 0.0); (* mat[2] * 4 *)
if matrix_fbl.ERROR_CODE = 0 then
mat[8] := matrix_fbl.MATRIX_RESULT;
else
RESULT := log_msg('ErrLog','unable to scalar i matrix ' +
any_to_string(matrix_fbl.ERROR_CODE));
end_if

MATRIX_RESULT RES DINT Handle of the resulting matrix

ERROR_CODE ERR DINT Status of the operation:
0 = No error
1 = Not enough memory
3 = Type mismatch
6 = Dimension mismatch
7 = Index out of range
1766 Windows Runtime Modules - Function Blocks

SCALAR_F_MATRIX

Note: The failover mechanism does not support the Matrix function blocks.

Arguments:

You need to enter a value for each input parameter that appears blank. All blank inputs require
a 0 except for the FLT which requires 0.0. The outputs other than those specified for the
function do not contain valid information.

OPERATION OP DINT Number indicating the operation. The value of this
operation is 19.

MATRIX_1 MAT1 DINT Handle of the first matrix in the scalar operation

MATRIX_2 MAT2 DINT Handle of the other matrix in the scalar operation

MATRIX_3 MAT3 DINT Handle of the existing matrix that will receive the
operation result. This must not be one of the
matrices indicated in MAT_1 or MAT_2. A value of
0 indicates that result of the operation is sent to a
new matrix.

IN_FLOAT_VALUE FLT FLT Number by which cell values are multiplied
Automation Collaborative Platform 1767

Description:

Warning: This function uses the Malloc dynamic memory allocation at run time.

Multiplies each cell value of a float matrix by a float value then places the result in another
matrix. This operation is called scalar multiplication.

You can choose to place the result into an existing matrix or create a new one.

Example

To multiply each cell of the matrix having the handle 1 by the value 5.0 then place the result
in a new matrix:

matrix_fbl(19, mat[1], 0 , 0, 0, 0, 0, 5.0); (* mat[2] * 5.0 *)
if matrix_fbl.ERROR_CODE = 0 then
mat[9] := matrix_fbl.MATRIX_RESULT;
else
RESULT := log_msg('ErrLog','unable to scalar f matrix ' +
any_to_string(matrix_fbl.ERROR_CODE));
end_if

MATRIX_RESULT RES DINT Handle of the resulting matrix

ERROR_CODE ERR DINT Status of the operation:
0 = No error
1 = Not enough memory
3 = Type mismatch
6 = Dimension mismatch
7 = Index out of range
1768 Windows Runtime Modules - Function Blocks

PRINT_MATRIX

Note: The failover mechanism does not support the Matrix function blocks.

Arguments:

You need to enter a value for each input parameter that appears blank. All blank inputs require
a 0 except for the FLT which requires 0.0. The outputs other than those specified for the
function do not contain valid information.

Description:

Sends the contents of a matrix to the errlog. The default errlog for the workbench is e.log.

OPERATION OP DINT Number indicating the operation. The value of this
operation is 20.

MATRIX_1 MAT1 DINT Handle of the matrix

ERROR_CODE ERR DINT Status of the operation:
0 = No error
2 = Invalid type
Automation Collaborative Platform 1769

Example

To send the contents of the matrix having the handle held in the index variable to the ErrLog
file:

FOR index := 1 TO 10 BY 1 DO
if mat[index] > 0 then
RESULT := log_msg('ErrLog','print matrix ' + any_to_string(index));
matrix_fbl(20, mat[index], 0 , 0, 0, 0, 0, 0.0); (* print mat[index] *)
if matrix_fbl.ERROR_CODE > 0 then
RESULT := log_msg('ErrLog','unable to print matrix ' +
any_to_string(matrix_fbl.ERROR_CODE));
end_if;
end_if;
END_FOR
1770 Windows Runtime Modules - Function Blocks

Motion Control Function Blocks
Motion control function blocks control axes using language elements defined in the IEC
61131-3 standard.

The following data types, arrays, and parameters are used in motion control function blocks:

Motion Control function blocks perform various motion control operations:

� AXIS_REF � MC_TAArray

� MC_CAM_ID � MC_TRACK_REF

� MC_CAM_REF � MC_TRACK_REF parameters

� MC_CAMSWITCH_REF � MC_TRIGGER_REF

� MC_CAMSWITCH_REF parameters � MC_TP

� MC_INPUT_REF � MC_TP_REF

� MC_OUTPUT_REF � MC_TPArray

� MC_StartMode � MC_TV

� MC_TA � MC_TV_REF

� MC_TA_REF � MC_TVArray

MC_AbortTrigger Connection of trigger events

MC_AccelerationProfile Direction of time-acceleration locked motion profiles

MC_CamIn Initiation of the CAM

MC_CamOut Disconnection of the slave from the master axis

MC_CamTableSelect Selection of CAM tables

MC_DigitalCamSwitch Initiation a motor shaft

MC_GearIn Controlling of a velocity ratio

MC_GearInPos Controlling of a gear ratio between positions

MC_GearOut Disconnection of the slave from the master axis

MC_Halt Controlling of motion halts
Automation Collaborative Platform 1771

MC_Home Operation of search home sequences

MC_MoveAbsolute Movement to specified absolute positions

MC_MoveAdditive Movement to a specified distance

MC_MoveContinuousAbsolute Controlled motion to a specified absolute position ending
with specified velocity

MC_MoveContinuousRelative Controlled motion to a specified relative distance ending
with specified velocity

MC_MoveRelative Movement relative to the current position

MC_MoveSuperimposed Movement to a position an additional distance from the
current position

MC_MoveVelocity Controlled continuous motion at specified velocity

MC_Phasing Modification to create a phase shift

MC_PositionProfile Controlling of a time-position locked motion profile

MC_Power Controlling of power stages; on and off

MC_ReadActualPosition Yielding of actual positions

MC_ReadActualTorque Yielding of actual torque values

MC_ReadActualVelocity Yielding of actual velocity values

MC_ReadAxisError Yielding of axis errors

MC_ReadBoolParameter Yielding of the value of a specific BOOL parameters

MC_ReadDigitalInput Yielding of specific input values

MC_ReadDigitalOutput Yielding of specific output values

MC_ReadParameter Yielding of specific parameter values

MC_ReadStatus Yielding of axis status

MC_Reset Removal of all axis-related internal errors

MC_SetOverride Specification of the override value for an axis

MC_SetPosition Specification of the position of an axis

MC_Stop Direction of a controlled motion stop
1772 Windows Runtime Modules - Motion Control Function Blocks

AXIS_REF data type:

The AXIS_REF data type is a structure containing information about a specific axis.

MC_CAM_ID data type:

MC_CAM_REF data type:

MC_TorqueControl Direction continuous torque

MC_TouchProbe Recording of current axis position

MC_VelocityProfile Direction of a time-velocity locked motion profile

MC_WriteBoolParameter Modification of specific BOOL parameter values

MC_WriteDigitalOutput Modification of specific output values

MC_WriteParameter Modification of specific parameter values

AXIS_REF

DISPLAY: AxisNo

STRUCT

AxisNo : DINT;

END_STRUCT

MC_CAM_ID

DISPLAY: CamID

STRUCT

CamID : DINT;

CamTableIndex : DINT;

END_STRUCT

MC_CAM_REF

DISPLAY: CamID
Automation Collaborative Platform 1773

MC_CAMSWITCH_REF data type:

MC_CAMSWITCH_REF parameters:

STRUCT

CamID : DINT;

CamName : STRING(32);

CamParam1 : DINT;

CamParam2 : REAL;

END_STRUCT

MC_CAMSWITCH_REF

DISPLAY: TrackNumber

STRUCT

TrackNumber : DINT;

FirstOnPosition : REAL;

LastOnPosition : REAL;

AxisDirection : DINT;

CamSwitchMode : DINT;

Duration : TIME;

END_STRUCT

Parameter Name Data Type Description

TrackNumber INT References the track

FirstOnPosition [u] REAL The lower boundary of where the switch is ON

LastOnPosition [u] REAL The upper boundary of where the switch is ON

AxisDirection INT 0 = both directions; the default value
1 = positive
2 = negative
1774 Windows Runtime Modules - Motion Control Function Blocks

MC_INPUT_REF data type:

MC_OUTPUT_REF data type:

MC_StartMode data type:

MC_TA data type:

CamSwitchMode INT 0 = position based; default value
1 = time based

Duration TIME Coupled to the time-based CamSwitchMode

MC_INPUT_REF

DISPLAY: Input_ID

STRUCT

InputID : DINT;

END_STRUCT

MC_OUTPUT_REF

DISPLAY: OutputID

STRUCT

OutputID : DINT;

END_STRUCT

MC_StartMode

DISPLAY: Mode

STRUCT

Mode : DINT;

StartParam : DINT;

END_STRUCT
Automation Collaborative Platform 1775

MC_TA_REF data type:

MC_TAArray data type:

MC_TRACK_REF data type:

MC_TA

DISPLAY: delta_time

STRUCT

delta_time : TIME;

acceleration : REAL;

END_STRUCT

MC_TA_REF

DISPLAY: Number_of_pairs

STRUCT

Number_of_pairs : DINT;

IsAbsolute : BOOL;

MC_TA_Array : MC_TAArray;

END_STRUCT

MC_TAArray

ARRAY[1..16]

OF MC_TA
1776 Windows Runtime Modules - Motion Control Function Blocks

MC_TRACK_REF parameters:

MC_TRIGGER_REF data type arguements:

MC_TP data type:

MC_TRACK_REF

DISPLAY: TrackID

STRUCT

TrackID : DINT;

OnCompensation : TIME;

OffCompensation : TIME;

Hysteresis : REAL;

END_STRUCT

Parameter Name Data Type Description

TrackID DINT References the track

OnCompensation TIME Time that the switching ON is advanced or delayed per
track

OffCompensation TIME Time that the switching OFF is delayed per track

Hysteresis [u] REAL Positive or negative distance from the switching point
where the switch is not executed

Note: You can set different Hysteresis values for each
track

MC_TRIGGER_REF

DISPLAY: Trigger_ID

STRUCT

Trigger_ID : DINT;

END_STRUCT
Automation Collaborative Platform 1777

MC_TP_REF data type:

MC_TPArray data type:

MC_TV data type:

MC_TP

DISPLAY: delta_time

STRUCT

delta_time : TIME;

position : REAL;

END_STRUCT

MC_TP_REF

DISPLAY: Number_of_pairs

STRUCT

Number_of_pairs : DINT;

IsAbsolute : BOOL;

MC_TP_Array : MC_TPArray;

END_STRUCT

MC_TPArray

Array [1..16]

OF MC_TP
1778 Windows Runtime Modules - Motion Control Function Blocks

MC_TV_REF data type:

MC_TVArray data type:

MC_TV

DISPLAY: delta_time

STRUCT

delta_time : TIME;

velocity : REAL

END_STRUCT

MC_TV_REF

DISPLAY: Number_of_Pairs

STRUCT

Number_of_Pairs : DINT;

InAbsolute : BOOL

MC_TV_Array : MC_TVArray

END_STRUCT

MC_TVArray

Array [1..16]

OF MC_TV
Automation Collaborative Platform 1779

MC_AbortTrigger

Arguments:

AxisIn Axis AXIS_REF Specifies axis connected to the trigger
functionality

TriggerInp TgIn MC_TRIGGER_REF Reference to trigger signal source

Execute Exec BOOL Aborts the trigger event at the rising edge

Axis Axis AXIS_REF Specifies axis connected to the trigger
functionality

TriggerInput TrIn MC_TRIGGER_REF Reference to trigger signal sourc

Done Done BOOL Trigger functionality aborted

Busy Busy BOOL Function block is unfinished
1780 Windows Runtime Modules - Motion Control Function Blocks

Description:

Aborts function blocks that are connected to trigger events

Error Err BOOL An error has occured

ErrorID ErID DINT Error identification. Possible values include
the following:
1 = MC_ErrState, bad state
2 = MC_ErrRange, bad parameter (value is
out of range)
3 = MC_ErrParam, bad parameter (negative
value)
4 = MC_ErrFBInvalid, function block is not
implemented
5 = MC_ErrAxisNo, axis number is invalid
6 = MC_ErrDrive, error from drive
7 = MC_ErrAborted, command aborted
8 = MC_ErrNoPower, mc_power is not
running
Automation Collaborative Platform 1781

MC_AccelerationProfile

Arguments:

AxisIn Axis AXIS_REF Reference to an axis

TimeAccelerationIn TA MC_TA_REF Reference to time / acceleration

Execute Exec BOOL Begin motion at rising edge

TimeScale Time REAL Time scaling factor of the profile

AccelerationScale Scal REAL Scaling factor for the acceleration amplitude

Offset Off REAL Offset for the profile

BufferMode Buf SINT Definition of the mode of behavior for the
axis: mcAborting, mcBuffered, mcBlending.
Possible values are the following:
0 = mcAborting, the next function block is
taking control of the axis immediately
1 = mcBuffered, the next function block
awaits completion (DONE) before taking
control of the axis
2 = mcBlending

Axis Axis AXIS_REF Reference to an axis

TimeAcceleration TA MC_TA_REF Reference to time / acceleration
1782 Windows Runtime Modules - Motion Control Function Blocks

Description:

Directs a time-acceleration locked motion profile, then goes to zero, maintains the final
velocity, and remains in the a state of continuous motion.

Done Done BOOL Profile completed

Busy Busy BOOL Function block is unfinished

Active Act BOOL Function Block is actively controlling the
axis

CommandAborted CmdA BOOL Command is aborted by another command

Error Err BOOL Error occured within the function block

ErrorID ErID DINT Error identification. Possible values include
the following:
1 = MC_ErrState, bad state
2 = MC_ErrRange, bad parameter (value is
out of range)
3 = MC_ErrParam, bad parameter (negative
value)
4 = MC_ErrFBInvalid, function block is not
implemented
5 = MC_ErrAxisNo, axis number is invalid
6 = MC_ErrDrive, error from drive
7 = MC_ErrAborted, command aborted
8 = MC_ErrNoPower, mc_power is not
running
Automation Collaborative Platform 1783

MC_CamIn

Arguments:

MasterIn Mstr AXIS_REF References the master axis

SlaveIn Slav AXIS_REF References the slave axis

Execute Exec BOOL Starts at the rising edge

MasterOffset MOff REAL The offset of the master table

SlaveOffset SOff REAL The offset of the slave table

MasterScaling Mscl REAL Factor by which the master profile is
multiplied
Default = 1.0

SlaveScaling Sscl REAL Factor by which the slave profile is
multiplied
Default = 1.0
1784 Windows Runtime Modules - Motion Control Function Blocks

MasterStart Distance Dis REAL The position that the master must reach
for the slave to begin synchronization

MasterSyncPosition Pos REAL Position where the slave is in-sync with
the master

StartMode Mode MC_StartMode Start mode: absolute, relative, or ramp-in

CamTableID CID MC_CAM_ID The identifier of the CAM table used
The output of MC_CamTableSelect

BufferMode Buf SINT Definition of the mode of behavior for the
axis: mcAborting, mcBuffered,
mcBlending. Possible values are the
following:
0 = mcAborting, the next function block is
taking control of the axis immediately
1 = mcBuffered, the next function block
awaits completion (DONE) before taking
control of the axis
2 = mcBlending

Master Mstr AXIS_REF Reference to the master axis

Slave Slav AXIS_REF Reference to the slave axis

InSync Sync BOOL CAM is engaged for the first time

Busy Busy BOOL The function block is unfinished

Active Act BOOL Function Block is actively controlling the
axis

CommandAborted CmdA BOOL The command is aborted by another
command

Error Err BOOL An error has occurred within the function
block
Automation Collaborative Platform 1785

Description:

Engages the CAM

Motion of the master axis is permitted.

When the function block is executed, the actual positions of the master and the slave should
correspond to the offset values, or an error may occur.

ErrorID ErID DINT Error identification. Possible values
include the following:
1 = MC_ErrState, bad state
2 = MC_ErrRange, bad parameter (value
is out of range)
3 = MC_ErrParam, bad parameter
(negative value)
4 = MC_ErrFBInvalid, function block is
not implemented
5 = MC_ErrAxisNo, axis number is
invalid
6 = MC_ErrDrive, error from drive
7 = MC_ErrAborted, command aborted
8 = MC_ErrNoPower, mc_power is not
running

EndOfProfile EPro BOOL Pulsed output signaling the cyclic end of
the CAM profile
1786 Windows Runtime Modules - Motion Control Function Blocks

MC_CamOut

Arguments:

Description:

Immediately disconnects the slave axis from the master axis

Another function block usually follows this function block, otherwise the last velocity is
maintained as the default condition.

SlaveIn Slav AXIS_REF References the slave axis

Execute Exec BOOL Disengages the slave axis from the master axis

Slave Slav AXIS_REF References the slave axis

Done Done BOOL Action is complete

Busy Busy BOOL The function block is unfinished

Error Err BOOL An error has occurred within the function block

ErrorID ErID DINT Error identification. Possible values include the following:
1 = MC_ErrState, bad state
2 = MC_ErrRange, bad parameter (value is out of range)
3 = MC_ErrParam, bad parameter (negative value)
4 = MC_ErrFBInvalid, function block is not implemented
5 = MC_ErrAxisNo, axis number is invalid
6 = MC_ErrDrive, error from drive
7 = MC_ErrAborted, command aborted
8 = MC_ErrNoPower, mc_power is not running
Automation Collaborative Platform 1787

MC_CamTableSelect

Arguments:

MasterIn Mstr AXIS_REF References the master axis

SlaveIn Slav AXIS_REF References the slave axis

CamTableIn CTab MC_CAM_REF Reference to the CAM description

Execute Exec BOOL Begins selection at the rising edge

Periodic Per BOOL 1 = periodic
0 = non-periodic

MasterAbsolute MA BOOL 1 = absolute
0 = relative coordinates

SlaveAbsolute SA BOOL 1 = absolute
0 = relative coordinates

MC_ExecutionMode Mode BOOL mcImmediately = the functionality is
valid and may influence the motion, i.e.
the default behavior, and not the state
mcQueued = the functionality is valid
when all previous motion commands set
one of the following output parameters:
Done, Aborted, Error, and Busy is is set to
false.
1788 Windows Runtime Modules - Motion Control Function Blocks

Description:

Selects the CAM tables by setting connections to the relevant tables

It is possible to use a virtual axis as the master axis.

When the output parameter Done is set, the CamTableID is valid for use in MC_CamIn.

Master Mstr AXIS_REF References the master axis

Slave Slav AXIS_REF References the slave axis

CamTable CTab MC_CAM_REF CamTable

Done Done BOOL Pre-selection is complete

Busy Busy BOOL The function block is unfinished

Error Err BOOL An error has occurred within the function
block

ErrorID ErID DINT Error identification. Possible values
include the following:
1 = MC_ErrState, bad state
2 = MC_ErrRange, bad parameter (value
is out of range)
3 = MC_ErrParam, bad parameter
(negative value)
4 = MC_ErrFBInvalid, function block is
not implemented
5 = MC_ErrAxisNo, axis number is
invalid
6 = MC_ErrDrive, error from drive
7 = MC_ErrAborted, command aborted
8 = MC_ErrNoPower, mc_power is not
running

CamTableID CID MC_CAM_ID Identifies the CAM table to be used in
MC_CamIn function block
Automation Collaborative Platform 1789

MC_DigitalCamSwitch

Arguments:

AxisIn Axis AXIS_REF References the axis to which the
switches are connected

SwitchesIn Swch MC_CAMSWITCH_REF References the switching actions

OutputsIn Outp MC_OUTPUT_REF References signal outputs directly
related to the referenced tracks
Maximum = 32 per function block
First output = first track number

TrackOptionsIn Topt MC_TRACK_REF References the structure containing
track related properties

Enable En BOOL Enables the outputs of switches

Enablemask EnM DINT Enables the tracks
32 bits of BOOL
Lowest track number = least
significant data
data set to 1 = TRUE, the related track
number is enabled

Axis Axis AXIS_REF References the axis to which the
switches are connected
1790 Windows Runtime Modules - Motion Control Function Blocks

Description:

Commands a group of output bits to change into CAM controlled switches connected to an axis

Forward and backward movements are permitted.

The functionality of this function block is also known as Programmable Limit Switch (PLS).

Switches Swch MC_CAMSWITCH_REF References the switching actions

Outputs Outp MC_OUTPUT_REF References signal outputs directly
related to the referenced tracks
Maximum = 32 per function block
First output = first track number

TrackOptions Topt MC_TRACK_REF References the structure containing
track related properties

InOperation InOp BOOL Tracks are enabled

Busy Busy BOOL Function block is unfinished

Error Err BOOL An error has occurred within the
function block

ErrorID ErID DINT Error identification. Possible values
include the following:
1 = MC_ErrState, bad state
2 = MC_ErrRange, bad parameter
(value is out of range)
3 = MC_ErrParam, bad parameter
(negative value)
4 = MC_ErrFBInvalid, function block
is not implemented
5 = MC_ErrAxisNo, axis number is
invalid
6 = MC_ErrDrive, error from drive
7 = MC_ErrAborted, command
aborted
8 = MC_ErrNoPower, mc_power is
not running
Automation Collaborative Platform 1791

MC_GearIn

Arguments:

MasterIn Mstr AXIS_REF References the master axis

SlaveIn Slav AXIS_REF References the slave axis

Execute Exec BOOL Begins the gearing process at the rising edge

RatioNumerator RNum DINT The gear ratio numerator

RatioDenominator RDem DINT The gear ratio denominator

MC_GearInType Type SINT mcCommandedValue = synchronization on
command value (0)
mcFeedbackValue = synchronization on
feedback value (1)

Acceleration Acce REAL Acceleration for gearing in

Deceleration Dece REAL Deceleration for gearing in

Jerk Jerk REAL Jerk of Gearing
1792 Windows Runtime Modules - Motion Control Function Blocks

Description:

Commands a velocity ratio between the slave axis and master axis

BufferMode Buf SINT Defines the behavioral mode of the axis:
mcAborting, mcBuffering, mcBlending.
Possible values are the following:
0 = mcAborting, the next function block is
taking control of the axis immediately
1 = mcBuffered, the next function block awaits
completion (DONE) before taking control of the
axis
2 = mcBlending

Master Mstr AXIS_REF References the master axis

Slave Slav AXIS_REF References the slave axis

InGear Gear BOOL Gearing completed

Busy Busy BOOL Function block is unfinished

Active Act BOOL Function Block is actively controlling the axis

CommandAborted CmdA BOOL The command was aborted by another
command

Error Err BOOL An error has occurred within the function block

ErrorID ErID DINT Error identification. Possible values include the
following:
1 = MC_ErrState, bad state
2 = MC_ErrRange, bad parameter (value is out
of range)
3 = MC_ErrParam, bad parameter (negative
value)
4 = MC_ErrFBInvalid, function block is not
implemented
5 = MC_ErrAxisNo, axis number is invalid
6 = MC_ErrDrive, error from drive
7 = MC_ErrAborted, command aborted
8 = MC_ErrNoPower, mc_power is not running
Automation Collaborative Platform 1793

The slave increases until the master velocity ratio is reached, then locks. The Gear output is set
the first time the gearing ratio is reached.

When MC_GearIn is running, you can modify the gearing ratio using a consecutive
MC_GearIn command.
1794 Windows Runtime Modules - Motion Control Function Blocks

MC_GearInPos

Arguments:

MasterIn Mstr AXIS_REF References the master axis

SlaveIn Slav AXIS_REF References the slave axis

Execute Exec BOOL Begins the gearing process at the rising edge

RatioNumerator RNum DINT The gear ratio numerator

RatioDenominator RDem DINT The gear ratio denominator

MasterSyncPosition MSP REAL The master position when the axes are
running in sync

SlaveSyncPosition SSP REAL The slave position when the axes are running
in sync
Automation Collaborative Platform 1795

SyncMode SMod SINT Definition of the mode of synchronization

MasterStartDistance MSD REAL The master distance to where the slave axis
begins synchronization

Velocity Velo REAL Maximum velocity during the time interval
between StartSync and InSync outputs

Acceleration Acce REAL Maximum acceleration during the time
interval between StartSync and InSync
outputs

Deceleration Dece REAL Maximum deceleration during the time
interval between StartSync and InSync
outputs

Jerk Jerk REAL Maximum jerk during the time interval
between StartSync and InSync outputs

BufferMode Buf SINT Defines the behavioral mode of the axis:
mcAborting, mcBuffering, mcBlending.
Possible values are the following:
0 = mcAborting, the next function block is
taking control of the axis immediately
1 = mcBuffered, the next function block
awaits completion (DONE) before taking
control of the axis
2 = mcBlending

Master Mstr AXIS_REF References the master axis

Slave Slav AXIS_REF References the slave axis

StartSync SrtS BOOL Beginning of the commanded gearing

InSync InS BOOL Completion of the commanded gearing

Busy Busy BOOL Function Block is incomplete

Active Act BOOL Function Block is actively controlling the
axis

CommandAborted CmdA BOOL Command was aborted by another command

Error Err BOOL An error has occurred within the function
block

ErrorID Erld DINT Error identification
1796 Windows Runtime Modules - Motion Control Function Blocks

Description:

From the synchronization point onward, commands the gear ratio between master axis and
slave axis positions

MC_GearInPos maintained previous motion until the master axis reaches the MSD or MSP
inputs values, then SrtS output value is set. When a stop command is executed on the slave axis
before the synchronization is complete, the synchronization is inhibited and the CmdA output
value is generated.

When the MSD value is not provided, MC_GearInPos can calculate the SrtS output value
based on the other input values.
Automation Collaborative Platform 1797

MC_GearOut

Arguments:

Description:

Disconnects the slave from the master axis

Another function block usually follows this function block, otherwise the last velocity is
maintained as the default condition.

SlaveIn Slav AXIS_REF References the slave axis

Execute Exec BOOL Begins the disconnection process at the rising edge

Slave Slav AXIS_REF References the slave axis

Done Done BOOL Disconnection is complete

Busy Busy BOOL Function Block is unfinished

Error Err BOOL An error has occured within the function block

ErrorID ErID DINT Error identification. Possible values include the following:
1 = MC_ErrState, bad state
2 = MC_ErrRange, bad parameter (value is out of range)
3 = MC_ErrParam, bad parameter (negative value)
4 = MC_ErrFBInvalid, function block is not implemented
5 = MC_ErrAxisNo, axis number is invalid
6 = MC_ErrDrive, error from drive
7 = MC_ErrAborted, command aborted
8 = MC_ErrNoPower, mc_power is not running
1798 Windows Runtime Modules - Motion Control Function Blocks

MC_Halt

Arguments:

AxisIn Axis AXIS_REF References the axis

Execute Exec BOOL Begins the stopping action at the rising edge

Deceleration Dece REAL Deceleration value = [u/s2]

Jerk Jerk REAL Jerk value = [u/s3]

BufferMode Buf SINT Definition of the mode of behavior for the axis:
mcAborting, mcBuffered, mcBlending. Possible
values are the following:
0 = mcAborting, the next function block is taking
control of the axis immediately
1 = mcBuffered, the next function block awaits
completion (DONE) before taking control of the
axis
2 = mcBlending

Axis Axis AXIS_REF References the axis

Done Done BOOL The velocity has reached zero

Busy Busy BOOL Function block is unfinished

Active Act BOOL Function Block is actively controlling the axis

CommandAborted CmdA BOOL Command is aborted by another command
Automation Collaborative Platform 1799

Description:

Directs a controlled motion stop

The axis state is DiscreteMotion until the velocity reaches zero. When the Done output is set,
the axis state becomes StandStill.

In non-buffering mode, you can abort MC_Halt by setting another motion command during the
deceleration of the axis.

To avoid a complete stoppage, you can issue the next command while MC_Halt is running.

Error Err BOOL An error has occured within the function block

ErrorID ErID DINT Error identification. Possible values include the
following:
1 = MC_ErrState, bad state
2 = MC_ErrRange, bad parameter (value is out of
range)
3 = MC_ErrParam, bad parameter (negative value)
4 = MC_ErrFBInvalid, function block is not
implemented
5 = MC_ErrAxisNo, axis number is invalid
6 = MC_ErrDrive, error from drive
7 = MC_ErrAborted, command aborted
8 = MC_ErrNoPower, mc_power is not running
1800 Windows Runtime Modules - Motion Control Function Blocks

MC_Home

Arguments:

AxisIn Axis AXIS_REF References the axis

Execute Exec BOOL Begins motion at the rising edge

Position Pos REAL When the reference signal [u] is detected,
absolute position

HomingMode Mode SINT HomingMode

BufferMode Buf SINT Definition of the mode of behavior for the axis:
mcAborting, mcBuffered, mcBlending. Possible
values are the following:
0 = mcAborting, the next function block is taking
control of the axis immediately
1 = mcBuffered, the next function block awaits
completion (DONE) before taking control of the
axis
2 = mcBlending

Axis Axis AXIS_REF References the axis

Done Done BOOL StandStill is reached

Busy Busy BOOL The function block is unfinished

Active Act BOOL Function Block is actively controlling the axis

CommandAborted CmdA BOOL Command is aborted by another command
Automation Collaborative Platform 1801

Description:

Performs search home sequences

Error Err BOOL An error has occured within the function block

ErrorID ErID DINT Error identification. Possible values include the
following:
1 = MC_ErrState, bad state
2 = MC_ErrRange, bad parameter (value is out of
range)
3 = MC_ErrParam, bad parameter (negative
value)
4 = MC_ErrFBInvalid, function block is not
implemented
5 = MC_ErrAxisNo, axis number is invalid
6 = MC_ErrDrive, error from drive
7 = MC_ErrAborted, command aborted
8 = MC_ErrNoPower, mc_power is not running
1802 Windows Runtime Modules - Motion Control Function Blocks

MC_MoveAbsolute

Arguments:

AxisIn Axis AXIS_REF References the axis

Execute Exec BOOL Begins motion at the rising edge

Position Pos REAL Negative or positive target position [u]

Velocity Velo REAL Maximum velocity value [u/s]

Acceleration Acce REAL Positive acceleration value [u/s2]

Deceleration Dece REAL Positive deceleration value [u/s2]

Jerk Jerk REAL Positive jerk value [u/s3]
Automation Collaborative Platform 1803

Direction Dir SINT Direction type. Possible values include the
following:
1 = MC_DirPositive, moving in the positive
direction
2 = MC_DirShortest, moving in the shortest
direction
3 = MC_DirNegative, moving in the negative
direction
4 = MC_DirCurrent, moving in the currect
direction

Buffermode Buf SINT Definition of the mode of behavior for the axis:
mcAborting, mcBuffered, mcBlending. Possible
values are the following:
0 = mcAborting, the next function block is taking
control of the axis immediately
1 = mcBuffered, the next function block awaits
completion (DONE) before taking control of the
axis
2 = mcBlending

Axis Axis AXIS_REF References the axis

Done Done BOOL Position is reached

Busy Busy BOOL The function block is unfinished

Active Act BOOL Function Block is actively controlling the axis

CommandAborted CmdA BOOL Command is aborted by another command
1804 Windows Runtime Modules - Motion Control Function Blocks

Description:

Commands controlled motion to a specified absolute position

When MC_MoveAbsolute is complete, the velocity equals zero and not further action occurs.

When there is only one way to reach the desired position, the Dir input value is unused.

For modulo axes, absolute position values are between zero and 360 (360 is excluded). For
relative positions, a modulo axes absolute position value of 360 applies.

Error Err BOOL An error has occured within the function block

ErrorID ErID DINT Error identification. Possible values include the
following:
1 = MC_ErrState, bad state
2 = MC_ErrRange, bad parameter (value is out of
range)
3 = MC_ErrParam, bad parameter (negative value)
4 = MC_ErrFBInvalid, function block is not
implemented
5 = MC_ErrAxisNo, axis number is invalid
6 = MC_ErrDrive, error from drive
7 = MC_ErrAborted, command aborted
8 = MC_ErrNoPower, mc_power is not running
Automation Collaborative Platform 1805

MC_MoveAdditive

Arguments:

AxisIn Axis AXIS_REF References the axis

Execute Exec BOOL Begins the motion at the rising edge

Distance Dist REAL Relative distance [u] of the motion

Velicity Velo REAL Maximum velocity value [u/s]

Acceleration Acce REAL Acceleration value [u/s2]

Deceleration Dece REAL Deceleration value [u/s2]

Jerk Jerk REAL Jerk value [u/s3]

BufferMode Buf SINT Definition of the behavior mode for the axis:
mcAborting, mcBuffered, mcBlending. Possible
values are the following:
0 = mcAborting, the next function block is taking
control of the axis immediately
1 = mcBuffered, the next function block awaits
completion (DONE) before taking control of the
axis
2 = mcBlending

Axis Axis AXIS_REF References the axis
1806 Windows Runtime Modules - Motion Control Function Blocks

Description:

Moves a specified distance from the last commanded position

When MC_MoveAdditive is aborted, you can use another MC_MoveAdditive immediately.

Done Done BOOL Distance is reached

Busy Busy BOOL The function block is unfinished

Active Act BOOL Function Block is actively controlling the axis

CommandAborted CmdA BOOL Command is aborted by another command

Error Err BOOL An error has occured within the function block

ErrorID ErID DINT Error identification. Possible values include the
following:
1 = MC_ErrState, bad state
2 = MC_ErrRange, bad parameter (value is out of
range)
3 = MC_ErrParam, bad parameter (negative
value)
4 = MC_ErrFBInvalid, function block is not
implemented
5 = MC_ErrAxisNo, axis number is invalid
6 = MC_ErrDrive, error from drive
7 = MC_ErrAborted, command aborted
8 = MC_ErrNoPower, mc_power is not running
Automation Collaborative Platform 1807

MC_MoveContinuousAbsolute

Arguments:

AxisIn Axis AXIS_REF References the axis

Execute Exec BOOL Begins motion at the rising edge

Position Pos REAL Negative or positive target position [u]

Velocity Velo REAL Maximum velocity value [u/s]

EndVelocity End REAL End velocity value [u/s]

EndVelocityDirection Dir SINT Direction of the end velocity

Acceleration Acce REAL Acceleration value [u/s2]

Deceleration Dece REAL Deceleration value [u/s2]

Jerk Jerk REAL Jerk value [u/s3]
1808 Windows Runtime Modules - Motion Control Function Blocks

Direction Dir SINT Direction. Possible values include the
following:
1 = MC_DirPositive, moving in the positive
direction
3 = MC_DirNegative, moving in the negative
direction
4 = MC_DirCurrent, moving in the currect
direction

BufferMode Buf SINT Definition of the mode of behavior for the axis:
mcAborting, mcBuffered, mcBlending.
Possible values are the following:
0 = mcAborting, the next function block is
taking control of the axis immediately
1 = mcBuffered, the next function block awaits
completion (DONE) before taking control of
the axis
2 = mcBlending

Axis Axis AXIS_REF References the axis

InEndVelocity End BOOL Defined distance and velocity reached

Busy Busy BOOL The function block is unfinished

Active Act BOOL Function Block is actively controlling the axis

CommandAborted CmdA BOOL Command is aborted by another command
Automation Collaborative Platform 1809

Description:

Directs controlled motion to a specified absolute position, ending with specified velocity

When no motion command exists following MC_MoveContinuousAbsolute, the axis
continues to run at the specified velocity and a state of continuous motion persists.

Error Err BOOL An error has occured within the function block

ErrorID ErID DINT Error identification. Possible values include
the following:
1 = MC_ErrState, bad state
2 = MC_ErrRange, bad parameter (value is out
of range)
3 = MC_ErrParam, bad parameter (negative
value)
4 = MC_ErrFBInvalid, function block is not
implemented
5 = MC_ErrAxisNo, axis number is invalid
6 = MC_ErrDrive, error from drive
7 = MC_ErrAborted, command aborted
8 = MC_ErrNoPower, mc_power is not
running
1810 Windows Runtime Modules - Motion Control Function Blocks

MC_MoveContinuousRelative

Arguments:

AxisIn Axis AXIS_REF References the axis

Execute Exec BOOL Begin motion at the rising edge

Distance Dist REAL Relative distance [u] for the required motion

Velocity Velo REAL Maximum velocity value [u/s]

EndVelocity End REAL End velocity value [u/s]

EndVelocityDirection Dir SINT Direction of the end velocity

Acceleration Acce REAL Acceleration value [u/s2]

Deceleration Decc REAL Deceleration value [u/s2]

Jerk Jerk REAL Jerk value [u/s3]
Automation Collaborative Platform 1811

Description:

Directs controlled motion to a specified relative distance ending with specified velocity

BufferMode Buf SINT Definition of the mode of behavior for the
axis: mcAborting, mcBuffered, mcBlending.
Possible values are the following:
0 = mcAborting, the next function block is
taking control of the axis immediately
1 = mcBuffered, the next function block
awaits completion (DONE) before taking
control of the axis
2 = mcBlending

Axis Axis AXIS_REF References the axis

InEndVelocity End BOOL Defined distance and velocity reached

Busy Busy BOOL The function block is unfinished

Active Act BOOL Function Block is actively controlling the axis

CommandAborted CmdA BOOL Command is aborted by another command

Error Err BOOL An error has occured within the function
block

ErrorID ErID DINT Error identification. Possible values include
the following:
1 = MC_ErrState, bad state
2 = MC_ErrRange, bad parameter (value is
out of range)
3 = MC_ErrParam, bad parameter (negative
value)
4 = MC_ErrFBInvalid, function block is not
implemented
5 = MC_ErrAxisNo, axis number is invalid
6 = MC_ErrDrive, error from drive
7 = MC_ErrAborted, command aborted
8 = MC_ErrNoPower, mc_power is not
running
1812 Windows Runtime Modules - Motion Control Function Blocks

When no motion command exists following MC_MoveContinuousRelative, the axis continues
to run at the specified velocity and a state of continuous motion persists.
Automation Collaborative Platform 1813

MC_MoveRelative

Arguments:

AxisIn Axis AXIS_REF References the axis

Execute Exec BOOL Begin motion at the rising edge

Distance Dist REAL Relative distance [u] for the required motion

Velocity Velo REAL Maximum velocity value [u/s]

Acceleration Acce REAL Acceleration value [u/s2]

Deceleration Dece REAL Deceleration value [u/s2]

Jerk Jerk REAL Jerk value [u/s3]

BufferMode Buf SINT Definition of the mode of behavior for the axis:
mcAborting, mcBuffered, mcBlending. Possible
values are the following:
0 = mcAborting, the next function block is taking
control of the axis immediately
1 = mcBuffered, the next function block awaits
completion (DONE) before taking control of the
axis
2 = mcBlending

Axis Axis AXIS_REF References the axis
1814 Windows Runtime Modules - Motion Control Function Blocks

Description:

Directs movement to a specified distance relative to the actual position at the time of execution

When no commands are placed following MC_MoveRelative, the axis velocity value of zero
is maintained.

Done Done BOOL Distance is reached

Busy Busy BOOL Function block is unfinished

Active Act BOOL Function Block is actively controlling the axis

Commandaborted CmdA BOOL Command is aborted by another command

Error Err BOOL An error has occured within the function block

ErrorID ErID DINT Error identification. Possible values include the
following:
1 = MC_ErrState, bad state
2 = MC_ErrRange, bad parameter (value is out of
range)
3 = MC_ErrParam, bad parameter (negative value)
4 = MC_ErrFBInvalid, function block is not
implemented
5 = MC_ErrAxisNo, axis number is invalid
6 = MC_ErrDrive, error from drive
7 = MC_ErrAborted, command aborted
8 = MC_ErrNoPower, mc_power is not running
Automation Collaborative Platform 1815

MC_MoveSuperimposed

Arguments:

AxisIn Axis AXIS_REF References the axis

Execute Exec BOOL Begin motion at the rising edge

Distance Dist REAL Additional distance [u] to be superimposed

VelocityDiff Velo REAL Velocity difference value [u/s] for the additional
motion

Acceleration Acce REAL Acceleration value [u/s2]

Deceleration Dece REAL Deceleration value [u/s2]

Jerk Jerk REAL Jerk value [u/s3]

Axis Axis AXIS_REF References the axis

Done Done BOOL Additional distance is superimposed on the
ongoing motion

Busy Busy BOOL The function block is unfinished

Active Act BOOL Function Block is actively controlling the axis

CoveredDistance Dist REAL Distance covered since starting

CommandAborted CmdA BOOL Command is aborted by another command
1816 Windows Runtime Modules - Motion Control Function Blocks

Description:

Directs controlled uninterrupted motion to a specified relative distance additional to the
existing motion.

When MC_MoveSuperimposed is running, other existing commands that are in abort mode
can cause MC_MoveSuperimposed and the associated motion commands to abort. When the
other existing commands are in a mode other then abort, MC_MoveSuperimposed is aborted
and the underlying motion command is maintained.

When add MC_MoveSuperimposed to an active MC_MoveSuperimposed, the running
MC_MoveSuperimposed is aborted then replaced and the underlying motion command is
maintained.

MC_MoveSuperimposed causes a change in velocity and position of ongoing motion in all
states. In StandStill state, MC_MoveSuperimposed performs the same as MC_MoveRelative.

The Acce, Dece, and Jerk input values are additional to the ongoing motion. Regardless of a
concurrent MC_MoveSuperimposed, running motion commands finish within the specified
time period.

Error Err BOOL An error has occured within the function block

ErrorID ErID DINT Error identification. Possible values include the
following:
1 = MC_ErrState, bad state
2 = MC_ErrRange, bad parameter (value is out
of range)
3 = MC_ErrParam, bad parameter (negative
value)
4 = MC_ErrFBInvalid, function block is not
implemented
5 = MC_ErrAxisNo, axis number is invalid
6 = MC_ErrDrive, error from drive
7 = MC_ErrAborted, command aborted
8 = MC_ErrNoPower, mc_power is not running
Automation Collaborative Platform 1817

MC_MoveVelocity

Arguments:

AxisIn Axis AXIS_REF References the axis

Execute Exec BOOL Begin motion at the rising edge

Velocity Velo REAL Maximum velocity value [u/s]

Acceleration Acce REAL Acceleration value [u/s2]

Deceleration Dece REAL Deceleration value [u/s2]

Jerk Jerk REAL Jerk value [u/s3]

Directionin Dir SINT Direction. Possible directions are positive,
negative, and current

BufferMode Buf SINT Definition of the mode of behavior for the axis:
mcAborting, mcBuffered, mcBlending. Possible
values are the following:
0 = mcAborting, the next function block is taking
control of the axis immediately
1 = mcBuffered, the next function block awaits
completion (DONE) before taking control of the
axis
2 = mcBlending
1818 Windows Runtime Modules - Motion Control Function Blocks

Description:

Directs continuous motion at a specified velocity

You can stop MC_MoveVelocity by interrupting using another function block. When
MC_MoveVelocity is aborted, reset the InVe output value.

Axis Axis AXIS_REF References the axis

InVelocity InVe BOOL The required velocity is reached

Busy Busy BOOL The function block is unfinished

Active Act BOOL Function Block is actively controlling the axis

Direction Dir SINT Direction. Possible directions are positive,
negative, and current

CommandAborted CmdA BOOL Command is aborted by another command

Error Err BOOL An error has occured within the function block

ErrorID ErID DINT Error identification. Possible values include the
following:
1 = MC_ErrState, bad state
2 = MC_ErrRange, bad parameter (value is out of
range)
3 = MC_ErrParam, bad parameter (negative
value)
4 = MC_ErrFBInvalid, function block is not
implemented
5 = MC_ErrAxisNo, axis number is invalid
6 = MC_ErrDrive, error from drive
7 = MC_ErrAborted, command aborted
8 = MC_ErrNoPower, mc_power is not running
Automation Collaborative Platform 1819

MC_Phasing

Arguments:

MasterIn Mstr AXIS_REF References the master axis

SlaveIn Slav AXIS_REF References the slave axis

Execute Exec BOOL Begins phasing process at the rising edge

PhaseShift PS REAL Phase difference [u]

Velocity Velo REAL Maximum velocity value [u/s]

Acceleration Acce REAL Acceleration value [u/s2]

Deceleration Dece REAL Deceleration value [u/s2]

Jerk Jerk REAL Jerk value [u/s3]
1820 Windows Runtime Modules - Motion Control Function Blocks

Description:

Creates a phase shift effecting the position of the slave axis

MC_Phasing is used to delay or advance the slave axis in relation to its master.

BufferMode Buf SINT Definition of the mode of behavior for the axis:
mcAborting, mcBuffered, mcBlending. Possible
values are the following:
0 = mcAborting, the next function block is taking
control of the axis immediately
1 = mcBuffered, the next function block awaits
completion (DONE) before taking control of the
axis
2 = mcBlending

Master Mstr AXIS_REF References the master axis

Slave Slav AXIS_REF References the slave axis

Done Done BOOL Required phase difference is reached

Busy Busy BOOL The function block is unfinished

Active Act BOOL Function Block is actively controlling the axis

CoveredDistance Dis REAL Distance covered since starting

CommandAborted CmdA BOOL Command is aborted by another command

Error Err BOOL An error has occured within the function block

ErrorID ErID DINT Error identification. Possible values include the
following:
1 = MC_ErrState, bad state
2 = MC_ErrRange, bad parameter (value is out of
range)
3 = MC_ErrParam, bad parameter (negative
value)
4 = MC_ErrFBInvalid, function block is not
implemented
5 = MC_ErrAxisNo, axis number is invalid
6 = MC_ErrDrive, error from drive
7 = MC_ErrAborted, command aborted
8 = MC_ErrNoPower, mc_power is not running
Automation Collaborative Platform 1821

MC_Phasing controls five inputs: PS, Velo, Acce, Dece, and Jerk.
1822 Windows Runtime Modules - Motion Control Function Blocks

MC_PositionProfile

Arguments:

AxisIn Axis AXIS_REF References the axis

TimePositionIn TPos MC_TP_REF Reference to time / position

Execute Exec BOOL Begins the motion at the rising edge

TimeScale Time REAL Time scaling factor [t.u.] for the profile

PositionScale Pos REAL Position scale factor [t.u.]

Offset Off REAL Offset [u] for the profile

BufferMode Buf SINT Definition of the mode of behavior for the axis:
mcAborting, mcBuffered, mcBlending.
Possible values are the following:
0 = mcAborting, the next function block is
taking control of the axis immediately
1 = mcBuffered, the next function block awaits
completion (DONE) before taking control of
the axis
2 = mcBlending

Axis Axis AXIS_REF References the axis

TimePosition TPos MC_TP_REF Reference to time / position
Automation Collaborative Platform 1823

Description:

Directs a time-position locked motion profile

Done Done BOOL The profile is complete

Busy Busy BOOL The function block is unfinished

Active Act BOOL Function Block is actively controlling the axis

CommandAborted CmdA BOOL Command is aborted by another command

Error Err BOOL An error has occured within the function block

ErrorID ErID DINT Error identification. Possible values include the
following:
1 = MC_ErrState, bad state
2 = MC_ErrRange, bad parameter (value is out
of range)
3 = MC_ErrParam, bad parameter (negative
value)
4 = MC_ErrFBInvalid, function block is not
implemented
5 = MC_ErrAxisNo, axis number is invalid
6 = MC_ErrDrive, error from drive
7 = MC_ErrAborted, command aborted
8 = MC_ErrNoPower, mc_power is not running
1824 Windows Runtime Modules - Motion Control Function Blocks

MC_Power

Arguments:

AxisIn Axis AXIS_REF References the axis

Enable En BOOL TRUE = power is ON
FALSE = power is OFF

Enable_Positive EnPO BOOL TRUE = motion in the positive direction only
FALSE = no motion in the positive direction

Enable_Negative EnNE BOOL TRUE = motion in the negative direction only
FALSE = no motion in the negative direction

Axis Axis AXIS_REF References the axis

Status Stat BOOL Status of the power stage

Valid Val BOOL Valid
Automation Collaborative Platform 1825

Description:

Directs the power stages to turn On and Off

Error Err BOOL An error has occured within the function block

ErrorID ErID DINT Error identification. Possible values include the
following:
1 = MC_ErrState, bad state
2 = MC_ErrRange, bad parameter (value is out of
range)
3 = MC_ErrParam, bad parameter (negative value)
4 = MC_ErrFBInvalid, function block is not
implemented
5 = MC_ErrAxisNo, axis number is invalid
6 = MC_ErrDrive, error from drive
7 = MC_ErrAborted, command aborted
8 = MC_ErrNoPower, mc_power is not running
1826 Windows Runtime Modules - Motion Control Function Blocks

MC_ReadActualPosition

Arguments:

Description:

Yields the actual position

AxisIn Axis AXIS_REF References the axis

Enable En BOOL When enabled, yields the parameter value continuously

Axis Axis AXIS_REF References the axis

Valid Val BOOL The value is available

Busy Busy BOOL The function block is unfinished and output values are
expected

Error Err BOOL An error has occured within the function block

ErrorID ErID DINT Error identification. Possible values include the following:
1 = MC_ErrState, bad state
2 = MC_ErrRange, bad parameter (value is out of range)
3 = MC_ErrParam, bad parameter (negative value)
4 = MC_ErrFBInvalid, function block is not implemented
5 = MC_ErrAxisNo, axis number is invalid
6 = MC_ErrDrive, error from drive
7 = MC_ErrAborted, command aborted
8 = MC_ErrNoPower, mc_power is not running

Position Pos REAL Absolute position [u]
Automation Collaborative Platform 1827

MC_ReadActualTorque

Arguments:

AxisIn Axis AXIS_REF References the axis

Enable En BOOL When enabled, yields the parameter value
continuously

Axis Axis AXIS_REF References the axis

Valid Val BOOL A valid value is available

Busy Busy BOOL The function block is unfinished

Error Err BOOL An error has occured within the function block

ErrorID ErID DINT Error identification. Possible values include the
following:
1 = MC_ErrState, bad state
2 = MC_ErrRange, bad parameter (value is out of
range)
3 = MC_ErrParam, bad parameter (negative value)
4 = MC_ErrFBInvalid, function block is not
implemented
5 = MC_ErrAxisNo, axis number is invalid
6 = MC_ErrDrive, error from drive
7 = MC_ErrAborted, command aborted
8 = MC_ErrNoPower, mc_power is not running

ActualTorque Torq REAL Actual torque value in technical units
1828 Windows Runtime Modules - Motion Control Function Blocks

Description:

Yields the actual torque value

You can have a signed value for the Torq output value.
Automation Collaborative Platform 1829

MC_ReadActualVelocity

Arguments:

Axis Axis AXIS_REF References the axis

Enable En BOOL When enabled, yields the parameter value
continuously

Axis Axis AXIS_REF References the axis

Valid Val BOOL Valid value is available

Busy Busy BOOL The function block is unfinished

Error Err BOOL An error has occured within the function block

ErrorID ErID DINT Error identification. Possible values include the
following:
1 = MC_ErrState, bad state
2 = MC_ErrRange, bad parameter (value is out of
range)
3 = MC_ErrParam, bad parameter (negative value)
4 = MC_ErrFBInvalid, function block is not
implemented
5 = MC_ErrAxisNo, axis number is invalid
6 = MC_ErrDrive, error from drive
7 = MC_ErrAborted, command aborted
8 = MC_ErrNoPower, mc_power is not running

ActualVelocity Velo REAL Axis error value
1830 Windows Runtime Modules - Motion Control Function Blocks

Description:

Yields the actual velocity value

When the En input is reset, the data becomes invalid and all outputs are reset.

When the Velo output is valid, the Val output is true.
Automation Collaborative Platform 1831

MC_ReadAxisError

Arguments:

Description:

AxisIn Axis AXIS_REF References the axis

Enable En BOOL When enabled, yields the parameter value continuously

Axis Axis AXIS_REF References the axis

Valid Val BOOL Valid value is available

Busy Busy BOOL The function block is unfinished

Error Err BOOL An error has occured within the function block

ErrorID ErID DINT Error identification. Possible values include the
following:
1 = MC_ErrState, bad state
2 = MC_ErrRange, bad parameter (value is out of range)
3 = MC_ErrParam, bad parameter (negative value)
4 = MC_ErrFBInvalid, function block is not
implemented
5 = MC_ErrAxisNo, axis number is invalid
6 = MC_ErrDrive, error from drive
7 = MC_ErrAborted, command aborted
8 = MC_ErrNoPower, mc_power is not running

AxisErrorId AxEr DINT Axis error value
1832 Windows Runtime Modules - Motion Control Function Blocks

Yields general axis errors that are not related to function blocks
Automation Collaborative Platform 1833

MC_ReadBoolParameter

Arguments:

AxisIn Axis AXIS_REF References the axis

Enable En BOOL When enabled, yields the parameter value
continuously

ParameterNumber Num DINT Number of the parameter

Axis Axis AXIS_REF References the axis

Valid Val BOOL Valid parameter value is available

Busy Busy BOOL The function block is unfinished

Error Err BOOL An error has occured within the function block
1834 Windows Runtime Modules - Motion Control Function Blocks

Description:

Yields the value of a specific BOOL parameter

List of Parameters:

ErrorID ErID DINT Error identification. Possible values include the
following:
1 = MC_ErrState, bad state
2 = MC_ErrRange, bad parameter (value is out of
range)
3 = MC_ErrParam, bad parameter (negative
value)
4 = MC_ErrFBInvalid, function block is not
implemented
5 = MC_ErrAxisNo, axis number is invalid
6 = MC_ErrDrive, error from drive
7 = MC_ErrAborted, command aborted
8 = MC_ErrNoPower, mc_power is not running

Value Val BOOL Value of the parameter

Number Parameter Name Data Type Description

1 CommandedPosition REAL Commanded position

2 SWLimitPos REAL Positive software limit switch position

3 SWLimitNeg REAL Negative software limit switch position

4 EnableLimitPos BOOL Enable positive software limit switch

5 EnableLimitNeg BOOL Enable negative software limit switch

6 EnablePosLagMonitoring BOOL Enable monitoring of position lag

7 MaxPositionLag BOOL Maximal position lag

8 MaxVelocitySystem REAL Maximal allowed velocity of the axis in
the motion system

9 MaxVelocityAppl REAL Maximal allowed velocity of the axis in
the application

10 ActualVelocity REAL Actual velocity
Automation Collaborative Platform 1835

11 CommandedVelocity Commanded set point velocity READ
only

12 MaxAccelerationSystem REAL Maximal allowed acceleration of the axis
in the motion system

13 MaxAccelerationAppl REAL Maximal allowed acceleration of the axis
in the application

14 MaxDecelerationSystem REAL Maximal allowed deceleration of the axis

15 MaxDecelerationAppl REAL Maximal allowed deceleration of the axis

16 MaxJerk REAL Maximal allowed jerk of the axis
1836 Windows Runtime Modules - Motion Control Function Blocks

MC_ReadDigitalInput

Arguments:

Inp Inp MC_INPUT_REF References the source of the input signal

Enable En BOOL When enabled, yields the parameter value
continuously

InputNumber InNb DINT Selects the input

Input Inp MC_INPUT_REF References the source of the input signal

Valid Vld BOOL Valid parameter value is available

Busy Busy BOOL The function block is unfinished

Error Err BOOL An error has occured within the function block
Automation Collaborative Platform 1837

Description:

Yields the value of a specific input

Note: When a pulse signal ends before the next function block cycle begins, the signal is
undetected.

ErrorID ErID DINT Error identification. Possible values include the
following:
1 = MC_ErrState, bad state
2 = MC_ErrRange, bad parameter (value is out
of range)
3 = MC_ErrParam, bad parameter (negative
value)
4 = MC_ErrFBInvalid, function block is not
implemented
5 = MC_ErrAxisNo, axis number is invalid
6 = MC_ErrDrive, error from drive
7 = MC_ErrAborted, command aborted
8 = MC_ErrNoPower, mc_power is not running

Value Val BOOL Value of the parameter
1838 Windows Runtime Modules - Motion Control Function Blocks

MC_ReadDigitalOutput

Arguments:

Outp Outp MC_OUTPUT_REF References signal outputs

Enable En BOOL When enabled, yields the parameter value
continuously

OutputNumber OuNb DINT Selects the output

Output Outp MC_OUTPUT_REF References signal outputs

Valid Val BOOL Valid output signal value is available

Busy Busy BOOL The function block is unfinished

Error Err BOOL An error has occured within the function
block
Automation Collaborative Platform 1839

Description:

Yields the value of a specific output

Note: When a pulse signal ends before the next function block cycle begins, the signal is
undetected.

ErrorID ErID DINT Error identification. Possible values
include the following:
1 = MC_ErrState, bad state
2 = MC_ErrRange, bad parameter (value
is out of range)
3 = MC_ErrParam, bad parameter
(negative value)
4 = MC_ErrFBInvalid, function block is
not implemented
5 = MC_ErrAxisNo, axis number is
invalid
6 = MC_ErrDrive, error from drive
7 = MC_ErrAborted, command aborted
8 = MC_ErrNoPower, mc_power is not
running

Value Val BOOL Value of the output signal
1840 Windows Runtime Modules - Motion Control Function Blocks

MC_ReadParameter

Arguments:

AxisIn Axis AXIS_REF References the axis

Enable En BOOL When enabled, yields the parameter value
continuously

ParameterNumber Num DINT Number of the parameter

Axis Axis AXIS_REF References the axis

Valid Val BOOL Valid parameter value is available

Busy Busy BOOL The function block is unfinished

Error Err BOOL An error has occured within the function block
Automation Collaborative Platform 1841

Description:

Yields the value of a specific parameter

List of Parameters:

ErrorID ErID DINT Error identification. Possible values include the
following:
1 = MC_ErrState, bad state
2 = MC_ErrRange, bad parameter (value is out of
range)
3 = MC_ErrParam, bad parameter (negative
value)
4 = MC_ErrFBInvalid, function block is not
implemented
5 = MC_ErrAxisNo, axis number is invalid
6 = MC_ErrDrive, error from drive
7 = MC_ErrAborted, command aborted
8 = MC_ErrNoPower, mc_power is not running

Value Val REAL Value of the parameter

Number Parameter Name Data Type Description

1 CommandedPosition REAL Commanded position

2 SWLimitPos REAL Positive software limit switch position

3 SWLimitNeg REAL Negative software limit switch position

4 EnableLimitPos BOOL Enable positive software limit switch

5 EnableLimitNeg BOOL Enable negative software limit switch

6 EnablePosLagMonitoring BOOL Enable monitoring of position lag

7 MaxPositionLag BOOL Maximal position lag

8 MaxVelocitySystem REAL Maximal allowed velocity of the axis in
the motion system

9 MaxVelocityAppl REAL Maximal allowed velocity of the axis in
the application

10 ActualVelocity REAL Actual velocity
1842 Windows Runtime Modules - Motion Control Function Blocks

11 CommandedVelocity Commanded set point velocity READ
only

12 MaxAccelerationSystem REAL Maximal allowed acceleration of the axis
in the motion system

13 MaxAccelerationAppl REAL Maximal allowed acceleration of the axis
in the application

14 MaxDecelerationSystem REAL Maximal allowed deceleration of the axis

15 MaxDecelerationAppl REAL Maximal allowed deceleration of the axis

16 MaxJerk REAL Maximal allowed jerk of the axis
Automation Collaborative Platform 1843

MC_ReadStatus

Arguments:

AxisIn Axis AXIS_
REF

References the axis

Enable En BOOL When enabled, yields the parameter value
continuously

Axis Axis AXIS_
REF

References the axis
1844 Windows Runtime Modules - Motion Control Function Blocks

Valid Val REAL True = valid output available

Busy Busy BOOL The function block is unfinished

Error Err BOOL An error has occured within the function block

ErrorID ErID DINT Error identification. Possible values include the
following:
1 = MC_ErrState, bad state
2 = MC_ErrRange, bad parameter (value is out of
range)
3 = MC_ErrParam, bad parameter (negative value)
4 = MC_ErrFBInvalid, function block is not
implemented
5 = MC_ErrAxisNo, axis number is invalid
6 = MC_ErrDrive, error from drive
7 = MC_ErrAborted, command aborted
8 = MC_ErrNoPower, mc_power is not running

Errorstop Stop BOOL ErrorStop

Disabled Dis BOOL Set when axis is in disabled state

Stopping Stop BOOL Stopping state

Referenced Ref BOOL Absolute reference position of the axis

StandStill Stan BOOL Standstill state

DiscreteMotion DM BOOL DiscreteMotion state

ContinuousMotion CM BOOL ContinuousMotion state

SynchronizedMotion SM BOOL SynchronizedMotion state
Automation Collaborative Platform 1845

Description:

Yields the detailed status of an axis that is in motion

Homing Home BOOL Homing state. Possible values include the
following:
0 = MC_AbsSwitch, absolute switch homing plus
limit switches
1 = MC_LimitSwitch, homing against limit
switches
2 = MC_RefPulse, homing using encoder reference
pulse "zero mark"
3 = MC_Direct, static homing forcing position from
user reference
4 = MC_Absolute, static homing forcing position
from absolute encoder
5 = MC_Block, homing against hardware parts
blocking movement

ConstantVelocity CV BOOL ConstantVelocity state

Accelerating Acce BOOL Acceleration value

Decelerating Dece BOOL Deceleration value
1846 Windows Runtime Modules - Motion Control Function Blocks

MC_Reset

Arguments:

Description:

Transitions axis from the ErrorStop state to the StandStill state by resetting all axis-related
internal errors

The outputs of function block instances are unaffected by MC_Rest.

AxisIn Axis AXIS_REF References the axis

Execute Exec BOOL Begins resetting the axis at the rising edge

Axis Axis AXIS_REF References the axis

Done Done BOOL The Standstill state is reached

Busy Busy BOOL The function block is unfinished

Error Err BOOL An error has occured within the function block

ErrorID ErID DINT Error identification. Possible values include the following:
1 = MC_ErrState, bad state
2 = MC_ErrRange, bad parameter (value is out of range)
3 = MC_ErrParam, bad parameter (negative value)
4 = MC_ErrFBInvalid, function block is not implemented
5 = MC_ErrAxisNo, axis number is invalid
6 = MC_ErrDrive, error from drive
7 = MC_ErrAborted, command aborted
8 = MC_ErrNoPower, mc_power is not running
Automation Collaborative Platform 1847

MC_SetOverride

Arguments:

AxisIn Axis AXIS_REF References the axis

Enable En BOOL When enabled, yields the override factor value
continuously

VelFactor VelF REAL Override factor for velocity = [0.0 .. 1.0]
Default = 1.0
A value of 0.0 stops the axis, StandStill state is
unachieved

AccFactor AccF REAL Override factor for acceleration/deceleration = [0.0 ..
1.0]
Default = 1.0
A value of 0.0 is not permitted

JerkFactor JrkF REAL Override factor for jerk = [0.0 .. 1.0]
Default = 1.0
A value of 0.0 is not permitted

Axis Axis AXIS_REF References the axis

Enabled En BOOL The override factors are set successfully

Busy Busy BOOL The function block is unfinished
1848 Windows Runtime Modules - Motion Control Function Blocks

Description:

Specifies the override values for the axis

The override parameters act as factors, which the commanded velocity, acceleration,
deceleration, and jerk are multiplied by in order to move the function block.

MC_SetOverride works on master axes only, axes in the SyncronizedMotion state, such as
slave axes, are unaffected.

The VelF input is modifiable at all times and acts directly on the ongoing motion.

When in the DiscreteMotion state, reducing the input values for AccF and JrkF may lead to
position overshoot.

Error Err BOOL An error has occured within the function block

ErrorID ErID DINT Error identification. Possible values include the
following:
1 = MC_ErrState, bad state
2 = MC_ErrRange, bad parameter (value is out of range)
3 = MC_ErrParam, bad parameter (negative value)
4 = MC_ErrFBInvalid, function block is not
implemented
5 = MC_ErrAxisNo, axis number is invalid
6 = MC_ErrDrive, error from drive
7 = MC_ErrAborted, command aborted
8 = MC_ErrNoPower, mc_power is not running
Automation Collaborative Platform 1849

MC_SetPosition

Arguments:

AxisIn Axis AXIS_REF References the axis

Execute Exec BOOL Begins setting position

Position Pos REAL Position unit [u]
Requires that input Rel is set to TRUE

Relative Rel BOOL TRUE = relative distance
FALSE = absolute position
Default value = FALSE

MC_ExecutionMode Mode BOOL Motion control execution mode
mcImmediately = functionality immediately
valid and affects ongoing motion
mcQueued = functionality valid when all other
motion commands have one of the following
output parameters set: Done, Aborted, Error, or
Busy is set to FALSE
Default value = mcImmediately

Axis Axis AXIS_REF References the axis

Done Done BOOL New Pos value available

Busy Busy BOOL The function block is unfinished
1850 Windows Runtime Modules - Motion Control Function Blocks

Description:

Shifts the position of an axis by modifying the set-point position and the actual position of the
axis

When the Rel input is set to TRUE, the relative distance is added to the actual position value
at the time of execution. When the Rel output is set to FALSE, the actual position is set to the
value of the Pos input.

Error Err BOOL An error has occured within the function block

ErrorID ErID DINT Error identification. Possible values include the
following:
1 = MC_ErrState, bad state
2 = MC_ErrRange, bad parameter (value is out
of range)
3 = MC_ErrParam, bad parameter (negative
value)
4 = MC_ErrFBInvalid, function block is not
implemented
5 = MC_ErrAxisNo, axis number is invalid
6 = MC_ErrDrive, error from drive
7 = MC_ErrAborted, command aborted
8 = MC_ErrNoPower, mc_power is not
running
Automation Collaborative Platform 1851

MC_Stop

Arguments:

AxisIn Axis AXIS_REF References the axis

Execute Exec BOOL Begins the stopping action at the rising edge

Deceleration Dece REAL Deceleration value = [u/s2]

Jerk Jerk REAL Jerk value = [u/s3]

Axis Axis AXIS_REF References the axis

Done Done BOOL Velocity has reached zero

Busy Busy BOOL The function block is unfinished

Active Act BOOL Function Block is actively controlling the axis

CommandAborted CmdA BOOL Command is aborted by another command
1852 Windows Runtime Modules - Motion Control Function Blocks

Description:

Directs a controlled motion stop and transferees the axis to the Stopping state

While the axis is in the Stopping state, the axis is unavailable for use with other function blocks
and all running function blocks are aborted. The axis remains in the Stopping state while the
Exec input is set to TRUE and the velocity of the axis is above zero. When the velocity reaches
zero, the Done output is set to TRUE, the Exec output is set to FALSE, and the axis achieves
the StandStill state.

Error Err BOOL An error has occured within the function block

ErrorID ErID DINT Error identification. Possible values include the
following:
1 = MC_ErrState, bad state
2 = MC_ErrRange, bad parameter (value is out
of range)
3 = MC_ErrParam, bad parameter (negative
value)
4 = MC_ErrFBInvalid, function block is not
implemented
5 = MC_ErrAxisNo, axis number is invalid
6 = MC_ErrDrive, error from drive
7 = MC_ErrAborted, command aborted
8 = MC_ErrNoPower, mc_power is not running
Automation Collaborative Platform 1853

MC_TorqueControl

Arguments:

AxisIn Axis AXIS_REF References the axis

Execute Exec BOOL Begin torque action at rising edge

Torque Torq REAL Torque value in t.u.

TorqueRamp TRmp REAL Maximum time derivative value in t.u./sec

Velocity Velo REAL Absolute value of the maximum velocity

Acceleration Acce REAL Maximum acceleration value

Deceleration Dece REAL Maximum deceleration value

Jerk Jerk REAL Maximum jerk value

Direction Dir SINT Motion control direction, either positive or
negative
1854 Windows Runtime Modules - Motion Control Function Blocks

Description:

Directs continuous exertion of torque of a specific magnitude

Torque increases according to the TRmp input value. When the specified torque is reached, InT
output is set.

BufferMode Buf SINT Definition of the mode of behavior for the axis:
mcAborting, mcBuffered, mcBlending. Possible
values are the following:
0 = mcAborting, the next function block is taking
control of the axis immediately
1 = mcBuffered, the next function block awaits
completion (DONE) before taking control of the
axis
2 = mcBlending

Axis Axis AXIS_REF References the axis

InTorque InT BOOL Torque setpoint value is reached

Busy Busy BOOL The function block is unfinished

Active Act BOOL Function Block is actively controlling the axis

CommandAborted CmdA BOOL Command is aborted by another command

Error Err BOOL An error has occured within the function block

ErrorID ErID DINT Error identification. Possible values include the
following:
1 = MC_ErrState, bad state
2 = MC_ErrRange, bad parameter (value is out of
range)
3 = MC_ErrParam, bad parameter (negative
value)
4 = MC_ErrFBInvalid, function block is not
implemented
5 = MC_ErrAxisNo, axis number is invalid
6 = MC_ErrDrive, error from drive
7 = MC_ErrAborted, command aborted
8 = MC_ErrNoPower, mc_power is not running
Automation Collaborative Platform 1855

MC_TorqueControl applies to both torque and force. When there is no external load, force
applies instead of torque.
1856 Windows Runtime Modules - Motion Control Function Blocks

MC_TouchProbe

Arguments:

AxisIn Axis AXIS_REF References the axis for which the
position is recorded for a defined Trig
input event

TiggerInp Trig MC_TRIGGER_REF References the source of the trigger
signal

Execute Exec BOOL Begins touch probe recording at the
rising edge

WindowOnly WinO BOOL When set, only values within a specific
window can trigger events

FirstPosition FPos REAL The start position [u] where trigger
events are accepted
The start position value is included in
the range of window values

LastPosition LPos REAL The stop position [u] where trigger
events are accepted
The stop position value is included in
the range of window values
Automation Collaborative Platform 1857

Description:

Records the position of an axis during a trigger event

The first trigger event is recorded and subsequent trigger events are disregarded.

Axis Axis AXIS_REF References the axis for which the
position is recorded for a defined Trig
input event

TriggerInput Trig MC_TRIGGER_REF References the source of the trigger
signal

Done Done BOOL The trigger event is recorded

Busy Busy BOOL The function block is unfinished

CommandAborted CmdA BOOL Command is aborted by another
command

Error Err BOOL An error has occured within the function
block

ErrorID ErID DINT Error identification. Possible values
include the following:
1 = MC_ErrState, bad state
2 = MC_ErrRange, bad parameter
(value is out of range)
3 = MC_ErrParam, bad parameter
(negative value)
4 = MC_ErrFBInvalid, function block is
not implemented
5 = MC_ErrAxisNo, axis number is
invalid
6 = MC_ErrDrive, error from drive
7 = MC_ErrAborted, command aborted
8 = MC_ErrNoPower, mc_power is not
running

RecordedPosition RPos REAL Position [u] where the trigger event
occured
1858 Windows Runtime Modules - Motion Control Function Blocks

MC_VelocityProfile

Arguments:

AxisIn Axis AXIS_REF References the axis

TimeVelocityIn TV MC_TV_REF References Time / Velocity
Time can equal the difference in time between
two points

Execute Exec BOOL Begins the motion at the rising edge

TimeScale Time REAL Time scaling factor for the profile

VelocityScale Scal REAL Velocity scaling factor for the profile

Offset Off REAL Offset factor for the profile

BufferMode Buf SINT Definition of the mode of behavior for the axis:
mcAborting, mcBuffered, mcBlending. Possible
values are the following:
0 = mcAborting, the next function block is
taking control of the axis immediately
1 = mcBuffered, the next function block awaits
completion (DONE) before taking control of the
axis
2 = mcBlending

Axis Axis AXIS_REF References the axis
Automation Collaborative Platform 1859

Description:

Directs a time-velocity locked motion profile

When the Done output is set, the final velocity is maintained and the axis remains in the
ContinuousMotion state.

TimeVelocity TV MC_TV_REF References Time / Velocity
Time can equal the difference in time between
two points

Done Done BOOL The profile is complete

Busy Busy BOOL The function block is unfinished

Active Act BOOL Function Block is actively controlling the axis

CommandAborted CmdA BOOL Command is aborted by another command

Error Err BOOL An error has occured within the function block

ErrorID ErID DINT Error identification. Possible values include the
following:
1 = MC_ErrState, bad state
2 = MC_ErrRange, bad parameter (value is out
of range)
3 = MC_ErrParam, bad parameter (negative
value)
4 = MC_ErrFBInvalid, function block is not
implemented
5 = MC_ErrAxisNo, axis number is invalid
6 = MC_ErrDrive, error from drive
7 = MC_ErrAborted, command aborted
8 = MC_ErrNoPower, mc_power is not running
1860 Windows Runtime Modules - Motion Control Function Blocks

MC_WriteBoolParameter

Arguments:

AxisIn Axis AXIS_REF References the axis

Execute Exec BOOL Begins writing the parameter value at the
rising edge

ParameterNumber Num DINT Number of the parameter

Value Val BOOL Value of the parameter

MC_ExecutionMode Mode SINT Motion control execution mode
mcImmediately = functionality immediately
valid and affects ongoing motion
mcQueued = functionality valid when all other
motion commands have one of the following
output parameters set: Done, Aborted, Error,
or Busy is set to FALSE
Default value = mcImmediately

Axis Axis AXIS_REF References the axis

Done Done BOOL Parameter is successfully written

Busy Busy BOOL The function block is unfinished
Automation Collaborative Platform 1861

Description:

Modifies the value of a specific BOOL parameter

List of Parameters:

Error Err BOOL An error has occured within the function block

ErrorID ErID DINT Error identification. Possible values include
the following:
1 = MC_ErrState, bad state
2 = MC_ErrRange, bad parameter (value is out
of range)
3 = MC_ErrParam, bad parameter (negative
value)
4 = MC_ErrFBInvalid, function block is not
implemented
5 = MC_ErrAxisNo, axis number is invalid
6 = MC_ErrDrive, error from drive
7 = MC_ErrAborted, command aborted
8 = MC_ErrNoPower, mc_power is not
running

Number Parameter Name Data Type Description

1 CommandedPosition REAL Commanded position

2 SWLimitPos REAL Positive software limit switch position

3 SWLimitNeg REAL Negative software limit switch position

4 EnableLimitPos BOOL Enable positive software limit switch

5 EnableLimitNeg BOOL Enable negative software limit switch

6 EnablePosLagMonitoring BOOL Enable monitoring of position lag

7 MaxPositionLag BOOL Maximal position lag

8 MaxVelocitySystem REAL Maximal allowed velocity of the axis in
the motion system

9 MaxVelocityAppl REAL Maximal allowed velocity of the axis in
the application

10 ActualVelocity REAL Actual velocity
1862 Windows Runtime Modules - Motion Control Function Blocks

11 CommandedVelocity Commanded set point velocity READ
only

12 MaxAccelerationSystem REAL Maximal allowed acceleration of the axis
in the motion system

13 MaxAccelerationAppl REAL Maximal allowed acceleration of the axis
in the application

14 MaxDecelerationSystem REAL Maximal allowed deceleration of the axis

15 MaxDecelerationAppl REAL Maximal allowed deceleration of the axis

16 MaxJerk REAL Maximal allowed jerk of the axis
Automation Collaborative Platform 1863

MC_WriteDigitalOutput

Arguments:

Outp Outp MC_OUTPUT_REF References the signal output

Execute Exec BOOL Writes the value of the selected
output

OutputNumber OuNb DINT Selects the output by number

Value Val BOOL Value of the selected parameter

MC_ExecutionMode Mode SINT Motion control execution mode
mcImmediately = functionality
immediately valid and affects
ongoing motion
mcQueued = functionality valid when
all other motion commands have one
of the following output parameters
set: Done, Aborted, Error, or Busy is
set to FALSE
Default value = mcImmediately

Output Outp MC_OUTPUT_REF References the signal output

Done Done BOOL Output signal value successfully
written

Busy Busy BOOL The function block is unfinished
1864 Windows Runtime Modules - Motion Control Function Blocks

Description:

Modifies a specific output value

Error Err BOOL An error has occured within the
function block

ErrorID ErID DINT Error identification. Possible values
include the following:
1 = MC_ErrState, bad state
2 = MC_ErrRange, bad parameter
(value is out of range)
3 = MC_ErrParam, bad parameter
(negative value)
4 = MC_ErrFBInvalid, function
block is not implemented
5 = MC_ErrAxisNo, axis number is
invalid
6 = MC_ErrDrive, error from drive
7 = MC_ErrAborted, command
aborted
8 = MC_ErrNoPower, mc_power is
not running
Automation Collaborative Platform 1865

MC_WriteParameter

Arguments:

AxisIn Axis AXIS_REF References the axis

Execute Exec BOOL Begins writing the parameter value at the
rising edge

ParameterNumber Num DINT Number of the parameter

Value Val BOOL Value of the parameter

MC_ExecutionMode Mode SINT MC_ExecutionMode

Axis Axis AXIS_REF References the axis

Done Done BOOL Parameter written successfully

Busy Busy BOOL TRUE = function block is actively controlling
the axis
FALSE = axis is not actively controlled by the
function block
1866 Windows Runtime Modules - Motion Control Function Blocks

Description:

Modifies the value of a specific parameter

List of Parameters:

Error Err BOOL An error has occured within the function block

ErrorID ErID DINT Error identification. Possible values include
the following:
1 = MC_ErrState, bad state
2 = MC_ErrRange, bad parameter (value is out
of range)
3 = MC_ErrParam, bad parameter (negative
value)
4 = MC_ErrFBInvalid, function block is not
implemented
5 = MC_ErrAxisNo, axis number is invalid
6 = MC_ErrDrive, error from drive
7 = MC_ErrAborted, command aborted
8 = MC_ErrNoPower, mc_power is not
running

Number Parameter Name Data Type Description

1 CommandedPosition REAL Commanded position

2 SWLimitPos REAL Positive software limit switch position

3 SWLimitNeg REAL Negative software limit switch position

4 EnableLimitPos BOOL Enable positive software limit switch

5 EnableLimitNeg BOOL Enable negative software limit switch

6 EnablePosLagMonitoring BOOL Enable monitoring of position lag

7 MaxPositionLag BOOL Maximal position lag

8 MaxVelocitySystem REAL Maximal allowed velocity of the axis in the
motion system

9 MaxVelocityAppl REAL Maximal allowed velocity of the axis in the
application

10 ActualVelocity REAL Actual velocity
Automation Collaborative Platform 1867

11 CommandedVelocity Commanded set point velocity READ only

12 MaxAccelerationSystem REAL Maximal allowed acceleration of the axis
in the motion system

13 MaxAccelerationAppl REAL Maximal allowed acceleration of the axis
in the application

14 MaxDecelerationSystem REAL Maximal allowed deceleration of the axis

15 MaxDecelerationAppl REAL Maximal allowed deceleration of the axis

16 MaxJerk REAL Maximal allowed jerk of the axis
1868 Windows Runtime Modules - Motion Control Function Blocks

SAMA Elements and Functions
The workbench supports the following SAMA elements:

Process Control High Limiting Chooses the lowest value, either the
input or the High_Limit

Integrate or Totalize Determines the time integral of the
input value

Low Limiting Chooses the higher value, either the
input or the Low_Limit

MATransfer The output value is determined by the
CMD value. When CMD has a value of
Logic One the Output_signal value is
equal to the InputMan value. When
CMD has a value of Logic Zero the
Output_signal value is equal to the
InputAuto value.

MATransferSet The Set_Point_out value is equal to the
SetPoint value. The Output_Signal
value is determined by the CMD value.
When CMD has a value of Logic One
the Output_signal value is equal to the
InputMan value. When CMD has a
value of Logic Zero the Output_signal
value is equal to the InputAuto value.

Memory (Basic) When one input has a value of Logic
One, the output value is Logic One.

Memory (So Dominant) When multiple inputs have a value of
Logic One, only the output with an
override designation (So) is Logic One.

Memory (Ro Dominant) When multiple inputs have a value of Logic
One, only the output with an override
designation (So) is Logic One.

Proportional Output value is directly proportional to
the input value
Automation Collaborative Platform 1869

Proportional and Integral Output value is directly proportional to
both the magnitude and duration of the
input value

Proportional and Derivative Output value is directly proportional to
the rate of change of the input value.

Reverse Proportional Output value is inversely proportional
to the input value.

Tri-State Signal Output has discrete states dependent on
the state of the input.

Velocity Limiting When the rate of change of input is
below High_Limit, output is equal to
input

Time Operations Pulse Duration When input is Logic One, the output is
Logic One for a specific time period
only

Pulse Duration Of The Lesser
Time

When input has been Logic One for a
specific time period, output changes to
a Logic Zero

Time Delay On Initiation When input has been Logic One
continuously for a specific time period,
output becomes a Logic One

Time Delay On Termination When input equals a Logic Zero for a
specific time period, output becomes
Logic Zero
1870 Windows Runtime Modules - SAMA Elements and Functions

High Limiting

Arguments:

Description:

The output value is either the input value or the High_Limit value, whichever is the lowest.

To insert a High Limiting element

� From the Toolbox, drag the High Limiting element into the language container.

The High Limiting element is displayed in the language container in SAMA format.

To insert a HighLimit function block

1. From the Toolbox, drag the block element into the language container.

The Block Selector is displayed.

2. In the Block Selector, select HighLimit, then click OK.

The High Limiting element is displayed in the language container in SAMA format.

SAMA Representation: FBD Representation:

In IN REAL

High_Limit HL REAL

Output Q REAL
Automation Collaborative Platform 1871

Integrate or Totalize

Arguments:

Description:

The output value is a frequency that depends on the input value. The output is usually
associated with a counting device, which displays the time integral of the input value with some
initial condition applied at time (T) equals zero.

To insert an Integrate or a Totalize element

� From the Toolbox, drag the Integrate or Totalize element into the language container.

The Integrate or Totalize element is displayed in the language container in SAMA format.

To insert a Totalizer function block

1. From the Toolbox, drag the block element into the language container.

The Block Selector is displayed.

2. In the Block Selector, select Totalizer, then click OK.

SAMA Representation: FBD Representation:

Flow REAL

TBAS DINT

Reset BOOL

Quantity REAL
1872 Windows Runtime Modules - SAMA Elements and Functions

The Integrate or Totalize element is displayed in the language container in SAMA format.
Automation Collaborative Platform 1873

Low Limiting

Arguments:

Description:

The output value is either the input value or the low limit value, whichever is the highest.

To insert a Low Limiting element

� From the Toolbox, drag the Low Limiting element into the language container.

The Low Limiting element is displayed in the language container in SAMA format.

To insert a LowLimit function block

1. From the Toolbox, drag the block element into the language container.

The Block Selector is displayed.

2. In the Block Selector, select LowLimit, then click OK.

The Low Limiting element is displayed in the language container in SAMA format.

SAMA Representation: FBD Representation:

In IN REAL

Low_Limit LL REAL

Output Q REAL
1874 Windows Runtime Modules - SAMA Elements and Functions

MATransfer

Arguments:

Description:

The Output_signal value of MATransfer is determined by the CMD value. When CMD has a
value of Logic One (TRUE) the Output_signal value is equal to the InputMan value. When
CMD has a value of Logic Zero (FALSE) the Output_signal value is equal to the InputAuto
value.

To insert an MATransfer element

� From the Toolbox, drag the MATransfer element into the language container.

The MATransfer element is displayed in the language container in SAMA format.

SAMA Representation: FBD Representation:

InputAuto INA REAL Automatic input

Command CMD BOOL Indication of which signal to select
True selects InputAuto
False selects InputMan

InputMan INM REAL Manual input

Output_signal Out REAL Output signal
Automation Collaborative Platform 1875

To insert an MATransfer function block

1. From the Toolbox, drag the block element into the language container.

The Block Selector is displayed.

2. In the Block Selector, select MATransfer, then click OK.

The MATransfer element is displayed in the language container in SAMA format.
1876 Windows Runtime Modules - SAMA Elements and Functions

MATransferSet

Arguments:

Description:

The Set_Point_out value of MATransferSet is equal to the SetPoint value. The Output_Signal
value is determined by the CMD value. When CMD has a value of Logic One (TRUE) the
Output_signal value is equal to the InputMan value. When CMD has a value of Logic Zero
(FALSE) the Output_signal value is equal to the InputAuto value.

SAMA Representation: FBD Representation:

InputAuto INA REAL Automatic input

CMD CMD BOOL Indication of which signal to select
True selects InputAuto
False selects InputMan

InputMan INM REAL Manual input

SetPoint SetP REAL Set point value

Set_Point_out SetP REAL Set point for loop control
Local and forced by user

Output_Signal Out REAL Output signal
Automation Collaborative Platform 1877

To insert an MATransferSet element

� From the Toolbox, drag the MATransferSet element into the language container.

The MATransferSet element is displayed in the language container in SAMA format.

To insert an MATransferSet function block

1. From the Toolbox, drag the block element into the language container.

The Block Selector is displayed.

2. In the Block Selector, select MATransferSet, then click OK.

The MATransferSet element is displayed in the language container in SAMA format.
1878 Windows Runtime Modules - SAMA Elements and Functions

Memory (Basic)

Arguments:

Description:

When one input has a value of Logic One, the output value is Logic One. If the input value is
subsequently lost (Logic Zero), the associated output value is memorized (retained at Logic
One). Connecting a Logic One output to an input gives the same value (Logic One) and
changes the output states.

Mathematical equation:

Note: When A and B are simultaneously true, the output condition changes from the last state.

Graphic representation:

SAMA Representation: FBD Representation:

SET SET BOOL

RESET RES BOOL

Out1 Q1 BOOL

Out2 Q2 BOOL

A B C D

1 0 1 0

0 0 1 0

0 1 0 1

0 0 0 1

*1 1 0 0
Automation Collaborative Platform 1879

To insert a Memory (Basic) element

� From the Toolbox, drag the Memory (Basic) element into the language container.

The Memory (Basic) element is displayed in the language container in SAMA format.

To insert a MemBasic function block

1. From the Toolbox, drag the block element into the language container.

The Block Selector is displayed.

2. In the Block Selector, select MemBasic, then click OK.

The Memory (Basic) element is displayed in the language container in SAMA format.
1880 Windows Runtime Modules - SAMA Elements and Functions

Memory (So Dominant)

Arguments:

Description:

When one input has a value of Logic One, the output value is Logic One. If the input value is
subsequently lost (Logic Zero), the associated output value is memorized (retained at Logic
One). Connecting a Logic One output to an input gives the same value (Logic One) and
changes the output states. When multiple inputs have a value of Logic One, only the output
with an override designation (So) is Logic One.

Mathematical equation:

SAMA Representation: FBD Representation:

SET SET BOOL

RESET RES BOOL

Out1 Q1 BOOL

Out2 Q2 BOOL

A B C D

1 0 1 0

0 0 1 0

0 1 0 1

0 0 0 1

1 1 1 0
Automation Collaborative Platform 1881

Graphic representation:

To insert a Memory (So Dominant) element

� From the Toolbox, drag the Memory (So Dominant) element into the language
container.

The Memory (So Dominant) element is displayed in the language container in SAMA format.

To insert a MemSR function block

1. From the Toolbox, drag the block element into the language container.

The Block Selector is displayed.

2. From the Block Selector, select MemSR, then click OK.

The Memory (So Dominant) element is displayed in the language container in SAMA format.
1882 Windows Runtime Modules - SAMA Elements and Functions

Memory (Ro Dominant)

Arguments:

Description:

When one input has a value of Logic One, the output value is Logic One. If the input value is
subsequently lost (Logic Zero), the associated output value is memorized (retained at Logic
One). Connecting a Logic One output to an input gives the same value (Logic One) and
changes the output states. When multiple inputs have a value of Logic One, only the output
with an override designation (Ro) is Logic One.

Mathematical equation:

Graphic representation:

SAMA Representation: FBD Representation:

SET SET BOOL

RESET RES BOOL

Out1 Q1 BOOL

Out2 Q2 BOOL

A B C D

1 0 1 0

0 0 1 0

0 1 0 1

0 0 0 1

1 1 0 1
Automation Collaborative Platform 1883

To insert a Memory (Ro Dominant) element

� From the Toolbox, drag the Memory (Ro Dominant) element into the language
container.

The Memory (Ro Dominant) element is displayed in the language container in SAMA format.

To insert a MemRS function block

1. From the Toolbox, drag the block element into the language container.

The Block Selector is displayed.

2. In the Block Selector, select MemRS, then click OK.

The Memory (Ro Dominant) element is displayed in the language container in SAMA format.
1884 Windows Runtime Modules - SAMA Elements and Functions

Proportional

Arguments:

Description:

The output value is directly proportional to the input value.

To insert a Proportional element

� From the Toolbox, drag the Proportional element into the language container.

The Proportional element is displayed in the language container in SAMA format.

To insert a Proportional function block

1. From the Toolbox, drag the block element into the language container.

The Block Selector is displayed.

� In the Block Selector, select Proportional, then click OK.

The Proportional element is displayed in the language container in SAMA format.

SAMA Representation: FBD Representation:

In IN REAL

Feedback FB REAL

K K REAL Proportional constant

Out Q REAL
Automation Collaborative Platform 1885

Proportional and Integral

Arguments:

Description:

The output value is directly proportional to both the magnitude and duration of the input value.

SAMA Representation: FBD Representation:

in REAL

gain REAL

tau REAL

omax REAL

omin REAL

err DINT

out REAL

stat DINT
1886 Windows Runtime Modules - SAMA Elements and Functions

To insert a Proportional & Integral element

� From the Toolbox, drag the Proportional & Integral element into the language
container.

The Proportional & Integral element is displayed in the language container in SAMA format.

To insert a RemoteTunedPI function block

1. From the Toolbox, drag the block element into the language container.

The Block Selector is displayed.

2. From the Block Selector, select RemoteTunedPI, then click OK.

The Proportional & Integral element is displayed in the language container in SAMA format.
Automation Collaborative Platform 1887

Proportional and Derivative

Arguments:

SAMA Representation: FBD Representation:

Flag FLAG BOOL

In IN REAL

Feedback FB REAL

K K REAL

TD TD REAL

OUT OUT REAL

P P REAL

D D REAL

E E REAL
1888 Windows Runtime Modules - SAMA Elements and Functions

Description:

The output value is directly proportional to the rate of change for the input value.

To insert a Proportional and Derivative element

� From the Toolbox, drag the PD element into the language container.

The PD element is displayed in the language container in SAMA format.

To insert a Proportional and Derivative function block

1. From the Toolbox, drag the block element into the language container.

The Block Selector is displayed.

2. In the Block Selector, select PD, then click OK.

The PD element is displayed in the language container in SAMA format.

E1 E1 REAL

ST ST REAL

KP KP REAL

TD1 TD1 REAL

FB1 FB1 REAL
Automation Collaborative Platform 1889

Pulse Duration

Arguments:

Description:

The output becomes a Logic One and remains a Logic One for a prescribed time duration "t"
when triggered by the change in state of the input from Logic Zero to Logic One.

Graphic representation:

To insert a Pulse Duration element

� From the Toolbox, drag the Pulse Duration element into the language container.

The Pulse Duration element is displayed in the language container in SAMA format.

SAMA Representation: FBD Representation:

IN IN BOOL

DT DT TIME Duration time

OUT Q BOOL

ET ET TIME Current elapsed time
1890 Windows Runtime Modules - SAMA Elements and Functions

To insert a PulseDuration function block

1. From the Toolbox, drag the block element into the language container.

The Block Selector is displayed.

2. In the Block Selector, select PulseDuration, then click OK.

The Pulse Duration element is displayed in the language container in SAMA format.
Automation Collaborative Platform 1891

Pulse Duration Of The Lesser Time

Arguments:

Description:

The output becomes Logic One when the input becomes Logic One. The output becomes Logic
Zero when the input becomes Logic Zero, when the input has been Logic One for t seconds, or
when the optional reset input becomes Logic One.

Graphic representation:

SAMA Representation: FBD Representation:

IN IN BOOL

Reset RES BOOL

TD TD TIME Time delay

OUT Q BOOL

ET ET TIME
1892 Windows Runtime Modules - SAMA Elements and Functions

To insert a Pulse Duration of the Lesser Time element

� From the Toolbox, drag the Pulse Duration of the Lesser Time element into the
language container.

The Pulse Duration of the Lesser Time element is displayed in the language container.

To insert a PulseDurationOfTheLesserTime function block

1. From the Toolbox, drag the block element into the language container.

The Block Selector is displayed.

2. In the Block Selector, select PulseDurationOfTheLesserTime, then click OK.

The Pulse Duration of the Lesser Time element is displayed in the language container.
Automation Collaborative Platform 1893

Reverse Proportional

Arguments:

Description:

The output value is inversely proportional to the input value.

To insert a Reverse Proportional element

� From the Toolbox, drag the Reverse Proportional element into the language container.

The Reverse Proportional element is displayed in the language container in SAMA format.

To insert a ReverseProportional function block

1. From the Toolbox, drag the block element into the language container.

The Block Selector is displayed.

2. From the Block Selector, select ReverseProportional, then click OK.

SAMA Representation: FBD Representation:

IN IN REAL

Feedback FB REAL

K K REAL

Out OUT REAL
1894 Windows Runtime Modules - SAMA Elements and Functions

The Reverse Proportional element is displayed in the language container in SAMA format.
Automation Collaborative Platform 1895

Time Delay On Initiation

Arguments:

Description:

The output becomes a Logic One when the input is Logic One continuously from t. The output
remains Logic One until the input becomes Logic Zero or until the optional reset input is Logic
One, causing the timer to reset and the output to become Logic Zero.

Graphic Representation:

SAMA Representation: FBD Representation:

IN IN BOOL

RESET RES BOOL

PT PT TIME

OUT Q BOOL

ET ET TIME
1896 Windows Runtime Modules - SAMA Elements and Functions

To insert a Time Delay On Initiation element

� From the Toolbox, drag the Time Delay On Inititiation element into the language
container.

The Time Delay On Inititiation element is displayed in the language container in SAMA
format.

To insert a TimeDelayOnInitiation function block

1. From the Toolbox, drag the block element into the language container.

The Block Selector is displayed.

2. In the Block Selector, select TimeDelayOnInititiation, then click OK.

The Time Delay On Inititiation element is displayed in the language container in SAMA
format.
Automation Collaborative Platform 1897

Time Delay On Termination

Arguments:

Description:

The output becomes Logic One when the input becomes Logic One. The output becomes Logic
Zero when the input become Logic Zero and does not become Logic One for time t.

Graphic representation:

SAMA Representation: FBD Representation:

IN IN BOOL

RESET RES BOOL

PT PT TIME

OUT Q BOOL

ET ET TIME
1898 Windows Runtime Modules - SAMA Elements and Functions

To insert a Time Delay On Termination element

� From the Toolbox, drag the Time Delay On Termination element into the language
container.

The Time Delay On Termination element is displayed in the language container in SAMA
format.

To insert a TimeDelayOnTermination function block

1. From the Toolbox, drag the block element into the language container.

The Block Selector is displayed.

2. In the Block Selector, select TimeDelayOnTermination, then click OK.

The Time Delay On Termination element is displayed in the language container in SAMA
format.
Automation Collaborative Platform 1899

Tri-State Signal

Arguments:

Description:

The output has discrete states dependent on the state of the input. The Tri-State Signal element
is normally associated with an integrator of some type.

To insert a Tri-State Signal element

� From the Toolbox, drag the Tri-State Signal element into the language container.

The Tri-State Signal element is displayed in the language container in SAMA format.

SAMA Representation: FBD Representation:

FLAG BOOL

TYPE DINT

X1 REAL

X2 REAL

X3 REAL

OUT REAL
1900 Windows Runtime Modules - SAMA Elements and Functions

To insert a TriState function block

1. From the Toolbox, drag the block element into the language container.

The Block Selector is displayed.

2. In the Block Selector, select TriState, then click OK.

The Tri-State Signal element is displayed in the language container in SAMA format.
Automation Collaborative Platform 1901

Velocity Limiting

Arguments:

Description:

When the rate of change of the input value is less then the limit value, the output value is equal
to the input value.

To insert a Velocity Limiting element

� From the Toolbox, drag the Velocity Limiting element into the language container.

The Velocity Limiting element is displayed in the language container in SAMA format.

To insert a HighSignalLimiter function block

1. From the Toolbox, drag the block element into the language container.

The Block Selector is displayed.

2. In the Block Selector, select HighSignalLimiter, then click OK.

The Velocity Limiting element is displayed in the language container in SAMA format.

SAMA Representation: FBD Representation:

I I REAL

High_ Limit HL REAL High limit

O O REAL
1902 Windows Runtime Modules - SAMA Elements and Functions

Safety Function Blocks
Note: The Safety function blocks are available separately. For details on using these blocks,
contact technical support at support@isagraf.com.

Safety function blocks perform various safety-related operations:

Safety C Function Block Description

SF_AND AND operator between a boolean input and a safety input
resulting in a safety output

SF_Antivalent Conversion of two safety inputs to one safety output

SF_EDM Controlling safety outputs and monitoring of controlled
actuators

SF_EmergencyStop Monitoring of emergency stop button and triggering of
emergency switch-off

SF_EnableSwitch Evaluation of signals from enabled switches

SF_Equivalent Conversion of two equivalent safety inputs to one safety
output

SF_ESPE Monitoring of electro-sensitive protective equipment

SF_GuardLocking Controlling of interlocking guard with four state guard
interlocking

SF_GuardMonitoring Monitoring safety guard with two switches and providing
time monitoring

SF_ModeSelector Selection of system operation mode

SF_MutingPar Suppression of safety functions using parallel muting
with four muting sensors

SF_MutingPar_2Sensor Suppression of safety functions using parallel muting
with two muting sensors

SF_MutingSeq Suppression of safety functions using sequential muting
with four muting sensors

SF_OutControl Controlling of safety output using safety and application
signals
Automation Collaborative Platform 1903

Diagnostic codes for safety function block errors:

SF_SafelyLimitedSpeed Activation of safety limited speed monitoring

SF_SafeStop1 Initiation of a controlled stop (IEC 60204-1, category 1)

SF_SafeStop2 Initiation of a controlled stop (IEC 60204-1, category 2)

SF_SafetyRequest Places the actuator in a safe state

SF_TestableSafetySensor Detection of loss of sensing, exceeding of response time,
or static "On" signals

SF_TwoHandControlTypeII Two-hand control functionality (EN 574, Section 4, Type
II)

SF_TwoHandControlTypeIII Two-hand control functionality (EN 574, Section 4, Type
III)

0000_0000_0000_0000bin The function block is not activated or safety CPU is halted

10xx_xxxx_xxxx_xxxxbin The activated function block is in an operational state without an
error

11xx_xxxx_xxxx_xxxxbin The activated function block is in an error state
X = a function block specific code

0xxx_xxxx_xxxx_xxxxbin X = system or device specific message

Note: 0000hex is reserved

0000_0000_0000_0000bin

0000hex

The function block is inactivated and in the Idle state

1000_0000_0000_0000bin

8000hex

The function block is activated and is without an error or any
condition that sets the safety output to FALSE.
The default operational state
Safety output S_Out = TRUE

1000_0000_0000_0001bin

8001hex

The function block is activated
The Initial operational state
Safety input S_In = TRUE
Safety output S_Out = FALSE
1904 Windows Runtime Modules - Safety Function Blocks

1000_0000_0000_0010bin

8002hex

The activated function block detects a safety demand and disables
the safety output
Safety input S_In = FALSE
Safety output S_Out = FALSE

1000_0000_0000_0011bin

8003hex

The activated function block detected a safety demand in the past
and the safety output continues to be disabled until it is reset
Safety input S_In = TRUE
Safety output S_Out = FALSE
Automation Collaborative Platform 1905

SF_AND
Note: The Safety function blocks are available separately. For details on using these blocks,
contact technical support at support@isagraf.com.

Arguments:

Description:

AND operator between two terms having the BOOL and SAFEBOOL data types.

s_in SAFEBOOL

in BOOL

s_out SAFEBOOL Safebool AND of the input terms
1906 Windows Runtime Modules - Safety Function Blocks

SF_Antivalent
Note: The Safety function blocks are available separately. For details on using these blocks,
contact technical support at support@isagraf.com.

Arguments:

Activate Act BOOL Activation of the function block
A variable or a constant
FALSE = All output variables are set to initial
values
TRUE = No device connected
Initial value = FALSE

S_ChannelNC S_NC SAFEBOOL Variable input for Normally Closed connection
FALSE = No contact open
TRUE = No contact closed
Initial value = FALSE

S_ChannelNO S_NO SAFEBOOL Variable input for Normally Open connection
FALSE = No contact open
TRUE = No contact closed
Initial value = TRUE

DiscrepancyTime Time TIME A constant value for the maximum monitoring
time of discrepancy status for both inputs
Initial value = T#0ms

Ready Rdy BOOL TRUE = Function block is activated and output
results are valid
FALSE = Function block is inactive and the
program is not executed
Initial value = FALSE
Automation Collaborative Platform 1907

Description:

Converts two antivalent safety input values into one safety output value with discrepancy and
time monitoring

S_AntivalentOut Sout SAFEBOOL Safety related output
FALSE = Minimum of one "not active" input
signal received or the status changed outside of
the monitoring time
TRUE = Input signals are "active" or the status
changed within the monitoring time
Initial value = FALSE

Error Err BOOL Error flag
TRUE = An error has occurred and the function
block is in an error state
FALSE = No error observed
Initial value = FALSE

DiagCode Diag WORD Diagnostic code in hexadecimal format
Indicates the first detected error
Initial value = 16#0000
1908 Windows Runtime Modules - Safety Function Blocks

SF_EDM
Note: The Safety function blocks are available separately. For details on using these blocks,
contact technical support at support@isagraf.com.

Arguments:

Activate Act BOOL Activation of the function block
A variable or a constant
FALSE = All output variables are set to
initial values
TRUE = Device disconnected
Initial value = FALSE

S_OutControl S_OC SAFEBOOL A variable.
Control signal from the proceeding safety
function blocks
FALSE = Disabled safety output S_EO
TRUE = Enabled safety output S_EO
Initial value = FALSE
Automation Collaborative Platform 1909

S_EDM1 S_E1 SAFEBOOL A variable
Feedback signal from the first connected
actuator
FALSE = Switching state of the first
connected actuator
TRUE = Initial state of the first connected
actuator
Initial value = FALSE

S_EDM2 S_E2 SAFEBOOL A variable
Feedback signal from the second connected
actuator
FALSE = Switching state of the second
connected actuator
TRUE = Initial state of the second connected
actuator
Initial value = FALSE

MonitoringTime Time TIME A constant
Maximum response time for the connected
and monitored actuators
Initial value = #0ms

S_StartReset S_SR SAFEBOOL A variable or a constant
FALSE = Manual reset when Programmable
Electronic System is started (warm or cold).
TRUE = Automatic reset when
Programmable Electronic System is started
(warm or cold).
Initial value = FALSE

Reset Rst BOOL A variable
Reset of error on the state machine or manual
functional reset by the operator
Resetting action occurs when the signal
changes from FALSE to TRUE
A static TRUE signal = No further action
Initial value = FALSE
1910 Windows Runtime Modules - Safety Function Blocks

Description:

Controls a safety output and monitors controlled actuators

SF_EDM is used for external device monitoring.

Ready Rdy BOOL TRUE = function block is activated and
output results are valid
FALSE = function block is inactive and the
program is not executed
Initial value = FALSE

S_EDM_Out S_EO SAFEBOOL Controls the actuator
FALSE = Disable connected actuators
TRUE = Enable connected actuators
Initial value = FALSE

Error Err BOOL Error flag
TRUE = an error has occurred and the
function block is in an error state
FALSE = no error observed
Initial value = FALSE

DiagCode Diag WORD Diagnostic code in hexadecimal format
Indicates the first detected error
Initial value = 16#0000
Automation Collaborative Platform 1911

SF_EmergencyStop
Note: The Safety function blocks are available separately. For details on using these blocks,
contact technical support at support@isagraf.com.

Arguments:

Activate Act BOOL Activation of the function block
A variable or a constant
FALSE = all output variables are set to initial
values
TRUE = no device connected
Initial value = FALSE

S_EStopIn S_ES SAFEBOOL A variable
The safety demand input value
FALSE = Safety-related response demanded
TRUE = Safety-related response not requested
Initial value = FALSE

S_StartReset S_SR SAFEBOOL A variable or a constant
FALSE = Manual reset when Programmable
Electronic System is started (warm or cold).
TRUE = Automatic reset when Programmable
Electronic System is started (warm or cold).
Initial value = FALSE
1912 Windows Runtime Modules - Safety Function Blocks

Description:

Monitors an emergency stop button

SF_Emergancy is used to trigger emergency switch-off functionality (stop category 0) (stop
category 1 or 2 when additional peripheral support is provided).

S_AutoReset S_AR SAFEBOOL A variable or a constant
FALSE = Manual reset occurs when emergency
stop is released
TRUE = Automatic reset occurs when emergency
stop is released
Initial value = FALSE

Reset Rst BOOL A variable
Reset of error on the state machine or manual
functional reset by the operator
Resetting action occurs when the signal changes
from FALSE to TRUE
A static TRUE signal = No further action
Initial value = FALSE

Ready Rdy BOOL TRUE = function block is activated and output
results are valid
FALSE = function block is inactive and the
program is not executed
Initial value = FALSE

S_EStopOut S_ES SAFEBOOL Safety-related response output value
FALSE = Safety output is disabled
TRUE = Safety output is enabled
Initial value = FALSE

Error Err BOOL Error flag
TRUE = an error has occurred and the function
block is in an error state
FALSE = no error observed
Initial value = FALSE

DiagCode Diag WORD Diagnostic code in hexadecimal format
Indicates the first detected error
Initial value = 16#0000
Automation Collaborative Platform 1913

SF_Emergancy stop overrides all other commands.
1914 Windows Runtime Modules - Safety Function Blocks

SF_EnableSwitch
Note: The Safety function blocks are available separately. For details on using these blocks,
contact technical support at support@isagraf.com.

Arguments:

Activate Act BOOL Activation of the function block
A variable or a constant
FALSE = all output variables are set to initial
values
TRUE = no device connected
Initial value = FALSE

S_SafetyActive S_SA SAFEBOOL A variable or constant value
Confirmation of safe mode
FALSE = Safe mode is inactive
TRUE = Safe mode is active
Initial value = FALSE

S_EnableSwitchCh1 S_S1 SAFEBOOL A variable
Signal from contacts E1 and E2 of the
connected enable switch
FALSE = Connected switches are open
TRUE = Connected switches are closed
Initial value = FALSE
Automation Collaborative Platform 1915

S_EnableSwitchCh2 S_S2 SAFEBOOL A variable
Signal from contacts E3 and E4 of the
connected enable switch
FALSE = Connected switches are open
TRUE = Connected switches are closed
Initial value = FALSE

S_AutoReset S_AR SAFEBOOL A variable or a constant
FALSE = Manual reset occurs when
emergency stop is released
TRUE = Automatic reset occurs when
emergency stop is released
Initial value = FALSE

Reset Rst BOOL A variable
Reset of error on the state machine or manual
functional reset by the operator
Resetting action occurs when the signal
changes from FALSE to TRUE
A static TRUE signal = No further action
Initial value = FALSE

Ready Rdy BOOL TRUE = function block is activated and output
results are valid
FALSE = function block is inactive and the
program is not executed
Initial value = FALSE

S_EnableSwitchOut S_ES SAFEBOOL Safety-related output value
Indicates suspension of guard
FALSE = Disable suspension of safeguarding
TRUE = Enable suspension of safeguarding
Initial value = FALSE

Error Err BOOL Error flag
TRUE = an error has occurred and the
function block is in an error state
FALSE = no error observed
Initial value = FALSE
1916 Windows Runtime Modules - Safety Function Blocks

Description:

Evaluates the signals of an enabled switch with three positions

DiagCode Diag WORD Diagnostic code in hexadecimal format
Indicates the first detected error
Initial value = 16#0000
Automation Collaborative Platform 1917

SF_Equivalent
Note: The Safety function blocks are available separately. For details on using these blocks,
contact technical support at support@isagraf.com.

Arguments:

Activate Act BOOL Activation of the function block
A variable or a constant
FALSE = all output variables are set to initial
values
TRUE = no device connected
Initial value = FALSE

S_ChannelA S_A SAFEBOOL A variable
Input A for logical connection
FALSE = Contact A is open
TRUE = Contact A is closed
Initial value = FALSE

S_ChannelB S_B SAFEBOOL A variable
Input B for logical connection
FALSE = Contact B is open
TRUE = Contact B is closed
Initial value = FALSE

DiscrepancyTime Time TIME A constant
Maximum monitoring time for the discrepancy
status of both inputs
Initial value = T#0ms
1918 Windows Runtime Modules - Safety Function Blocks

Description:

Converts two equivalent SAFEBOOL inputs to one SAFEBOOL output, including
discrepancy time monitoring

SF_Equivalent is used with other safety functionalities. Use of SF_Equivalent as a stand-alone
function block is not recommended.

Ready Rdy BOOL TRUE = function block is activated and output
results are valid
FALSE = function block is inactive and the
program is not executed
Initial value = FALSE

S_EquivalentOut Sout SAFEBOOL Safety-related output value
FALSE = A minimum of one output is set to
"FALSE" or the status changed outside of the
monitoring time
TRUE = Input signals are active and status
changed during the monitoring time
Initial value = FALSE

Error Err BOOL Error flag
TRUE = an error has occurred and the function
block is in an error state
FALSE = no error observed
Initial value = FALSE

DiagCode Diag WORD Diagnostic code in hexadecimal format
Indicates the first detected error
Initial value = 16#0000
Automation Collaborative Platform 1919

SF_ESPE
Note: The Safety function blocks are available separately. For details on using these blocks,
contact technical support at support@isagraf.com.

Arguments:

Activate Act BOOL Activation of the function block
A variable or a constant
FALSE = all output variables are set to initial values
TRUE = no device connected
Initial value = FALSE

S_ESPE_In S_EI SAFEBOOL A variable
Safety demand input
FALSE = ESPE actuated, demand for safety response
TRUE = ESPE not actuated, no demand for safety
response
Initial value = FALSE

S_StartReset S_SR SAFEBOOL A variable or a constant
FALSE = Manual reset when Programmable
Electronic System is started (warm or cold).
TRUE = Automatic reset when Programmable
Electronic System is started (warm or cold).
Initial value = FALSE
1920 Windows Runtime Modules - Safety Function Blocks

Description:

Monitors electro-sensitive protective equipment (ESPE)

S_AutoReset S_AR SAFEBOOL A variable or a constant
FALSE = Manual reset occurs when emergency stop
is released
TRUE = Automatic reset occurs when emergency
stop is released
Initial value = FALSE

Reset Rst BOOL A variable
Reset of error on the state machine or manual
functional reset by the operator
Resetting action occurs when the signal changes
from FALSE to TRUE
A static TRUE signal = No further action
Initial value = FALSE

Ready Rdy BOOL TRUE = function block is activated and output
results are valid
FALSE = function block is inactive and the program
is not executed
Initial value = FALSE

S_ESPE_Out S_EO SAFEBOOL Safety-related response value
FALSE = Safety output disabled, demand for
response
TRUE = Safety output enabled, no demand for
response
Initial value = FALSE

Error Err BOOL Error flag
TRUE = an error has occurred and the function block
is in an error state
FALSE = no error observed
Initial value = FALSE

DiagCode Diag WORD Diagnostic code in hexadecimal format
Indicates the first detected error
Initial value = 16#0000
Automation Collaborative Platform 1921

SF_GuardLocking
Note: The Safety function blocks are available separately. For details on using these blocks,
contact technical support at support@isagraf.com.

Arguments:

Activate Act BOOL Activation of the function block
A variable or a constant
FALSE = all output variables are set to initial
values
TRUE = no device connected
Initial value = FALSE

S_GuardMonitoring S_GM SAFEBOOL A variable.
Status of the external device monitoring area
(EDM), monitoring or safe time off delay.
FALSE = Machine in an "unsafe" state.
TRUE: Machine in safe state.

S_SafetyActive S_SA SAFEBOOL A variable or constant value
Confirmation of safe mode
FALSE = Safe mode is inactive
TRUE = Safe mode is active
Initial value = FALSE
1922 Windows Runtime Modules - Safety Function Blocks

S_GuardLock S_GL SAFEBOOL A variable
Status of the mechanical guard locking
FALSE = Guard is unlocked
TRUE = Guard is locked
Initial value = FALSE

UnlockRequest UnLc BOOL A variable
Request to unlock the guard by operator
FALSE = Unlock not requested
TRUE = Unlock requested
Initial value = FALSE

S_StartReset S_SR SAFEBOOL A variable or a constant
FALSE = Manual reset when Programmable
Electronic System is started (warm or cold)
TRUE = Automatic reset when Programmable
Electronic System is started (warm or cold)
Initial value = FALSE

S_AutoReset S_AR SAFEBOOL A variable or a constant
FALSE = Manual reset occurs when
emergency stop is released
TRUE = Automatic reset occurs when
emergency stop is released
Initial value = FALSE

Reset Rst BOOL A variable
Used to request that the guard be re-locked
Reset of error on the state machine or manual
functional reset by the operator
Resetting action occurs when the signal
changes from FALSE to TRUE
A static TRUE signal = No further action
Initial value = FALSE

Ready Rdy BOOL TRUE = function block is activated and output
results are valid
FALSE = function block is inactive and the
program is not executed
Initial value = FALSE
Automation Collaborative Platform 1923

Description:

Controls an entrance to a hazardous area using an interlocking guard with guard locking (four
state interlocking)

S_GuardLocked S_GL SAFEBOOL Interface to hazardous area to be stopped
FALSE = Unsafe state
TRUE = Safe state
Initial value = FALSE

S_UnlockGuard S_UG SAFEBOOL Signal to unlock the guard
FALSE = The guard is locked
TRUE = Commanded unlocking of the guard
Initial value = FALSE

Error Err BOOL Error flag
TRUE = an error has occurred and the
function block is in an error state
FALSE = no error observed
Initial value = FALSE

DiagCode Diag WORD Diagnostic code in hexadecimal format
Indicates the first detected error
Initial value = 16#0000
1924 Windows Runtime Modules - Safety Function Blocks

SF_GuardMonitoring
Note: The Safety function blocks are available separately. For details on using these blocks,
contact technical support at support@isagraf.com.

Arguments:

Activate Act BOOL Activation of the function block
A variable or a constant
FALSE = all output variables are set to initial
values
TRUE = no device connected
Initial value = FALSE

S_GuardSwitch1 S_S1 SAFEBOOL A variable
The input for guard switch 1
FALSE = Guard switch 1 is open
TRUE = Guard switch 1 is closed
Initial value = FALSE

S_GuardSwitch2 S_S2 SAFEBOOL A variable
The input for guard switch 2
FALSE = Guard switch 2 is open
TRUE = Guard switch 2 is closed
Initial value = FALSE
Automation Collaborative Platform 1925

DiscrepancyTime Time TIME A constant
Configures the monitored synchronous time
between S_GuardSwitch1 and
S_GuardSwitch2
Initial value = T#0ms

S_StartReset S_SR SAFEBOOL A variable or a constant
FALSE = Manual reset when Programmable
Electronic System is started (warm or cold).
TRUE = Automatic reset when Programmable
Electronic System is started (warm or cold).
Initial value = FALSE

S_AutoReset S_AR SAFEBOOL A variable or a constant
FALSE = Manual reset occurs when
emergency stop is released
TRUE = Automatic reset occurs when
emergency stop is released
Initial value = FALSE

Reset Rst BOOL A variable
Reset of error on the state machine or manual
functional reset by the operator
Resetting action occurs when the signal
changes from FALSE to TRUE
A static TRUE signal = No further action
Initial value = FALSE

Ready Rdy BOOL TRUE = function block is activated and output
results are valid
FALSE = function block is inactive and the
program is not executed
Initial value = FALSE

S_GuardMonitoring S_GM SAFEBOOL Output value indicating the status of the guard
FALSE = Guard is inactive
TRUE = Guard is active, both S_S1 and S_S2
are set to TRUE, and no error is observed
Initial value = FALSE
1926 Windows Runtime Modules - Safety Function Blocks

Description:

Monitors the required safety guard using independent input parameters for each of the two
guard switches and provides time monitoring

Error Err BOOL Error flag
TRUE = an error has occurred and the function
block is in an error state
FALSE = no error observed
Initial value = FALSE

DiagCode Diag WORD Diagnostic code in hexadecimal format
Indicates the first detected error
Initial value = 16#0000
Automation Collaborative Platform 1927

SF_ModeSelector
Note: The Safety function blocks are available separately. For details on using these blocks,
contact technical support at support@isagraf.com.

Arguments:

Activate Act BOOL Activation of the function block
A variable or a constant
FALSE = all output variables are set to initial
values
TRUE = no device connected
Initial value = FALSE
1928 Windows Runtime Modules - Safety Function Blocks

S_Mode0 S_M0 SAFEBOOL A variable or a constant
Input 0 from the mode selector switch
FALSE = Mode 0 is not requested by operator
TRUE = Mode 0 is requested by operator
Initial value = FALSE

S_Mode1 S_M1 SAFEBOOL A variable or a constant
Input 1 from the mode selector switch
FALSE = Mode 1 is not requested by operator
TRUE = Mode 1 is requested by operator
Initial value = FALSE

S_Mode2 S_M2 SAFEBOOL A variable or a constant
Input 2 from the mode selector switch
FALSE = Mode 2 is not requested by operator
TRUE = Mode 2 is requested by operator
Initial value = FALSE

S_Mode3 S_M3 SAFEBOOL A variable or a constant
Input 3 from the mode selector switch
FALSE = Mode 3 is not requested by operator
TRUE = Mode 3 is requested by operator
Initial value = FALSE

S_Mode4 S_M4 SAFEBOOL A variable or a constant
Input 4 from the mode selector switch
FALSE = Mode 4 is not requested by operator
TRUE = Mode 4 is requested by operator
Initial value = FALSE

S_Mode5 S_M5 SAFEBOOL A variable or a constant
Input 5 from the mode selector switch
FALSE = Mode 5 is not requested by operator
TRUE = Mode 5 is requested by operator
Initial value = FALSE

S_Mode6 S_M6 SAFEBOOL A variable or a constant
Input 6 from the mode selector switch
FALSE = Mode 6 is not requested by operator
TRUE = Mode 6 is requested by operator
Initial value = FALSE
Automation Collaborative Platform 1929

S_Mode7 S_M7 SAFEBOOL A variable or a constant
Input 7 from the mode selector switch
FALSE = Mode 7 is not requested by operator
TRUE = Mode 7 is requested by operator
Initial value = FALSE

AutoSetMode S_UL SAFEBOOL A variable or a constant
Locks the selected mode
FALSE = The selected safety mode output is
locked, outputs are unaffected by changes to any
input, even in the event of a rising edge of
Set-Mode.
TRUE = The selected safety mode output is
unlocked, a mode selection change is possible
Initial value = FALSE

ModeMonitorTime S_Mo SAFEBOOL A variable or a constant FALSE output when
Auto is set to TRUE
Sets a mode is acknowledged by the operator
Change to one of a safety mode inputs (example:
S_Mx) leads to the S_Sa output value / S_Sx
output value = FALSE
A rising S_Mo trigger causes S_Sx = TRUE
Initial value = FALSE

AutoSetMode Auto BOOL A constant
Parameterizes the acknowledgment mode
FALSE = Changes in mode are acknowledged
by the operator using S_Mo
TRUE = When S_Mo is unlocked, a valid
change to a safety mode input (example: S_Mx)
leads to a change in safety mode output
(example: S_Sx) using S_Mo
Initial value = FALSE

ModeMonitorTime Time TIME A constant
Maximum permissible time for changing the
selection input
Initial value = T#0
1930 Windows Runtime Modules - Safety Function Blocks

Reset Rst BOOL A variable
Reset of error on the state machine or manual
functional reset by the operator
Resetting action occurs when the signal changes
from FALSE to TRUE
A static TRUE signal = No further action
Initial value = FALSE

Ready Rdy BOOL TRUE = function block is activated and output
results are valid
FALSE = function block is inactive and the
program is not executed
Initial value = FALSE

S_Mode0Sel S_S0 SAFEBOOL Indicates whether the S_M0 input is selected
and acknowledged
FALSE = S_M0 is deselected or inactive
TRUE = S_M0 is selected and active
Initial value = FALSE

S_Mode1Sel S_S1 SAFEBOOL Indicates whether the S_M1input is selected and
acknowledged
FALSE = S_M1 is deselected or inactive
TRUE = S_M1 is selected and active
Initial value = FALSE

S_Mode2Sel S_S2 SAFEBOOL Indicates whether the S_M2 input is selected
and acknowledged
FALSE = S_M2 is deselected or inactive
TRUE = S_M2 is selected and active
Initial value = FALSE

S_Mode3Sel S_S3 SAFEBOOL Indicates whether the S_M3 input is selected
and acknowledged
FALSE = S_M3 is deselected or inactive
TRUE = S_M3 is selected and active
Initial value = FALSE
Automation Collaborative Platform 1931

S_Mode4Sel S_S4 SAFEBOOL Indicates whether the S_M4 input is selected
and acknowledged
FALSE = S_M4 is deselected or inactive
TRUE = S_M4 is selected and active
Initial value = FALSE

S_Mode5Sel S_S5 SAFEBOOL Indicates whether the S_M5 input is selected
and acknowledged
FALSE = S_M5 is deselected or inactive
TRUE = S_M5 is selected and active
Initial value = FALSE

S_Mode6Sel S_S6 SAFEBOOL Indicates whether the S_M6 input is selected
and acknowledged
FALSE = S_M6 is deselected or inactive
TRUE = S_M6 is selected and active
Initial value = FALSE

S_Mode7Sel S_S7 SAFEBOOL Indicates whether the S_M7 input is selected
and acknowledged
FALSE = S_M7 is deselected or inactive
TRUE = S_M7 is selected and active
Initial value = FALSE

S_AnyModeSel S_Sa SAFEBOOL Indicates whether one of the eight input modes
(S_M0 through S_M7) is selected and
acknowledged
FALSE = The input modes are deselected or
inactive
TRUE = One of the input modes is selected and
active
Initial value = FALSE

Error Err BOOL Error flag
TRUE = an error has occurred and the function
block is in an error state
FALSE = no error observed
Initial value = FALSE

DiagCode Diag WORD Diagnostic code in hexadecimal format
Indicates the first detected error
Initial value = 16#0000
1932 Windows Runtime Modules - Safety Function Blocks

Description:

Selects the system operation mode
Automation Collaborative Platform 1933

SF_MutingPar
Note: The Safety function blocks are available separately. For details on using these blocks,
contact technical support at support@isagraf.com.

Arguments:

Activate Act BOOL Activation of the function block
A variable or a constant
FALSE = all output variables are set to initial
values
TRUE = no device connected
Initial value = FALSE
1934 Windows Runtime Modules - Safety Function Blocks

S_AOPD_In S_AI SAFEBOOL A variable
Output signal switching device (OSSD) signal
from the active opto-electronic protective device
(AOPD)
FALSE = Protection field is interrupted
TRUE = Protection field is uninterrupted
Initial value = FALSE

MutingSwitch11 MS11 BOOL A variable
The status of muting sensor 11 (MS11)
FALSE = MS11 is not actuated
TRUE = MS11 is actuated
Initial value = FALSE

MutingSwitch12 MS12 BOOL A variable
The status of muting sensor 12 (MS12)
FALSE = MS12 is not actuated
TRUE = MS12 is actuated
Initial value = FALSE

MutingSwitch21 MS21 BOOL A variable
The status of muting sensor 21 (MS21)
FALSE = MS21 is not actuated
TRUE = MS21 is actuated
Initial value = FALSE

MutingSwitch22 MS22 BOOL A variable
The status of muting sensor 22 (MS22)
FALSE = MS22 is not actuated
TRUE = MS22 is actuated
Initial value = FALSE

S_MutingLamp S_ML SAFEBOOL A variable or a constant
Indicates the operation of the muting lamp
FALSE = Failure of the muting lamp
TRUE = Muting lamp is operational
Initial value = FALSE

DiscTime11_12 DT1 TIME A constant 0..4s;
Maximum discrepancy time for MS11 and MS12
Initial value = T#0s
Automation Collaborative Platform 1935

DiscTime21_22 DT2 TIME A constant 0..4s;
Maximum discrepancy time for MS21 and MS22
Initial value = T#0s

MaxMutingTime MMT TIME A constant 0..10min;
Maximum time for the complete muting
sequence, time starts when the first muting sensor
is actuated
Initial value = T#0s

MutingEnable ME BOOL A variable or a constant
Control system command that enables the start of
the muting function
ME signal after the muting function has stated,
you can switch off the ME signal
FALSE = The muting is disabled
TRUE = The ability to start the muting function is
enabled

S_StartReset S_SR SAFEBOOL A variable or a constant
FALSE = Manual reset when Programmable
Electronic System is started (warm or cold).
TRUE = Automatic reset when Programmable
Electronic System is started (warm or cold).
Initial value = FALSE

Reset Rst BOOL A variable
Reset of error on the state machine or manual
functional reset by the operator
Resetting action occurs when the signal changes
from FALSE to TRUE
A static TRUE signal = No further action
Initial value = FALSE

Ready Rdy BOOL TRUE = function block is activated and output
results are valid
FALSE = function block is inactive and the
program is not executed
Initial value = FALSE
1936 Windows Runtime Modules - Safety Function Blocks

Description:

Suppresses safety functions using parallel muting with four muting sensors

SF_MutingPar is unable to detect short circuits in the muting sensor signals or functional
application errors affecting the signal supply.

S_AOPD_Out S_AO SAFEBOOL Safety-related output
Indicates the status of the muted guard
FALSE = Active opto-electronic protective device
(AOPD) protection field is interrupted and muting
is inactive
TRUE = AOPD protection field and muting
process are active
Initial value = FALSE

S_MutingActive S_MA SAFEBOOL Indicates the status of the muting process
FALSE = Muting process is inactive
TRUE = Muting process is active
Initial value = FALSE

Error Err BOOL Error flag
TRUE = an error has occurred and the function
block is in an error state
FALSE = no error observed
Initial value = FALSE

DiagCode Diag WORD Diagnostic code in hexadecimal format
Indicates the first detected error
Initial value = 16#0000
Automation Collaborative Platform 1937

SF_MutingPar_2Sensor
Note: The Safety function blocks are available separately. For details on using these blocks,
contact technical support at support@isagraf.com.

Arguments:

Activate Act BOOL Activation of the function block
A variable or a constant
FALSE = all output variables are set to initial
values
TRUE = no device connected
Initial value = FALSE

S_AOPD_In S_AI SAFEBOOL A variable
Output signal switching device (OSSD) signal
from the active opto-electronic protective
device (AOPD)
FALSE = Protection field is interrupted
TRUE = Protection field is uninterrupted
Initial value = FALSE
1938 Windows Runtime Modules - Safety Function Blocks

S_MutingSwitch11 MS11 BOOL A variable
The status of muting sensor 11 (MS11)
FALSE = MS11 is not actuated
TRUE = MS11 is actuated
Initial value = FALSE

S_MutingSwitch12 MS12 BOOL A variable
The status of muting sensor 12 (MS12)
FALSE = MS12 is not actuated
TRUE = MS12 is actuated
Initial value = FALSE

S_MutingLamp S_ML SAFEBOOL A variable or a constant
Indicates the operation of the muting lamp
FALSE = Failure of the muting lamp
TRUE = Muting lamp is operational
Initial value = FALSE

DiscTimeEntry DTE TIME A constant 0..4s;
Maximum discrepancy time for MS11 and
MS12 when entering the muting gate
Initial value = T#0s

MaxMutingTime MMT TIME A constant 0..10min;
Maximum time for the complete muting
sequence, time starts when the first muting
sensor is actuated
Initial value = T#0s

MutingEnable ME BOOL A variable or a constant
Control system command that enables the start
of the muting function
ME signal after the muting function has stated,
you can switch off the ME signal
FALSE = The muting is disabled
TRUE = The ability to start the muting function
is enabled
Automation Collaborative Platform 1939

S_StartReset S_SR SAFEBOOL A variable or a constant
FALSE = Manual reset when Programmable
Electronic System is started (warm or cold).
TRUE = Automatic reset when Programmable
Electronic System is started (warm or cold).
Initial value = FALSE

Reset Rst BOOL A variable
Reset of error on the state machine or manual
functional reset by the operator
Resetting action occurs when the signal changes
from FALSE to TRUE
A static TRUE signal = No further action
Initial value = FALSE

Ready Rdy BOOL TRUE = function block is activated and output
results are valid
FALSE = function block is inactive and the
program is not executed
Initial value = FALSE

S_AOPD_Out S_AO SAFEBOOL Safety-related output
Indicates the status of the muted guard
FALSE = Active opto-electronic protective
device (AOPD) protection field is interrupted
and muting is inactive
TRUE = AOPD protection field and muting
process are active
Initial value = FALSE

S_MutingActive S_MA SAFEBOOL Indicates the status of the muting process
FALSE = Muting process is inactive
TRUE = Muting process is active
Initial value = FALSE

Error Err BOOL Error flag
TRUE = an error has occurred and the function
block is in an error state
FALSE = no error observed
Initial value = FALSE
1940 Windows Runtime Modules - Safety Function Blocks

Description:

Suppresses safety functions using parallel muting with two muting sensors

DiagCode Diag WORD Diagnostic code in hexadecimal format
Indicates the first detected error
Initial value = 16#0000
Automation Collaborative Platform 1941

SF_MutingSeq
Note: The Safety function blocks are available separately. For details on using these blocks,
contact technical support at support@isagraf.com.

Arguments:

Activate Act BOOL Activation of the function block
A variable or a constant
FALSE = all output variables are set to initial
values
TRUE = no device connected
Initial value = FALSE

S_AOPD_In S_AI SAFEBOOL A variable
Output signal switching device (OSSD) signal
from the active opto-electronic protective
device (AOPD)
FALSE = Protection field is interrupted
TRUE = Protection field is uninterrupted
Initial value = FALSE
1942 Windows Runtime Modules - Safety Function Blocks

MutingSwitch11 MS11 BOOL A variable
The status of muting sensor 11 (MS11)
FALSE = MS11 is not actuated
TRUE = MS11 is actuated
Initial value = FALSE

MutingSwitch12 MS12 BOOL A variable
The status of muting sensor 12 (MS12)
FALSE = MS12 is not actuated
TRUE = MS12 is actuated
Initial value = FALSE

MutingSwitch21 MS21 BOOL A variable
The status of muting sensor 21 (MS21)
FALSE = MS21 is not actuated
TRUE = MS21 is actuated
Initial value = FALSE

MutingSwitch22 MS22 BOOL A variable
The status of muting sensor 22 (MS22)
FALSE = MS22 is not actuated
TRUE = MS22 is actuated
Initial value = FALSE

S_MutingLamp S_ML SAFEBOOL A variable or a constant
Indicates the operation of the muting lamp
FALSE = Failure of the muting lamp
TRUE = Muting lamp is operational
Initial value = FALSE

MaxMutingTime Time TIME A constant 0..10min;
Maximum time for the complete muting
sequence, time starts when the first muting
sensor is actuated
Initial value = T#0s
Automation Collaborative Platform 1943

MutingEnable ME BOOL A variable or a constant
Control system command that enables the start
of the muting function
ME signal after the muting function has stated,
you can switch off the ME signal
FALSE = The muting is disabled
TRUE = The ability to start the muting function
is enabled

S_StartReset S_SR SAFEBOOL A variable or a constant
FALSE = Manual reset when Programmable
Electronic System is started (warm or cold).
TRUE = Automatic reset when Programmable
Electronic System is started (warm or cold).
Initial value = FALSE

Reset Rst BOOL A variable
Reset of error on the state machine or manual
functional reset by the operator
Resetting action occurs when the signal
changes from FALSE to TRUE
A static TRUE signal = No further action
Initial value = FALSE

Ready Rdy BOOL TRUE = function block is activated and output
results are valid
FALSE = function block is inactive and the
program is not executed
Initial value = FALSE

S_AOPD_Out S_AO SAFEBOOL Safety-related output
Indicates the status of the muted guard
FALSE = Active opto-electronic protective
device (AOPD) protection field is interrupted
and muting is inactive
TRUE = AOPD protection field and muting
process are active
Initial value = FALSE
1944 Windows Runtime Modules - Safety Function Blocks

Description:

Suppresses safety functions using sequential muting with four muting sensors

SF_MutingSeq is unable to detect short circuits in the muting sensor signals or functional
application errors affecting the signal supply.

S_MutingActive S_MA SAFEBOOL Indicates the status of the muting process
FALSE = Muting process is inactive
TRUE = Muting process is active
Initial value = FALSE

Error Err BOOL Error flag
TRUE = an error has occurred and the function
block is in an error state
FALSE = no error observed
Initial value = FALSE

DiagCode Diag WORD Diagnostic code in hexadecimal format
Indicates the first detected error
Initial value = 16#0000
Automation Collaborative Platform 1945

SF_OutControl
Note: The Safety function blocks are available separately. For details on using these blocks,
contact technical support at support@isagraf.com.

Arguments:

Activate Act BOOL Activation of the function block
A variable or a constant
FALSE = all output variables are set to initial values
TRUE = no device connected
Initial value = FALSE

S_SafeControl S_SC SAFEBOOL A variable
Control signal form the preceding safety function
blocks
FALSE = The preceding safety function blocks are
in the safe state
TRUE = The preceding safety function blocks have
enabled safely control
Initial value = FALSE

ProcessControl PC BOOL A variable or a constant
Control signal from the functional application
FALSE = Request to set S_OC output to false
TRUE = Request to set S_OC output to true
Initial value = FALSE
1946 Windows Runtime Modules - Safety Function Blocks

StaticControl SC BOOL A constant
Optional conditions for process control
FALSE = After activation of the function block or
triggering of the safety function, a dynamic change
to the PC input value (from FALSE to TRUE) and
restarting the function block is required
TRUE: After activation of the function block or
triggering of the safety function, a dynamic change
to the PC input value is unnecessary
Initial value = FALSE

S_StartReset S_SR SAFEBOOL A variable or a constant
FALSE = Manual reset when Programmable
Electronic System is started (warm or cold).
TRUE = Automatic reset when Programmable
Electronic System is started (warm or cold).
Initial value = FALSE

S_AutoReset S_AR SAFEBOOL A variable or a constant
FALSE = Manual reset occurs when emergency stop
is released
TRUE = Automatic reset occurs when emergency
stop is released
Initial value = FALSE

Reset Rst BOOL A variable
Reset of error on the state machine or manual
functional reset by the operator
Resetting action occurs when the signal changes
from FALSE to TRUE
A static TRUE signal = No further action
Initial value = FALSE

Ready Rdy BOOL TRUE = function block is activated and output
results are valid
FALSE = function block is inactive and the program
is not executed
Initial value = FALSE
Automation Collaborative Platform 1947

Description:

Controls safety output using a signal from the functional application and a safety signal with
optional startup restraints

S_OutControl S_OC SAFEBOOL Controls connected actuators
FALSE = Disable connected actuators
TRUE = Enable connected actuators
Initial value = FALSE

Error Err BOOL Error flag
TRUE = an error has occurred and the function
block is in an error state
FALSE = no error observed
Initial value = FALSE

DiagCode Diag WORD Diagnostic code in hexadecimal format
Indicates the first detected error
Initial value = 16#0000
1948 Windows Runtime Modules - Safety Function Blocks

SF_SafelyLimitedSpeed
Note: The Safety function blocks are available separately. For details on using these blocks,
contact technical support at support@isagraf.com.

Arguments:

Activate Act BOOL Activation of the function block
A variable or a constant
FALSE = all output variables are set to initial
values
TRUE = no device connected
Initial value = FALSE

S_OpMode S_OM SAFEBOOL A variable
Operation mode selection
FALSE = Indicates safe operation mode
TRUE = Deselection of safe operation mode and
selection of operation mode
Initial value = FALSE

S_Enabled S_En SAFEBOOL A variable
Enables axis movement
FALSE = In safe operation mode, axis movement
is prohibited
TRUE = In safe operation mode, axis movement is
permitted
Initial value = FALSE
Automation Collaborative Platform 1949

Description:

Activates safety limited speed monitoring

AxisID Axis INT A constant
Unique axis identification, axis address
Initial value = 0

MonitingTime Time TIME A constant
Response time between the safety function request
(S_OM input = FALSE) and the acknowledgment
(S_SA output = TRUE)
Initial value = T#0s

Reset Rst BOOL A variable
Reset of error on the state machine or manual
functional reset by the operator
Resetting action occurs when the signal changes
from FALSE to TRUE
A static TRUE signal = No further action
Initial value = FALSE

Ready Rdy BOOL TRUE = function block is activated and output
results are valid
FALSE = function block is inactive and the
program is not executed
Initial value = FALSE

S_SafetyActive S_SA SAFEBOOL A variable or constant value
Confirmation of safe mode
FALSE = Safe mode is inactive
TRUE = Safe mode is active
Initial value = FALSE

Error Err BOOL Error flag
TRUE = an error has occurred and the function
block is in an error state
FALSE = no error observed
Initial value = FALSE

DiagCode Diag WORD Diagnostic code in hexadecimal format
Indicates the first detected error
Initial value = 16#0000
1950 Windows Runtime Modules - Safety Function Blocks

The functional application initiates the axis movement.
Automation Collaborative Platform 1951

SF_SafeStop1
Note: The Safety function blocks are available separately. For details on using these blocks,
contact technical support at support@isagraf.com.

Arguments:

Activate Act BOOL Activation of the function block
A variable or a constant
FALSE = all output variables are set to initial values
TRUE = no device connected
Initial value = FALSE

S_StopIn S_SI SAFEBOOL A variable
Safe stop request input derived from a safety
function block
Preceding function blocks ensure the restart
interlock
FALSE = Safe stop is requested
TRUE = Safe stop is unrequested
Initial value = FALSE

AxisID Axis INT A constant
The drive address
Initial value = 0

MonitoringTime Time TIME A constant
Time required to stop the drive
Initial value = T#0s
1952 Windows Runtime Modules - Safety Function Blocks

Description:

Initiates a controlled stop of an electrical drive in accordance with category 1 in IEC 60204-1

SF_SafeStop1 provides the functionality of Safe Stop 1 (SS1) and Safe Torque Off (SSO) from
the standard IEC 61800-5-2.

Reset Rst BOOL A variable
Reset of error on the state machine or manual
functional reset by the operator
Resetting action occurs when the signal changes
from FALSE to TRUE
A static TRUE signal = No further action
Initial value = FALSE

Ready Rdy BOOL TRUE = function block is activated and output
results are valid
FALSE = function block is inactive and the
program is not executed
Initial value = FALSE

S_Stopped S_s SAFEBOOL Safety output value
Indicates the motion status of the drive
FALSE = Drive is uninterrupted
TRUE = Drive is stopped
Initial value = FALSE

Error Err BOOL Error flag
TRUE = an error has occurred and the function
block is in an error state
FALSE = no error observed
Initial value = FALSE

DiagCode Diag WORD Diagnostic code in hexadecimal format
Indicates the first detected error
Initial value = 16#0000
Automation Collaborative Platform 1953

SF_SafeStop2
Note: The Safety function blocks are available separately. For details on using these blocks,
contact technical support at support@isagraf.com.

Arguments:

Activate Act BOOL Activation of the function block
A variable or a constant
FALSE = all output variables are set to initial
values
TRUE = no device connected
Initial value = FALSE

S_StopIn S_SI SAFEBOOL A variable
Safe stop request input derived from a safety
function block
Preceding function blocks ensure the restart
interlock
FALSE = Safe stop is requested
TRUE = Safe stop is unrequested
Initial value = FALSE

AxisID Axis INT A constant
The drive address
Initial value = 0

MonitoringTime Time TIME A constant
Time required to stop the drive
Initial value = T#0s
1954 Windows Runtime Modules - Safety Function Blocks

Description:

Initiates a controlled stop of an electrical drive in accordance with category 2 of IEC 60204-1

SF_SafeStop2 provides the functionality of Safe Stop 2 (SS2) and Safe Operating Stop (SOS)
from the IEC 61800-5-2 standard.

Reset Rst BOOL A variable
Reset of error on the state machine or manual
functional reset by the operator
Resetting action occurs when the signal changes
from FALSE to TRUE
A static TRUE signal = No further action
Initial value = FALSE

Ready Rdy BOOL TRUE = function block is activated and output
results are valid
FALSE = function block is inactive and the
program is not executed
Initial value = FALSE

S_Standstill S_ss SAFEBOOL Safety output value
Indicates the motion status of the drive
FALSE = Drive is uninterrupted
TRUE = Drive is at a controlled standstill
Initial value = FALSE

Error Err BOOL Error flag
TRUE = an error has occurred and the function
block is in an error state
FALSE = no error observed
Initial value = FALSE

DiagCode Diag WORD Diagnostic code in hexadecimal format
Indicates the first detected error
Initial value = 16#0000
Automation Collaborative Platform 1955

SF_SafetyRequest
Note: The Safety function blocks are available separately. For details on using these blocks,
contact technical support at support@isagraf.com.

Arguments:

Activate Act BOOL Activation of the function block
A variable or a constant
FALSE = all output variables are set to initial
values
TRUE = no device connected
Initial value = FALSE

S_OpMode S_Op SAFEBOOL A variable
Requests the mode of a safe actuator
FALSE = Safe mode is requested
TRUE = Operation mode is requested
Initial value = FALSE

S_Acknowledge S_Ac SAFEBOOL A variable
Confirms the actuator state
FALSE = Operation mod
TRUE = Safe mode
Initial value = FALSE

MonitoringTime Time TIME A constant
Response time between the safety function request
(S_Op input = FALSE) and the actuator
acknowledgment (S_SA output = TRUE)
Initial value = T#0s
1956 Windows Runtime Modules - Safety Function Blocks

Description:

Places the actuator in the safe state

Reset Rst BOOL A variable
Reset of error on the state machine or manual
functional reset by the operator
Resetting action occurs when the signal changes
from FALSE to TRUE
A static TRUE signal = No further action
Initial value = FALSE

Ready Rdy BOOL TRUE = function block is activated and output
results are valid
FALSE = function block is inactive and the
program is not executed
Initial value = FALSE

S_SafetyActive S_SA SAFEBOOL A variable or constant value
Confirmation of safe state
FALSE = Unsafe state
TRUE = Safe state
Initial value = FALSE

S_SafetyRequest S_SR SAFEBOOL Request to place the actuator in the safe state
FALSE = Safe state is requested
TRUE = Unsafe state
Initial value = FALSE

Error Err BOOL Error flag
TRUE = an error has occurred and the function
block is in an error state
FALSE = no error observed
Initial value = FALSE

DiagCode Diag WORD Diagnostic code in hexadecimal format
Indicates the first detected error
Initial value = 16#0000
Automation Collaborative Platform 1957

SF_TestableSafetySensor
Note: The Safety function blocks are available separately. For details on using these blocks,
contact technical support at support@isagraf.com.

Arguments:

Activate Act BOOL Activation of the function block
A variable or a constant
FALSE = all output variables are set to initial
values
TRUE = no device connected
Initial value = FALSE

S_OSSD_In S_OI SAFEBOOL A variable
Status of sensor output
FALSE = The safety sensor is in test state or a
safety-related response is requested
TRUE = Normal operation of the sensor
Initial value = FALSE

startTest Tst BOOL A variable
Sets S_TO and begins internal time monitoring
FALSE = Test is unrequested
TRUE = Test is requested
Initial value = FALSE
1958 Windows Runtime Modules - Safety Function Blocks

TestTime Time TIME A constant
Range = 0...150ms
The test time for safety sensors
Initial value = T#10ms

NoExternalTest NET BOOL A constant
Indicates whether external manual testing is
supported
FALSE = External manual testing is supported
TRUE = External manual testing is unsupported
Initial value = FALSE

S_StartReset S_SR SAFEBOOL A variable or a constant
FALSE = Manual reset when Programmable
Electronic System is started (warm or cold).
TRUE = Automatic reset when Programmable
Electronic System is started (warm or cold).
Initial value = FALSE

S_AutoReset S_AR SAFEBOOL A variable or a constant
FALSE = Manual reset occurs when emergency
stop is released
TRUE = Automatic reset occurs when emergency
stop is released
Initial value = FALSE

Reset Rst BOOL A variable
Reset of error on the state machine or manual
functional reset by the operator
Resetting action occurs when the signal changes
from FALSE to TRUE
A static TRUE signal = No further action
Initial value = FALSE

Ready Rdy BOOL TRUE = function block is activated and output
results are valid
FALSE = function block is inactive and the
program is not executed
Initial value = FALSE
Automation Collaborative Platform 1959

Description:

Detects loss of sensing capability, exceeding of specified response time, or static "On" signal
in a single-channel sensor systems

S_OSSD_Out S_OO SAFEBOOL Indicates the status of the electro-sensitive
protective equipment (ESPE)
FALSE = A safety-related action is requested or a
test error is observed
TRUE = A safety-related action is not requested
and no test errors observed
Initial value = FALSE

S_TestOut S_TO SAFEBOOL Safety related output indicating the status of the test
request
Coupled to the test input of the sensor
FALSE = Test request issued
TRUE = Test request canceled
Initial value = FALSE

TestPossible Tst BOOL The process feedback signal
FALSE = Automatic sensor testing is disabled
TRUE= Automatic sensor testing is enabled
Initial value = FALSE

TestExecuted Exec BOOL A positive signal edge indicates the successful
execution of the automatic sensor test
FALSE = An automatic sensor test was not
executed, is active, or was faulty
TRUE= An automatic sensor test was executed
successfully
Initial value = FALSE

Error Err BOOL Error flag
TRUE = an error has occurred and the function
block is in an error state
FALSE = no error observed
Initial value = FALSE

DiagCode Diag WORD Diagnostic code in hexadecimal format
Indicates the first detected error
Initial value = 16#0000
1960 Windows Runtime Modules - Safety Function Blocks

Used for external testable safety sensors such as electro-sensitive protective equipment
(ESPE).
Automation Collaborative Platform 1961

SF_TwoHandControlTypeII
Note: The Safety function blocks are available separately. For details on using these blocks,
contact technical support at support@isagraf.com.

Arguments:

Activate Act BOOL Activation of the function block
A variable or a constant
FALSE = all output variables are set to initial
values
TRUE = no device connected
Initial value = FALSE

S_Button1 S_B1 SAFEBOOL A variable
Input from button 1 (for category 3 or 4: two
antivalent contacts)
FALSE = Button 1 is released
TRUE = Button 1 is actuated
Initial value = FALSE

S_Button2 S_B2 SAFEBOOL A variable
Input from button 2 (for category 3 or 4: two
antivalent contacts)
FALSE = Button 2 is released
TRUE = Button 2 is actuated
Initial value = FALSE

Ready Rdy BOOL TRUE = function block is activated and output
results are valid
FALSE = function block is inactive and the
program is not executed
Initial value = FALSE
1962 Windows Runtime Modules - Safety Function Blocks

Description:

Provides two-hand control functionality in accordance with EN 574, Section 4, Type II

S_TwoHandOut S_TH SAFEBOOL Safety related output signal
FALSE = Correct two hand operation unobserved
TRUE = Correct two hand operation observed,
S_B1 and S_B2 are set to TRUE and no errors
occurred
Initial value = FALSE

Error Err BOOL Error flag
TRUE = an error has occurred and the function
block is in an error state
FALSE = no error observed
Initial value = FALSE

DiagCode Diag WORD Diagnostic code in hexadecimal format
Indicates the first detected error
Initial value = 16#0000
Automation Collaborative Platform 1963

SF_TwoHandControlTypeIII
Note: The Safety function blocks are available separately. For details on using these blocks,
contact technical support at support@isagraf.com.

Arguments:

Activate Act BOOL Activation of the function block
A variable or a constant
FALSE = all output variables are set to initial values
TRUE = no device connected
Initial value = FALSE

S_Button1 S_B1 SAFEBOOL A variable
Input from button 1 (for category 3 or 4: two
antivalent contacts)
FALSE = Button 1 is released
TRUE = Button 1 is actuated
Initial value = FALSE

S_Button2 S_B2 SAFEBOOL A variable
Input from button 2 (for category 3 or 4: two
antivalent contacts)
FALSE = Button 2 is released
TRUE = Button 2 is actuated
Initial value = FALSE

Ready Rdy BOOL TRUE = function block is activated and output
results are valid
FALSE = function block is inactive and the program
is not executed
Initial value = FALSE
1964 Windows Runtime Modules - Safety Function Blocks

Description:

Provides two-hand control functionality in accordance with EN 574, Section 4, Type III

Note: The fixed specified time difference is 500 ms.

S_TwoHandOut S_TH SAFEBOOL Safety related output signal
FALSE = Correct two hand operation unobserved
TRUE = Correct two hand operation observed,
S_B1 and S_B2 are set to TRUE and no errors
occurred
Initial value = FALSE

Error Err BOOL Error flag
TRUE = an error has occurred and the function
block is in an error state
FALSE = no error observed
Initial value = FALSE

DiagCode Diag WORD Diagnostic code in hexadecimal format
Indicates the first detected error
Initial value = 16#0000
Automation Collaborative Platform 1965

Index
Symbols
- operator (CAM 3) 546
- operator (CAM 5) 1259
* operator (CAM 3) 544
* operator (CAM 5) 1255
/ operator (CAM 3) 548
/operator (CAM 5) 1261
+ operator (CAM 3) 545
+ operator (CAM 5) 1257
< operator (CAM 3) 566
< operator (CAM 5) 1308
<= operator (CAM 3) 565
<= operator (CAM 5) 1306
<> operator (CAM 3) 569
<> operator (CAM 5) 1312
= operator (CAM 3) 555
= operator (CAM 5) 1300
> operator (CAM 3) 557
> operator (CAM 5) 1304
>= operator (CAM 3) 556
>= operator (CAM 5) 1302

Numerics
1 gain operator (CAM 3) 550
1 gain operator (CAM 5) 1263

A
ABS function (CAM 3) 577
ABS function (CAM 5) 1321
ABS_LREAL function 1569
access control, setting passwords for elements

728
accessing

device view 393, 901
diagnostic information for resources 758
licensing (CAM 3) 695
licensing (CAM 5) 1467
toolbox 107

ACOS function (CAM 3) 578
ACOS function (CAM 5) 1322
ACOS_LREAL function 1570
action, animation effect for ISaVIEW objects 88
action blocks

attaching to steps 968
Automation Collaborative Platform 1967

coding and deleting SFC steps (CAM 5)
1149

types of 968
actions in steps

boolean (CAM 5) 1151
boolean, in IEC 61499 language 970
non-stored (CAM 5) 1154
non-stored, in IEC 61499 language 973
pulse (CAM 5) 1152
pulse, in IEC 61499 language 971
SFC 1156

activating
licensing (CAM 3) 695
licensing (CAM 5) 1467

ADD_MATRIX function block 1759
ADD_MATRIX, MATRIX2 operation 1711
add-ins, managing 153
adding

dependency variables to the spy list 43
devices for I/O wiring (CAM 3) 397
devices for I/O wiring (CAM 5) 909
devices to projects (CAM 3) 274
devices to projects (CAM 5) 702
external tools 155
function blocks (CAM 3) 281
function blocks (CAM 5) 717
functions (CAM 3) 279
functions (CAM 5) 715
ISaVIEW screens 51
networks 40
programs to devices 278
programs to interrupts, prompting to

associate when 201
programs to resources 712
resources to devices 705
variables to the group grid 283, 720

addition operator (CAM 3) 545
addition operator (CAM 5) 1257
advanced control blocks 1631

ANALOGALARM 1637
BATCHSWITCH 1646
BATCHTOTALIZER 1648

BIAS 1651
BIASCALIBRATION 1652
CHARACTERIZER 1654
COMPARATOR 1656
DIGITALALARM 1657
FLIPFLOP 1662
IPIDCONTROLLER 1664
LEADLAGBACONTROLLER 1677
LEADLAGCONTROLLER 1674
LIMITER 1681
PID_AL 1682
RATELIMITER 1685
RATIO 1687
RATIOCALIBRATION 1688
RETENTIVEONTIMER 1690
SCALER 1692
SETPOINT 1693
SIGNALSELECTOR 1695
TRACKANDHOLD 1696
TRANSFERSWITCH 1697

alarm management
LIM_ALRM function block (CAM 3) 665
LIM_ALRM function block (CAM 5) 1395

Alarm Signal (SAMA elements) 1170
alias names

for CAM 3 I/O devices, setting as default
222

for CAM 5 I/O devices, displaying and
setting as default 223

aligning, ISaVIEW objects 85
ANA operator 558
analog variables

conversion functions for 406
conversion tables for 404

ANALOGALARM function block 1637
AND operator (CAM 3) 551
AND operator (CAM 5) 1264
AND_MASK function (CAM 3) 579
AND_MASK function (CAM 5) 1323
AND_MASK_BYTE function 1571
AND_MASK_DWORD function 1572
AND_MASK_LWORD function 1573
1968 ISaGRAF 5 Concrete Automation Model - Index

AND_MASK_WORD function 1574
animation effects, ISaVIEW objects

action for 88
color of 90
defining for 87
displacement of 92
previewing (editable) 103
previewing (non-editable) 102
rotation of 94
size of 96
text in 98
visibility of 100

animation settings (ISaVIEW), customizing
options for 246

ANY (CAM 5)
data type 1230
overloading 1230

ANY_ELEMENTARY (CAM 5)
data typeoverloading

ANY_ELEMENTARY data
type 1231

overloading 1231
ANY_TO_BOOL operator 1266
ANY_TO_BYTE operator 1272
ANY_TO_DATE operator 1297
ANY_TO_DINT operator 1280
ANY_TO_DWORD operator 1284
ANY_TO_INT operator 1274
ANY_TO_LINT operator 1286
ANY_TO_LREAL operator 1294
ANY_TO_LWORD operator 1290
ANY_TO_REAL operator 1292
ANY_TO_SINT operator 1268
ANY_TO_STRING operator 1298
ANY_TO_TIME operator 1296
ANY_TO_UDINT operator 1282
ANY_TO_UINT operator 1276
ANY_TO_ULINT operator 1288
ANY_TO_USINT operator 1270
ANY_TO_WORD operator 1278
applications

monitoring values while running (CAM 5)
769

running online (CAM 3) 304
running online (CAM 5) 745
simulating the running of (CAM 3) 311
simulating the running of (CAM 5) 768

arc objects
inserting 57
setting default properties for 249

ARCREATE function 580
arithmetic operations

1 gain operator (CAM 3) 550
1 gain operator (CAM 5) 1263
ABS function (CAM 3) 577
ABS function (CAM 5) 1321
ABS_LREAL function 1569
ACOS function (CAM 3) 578
ACOS function (CAM 5) 1322
ACOS_LREAL function 1570
addition operator (CAM 3) 545
addition operator (CAM 5) 1257
ASIN function (CAM 3) 586
ASIN function (CAM 5) 1325
ASIN_LREAL function 1575
ATAN function (CAM 3) 587
ATAN function (CAM 5) 1326
ATAN_LREAL function 1576
COS function (CAM 3) 589
COS function (CAM 5) 1328
COS_LREAL function 1577
division operator (CAM 3) 548
division operator (CAM 5) 1261
EXPT function (CAM 3) 593
EXPT function (CAM 5) 1332
EXPT_LREAL function 1578
LOG function (CAM 3) 614
LOG function (CAM 5) 1340
LOG_LREAL function 1595
MOD function (CAM 3) 621
MOD function (CAM 5) 1347
multiplication operator (CAM 3) 544
multiplication operator (CAM 5) 1255
Automation Collaborative Platform 1969

NEG operator (CAM 3) 568
NEG operator (CAM 5) 1310
POW function (CAM 3) 629
POW function (CAM 5) 1355
POW_LREAL function 1604
RAND function (CAM 3) 630
RAND function (CAM 5) 1356
SIN function (CAM 3) 642
SIN function (CAM 5) 1367
SIN_LREAL function 1622
SQRT function (CAM 3) 643
SQRT function (CAM 5) 1368
SQRT_LREAL function 1623
subtraction operator (CAM 3) 546
subtraction operator (CAM 5) 1259
TAN function (CAM 3) 644
TAN function (CAM 5) 1370
TAN_LREAL function 1624
TRUNC function (CAM 3) 645
TRUNC function (CAM 5) 1371
TRUNC_LREAL function 1625

array management
ARCREATE function 580
ARREAD function 582
ARWRITE function 583

arrays
defining basic or derived types in the

parameters view 1250
derived data types 1227
managing, sorting, and filtering 881

arrays grid, customizing color options for 215
ARREAD function 582
arrow objects

inserting 58
setting default properties for 250

ARWRITE function 583
ASCII function (CAM 3) 585
ASCII function (CAM 5) 1324
ASIN function (CAM 3) 586
ASIN function (CAM 5) 1325
ASIN_LREAL function 1575
assignment

ST basic statement (CAM 3) 496
ST basic statement (CAM 5) 1094

ATAN function (CAM 3) 587
ATAN function (CAM 5) 1326
ATAN_LREAL function 1576
attaching action blocks to steps 968
attributes

of variables (CAM 3) 529
of variables (CAM 5) 1221

Automation Collaborative Platform, tools and
windows in the 1

AVERAGE function block (CAM 3) 648
AVERAGE function block (CAM 5) 1376
Averaging (SAMA elements) 1171

B
bar meter objects

inserting 74
setting default properties for 251

basic operations blocks 1631
BATCHSWITCH function block 1646
BATCHTOTALIZER function block 1648
Bias (SAMA elements and functions) 1173
BIAS function block 1651
BIASCALIBRATION function block 1652
binary operations

NOT_MASK function (CAM 3) 626
NOT_MASK function (CAM 5) 1352
NOT_MASK_BYTE function 1596
NOT_MASK_DWORD function 1597
NOT_MASK_LWORD function 1598
NOT_MASK_WORD function 1599
OR_MASK function (CAM 5) 1354
OR_MASK_BYTE function 1600
OR_MASK_DWORD function 1601
OR_MASK_LWORD function 1602
OR_MASK_WORD function 1603
ROL function (CAM 3) 636
ROL function (CAM 5) 1361
ROL_BYTE function 1605
1970 ISaGRAF 5 Concrete Automation Model - Index

ROL_DWORD function 1606
ROL_LWORD function 1607
ROL_WORD function 1608
ROR function (CAM 3) 637
ROR function (CAM 5) 1362
ROR_BYTE function 1609
ROR_DWORD function 1610
ROR_LWORD function 1611
ROR_WORD function 1612
SHL function (CAM 3) 639
SHL function (CAM 5) 1364
SHL_BYTE function 1614
SHL_DWORD function 1615
SHL_LWORD function 1616
SHL_WORD function 1617
SHR function (CAM 3) 640
SHR function (CAM 5) 1365
SHR_BYTE function 1618
SHR_DWORD function 1619
SHR_LWORD function 1620
SHR_WORD function 1621
XOR_MASK function (CAM 3) 646
XOR_MASK function (CAM 5) 1373
XOR_MASK_BYTE function 1626
XOR_MASK_DWORD function 1627
XOR_MASK_LWORD function 1628
XOR_MASK_WORD function 1629

bindings
managing for producer and consumer

variables 924
types and error variables for 919

BLINK function block (CAM 3) 650
BLINK function block (CAM 5) 1378
block library

accessing, managing blocks in 35
defining options for 208

block selector
displaying parameters in the 129
sorting and limiting searches 125

blocks
inserting in FBD (CAM 3) 416
inserting in FBD (CAM 5) 1002

managing in LD diagrams (CAM 3) 456
managing in LD diagrams (CAM 5) 1048

BOO operator 553
BOOL data type

variables and literal expressions, in (CAM 3)
535

variables and literal expressions, in (CAM 5)
1232

boolean actions
within steps in SFC language (CAM 5) 1151
within steps in the IEC 61499 language 970

boolean expressions (CAM 5) 1086
boolean operations

AND operator (CAM 3) 551
AND operator (CAM 5) 1264
AND_MASK function (CAM 3) 579
AND_MASK function (CAM 5) 1323
AND_MASK_BYTE function 1571
AND_MASK_DWORD function 1572
AND_MASK_LWORD function 1573
AND_MASK_WORD function 1574
F_TRIG function block (CAM 3) 661
F_TRIG function block (CAM 5) 1391
NOT operator 1311
ODD function (CAM 3) 627
ODD function (CAM 5) 1353
OR operator (CAM 3) 571
OR operator (CAM 5) 1314
R_TRIG function block (CAM 3) 667
R_TRIG function block (CAM 5) 1397
RS function block (CAM 3) 668
RS function block (CAM 5) 1398
SR function block (CAM 3) 671
SR function block (CAM 5) 1400
XOR operator (CAM 3) 573
XOR operator (CAM 5) 1316

branches
inserting in LD diagrams (CAM 3) 481
inserting in LD diagrams (CAM 5) 1074

breakpoints
managing, available types in FBD 997
Automation Collaborative Platform 1971

managing, available types in SFC (CAM 5)
1129

on step activation in SFC (CAM 5) 1131
on step deactivation in SFC (CAM 5) 1132
on transition in SFC (CAM 5) 1134

bringing objects to the front, ISaVIEW screens 86
browser, cross reference 897
building

elements (CAM 3) 300
elements (CAM 5) 741

button objects
inserting 65
modifying toolbar commands for 167
setting default properties for 252

BYTE, data types as variables and literal
expressions 1234

C
calling

function blocks (CAM 3) 525
function blocks (CAM 5) 1217
function blocks from transitions in IEC

61499 language 978
function blocks from transitions in SFC

language (CAM 5) 1162
functions (CAM 3) 524
functions (CAM 5) 1216
functions from transitions in IEC 61499

language 977
functions from transitions in SFC language

(CAM 5) 1161
CAM (Concrete Automation Model)

development process with (CAM 3) 271
development process with (CAM 5) 697

CAM3
defining options for 209

canceling local modifications 876
CASE

ST basic statements (CAM 3) 497
ST basic statements (CAM 5) 1095

CAT operator 554
CHAR function (CAM 3) 588
CHAR function (CAM 5) 1327
CHARACTERIZER function block 1654
child

SFC POUs (CAM 5) 1128
SFC program, of a (CAM 5) 1126

cleaning
setting the option for 200
solutions and project elements (CAM 3) 303
solutions and project elements (CAM 5) 744

clearing transitions (CAM 5) 1135
CMP function block (CAM 3) 651
CMP function block (CAM 5) 1379
code

managing generation 299
managing generation (CAM 5) 740

code generation, managing (CAM 3) 299
coding

action blocks for SFC steps (CAM 5) 1149
conditions for transitions (CAM 5) 1158

coherency of resource code 747
coils

direct type in FBD (CAM 3) 431
direct type in FBD (CAM 5) 1018
direct type in LD (CAM 3) 463
direct type in LD (CAM 5) 1056
pulse falling edge (negative) (CAM 3) 466
pulse falling edge (positive) (CAM 5) 1059
pulse rising edge (positive) (CAM 3) 465
pulse rising edge (positive) (CAM 5) 1058
reset in FBD (CAM 3) 435
reset in FBD (CAM 5) 1022
reset in LD (CAM 3) 469
reset in LD (CAM 5) 1062
reverse type in FBD (CAM 3) 432
reverse type in FBD (CAM 5) 1019
reverse type in LD (CAM 3) 464
reverse type in LD (CAM 5) 1057
Set for FBD (CAM 3) 433
Set for FBD (CAM 5) 1020
Set for LD (CAM 3) 467
1972 ISaGRAF 5 Concrete Automation Model - Index

Set for LD (CAM 5) 1060
usage and available types for FBD (CAM 3)

429
usage and available types for FBD (CAM 5)

1016
usage and available types for LD (CAM 3)

460
usage and available types for LD (CAM 5)

1053
collection editor

accessing, creating, editing members of
collections 48

collections, defining for color animation effect 90
colors

animation effect for ISaVIEW objects,
defining 90

arrays grid, options for the 215
customizing for interface items 191
defined words grid, options for 216
deployment view, defining for 210
dictionary, options for 217
parameters grid, options for 218
structures grid, options for 219
variable groups view, options for 220
variable selector, options for 221

COLS_MATRIX function block 1753
columns

arranging, in dictionary (CAM 5) 879
arranging, in the dictionary (CAM 3) 383
sorting in the variable selector 123

commands, modifying images for 167
comments

inserting, formatting options for, in FBD
(CAM 3) 444

inserting, formatting options for, in FBD
(CAM 5) 1032

inserting, formatting options for, in LD
(CAM 3) 454

inserting, formatting options for, in LD
(CAM 5) 1046

inserting in IEC 61499 programs and
composite blocks 984

communications
CONNECT function block 1381
URCV_S function block 1412
USEND_S function block 1414

COMPARATOR function block 1656
comparing versions from source control 873
comparison operations

CMP function block (CAM 5) 1379
CMP function block (CAM3) 651
equal operator (CAM 3) 555
equal operator (CAM 5) 1300
greater than operator (CAM 3) 557
greater than operator (CAM 5) 1304
greater than or equal operator (CAM 3) 556
greater than or equal operator (CAM 5) 1302
less than operator (CAM 3) 566
less than operator (CAM 5) 1308
less than or equal operator (CAM 3) 565
less than or equal operator (CAM 5) 1306
not equal operator (CAM 3) 569
not equal operator (CAM 5) 1312

composite function blocks, format of IEC 61499
979

concatenation operation, CAT operator 554
Concrete Automation Model

development process with (CAM 5) 697
Concrete Automation Model, development

process with (CAM 3) 271
conditions

coding for SFC transitions (CAM 5) 1158
programming and attaching, to transitons

974
programming for transitions in LD (Ladder

Diagram) 976
programming for transitions in ST

(Structured Text) 975
configuration manager

accessing 19
creating solution configurations 21
editing solution configurations 22
editing solution platforms 23
setting configuration properties 19
Automation Collaborative Platform 1973

configuration properties, setting 17
configuring

failover mechanisms 935
function block instances in FBD (CAM 5)

1033
function block instances in LD (CAM 5)

1075
I/O devices 1489

CONNECT function block 1381
connections 285
connections (devices to networks), managing 41
consumer variables, managing for bindings 924
consumption error variables 919
contacts

direct in FBD (CAM 3) 439
direct in FBD (CAM 5) 1026
direct in LD (CAM 3) 473
direct in LD (CAM 5) 1066
managing, available types in FBD (CAM 3)

437
managing, available types in FBD (CAM 5)

1024
managing, available types in LD (CAM 3)

471
managing, available types in LD (CAM 5)

1064
pulse falling edge (negative) in FBD (CAM

3) 442
pulse falling edge (negative) in FBD (CAM

5) 1029
pulse falling edge (negative) in LD (CAM 3)

476
pulse falling edge (negative) in LD (CAM 5)

1069
pulse rising edge (positive) in FBD (CAM 3)

441
pulse rising edge (positive) in FBD (CAM 5)

1028
pulse rising edge (positive) in LD (CAM 3)

475
pulse rising edge (positive) in LD (CAM 5)

1068

reverse in FBD (CAM 3) 440
reverse in FBD (CAM 5) 1027
reverse in LD (CAM 3) 474
reverse in LD (CAM 5) 1067

control repositories
accessing from the repository explorer 848
accessing from the working copy explorer

851
managing for source control 845

controllers, accessing status information for 905
convergence

selection, in SFC (CAM 5) 1144
simultaneous, in SFC (CAM 5) 1146

conversion
functions for analog variables 406
methods for I/O variables 403
tables for analog variables 404

COPY_COL_MATRIX function block 1747
COPY_COL_MATRIX, MATRIX2 operation

1703
COPY_MATRIX function block 1743
COPY_ROW_MATRIX function block 1745
COPY_ROW_MATRIX, MATRIX2 operation

1700
copying

elements in the Solution Explorer 3
ISaVIEW objects 80
parameters, local variables 131
spy list items 147
variables in the dictionary and variable

selector 121
COS function (CAM 3) 589
COS function (CAM 5) 1328
COS_LREAL function 1577
counters

CTD function block (CAM 3) 653
CTD function block (CAM 5) 1384
CTU function block (CAM 3) 655
CTU function block (CAM 5) 1386
CTUD function block (CAM 3) 657
CTUD function block (CAM 5) 1387

creating
1974 ISaGRAF 5 Concrete Automation Model - Index

arrays 881
defined words (CAM 3) 385
defined words (CAM 5) 888
ISaGRAF 3 projects 272
ISaVIEW screens 53
networks 40
passwords for elements 728
passwords for targets 730
projects 6
structures 885
toolbars 166
variable groups 283, 720
variables using quick declaration 118
variables with the variable selector 117

cross reference browser, accessing and toolbar
options for 897

CTD function block (CAM 5) 1384
CTD function block (CAM3) 653
CTU function block (CAM 3) 655
CTU function block (CAM 5) 1386
CTUD function block (CAM 3) 657
CTUD function block (CAM 5) 1387
CURRENT_ISA_DATE function 1329
customizing

dictionary instance grid (CAM 3) 383
dictionary instance grid (CAM 5) 879
error list 160
fonts and colors 191
toolbars 165

cutting
elements in Solution Explorer 3
ISaVIEW objects 80
parameters, local variables 131
spy list items 147
variables in the dictionary and variable

selector 121
cycle execution time for IEC 61499 programs 948
cycles

execution control charts, of 985
execution rules for devices 526
timing and execution rules for resources

1218

cyclical operations
in programs (CAM 3) 522
in programs (CAM 5) 1214

D
data conversion

ANA operator 558
ANY_TO_BOOL operator 1266
ANY_TO_BYTE operator 1272
ANY_TO_DATE operator 1297
ANY_TO_DINT operator 1280
ANY_TO_DWORD operator 1284
ANY_TO_INT operator 1274
ANY_TO_LINT operator 1286
ANY_TO_LREAL operator 1294
ANY_TO_LWORD operator 1290
ANY_TO_REAL operator 1292
ANY_TO_SINT operator 1268
ANY_TO_STRING operator 1298
ANY_TO_TIME operator 1296
ANY_TO_UDINT operator 1282
ANY_TO_UINT operator 1276
ANY_TO_ULINT operator 1288
ANY_TO_USINT operator 1270
ANY_TO_WORD operator 1278
BOO operator 553
MSG operator 567
OPERATE operator 570
REAL operator 559
TMR operator 572

data manipulation
AVERAGE function block (CAM 3) 648
AVERAGE function block (CAM 5) 1376
LIMIT function (CAM 3) 613
LIMIT function (CAM 5) 1338
MAX function (CAM 3) 615, 1341
MIN function (CAM 3) 618
MIN function (CAM 5) 1344
MUX4 function (CAM 3) 622
MUX4 function (CAM 5) 1348
Automation Collaborative Platform 1975

MUX8 function (CAM 3) 624
MUX8 function (CAM 5) 1350
SEL function (CAM 3) 638
SEL function (CAM 5) 1363

data types
ANY (CAM 5) 1230
ANY_ELEMENTARY (CAM 5) 1231
available 534
BOOL (CAM 3) 535
BOOL (CAM 5) 1232
DATE 1245
DINT 1237
elementary IEC 61131-3, derived types,

arrays and structures 1227
INT 1235
LINT 1239
LREAL 1242
message 540
motion control function blocks, for 1771
real (CAM 3) 537
real (CAM 5) 1241
SAFEBOOL 1249
safety 1248
SINT 1233
specifying numerical display of, when

monitoring 202
STRING 1246
TIME (CAM 3) 539
TIME (CAM 5) 1243
UDINT and DWORD 1238
UINT and WORD 1236
ULINT and LWORD 1240
USINT and BYTE 1234

DATE, data types as variables and literal
expressions 1245

DAY_TIME function 590
debug information

generating for ST POUs (CAM 3) 494
generating for ST POUs (CAM 5) 1090

debugging
failover mechanism, a 939
FBD programs (CAM 3) 414

FBD programs (CAM 5) 997
generating information for ST programs

(CAM 3) 494
generating information for ST programs

(CAM 5) 1090
IEC 61499 programs 949
LD programs (CAM 3) 451
LD programs (CAM 5) 1041
monitoring values while (CAM 3) 312
monitoring values while (CAM 5) 769
running applications online (CAM 3) 304
running applications online for (CAM 5) 745
SAMA programs 1168
SFC programs (CAM 5) 1129
targets in real-time or simulation (CAM 3)

306
targets in real-time or simulation (CAM 5)

755
viewing and unlocking locked variables

while 49
declared instances, creating and inserting 125
defined words

customizing color options in the grid 216
managing in the grid (CAM 3) 385
managing in the grid (CAM 5) 888
usage, naming in programs (CAM 3) 532
usage, naming in programs (CAM 5) 1226

DELETE function (CAM 3) 591
DELETE function (CAM 5) 1330
deleting

action blocks (CAM 5) 1149
arrays 881
connections (devices to networks) 41
defined words (CAM 3) 385
defined words (CAM 5) 888
devices from projects (CAM 3) 274
devices from projects (CAM 5) 702
elements in language containers 29
function blocks (CAM 3) 281
function blocks (CAM 5) 717
functions (CAM 3) 279
functions (CAM 5) 715
1976 ISaGRAF 5 Concrete Automation Model - Index

I/O devices (CAM 3) 397
I/O devices (CAM 5) 909
intermediate and output files (CAM 3) 303
intermediate and output files (CAM 5) 744
ISaVIEW objects 81
networks 40
passwords for elements 728
passwords for targets 730
programs from devices 278
programs from resources 712
resources from devices 705
structures 885
variables using the variable selector 122

dependencies
projects on libraries (CAM 3) 294
projects on libraries (CAM 5) 726
viewing for variables 43

deployment view
accessing 37
defining options for 210

DERIVATE function block (CAM 3) 659
DERIVATE function block (CAM 5) 1389
Derivative (SAMA elements) 1175
derived types

arrays 1250
structures 1251

description window, accessing instances of 269
development platforms

requirements for (CAM 3) 325
requirements for (CAM 5) 773

device view
accessing and using 393, 901
implementing failover mechanism using 941
monitoring failover mechanism using 939
options for 211

devices
adding to, deleting from the deployment

view 38
building (CAM 3) 300
building (CAM 5) 741
cleaning (CAM 3) 303
cleaning (CAM 5) 744

creating connections (devices to networks)
41

managing in projects (CAM 3) 274
managing in projects (CAM 5) 702
navigation window, accessing aspects and

information 25
diagnostic information, accessing for resources

758
diagram format

main, FBD (CAM 3) 410
main, FBD (CAM 5) 992
main, SAMA 1166

dictionary
accessing and customizing (CAM 3) 383
accessing and customizing (CAM 5) 879
accessing instances for dependency variables

43
arrays grid of 881
color options for 217
defined words grid (CAM 3) 385
defined words grid (CAM 5) 888
structures grid of 885
variables grid (CAM 3) 388
variables grid of, managing and properties

for (CAM 5) 891
Difference (SAMA elements) 1177
DIGITALALARM function block 1657
DINT, data types as variables and literal

expressions 1237
direct coils

in FBD (CAM 3) 431
in FBD (CAM 5) 1018
in LD (CAM 3) 463
in LD (CAM 5) 1056

direct contacts
in FBD (CAM 3) 439
in FBD (CAM 5) 1026
in LD (CAM 3) 473
in LD (CAM 5) 1066

directly represented variables (CAM 3) 531
directly represented variables (CAM 5) 1224
Automation Collaborative Platform 1977

displacement, animation effect for ISaVIEW
objects 92

display settings
dictionary (CAM 3) 383
dictionary (CAM 5) 879
FBD diagrams 225
IEC 61499 diagrams 229
LD diagrams 233
SAMA diagrams 236
SFC diagrams 238
ST diagrams 242

divergence
selection, in SFC (CAM 5) 1142
simultaneous in SFC (CAM 5) 1145

Dividing (SAMA elements) 1178
division operator (CAM 3) 548
division operator (CAM 5) 1261
document options 135
document overview, zooming in with the focus

box 27
documentation

generating 135
documentation generator 135
double integer data types, variables and literal

expressions 536
downloading

code to targets (CAM 3) 305
code to targets (CAM 5) 747

DUP_MATRIX function block 1741
DWORD, data types as variables and literal

expressions 1238
dynamic behavior

for SFC POUs (CAM 5) 1122

E
E_CTU function block 1421
E_CYCLE function block 1422
E_D_FF function block 1423
E_DELAY function block 1424
E_DEMUX function block 1425

E_F_TRIG function block 1426
E_MERGE function block 1427
E_N_TABLE function block 1428
E_PERMIT function block 1430
E_R_TRIG function block 1431
E_REND function block 1432
E_RESTART function block 1433
E_RS function block 1434
E_SELECT function block 1435
E_SPLIT function block 1436
E_SR function block 1437
E_SWITCH function block 1438
E_TABLE function block 1439
E_TABLE_CTRL function block 1441
E_TRAIN function block 1442
ECC (execution control chart)

behavior of 985
IEC 61499 basic function blocks, states for

957
edit box objects

inserting 66
setting default properties for 253

editing
arrays 881
defined words (CAM 3) 385
defined words (CAM 5) 888
ISaVIEW objects, physical appearance of 77
ISaVIEW objects, properties of 79
passwords for elements 728
passwords for targets 730
structures 885
variables with the variable selector 120

edition settings, defining for ISaVIEW screens
and objects 247

elementary IEC 61131 types, available for
programming 1228

elements
Alarm Signal (SAMA) 1170
Averaging (SAMA) 1171
basic, for ST (CAM 3) 495
basic, for ST (CAM 5) 1093
Bias (SAMA) 1173
1978 ISaGRAF 5 Concrete Automation Model - Index

composite IEC 61499 function blocks,
available for 979

Derivative (SAMA) 1175
Difference (SAMA) 1177
Dividing (SAMA) 1178
Equal To (SAMA) 1179
Exponential (SAMA) 1180
exporting 733
Greater Than (SAMA) 1181
High Limiting (SAMA) 1871
High Selecting (SAMA) 1182
importing 733
initial steps and steps, in SFC (CAM 5) 1138
Integral (SAMA) 1183
Integrate or Totalize (SAMA) 1872
IPID (SAMA) 1185
jumps (CAM 5) 1147
LD containers, available for (CAM 3) 453
LD containers, available for (CAM 5) 1045
Lesser Than (SAMA) 1190
Logical AND (SAMA) 1191
Logical OR (SAMA) 1193
Logical Signal (SAMA) 1195
Low Limiting (SAMA) 1874
Low Selecting (SAMA) 1196
managing in language containers 29
MATransfer (SAMA) 1875
MATransferSet (SAMA) 1877
Measuring or Readout (SAMA) 1197
Memory (Basic) (SAMA) 1879
Memory (Ro Dominant) (SAMA) 1883
Memory (So Dominant) (SAMA) 1881
Multiplying (SAMA) 1198
NOT (SAMA) 1199
PD (SAMA) 1888
Proportional (SAMA) 1885
Proportional and Integral (SAMA) 1886
Pulse Duration (SAMA) 1890
Pulse Duration of the Lesser Time (SAMA)

1892
Reverse Proportional (SAMA) 1894
Root Extraction (SAMA) 1200

SAMA Variable (SAMA) 1201
selection convergences (CAM 5) 1144
selection divergences (CAM 5) 1142
sequence controls (CAM 5) 1141
Server Monitored Variable (SAMA) 1202
SFC programs (CAM 5) 1136
Signal Monitor (SAMA) 1203
simultaneous convergences (CAM 5) 1146
simultaneous divergences (CAM 5) 1145
Summing (SAMA) 1205
Time Delay On Inititiation (SAMA) 1896
Time Delay On Termination (SAMA) 1898
Transfer (SAMA) 1206
transitions (CAM 5) 1140
Tri-State Signal (SAMA 1900
used in FBD (CAM 3) 415
used in FBD (CAM 5) 1001
used in SAMA 1169
Variable Signal Generator (SAMA) 1208
Velocity Limiting (SAMA) 1902

ellipse objects
inserting 59
setting default properties for 254

EN and ENO parameters, in blocks (CAM 3) 456
EN and ENO parameters, in blocks (CAM 5)

1048
environment options

modifying 188
source control, for 205

environment settings
managing 171

equal operator (CAM 3) 555
equal operator (CAM 5) 1300
Equal To (SAMA elements) 1179
error list, accessing and usage of 160
error messages, types and descriptions of 313
errors

build operations, in (CAM 3) 300
build operations, in (CAM 5) 741
rebuild operations, generated during (CAM

3) 302
Automation Collaborative Platform 1979

rebuild operations, generated during (CAM
5) 743

ETCP network type, setting 1485
event transitions for IEC 61499 basic function

blocks 959
events logger

error messages 1523
for target execution 762

execution
functions blocks, of (CAM 3) 525
functions blocks, of (CAM 5) 1217
functions, of (CAM 3) 524
functions, of (CAM 5) 1216
rules for device cycles 526
rules for resource cycles 1218

execution behavior, SFC language (CAM 5) 1124
execution control chart (ECC), behavior and

stages of 985
EXIT

ST basic statement (CAM 3) 498
EXIT, ST basic statement (CAM 5) 1097
explorer

repository for source control 848
solutions, accessing and managing elements

in 3
working copy, displaying contents of local

repository 854
working copy for source control 851

Exponential (SAMA elements) 1180
exporting

elements 733
environment settings 172
ISaVIEW screens as templates 55
variables 296, 736

expressions
locating with Quick Find 142
replacing with the Quick Replace utility 144
ST programs, in (CAM 3) 490
ST programs, in (CAM 5) 1086

EXPT function (CAM 3) 593
EXPT function (CAM 5) 1332
EXPT_LREAL function 1578

extensions
in ST (Structured Text) (CAM 3) 506

extensions in ST (Structured Text) (CAM 5) 1105
external tools, adding and managing 155

F
F_CLOSE function 594
F_EOF function 595
F_ROPEN function 597
F_TRIG function block (CAM 3) 661
F_TRIG function block (CAM 5) 1391
F_WOPEN function 598
FA_READ function 599
FA_WRITE function 601
failover mechanism

configuring for use 935
defining a 931
implementing on a Windows platform 941
limitations for systems 944
monitoring (online and debugging) 939

faulted status, controller 905
FBD (Function Block Diagram)

blocks, inserting(CAM 3) 416
blocks, inserting(CAM 5) 1002
coils, usage and available types (CAM 3)

429
coils, usage and available types (CAM 5)

1016
comments, inserting (CAM 3) 444
comments, inserting (CAM 5) 1032
configuring function block instances (CAM

5) 1033
contacts, usage and available types (CAM 3)

437
contacts, usage and available types (CAM 5)

1024
customizing display settings for 225
debugging (CAM 3) 414
debugging (CAM 5) 997
debugging SAMA programs 1168
1980 ISaGRAF 5 Concrete Automation Model - Index

direct coils (CAM 3) 431
direct coils (CAM 5) 1018
direct contacts (CAM 3) 439
direct contacts (CAM 5) 1026
elements (CAM 3) 415
elements (CAM 5) 1001
execution order (CAM 3) 413
execution order (CAM 5) 994
jumps to labels, inserting (CAM 3) 423
jumps to labels, inserting (CAM 5) 1010
labels, inserting (CAM 3) (CAM 3) 421
labels,inserting (CAM 5) 1008
left power rails, inserting (CAM 3) 427
left power rails, inserting (CAM 5) 1014
main diagram format (CAM 3) 410
main diagram format (CAM 5) 992
pulse falling edge (negative) contacts (CAM

3) 442
pulse falling edge (negative) contacts (CAM

5) 1029
pulse rising edge (positive) contacts (CAM

3) 441
pulse rising edge (positive) contacts (CAM

5) 1028
regions, inserting (CAM 3) 443
regions, inserting (CAM 5) 1030
reset coils (CAM 3) 435
reset coils (CAM 5) 1022
returns, inserting (CAM 3) 425
returns, inserting (CAM 5) 1012
reverse coils (CAM 3) 432
reverse coils (CAM 5) 1019
reverse contacts (CAM 3) 440
reverse contacts (CAM 5) 1027
right power rails, inserting (CAM 3) 428
right power rails, inserting(CAM 5) 1015
rungs, inserting (CAM 3) 426
rungs, inserting (CAM 5) 1013
Set coils (CAM 3) 433
Set coils (CAM 5) 1020
variables, inserting (CAM 3) 418
variables, inserting (CAM 5) 1005

vertical bars, inserting (CAM 3) 420
vertical bars, inserting (CAM 5) 1007

file management
F_CLOSE function 594
F_EOF function 595
F_ROPEN function 597
F_WOPEN function 598
FA_READ function 599
FA_WRITE function 601
FM_READ function 604
FM_WRITE function 606

filtering
arrays in the grid 881
defined words (CAM 3) 385
defined words (CAM 5) 888
structures 885
variables in the variable selector 124

find and replace
display settings for 190
possible operations for 141

FIND function (CAM 3) 608
FIND function (CAM 5) 1333
Find utility, Quick, working with 142
FLIPFLOP function block 1662
FM_READ function 604
FM_WRITE function 606
focus box, using to zoom within the workspace 27
fonts, customizing for interface items 191
FOR, TO, BY, DO, END_FOR

ST basic statements (CAM 3) 499
FOR, TO, BY, DO, END_FOR, ST

basic statement (CAM 5) 1098
forcing

clearing transitions (CAM 5) 1135
data types for literal values 1252
values of I/O variables 400
values of variables (CAM 3) 309
values of variables (CAM 5) 764

format
basic function blocks, of 952
comments, options for, in FBD (CAM 3) 444
Automation Collaborative Platform 1981

comments, options for, in FBD (CAM 5)
1032

IEC 61499 composite function blocks, of
979

IEC 61499 function blocks main, of 950
FREE_MATRIX function block 1731
freeing

channels of devices (CAM 3) 400
channels of devices (CAM 5) 912

full screen, expanding the workspace 27
Function Block Diagram (FBD), programming

language (CAM 3) 409
Function Block Diagram (FBD), programming

language (CAM 5) 991
function blocks

ADD_MATRIX 1759
ADD_MATRIX, MATRIX2 1711
adding (CAM 3) 281
adding (CAM 5) 717
advanced control 1631
ANALOGALARM 1637
AVERAGE (CAM 3) 648
AVERAGE (CAM 5) 1376
Averaging (SAMA) 1171
basic operations 1631
BATCHSWITCH 1646
BATCHTOTALIZER 1648
BIAS 1651
BIASCALIBRATION 1652
BLINK (CAM 3) 650
BLINK (CAM 5) 1378
calling from ST programs (CAM 3) 493
calling from ST programs (CAM 5) 1089
calling from transitions (CAM 5) 1162
calling from transitions in IEC 61499

language 978
CHARACTERIZER 1654
CMP 651, 1379
COLS_MATRIX 1753
COMPARATOR 1656
configuring instances in FBD (CAM 5) 1033
configuring instances in LD (CAM 5) 1075

CONNECT 1381
COPY_COL_MATRIX 1747
COPY_COL_MATRIX, MATRIX2 1703
COPY_MATRIX 1743
COPY_ROW_MATRIX 1745
COPY_ROW_MATRIX, MATRIX2 1700
creating declared instances of 125
CTD (CAM 3) 653
CTD (CAM 5) 1384
CTU (CAM 3) 655
CTU (CAM 5) 1386
CTUD (CAM 3) 657
CTUD (CAM 5) 1387
deleting (CAM 3) 281
deleting (CAM 5) 717
DERIVATE (CAM 3) 659
DERIVATE (CAM 5) 1389
Derivative (SAMA) 1175
DIGITALALARM 1657
DUP_MATRIX 1741
E_CTU 1421
E_CYCLE 1422
E_D_FF 1423
E_DELAY 1424
E_DEMUX 1425
E_F_TRIG 1426
E_MERGE 1427
E_N_TABLE 1428
E_PERMIT 1430
E_R_TRIG 1431
E_REND 1432
E_RESTART 1433
E_RS 1434
E_SELECT 1435
E_SPLIT 1436
E_SR 1437
E_SWITCH 1438
E_TABLE 1439
E_TABLE_CTRL 1441
E_TRAIN 1442
F_TRIG (CAM 3) 661
F_TRIG (CAM 5) 1391
1982 ISaGRAF 5 Concrete Automation Model - Index

FBD, inserting (CAM 5) 1002
FBD, inserting in (CAM 3) 416
FLIPFLOP 1662
FREE_MATRIX 1731
GET_F_MATRIX 1737
GET_I_MATRIX 1733
GET_TIME_STRUCT 1634
GET_VERSION, MATRIX2 1725
HYSTER (CAM 3) 662
HYSTER (CAM 5) 1392
IEC 61499 programs and composite blocks,

inserting in 980
INTEGRAL (CAM 3) 663
INTEGRAL (CAM 5) 1393
Integral (SAMA) 1183
INVERT_MATRIX 1757
INVERT_MATRIX, MATRIX2 1708
IPIDCONTROLLER 1664
LEADLAGBACONTROLLER 1677
LEADLAGCONTROLLER 1674
LIM_ALRM (CAM 3) 665
LIM_ALRM (CAM 5) 1395
LIMITER 1681
LocalEventInput 1444
main format in IEC 61499 programs 950
matrix operations 1631
MC_AbortTrigger 1780
MC_AccelerationProfile 1782
MC_CamIn 1784
MC_CamOut 1787
MC_CamTableSelect 1788
MC_DigitalCamSwitch 1790
MC_GearInPos 1795
MC_GearOut 1798
MC_Halt 1799
MC_Home 1801
MC_MoveAbsolute 1803
MC_MoveContinuousAbsolute 1808
MC_MoveContinuousRelative 1811
MC_MoveSuperimposed 1816
MC_MoveVelocity 1818
MC_PositionProfile 1823

MC_Power 1825
MC_ReadActualPosition 1827
MC_ReadActualTorque 1828
MC_ReadActualVelocity 1830
MC_ReadAxisError 1832
MC_ReadBoolParameter 1834
MC_ReadDigitalInput 1837
MC_ReadDigitalOutput 1839
MC_ReadParameter 1841
MC_ReadStatus 1844
MC_Reset 1847
MC_SetOverride 1848
MC_TorqueControl 1854
MC_TouchProbe 1857
MC_VelocityProfile 1859
MC_WriteBoolParameter 1861
MC_WriteDigitalOutput 1864
MC_WriteParameter 1866
MULTIPLY_MATRIX 1763
MULTIPLY_MATRIX, MATRIX2 1717
naming, parameters, and calling (CAM 3)

525
naming, parameters, and calling (CAM 5)

1217
NEW_MATRIX 1729
NOW 1636
PID_AL 1682
PRINT_MATRIX 1769
PRINT_MATRIX, MATRIX2 1723
PUT_F_MATRIX 1739
PUT_I_MATRIX 1735
R_TRIG (CAM 3) 667
R_TRIG (CAM 5) 1397
RATELIMITER 1685
RATIO 1687
RATIOCALIBRATION 1688
renaming (CAM 3) 281
renaming (CAM 5) 717
RETENTIVEONTIMER 1690
ROWS_MATRIX 1751
RS (CAM 3) 668
RS (CAM 5) 1398
Automation Collaborative Platform 1983

SCALAR_F_MATRIX 1767
SCALAR_I_MATRIX 1765
SCALAR_MATRIX, MATRIX2 1720
SCALER 1692
SEMA 670
SETPOINT 1693
SF_AND 1906
SF_Antivalent 1907
SF_EDM 1909
SF_EmergencyStop 1912
SF_EnableSwitch 1915
SF_Equivalent 1918
SF_ESPE 1920
SF_GuardLocking 1922
SF_GuardMonitoring 1925
SF_ModeSelector 1928
SF_MutingPar 1934
SF_MutingPar_2Sensor 1938
SF_MutingSeq 1942
SF_OutControl 1946, 1949
SF_SafeStop1 1952
SF_SafeStop2 1954
SF_SafetyRequest 1956
SF_TestableSafetySensor 1958
SF_TwoHandControlTypeII 1962
SF_TwoHandControlTypeIII 1964
SIG_GEN (CAM 3) 673
SIG_GEN (CAM 5) 1402
Signal Monitor (SAMA) 1203
SIGNALSELECTOR 1695
SR (CAM 3) 671
SR (CAM 5) 1400
STACKINT (CAM 3) 675
STACKINT (CAM 5) 1404
SUBTRACT_MATRIX 1761
SUBTRACT_MATRIX, MATRIX2 1714
summary of (CAM 3) 647
summary of (CAM 5) 1375
TOF (CAM 3) 677
TOF (CAM 5) 1406
TON (CAM 3) 678
TON (CAM 5) 1408

TP (CAM 3) 679
TP (CAM 5) 1410
TRACKANDHOLD 1696
TRANSFERSWITCH 1697
TRANSPOSE_MATRIX 1755
TRANSPOSE_MATRIX, MATRIX2 1706
TYPE_MATRIX 1749
types of 1631
URCV_S 1412
USEND_S 1414

functions
ABS (CAM 3) 577
ABS (CAM 5) 1321
ABS_LREAL 1569
ACOS (CAM 3) 578
ACOS (CAM 5) 1322
ACOS_LREAL 1570
adding, renaming, and deleting (CAM 3) 279
adding, renaming, and deleting (CAM 5) 715
AND_MASK (CAM 3) 579
AND_MASK (CAM 5) 1323
AND_MASK_BYTE 1571
AND_MASK_DWORD 1572
AND_MASK_LWORD 1573
AND_MASK_WORD 1574
ARCREATE 580
ARREAD 582
ARWRITE 583
ASCII (CAM 3) 585
ASCII (CAM 5) 1324
ASIN (CAM 3) 586
ASIN (CAM 5) 1325
ASIN_LREAL 1575
ATAN (CAM 3) 587
ATAN (CAM 5) 1326
ATAN_LREAL 1576
Bias (SAMA) 1173
calling from transitions (CAM 5) 1161
calling from transitions in IEC 61499

language 977
CHAR (CAM 3) 588
CHAR (CAM 5) 1327
1984 ISaGRAF 5 Concrete Automation Model - Index

COS (CAM 3) 589
COS (CAM 5) 1328
COS_LREAL 1577
CURRENT_ISA_DATE 1329
DAY_TIME 590
DELETE (CAM 3) 591
DELETE (CAM 5) 1330
Exponential (SAMA) 1180
EXPT (CAM 3) 593
EXPT (CAM 5) 1332
EXPT_LREAL 1578
F_CLOSE 594
F_EOF 595
F_ROPEN 597
F_WOPEN 598
FA_READ 599
FA_WRITE 601
FIND (CAM 3) 608
FIND (CAM 5) 1333
FM_READ 604
FM_WRITE 606
GET_TIME_STRING 1579
High Selecting (SAMA) 1182
HighLimit (SAMA) 1871
HighSignalLimiter (SAMA) 1902
INSERT (CAM 3) 609
INSERT (CAM 5) 1334
IPIDController (SAMA) 1185
ISA_SERIAL_CLOSE 1580
ISA_SERIAL_CONNECT 1581
ISA_SERIAL_DISCONNECT 1584
ISA_SERIAL_OPEN 1585
ISA_SERIAL_RECEIVE 1587
ISA_SERIAL_SEND 1589
ISA_SERIAL_SET 1591
ISA_SERIAL_STATUS 1593
LEFT (CAM 3) 611
LEFT (CAM 5) 1336
LIMIT (CAM 3) 613
LIMIT (CAM 5) 1338
LOCK_CPU 1339
LOG (CAM 3) 614

LOG (CAM 5) 1340
LOG_LREAL 1595
Low Selecting (SAMA) 1196
LowLimit (SAMA) 1874
MATransfer (SAMA) 1875
MATransferSet (SAMA) 1877
MAX (CAM 3) 615
MAX (CAM 5) 1341
MemBasict (SAMA) 1879
MemRS (SAMA) 1883
MemSR (SAMA) 1881
MID (CAM 3) 616
MID (CAM 5) 1342
MIN (CAM 3) 618
MIN (CAM 5) 1344
MLEN (CAM 3) 619
MLEN (CAM 5) 1345
MOD (CAM 3) 621
MOD (CAM 5) 1347
MUX4 (CAM 3) 622
MUX4 (CAM 5) 1348
MUX8 (CAM 3) 624
MUX8 (CAM 5) 1350
naming, usage, and execution of (CAM 3)

524
naming, usage, and execution of (CAM 5)

1216
NOT_MASK (CAM 3) 626
NOT_MASK (CAM 5) 1352
NOT_MASK_BYTE 1596
NOT_MASK_DWORD 1597
NOT_MASK_LWORD 1598
NOT_MASK_WORD 1599
ODD (CAM 3) 627
ODD (CAM 5) 1353
OR_MASK (CAM 5) 1354
OR_MASK_BYTE 1600
OR_MASK_DWORD 1601
OR_MASK_LWORD 1602
OR_MASK_WORD 1603
PD (SAMA) 1888
POW (CAM 3) 629
Automation Collaborative Platform 1985

POW (CAM 5) 1355
POW_LREAL 1604
Proportional (SAMA) 1885
PulseDuration (SAMA) 1890
PulseDurationOfTheLesserTime (SAMA)

1892
RAND (CAM 3) 630
RAND (CAM 5) 1356
RemoteTunedPI (SAMA) 1886
REPLACE (CAM 3) 632
REPLACE (CAM 5) 1357
ReverseProportional (SAMA) 1894
RIGHT (CAM 3) 634
RIGHT (CAM 5) 1359
ROL (CAM 3) 636
ROL (CAM 5) 1361
ROL_BYTE 1605
ROL_DWORD 1606
ROL_LWORD 1607
ROL_WORD 1608
Root Extraction (SAMA) 1200
ROR (CAM 3) 637
ROR (CAM 5) 1362
ROR_BYTE 1609
ROR_DWORD 1610
ROR_LWORD 1611
ROR_WORD 1612
SEL (CAM 5) 1363
SEL(CAM 3) 638
SET_PRIORITY 1613
SHL (CAM 3) 639
SHL (CAM 5) 1364
SHL_BYTE 1614
SHL_DWORD 1615
SHL_LWORD 1616
SHL_WORD 1617
SHR 1365
SHR (CAM 3) 640
SHR_BYTE 1618
SHR_DWORD 1619
SHR_LWORD 1620
SHR_WORD 1621

SIN (CAM 3) 642
SIN (CAM 5) 1367
SIN_LREAL 1622
SQRT (CAM 3) 643
SQRT (CAM 5) 1368
SQRT_LREAL 1623
ST programs, calling from (CAM 3) 492
ST programs, calling from (CAM 5) 1088
SUB_DATE_DATE 1369
summary of (CAM 3) 575
summary of (CAM 5) 1319
TAN (CAM 3) 644
TAN (CAM 5) 1370
TAN_LREAL 1624
TimeDelayOnInititiation (SAMA) 1896
TimeDelayOnTermination (SAMA) 1898
Totalizer (SAMA) 1872
TransferSwitch (SAMA) 1206
TriState (SAMA) 1900
TRUNC (CAM 3) 645
TRUNC (CAM 5) 1371
TRUNC_LREAL 1625
types of 1567
UNLOCK_CPU 1372
XOR_MASK (CAM 3) 646
XOR_MASK (CAM 5) 1373
XOR_MASK_BYTE 1626
XOR_MASK_DWORD 1627
XOR_MASK_LWORD 1628
XOR_MASK_WORD 1629

functions, conversion for analog variables 406

G
gauge objects

inserting 67
setting default properties for 255

generating
documentation 135

generating documentation 135
GET_F_MATRIX function block 1737
1986 ISaGRAF 5 Concrete Automation Model - Index

GET_I_MATRIX function block 1733
GET_TIME_STRING function 1579
GET_TIME_STRUCT function block 1634
GET_VERSION, MATRIX2 operation 1725
getting versions of elements 858
GFREEZE statement (CAM 5) 1108
GFREEZE statement(CAM 3) 512
GKILL statement (CAM 3) 513
GKILL statement (CAM 5) 1110
global variables (CAM 3) 529
global variables (CAM 5) 1221
glossary

of terms (CAM 3) 681
of terms (CAM 5) 1445

graphic languages in programs (CAM 3) 522
graphic languages in programs (CAM 5) 1214
Greater Than (SAMA elements) 1181
greater than operator 1304
greater than operator (CAM 3) 557
greater than or equal operator (CAM 3) 556
greater than or equal operator (CAM 5) 1302
grids, setting color options for 214
group grid for variables 283, 720
grouped objects

default properties, setting for 256
ISaVIEW, in 84

GRST statement (CAM 3) 516
GRST statement (CAM 5) 1114
GSTART statement (CAM 3) 511
GSTART statement (CAM 5) 1106
GSTATUS statement (CAM 3) 514
GSTATUS statement (CAM 5) 1112

H
healthy status, controller 905
heartbeat, defining for failover mechanisms 931
hierarchy

SFC programs, of (CAM 5) 1126
High Limiting (SAMA elements) 1871
High Selecting (SAMA elements) 1182

HighLimit (SAMA functions) 1871
HighSignalLimiter (SAMA functions) 1902
history

comparing versions from 873
viewer, working with 871

HSD network type, setting 1487
HYSTER function block (CAM 3) 662
HYSTER function block (CAM 5) 1392

I
I/O conversions, methods for 403
I/O devices

alias names for CAM 3, displaying and
setting as default 222

alias names for CAM 5, displaying and
setting as default 223

I/O wiring view, configuring in 1489
Modbus/TCP client driver, configuring for

1490
Modbus/TCP server, configuring for 1505
supported drivers 1489

I/O wiring
accessing and working with (CAM 3) 395
accessing and working with (CAM 5) 907
channels of devices (CAM 3) 400
channels of devices (CAM 5) 912
I/O devices, manager for 397
I/O devices, managing and setting attributes

for (CAM 5) 909
identifiers

defined words, using as (CAM 3) 532
defined words, using as (CAM 5) 1226

IEC 61131-3, elementary data types 1227
IEC 61499

basic function blocks 952
basic function blocks, keyboards shortcuts

for 987
comments in programs and composite

blocks, inserting 984
composite function blocks 979
Automation Collaborative Platform 1987

cycle execution time for programs 948
debugging programs 949
diagrams, customizing display settings for

229
E_CTU function block 1421
E_CYCLE function block 1422
E_D_FF function block 1423
E_DELAY function block 1424
E_DEMUX function block 1425
E_F_TRIG function block 1426
E_MERGE function block 1427
E_N_TABLE function block 1428
E_PERMIT function block 1430
E_R_TRIG function block 1431
E_REND function block 1432
E_RESTART function block 1433
E_RS function block 1434
E_SELECT function block 1435
E_SPLIT function block 1436
E_SR function block 1437
E_SWITCH function block 1438
E_TABLE function block 1439
E_TABLE_CTRL function block 1441
E_TRAIN function block 1442
execution control chart behavior 985
function blocks in programs and composite

blocks, inserting 980
function blocks, main format of 950
links in programs and composite blocks,

inserting 982
LocalEventInput function block 1444
program format and available elements 946
regions, inserting (CAM 5) 983
selection convergences in basic function

blocks 964
selection divergences in basic function

blocks 962
sequence controls in basic function blocks

961
simultaneous convergences in basic function

blocks 966

simultaneous divergences in basic function
blocks 965

states (steps) in basic function blocks 957
transitions and event transitions (conditions)

for basic function blocks 959
variables in programs and composite blocks,

inserting 981
IEC languages, customizing display options for

224
IF, THEN, ELSE, ELSIF, END_IF

ST basic statements (CAM 3) 501
IF, THEN, ELSE, ELSIF, END_IF, ST basic

statements (CAM 5) 1100
image objects

inserting 63
setting default properties for 257

implementing failover mechanisms on a Windows
platform 941

importing
elements 733
environment settings 175
projects (CAM 5) 698
projects from ISaGRAF 3 288
target definitions into projects 732
variables 296, 736

initial states for IEC 61499 basic function blocks
957

initial steps
inserting, in SFC (CAM 5) 1138

INSERT function (CAM 3) 609
INSERT function (CAM 5) 1334
inserting

Alarm Signal (SAMA elements) 1170
arc objects 57
arrow objects 58
Averaging (SAMA elements) 1171
bar meter objects 74
Bias (SAMA elements and functions) 1173
blocks from the block library 35
blocks in FBD (CAM 3) 416
blocks in FBD (CAM 5) 1002
branches in LD diagrams (CAM 3) 481
1988 ISaGRAF 5 Concrete Automation Model - Index

button objects 65
coils in LD diagrams (CAM 3) 460
comments (FBD elements) (CAM 3) 444
comments (FBD elements) (CAM 5) 1032
comments in IEC 61499 programs and

composite blocks 984
Derivative (SAMA elements) 1175
Difference (SAMA elements) 1177
Dividing (SAMA elements) 1178
edit box objects 66
elements in language containers 29
ellipse objects 59
Equal To (SAMA elements) 1179
Exponential (SAMA elements) 1180
function blocks in IEC 61499 programs and

composite blocks 980
gauge objects 67
Greater Than (SAMA elements) 1181
High Limiting (SAMA elements) 1871
High Selecting (SAMA elements) 1182
HighLimit (SAMA functions) 1871
HighSignalLimiter (SAMA 1902
image objects 63
initial steps and steps, in SFC (CAM 5) 1138
Integral (SAMA elements) 1183
Integrate or Totalize (SAMA elements) 1872
IPID (SAMA elements) 1185
IPIDController (SAMA functions) 1185
ISaVIEW objects 56
jumps (CAM 5) 1147
jumps in LD diagrams (CAM 3) 477
jumps to labels (FBD elements)(CAM 3)

423
jumps to labels (FBD elements)(CAM 5)

1010
labels (FBD elements) (CAM 3) 421
labels (FBD elements)(CAM 5) 1008
left power rails (FBD elements)(CAM 3)

427
left power rails (FBD elements)(CAM 5)

1014
Lesser Than (SAMA elements) 1190

line objects 73
links in IEC 61499 programs and composite

blocks 982
Logical AND (SAMA elements) 1191
Logical OR (SAMA elements) 1193
Logical Signal (SAMA elements) 1195
Low Limiting (SAMA elements) 1874
Low Selecting (SAMA elements) 1196
LowLimit (SAMA functions) 1874
MATransfer (SAMA elements and

functions) 1875
MATransferSet (SAMA elements and

functions) 1877
Measuring or Readout (SAMA elements)

1197
MemBasic (SAMA functions) 1879
Memory (Basic) (SAMA elements) 1879
Memory (Ro Dominant) (SAMA elements)

1883
Memory (So Dominant) (SAMA elements)

1881
MemRS (SAMA functions) 1883
MemSR (SAMA 1881
Multiplying (SAMA elements) 1198
NOT (SAMA elements) 1199
PD (SAMA elements and functions) 1888
polygon objects 76
Proportional (SAMA elements and

functions) 1885
Proportional and Integral (SAMA elements)

1886
Pulse Duration (SAMA elements and

functions) 1890
Pulse Duration of the Lesser Time (SAMA

elements and functions) 1892
rectangle objects 60
regions (FBD elements)(CAM 3) 443
regions (FBD elements)(CAM 5) 1030
regions in IEC 61499 programs (CAM 5)

983
RemoteTunedPI (SAMA functions) 1886
Automation Collaborative Platform 1989

return statements in LD diagrams (CAM 3)
479

returns (FBD elements)(CAM 3) 425
returns (FBD elements)(CAM 5) 1012
right power rails (FBD elements)(CAM 3)

428
right power rails (FBD elements)(CAM 5)

1015
Root Extraction (SAMA elements) 1200
rounded rectangle objects, inserting 61
rungs (FBD elements)(CAM 3) 426
rungs (FBD elements)(CAM 5) 1013
rungs with labels, comments (CAM 3) 454
rungs with labels, comments (CAM 5) 1046
SAMA Variable (SAMA elements) 1201
selection convergences (CAM 5) 1144
selection divergences (CAM 5) 1142
sequence controls (CAM 5) 1141
Server Monitored Variable (SAMA

elements) 1202
Signal Monitor (SAMA elements) 1203
simultaneous convergences (CAM 5) 1146
simultaneous divergences (CAM 5) 1145
slider objects 70
Summing (SAMA elements) 1205
Time Delay On Inititiation (SAMA elements

and functions) 1896
Time Delay On Termination (SAMA

elements and functions) 1898
Totalizer (SAMA functions) 1872
Transfer (SAMA elements) 1206
TransferSwitch (SAMA 1206
transitions (CAM 5) 1140
Tri-State Signal (SAMA elements) 1900
triangle objects 62
TriState (SAMA 1900
Variable Signal Generator (SAMA

elements) 1208
variables (FBD elements)(CAM 3) 418
variables (FBD elements)(CAM 5) 1005
variables in IEC 61499 programs and

composite blocks 981

Velocity Limiting (SAMA elements) 1902
vertical bars (FBD elements)(CAM 3) 420
vertical bars (FBD elements)(CAM 5) 1007
web container objects 64

installing, Windows runtime modules 1475
instances

configuring function block, in FBD 1033
configuring function block, in LD 1075

instances, declared 125
INT, data types as variables and literal

expressions 1235
Integral (SAMA elements) 1183
INTEGRAL function block (CAM 3) 663
INTEGRAL function block (CAM 5) 1393
Integrate or Totalize (SAMA elements) 1872
Integrated Development Environment (IDE)

Navigator 162
interrupts

enabling, configuring for programs 712
LOCK_CPU function, usage with 1339
prompting to associate programs when

adding or moving 201
UNLOCK_CPU function, usage with 1372

INVERT_MATRIX function block 1757
INVERT_MATRIX, MATRIX2 operation 1708
IPID and IPIDController (SAMA elements and

functions) 1185
IPIDCONTROLLER function block 1664
ISA_SERIAL_CLOSE function 1580
ISA_SERIAL_CONNECT function 1581
ISA_SERIAL_DISCONNECT function 1584
ISA_SERIAL_OPEN function 1585
ISA_SERIAL_RECEIVE function 1587
ISA_SERIAL_SEND function 1589
ISA_SERIAL_SET function 1591
ISA_SERIAL_STATUS function 1593
ISAFREE-TGT

target features 1473
ISAFREE-TGT target, files 1471
ISaGRAF target, error messages 1523
ISaRSI network type, setting 1488
ISaVIEW
1990 ISaGRAF 5 Concrete Automation Model - Index

adding screens 51
aligning objects 85
animation effects for objects 87
animation settings, customizing 246
arc objects, inserting 57
arrow objects, inserting 58
bar meter objects, inserting 74
button objects, inserting 65
color animation for objects, defining 90
creating screens 53
cutting, copying, and pasting objects 80
deleting objects 81
edit box objects, inserting 66
editing objects in screens 77
edition settings for screens and objects,

defining 247
ellipse objects, inserting 59
exporting screens as templates 55
gauge objects, inserting 67
grouping and ungrouping objects 84
image objects, inserting 63
inserting objects 56
line objects, inserting 73
moving objects 82
moving objects to the front or back 86
objects, setting default property values for

248
polygon objects 76
previewing options for screens 101
properties, editing for objects 79
rectangle objects 60
resizing objects in screens 83
rounded rectangle objects 61
selecting objects 78
slider objects 70
triangle objects 62
web container objects 64

ISaVIEW, default property settings
arc objects, for 249
arrow objects, for 250
bar meter objects, for 251
button objects, for 252

edit box objects, for 253
ellipse objects, for 254
gauge objects, for 255
grouped objects, for 256
image objects, for 257
line objects, for 258
polygon objects, for 259
rectangle objects, for 260
rounded rectangle objects, for 261
slider objects, for 262
triangle objects, for 263
web container objects, for 264

J
jumps

for LD diagrams (CAM 5) 1070
in SFC programs (CAM 5) 1147
inserting in FB diagrams (CAM 3) 423
inserting in FB diagrams (CAM 5) 1010
inserting in LD diagrams (CAM 3) 477
Ladder Diagrams, inserting (CAM 5) 1070
steps, to (IEC programs) (CAM 5) 967
to steps (CAM 5) 1147

K
keyboard shortcuts

accessing windows 182
defining for external tools 155
deployment view 42
development environment 182
FBD language (CAM 3) 445
FBD language (CAM 5) 1036
getting help 182
I/O wiring (CAM 3) 407
I/O wiring (CAM 5) 917
IEC 61499 basic function blocks 987
LD language (CAM 3) 482
LD language (CAM 5) 1078
Automation Collaborative Platform 1991

managing 194
navigating in the development environment

182
SAMA language 1210
saving and closing 182
SFC language (CAM 5) 1163
ST language (CAM 3) 517
ST language (CAM 5) 1116
version source control 877

keywords
reserved, list of (CAM 3) 527
reserved, list of (CAM 5) 1219

L
labels

defining for rungs (CAM 3) 454
defining for rungs (CAM 5) 1046
inserting in FB diagrams (CAM 3) 421
inserting in FB diagrams (CAM 5) 1008

language containers, editing contents of 29
language editor, tasks performed using 27
language settings, changing the default 193
LD (Ladder Diagram)

blocks, managing (CAM 3) 456
blocks, managing (CAM 5) 1048
branches (CAM 3) 481
branches (CAM 5) 1074
coils, usage and available types of (CAM 3)

460
coils, usage and available types of (CAM 5)

1053
conditions for transitions in IEC 61499

programs 976
configuring function block instances (CAM

5) 1075
contacts, usage and available types (CAM 3)

471
contacts, usage and available types (CAM 5)

1064
customizing display settings for 233

debugging (CAM 3) 451
debugging (CAM 5) 1041
direct coils (CAM 3) 463
direct coils (CAM 5) 1056
direct contacts (CAM 3) 473
direct contacts (CAM 5) 1066
jumps (CAM 3) 477
jumps (CAM 5) 1070
pulse falling edge (negative) coils (CAM 3)

466
pulse falling edge (negative) coils (CAM 5)

1059
pulse falling edge (negative) contacts (CAM

3) 476
pulse falling edge (negative) contacts (CAM

5) 1069
pulse rising edge (positive) coils (CAM 3)

465
pulse rising edge (positive) coils (CAM 5)

1058
pulse rising edge (positive) contacts (CAM

3) 475
pulse rising edge (positive) contacts (CAM

5) 1068
reset coils (CAM 3) 469
reset coils (CAM 5) 1062
return statements (CAM 3) 479
return statements (CAM 5) 1072
reverse coils (CAM 3) 464
reverse coils (CAM 5) 1057
reverse contacts (CAM 3) 474
reverse contacts (CAM 5) 1067
rungs, inserting (CAM 3) 454
rungs, inserting (CAM 5) 1046
Set coils (CAM 3) 467
Set coils (CAM 5) 1060

LD containers
elements available for (CAM 3) 453
elements available for (CAM 5) 1045

LD language
conditions for transitions (CAM 5) 1160
1992 ISaGRAF 5 Concrete Automation Model - Index

LEADLAGBACONTROLLER function block
1677

LEADLAGCONTROLLER function block 1674
LEFT function (CAM 3) 611
LEFT function (CAM 5) 1336
left power rails

FB diagrams, inserting in (CAM 3) 427
FB diagrams, inserting in (CAM 5) 1014

less than operator (CAM 3) 566
less than operator (CAM 5) 1308
less than or equal operator (CAM 3) 565
less than or equal operator (CAM 5) 1306
Lesser Than (SAMA elements) 1190
libraries

creating, templates for, effect of target on
(CAM 3) 290

creating, templates for, effect of target on
(CAM 5) 724

ISaGRAF 3.X, importing from 292
usage and limitations of, in projects (CAM 3)

294
usage and limitations of, in projects (CAM 5)

726
library, block, accessing and managing blocks in

35
licensing

accessing and managing (CAM 3) 695
accessing and managing (CAM 5) 1467

LIM_ALRM function block (CAM 3) 665
LIM_ALRM function block (CAM 5) 1395
LIMIT function (CAM 3) 613
LIMIT function (CAM 5) 1338
limitations for failover mechanisms 944
LIMITER function block 1681
limiting searches, in the blocks list 125
line objects

inserting 73
setting default properties for 258

linking
devices and networks 41
IEC 61499 programs and composite blocks

982

jumps and steps (CAM 5) 1147
transitions to steps (jump to step) in IEC

programs (CAM 5) 967
LINT, data types as variables and literal

expressions 1239
literal expressions

BOOL (CAM 3) 535
BOOL (CAM 5) 1232
DATE 1245
DINT 1237
double integer 536
INT 1235
LINT 1239
LREAL 1242
message 540
real (CAM 3) 537
real (CAM 5) 1241
SAFEBOOL 1249
SINT 1233
STRING 1246
TIME (CAM 3) 539
TIME (CAM 5) 1243
UDINT and DWORD 1238
UINT and WORD 1236
ULINT and LWORD 1240
USINT and BYTE 1234

literal languages
in programs (CAM 3) 522
in programs (CAM 5) 1214

literal values, data types for 1252
local variables

managing 131
scope of (CAM 5) 1221
scope of(CAM 3) 529

LocalEventInput function block 1444
LOCK_CPU function 1339
locked variables

enabling prompts when monitoring 202
forcing (CAM 3) 309
forcing (CAM 5) 764
viewing and unlocking while debugging 49

locking
Automation Collaborative Platform 1993

I/O variables (CAM 3) 400
I/O variables (CAM 5) 912
items for source control 870

LOG function (CAM 3) 614
LOG function (CAM 5) 1340
LOG_LREAL function 1595
logging target execution events 762
Logical AND (SAMA elements) 1191
Logical OR (SAMA elements) 1193
Logical Signal (SAMA elements) 1195
logical value

forcing the (CAM 3) 309
forcing the (CAM 5) 764

Low Limiting (SAMA elements) 1874
Low Selecting (SAMA elements) 1196
LowLimit (SAMA functions) 1874
LREAL, data types as variables and literal

expressions 1242
LWORD, data types as variables and literal

expressions 1240

M
main format for IEC 61499 programs 946
manager, add-ins, defining behavior for loading

153
managing

block library 35
code on targets (CAM 5) 746
dictionary variables in the grid (CAM 3) 388
dictionary variables in the grid (CAM 5) 891
environment settings 171
external tools 155
I/O wiring (CAM 3) 395
I/O wiring (CAM 5) 907
keyboard shortcuts 194
pending changes 855
toolbox 107
versions using source control 845

MATransfer (SAMA elements and functions)
1875

MATransferSet (SAMA elements and functions)
1877

matrix operations 1727
matrix operations block 1727
matrix operations blocks 1631

ADD_MATRIX 1759
COLS_MATRIX 1753
COPY_COL_MATRIX 1747
COPY_MATRIX 1743
COPY_ROW_MATRIX 1745
DUP_MATRIX 1741
FREE_MATRIX 1731
GET_F_MATRIX 1737
GET_I_MATRIX 1733
INVERT_MATRIX 1757
MULTIPLY_MATRIX 1763
NEW_MATRIX 1729
PRINT_MATRIX 1769
PUT_F_MATRIX 1739
PUT_I_MATRIX 1735
ROWS_MATRIX 1751
SCALAR_F_MATRIX 1767
SCALAR_I_MATRIX 1765
SUBTRACT_MATRIX 1761
TRANSPOSE_MATRIX 1755
TYPE_MATRIX 1749

MATRIX2 operations
ADD_MATRIX 1711
COPY_COL_MATRIX 1703
COPY_ROW_MATRIX 1700
GET_VERSION 1725
INVERT_MATRIX 1708
MULTIPLY_MATRIX 1717
PRINT_MATRIX 1723
SCALAR_MATRIX 1720
SUBTRACT_MATRIX 1714
TRANSPOSE_MATRIX 1706

matrix2 operations 1698
matrix2 operations block 1698
MAX function (CAM 3) 615
MAX function (CAM 5) 1341
MC_AbortTrigger function block 1780
1994 ISaGRAF 5 Concrete Automation Model - Index

MC_AccelerationProfile function block 1782
MC_CamIn function block 1784
MC_CamOut function block 1787
MC_CamTableSelect function block 1788
MC_DigitalCamSwitch function block 1790
MC_GearIn function block 1792
MC_GearInPos function block 1795
MC_GearOut function block 1798
MC_Halt function block 1799
MC_Home function block 1801
MC_MoveAbsolute function block 1803
MC_MoveContinuousAbsolute function block

1808
MC_MoveContinuousRelative function block

1811
MC_MoveRelative function block 1814
MC_MoveSuperimposed function block 1816
MC_MoveVelocity function block 1818
MC_PositionProfile function block 1823
MC_Power function block 1825
MC_ReadActualPosition function block 1827
MC_ReadActualTorque function block 1828
MC_ReadActualVelocity function block 1830
MC_ReadAxisError function block 1832
MC_ReadBoolParameter function block 1834
MC_ReadDigitalInput function block 1837
MC_ReadDigitalOutput function block 1839
MC_ReadParameter function block 1841
MC_ReadStatus function block 1844
MC_Reset function block 1847
MC_SetOverride function block 1848
MC_SetPosition function block 1850
MC_TorqueControl function block 1854
MC_TouchProbe function block 1857
MC_VelocityProfile function block 1859
MC_WriteBoolParameter function block 1861
MC_WriteDigitalOutput function block 1864
MC_WriteParameter function block 1866
Measuring or Readout (SAMA elements) 1197
MemBasic (SAMA functions) 1879
Memory (Basic) (SAMA elements) 1879
Memory (Ro Dominant) (SAMA elements) 1883

Memory (So Dominant) (SAMA elements) 1881
memory allocation

SFC dynamic behavior, for (CAM 5) 1122
MemRS (SAMA functions) 1883
MemSR (SAMA functions) 1881
message

data type, variables and literal expressions
540

error list, viewing in 160
MID function (CAM 3) 616
MID function (CAM 5) 1342
MIN function (CAM 3) 618
MIN function (CAM 5) 1344
MLEN function (CAM 3) 619
MLEN function (CAM 5) 1345
MOD function (CAM 3) 621
MOD function (CAM 5) 1347
modbus address

settings 209
Modbus/TCP client driver

configuring 1490
importing definitions into ISaGRAF 1494
message descriptions 1498
message prefixes 1497
modifying properties 1495
preparing targets 1493

Modbus/TCP server
configuring 1505
exception codes 1520
importing drivers 1510
message desciptions 1513
message prefixes 1512
modifying properties 1511
preparing the target 1509

monitoring
failover mechanism, a 939
prompts and variables, options for 202
values while running online or debugging

(CAM 5) 769
variables while running or debugging (CAM

3) 312
motion control function blocks
Automation Collaborative Platform 1995

data types and parameters for 1771
MC_AbortTrigger 1780
MC_AccelerationProfile 1782
MC_CamIn 1784
MC_CamOut 1787
MC_CamTableSelect 1788
MC_DigitalCamSwitch 1790
MC_GearIn 1792
MC_GearInPos 1795
MC_GearOut 1798
MC_Halt 1799
MC_Home 1801
MC_MoveAbsolute 1803
MC_MoveContinuousAbsolute 1808
MC_MoveContinuousRelative 1811
MC_MoveRelative 1814
MC_MoveSuperimposed 1816
MC_MoveVelocity 1818
MC_PositionProfile 1823
MC_Power 1825
MC_ReadActualPosition 1827
MC_ReadActualTorque 1828
MC_ReadActualVelocity 1830
MC_ReadAxisError 1832
MC_ReadBoolParameter 1834
MC_ReadDigitalInput 1837
MC_ReadDigitalOutput 1839
MC_ReadParameter 1841
MC_ReadStatus 1844
MC_Reset 1847
MC_SetOverride 1848
MC_SetPosition 1850
MC_TorqueControl 1854
MC_TouchProbe 1857
MC_VelocityProfile 1859
MC_WriteBoolParameter 1861
MC_WriteDigitalOutput 1864
MC_WriteParameter 1866

moving
elements in language containers 29
ISaVIEW objects 82
programs to the interrupts section 201

MSG operator 567
multiplication operator (CAM 3) 544
multiplication operator (CAM 5) 1255
MULTIPLY_MATRIX function block 1763
MULTIPLY_MATRIX, MATRIX2 operation

1717
Multiplying (SAMA elements) 1198
MUX4 function (CAM 3) 622
MUX4 function (CAM 5) 1348
MUX8 function (CAM 3) 624
MUX8 function (CAM 5) 1350

N
naming conventions

defined words (CAM 3) 532
defined words (CAM 5) 1226
directly represented variables (CAM 3) 531
directly represented variables (CAM 5) 1224
function blocks, for (CAM 3) 525
function blocks, for (CAM 5) 1217
functions (CAM 3) 524
functions (CAM 5) 1216
programs, for (CAM 3) 522
programs, for (CAM 5) 1214

naming projects 6
navigation window

device view, opening and setting as default
211

project aspects and information, accessing
with 25

NEG operator (CAM 3) 568
NEG operator (CAM 5) 1310
networks

ETCP type 1485
HSD type 1487
ISaRSI type 1488
managing 40
Serial type 287
TCP/IP type 286
Windows runtime modules supported 1484
1996 ISaGRAF 5 Concrete Automation Model - Index

networks (CAM3) 285
NEW_MATRIX function block 1729
non-stored actions

steps, in (CAM 5) 1154
steps, in (IEC 61499 language) 973

normative function blocks, summary of 1419
NOT (SAMA elements) 1199
not equal operator (CAM 3) 569
not equal operator (CAM 5) 1312
NOT operator 1311
NOT_MASK function (CAM 3) 626
NOT_MASK function (CAM 5) 1352
NOT_MASK_BYTE function 1596
NOT_MASK_DWORD function 1597
NOT_MASK_LWORD function 1598
NOT_MASK_WORD function 1599
NOW function block 1636
numerical display settings, when monitoring 202

O
objects, ISaVIEW

action animation effects for 88
aligning 85
animation effects 87
arc, inserting 57
arrow, inserting 58
bar meter, inserting 74
button, inserting 65
color animation effect for 90
cutting, copying, and pasting 80
deleting 81
displacement animation effect for 92
edit box, inserting 66
ellipse, inserting 59
gauge, inserting 67
grouping and ungrouping 84
image, inserting 63
line, inserting 73
moving to the front or back 86
physical appearance of, editing 77

polygon, inserting 76
properties of, editing for 79
rectangle, inserting 60
repositioning objects in screens 82
resizing in screens 83
rotation animation effect for 94
rounded rectangle, inserting 61
selecting 78
size animation effect for 96
slider, inserting 70
text animation effect for 98
triangle, inserting 62
visibility animation effect for 100
web container, inserting 64

ODD function (CAM 3) 627
ODD function (CAM 5) 1353
offline grid settings for spy lists 265, 266
online applications

monitoring values of (CAM 3) 312
monitoring values of (CAM 5) 769
running (CAM 3) 304
running (CAM 5) 745

online changes, performing 751
online execution, failover mechanism 939
online grid settings for spy lists 265, 267
OPERATE operator 570
operators

1 gain 1263
addition (CAM 3) 545
addition (CAM 5) 1257
ANA 558
AND 551, 1264
ANY_TO_BOOL 1266
ANY_TO_BYTE 1272
ANY_TO_DATE 1297
ANY_TO_DINT 1280
ANY_TO_DWORD 1284
ANY_TO_INT 1274
ANY_TO_LINT 1286
ANY_TO_LREAL 1294
ANY_TO_LWORD 1290
ANY_TO_REAL 1292
Automation Collaborative Platform 1997

ANY_TO_SINT 1268
ANY_TO_STRING 1298
ANY_TO_TIME 1296
ANY_TO_UDINT 1282
ANY_TO_UINT 1276
ANY_TO_ULINT 1288
ANY_TO_USINT 1270
ANY_TO_WORD 1278
BOO 553
CAT 554
Difference (SAMA) 1177
Dividing (SAMA) 1178
division (CAM 3) 548, 1261
equal (CAM 3) 555
equal (CAM 5) 1300
Equal To (SAMA) 1179
greater than 1304
greater than (CAM 3) 557
Greater Than (SAMA) 1181
greater than or equal (CAM 3) 556
greater than or equal (CAM 5) 1302
less than (CAM 3) 566
less than (CAM 5) 1308
less than or equal (CAM 3) 565
less than or equal (CAM 5) 1306
Lesser Than (SAMA) 1190
Logical AND (SAMA) 1191
Logical OR (SAMA) 1193
MSG 567
multiplication (CAM 3) 544
multiplication (CAM 5) 1255
Multiplying (SAMA) 1198
NEG (CAM 3) 568
NEG (CAM 5) 1310
NOT 1311
NOT (SAMA) 1199
not equal (CAM 3) 569
not equal (CAM 5) 1312
OPERATE 570
OR (CAM 3) 571
OR (CAM 5) 1314
REAL 559

subtraction (CAM 3) 546
subtraction (CAM 5) 1259
summary of (CAM 3) 543
summary of (CAM 5) 1253
Summing (SAMA) 1205
SYSTEM 560
TMR 572
XOR (CAM 3) 573
XOR (CAM 5) 1316

options
block library, specifying for 208
CAM3, specifying for 209
deployment view, settings for 210
documentation generator 212, 213
generated documentation 212, 213
grids, accessing 214
IEC languages, customizing display settings

for 224
ISaVIEW, customizing settings for objects,

animation, editing 245
language settings, changing default 193
modbus address 209
projects, default locations and behaviors 198
settings files, saving 192
source control, for 203
source control, specifying environment

options for 205
source control, specifying plug-in options for

204
source control, specifying user tools for 207
startup, behavior during 197
word settings 213
workbench environment, accessing for 188

OR operator (CAM 3) 571
OR operator (CAM 5) 1314
OR_MASK function (CAM 5) 1354
OR_MASK_BYTE function 1600
OR_MASK_DWORD function 1601
OR_MASK_LWORD function 1602
OR_MASK_WORD function 1603
output window, accessing, managing contents of

158
1998 ISaGRAF 5 Concrete Automation Model - Index

overloading
ANY data type 1230

P
parallel branches for LD diagrams (CAM 5) 1074
parameters

arrays, defining for 1250
defining in LD (CAM 3) 456
defining in LD (CAM 5) 1048
FBD, defining in (CAM 3) 416
FBD, defining in (CAM 5) 1002
function blocks, for (CAM 3) 525
function blocks, for (CAM 5) 1217
functions, for (CAM 3) 524
functions, for (CAM 5) 1216
managing 131
motion control function blocks, for 1771

parameters display, accessing and usage of 129
parameters grid, customizing color options for

218
parameters view

accessing, usage in FBD programs (CAM 3)
416

accessing, usage in FBD programs (CAM 5)
1002

accessing, usage in LD programs (CAM 3)
456

accessing, usage in LD programs(CAM 5)
1048

user-defined functions or function blocks,
managing in 131

parent
SFC program, of a (CAM 5) 1126

parentheses
ST programs, in (CAM 3) 490
ST programs, in (CAM 5) 1086

password
creating, deleting, for elements 728
creating, deleting, for targets 730

pasting

elements in the Solution Explorer 3
ISaVIEW objects 80
parameters, local variables 131
spy list items 147
variables in the dictionary and variable

selector 121
PD (SAMA elements and functions) 1888
pending changes, committing 855
performing online changes 751
physical value

forcing the (CAM 3) 309
forcing the (CAM 5) 764

PID_AL function block 1682
polygon objects

inserting 76
setting default properties for 259

ports, defining for usage 1522
POUs

block library, inserting from 35
building (CAM 3) 300
building (CAM 5) 741
child SFC (CAM 5) 1128
cleaning (CAM 3) 303
cleaning (CAM 5) 744

POW function (CAM 3) 629
POW function (CAM 5) 1355
POW_LREAL function 1604
previewing

animation effects (editable animation
effects) 103

ISaVIEW screens 101
selections (non-editable animation effects)

102
primary device, defining for failover mechanisms

931
PRINT_MATRIX function block 1769
PRINT_MATRIX, MATRIX2 operation 1723
process control

DERIVATE function block (CAM 3) 659
DERIVATE function block (CAM 5) 1389
HYSTER function block (CAM 3) 662
HYSTER function block (CAM 5) 1392
Automation Collaborative Platform 1999

INTEGRAL function block (CAM 3) 663
INTEGRAL function block (CAM 5) 1393
STACKINT function block (CAM 3) 675
STACKINT function block (CAM 5) 1404

producer variables, managing for bindings 924
production error variables 919
programs

cycle execution for IEC 61499 948
devices, adding and managing for 278
interrupts options, prompting to associate

programs 201
naming and hierarchy of types (CAM 3) 522
naming and hierarchy of types (CAM 5)

1214
resources, managing for 712

projects
adding temporary 9
building (CAM 3) 300
building (CAM 5) 741
cleaning (CAM 3) 303
cleaning (CAM 5) 744
cleaning, setting the option for 200
creating (CAM 5) 698
creating ISaGRAF 3 272
default options for components, defining for

198
downloading code to targets (CAM 3) 305
downloading code to targets (CAM 5) 747
existing, adding to solutions 11
importing from ISaGRAF (CAM 5) 698
importing from ISaGRAF 3 288
importing libraries for use with 292
importing target definitions into 732
libraries, creating for use with (CAM 3) 290
libraries, creating for use with (CAM 5) 724
libraries, using in a (CAM 3) 294
libraries, using in a (CAM 5) 726
naming 6
navigation window, accessing aspects and

information for 25
new, adding to solutions 9
opening 8

saving changes to 12
startup, setting 14
templates and template features, available

for 722
uploading code from targets 749

properties, accessing for solutions 13
properties window

accessing and using the 47
creating and editing members using the

collection editor 48
Proportional (SAMA elements and functions)

1885
Proportional and Integral (SAMA elements) 1886
pulse actions in steps 971, 1152
Pulse Duration (SAMA elements and functions)

1890
Pulse Duration of the Lesser Time (SAMA

elements and functions) 1892
pulse falling edge (negative)

coils (CAM 3) 466
coils (CAM 5) 1059
contacts in FBD (CAM 3) 442
contacts in FBD (CAM 5) 1029
contacts in LD (CAM 3) 476
contacts in LD (CAM 5) 1069

pulse rising edge (positive)
coils (CAM 3) 465
coils (CAM 5) 1058
contacts in FBD (CAM 3) 441
contacts in FBD (CAM 5) 1028
contacts in LD (CAM 3) 475
contacts in LD (CAM 5) 1068

PUT_F_MATRIX function block 1739
PUT_I_MATRIX function block 1735

Q
quick declaration, creating variables using 118
Quick Find utility, working with 142
2000 ISaGRAF 5 Concrete Automation Model - Index

R
R_TRIG function block (CAM 3) 667
R_TRIG function block (CAM 5) 1397
RAND function (CAM 3) 630
RAND function (CAM 5) 1356
RATELIMITER function block 1685
RATIO function block 1687
RATIOCALIBRATION function block 1688
real attribute

for I/O devices (CAM 3) 397
for I/O devices (CAM 5) 909

real data type
variables and literal expressions (CAM 3)

537
variables and literal expressions (CAM 5)

1241
REAL operator 559
real-time

debugging targets in (CAM 3) 306
debugging targets in (CAM 5) 755

rebuilding
items and viewing progress during (CAM 3)

302
items and viewing progress during (CAM 5)

743
rectangle objects

inserting 60
setting default properties for 260

references, cross 897
regions

inserting in FB diagrams (CAM 3) 443
inserting in FB diagrams (CAM 5) 1030
inserting in IEC 61499 diagrams (CAM 5)

983
RemoteTunedPI (SAMA functions) 1886
removing

licensing (CAM 3) 695
licensing (CAM 5) 1467

renaming
devices (CAM 3) 274

devices (CAM 5) 702
function blocks (CAM 3) 281
function blocks (CAM 5) 717
functions (CAM 3) 279
functions (CAM 5) 715
programs (CAM 3) 278
programs (CAM 5) 712
resources 705

renumbering
elements in basic function blocks 952
SFC elements (CAM 5) 1136

REPEAT, UNTIL, END_REPEAT
ST basic statements (CAM 3) 503
ST basic statements (CAM 5) 1102

REPLACE function (CAM 3) 632
REPLACE function (CAM 5) 1357
replacing strings, expressions and wildcards with

the Quick Replace utility 144
repositories

defining for source control 854
exploring the control 848
exploring the working copy 851

requirements
minimum and additional for development

platforms (CAM 3) 325
minimum and additional for development

platforms (CAM 5) 773
reserved keywords

list of (CAM 3) 527
list of (CAM 5) 1219

reset coil
in FBD (CAM 3) 435
in FBD (CAM 5) 1022
in LD (CAM 3) 469
in LD (CAM 5) 1062

resetting
environment settings 179

resizing, ISaVIEW objects 83
resources

building 741
cleaning (CAM 5) 744
diagnostic information, accessing for 758
Automation Collaborative Platform 2001

execution rules for 1218
managing for devices 705
starting and stopping on targets 750

RETENTIVEONTIMER function block 1690
return statements

LD diagrams, inserting in (CAM 3) 479
LD diagrams, inserting in (CAM 5) 1072
ST diagrams, inserting in (CAM 5) 1103
ST programs, inserting in (CAM 3) 504

return symbols
FB diagrams, inserting in (CAM 3) 425
FB diagrams, inserting in (CAM 5) 1012

reverse coil
in FBD (CAM 3) 432
in FBD (CAM 5) 1019
in LD (CAM 3) 464
in LD (CAM 5) 1057

reverse contact
in FBD (CAM 3) 440
in FBD (CAM 5) 1027
in LD (CAM 3) 474
in LD (CAM 5) 1067

reverting versions of elements 861
RIGHT function (CAM 3) 634
RIGHT function (CAM 5) 1359
right power rails

inserting in FBD (CAM 3) 428
inserting in FBD (CAM 5) 1015

ROL function (CAM 3) 636
ROL function (CAM 5) 1361
ROL_BYTE function 1605
ROL_DWORD function 1606
ROL_LWORD function 1607
ROL_WORD function 1608
Root Extraction (SAMA elements) 1200
ROR function (CAM 3) 637
ROR function (CAM 5) 1362
ROR_BYTE function 1609
ROR_DWORD function 1610
ROR_LWORD function 1611
ROR_WORD function 1612
rotation, animation effect for ISaVIEW objects 94

rounded rectangle objects
inserting 61
setting default properties 261

rows
arrays grid, customizing display in 215
defined words view, customizing display in

216
dictionary view, customizing display in 217
parameters grid, customizing display in 218
structures grid, customizing display in 219
variable groups view, customizing display in

220
variable selector, customizing display in 221
variables selector, filtering in 124

ROWS_MATRIX function block 1751
RS function block (CAM 3) 668
RS function block (CAM 5) 1398
rules for device cycles execution 526
rungs

FB diagrams, inserting in (CAM 3) 426
FB diagrams, inserting in (CAM 5) 1013
labels and comments, inserting with (CAM

3) 454
labels and comments, inserting with (CAM

5) 1046
running

applications in simulation mode (CAM 3)
311

applications in simulation mode (CAM 5)
768

applications online (CAM 3) 304
applications online (CAM 5) 745

runtime modules, Windows 1469

S
SAFE type 1248
SAFEBOOL, data types as variables and literal

expressions 1249
Safety C Function Blocks

SF_AND 1906
2002 ISaGRAF 5 Concrete Automation Model - Index

SF_Antivalent 1907
SF_EDM 1909
SF_EmergencyStop 1912
SF_EnableSwitch 1915
SF_Equivalent 1918
SF_ESPE 1920
SF_GuardLocking 1922
SF_GuardMonitoring 1925
SF_ModeSelector 1928
SF_MutingPar 1934
SF_MutingPar_2Sensor 1938
SF_MutingSeq 1942
SF_OutControl 1946
SF_SafelyLimitedSpeed 1949
SF_SafeStop1 1952
SF_SafeStop2 1954
SF_SafetyRequest 1956
SF_TestableSafetySensor 1958
SF_TwoHandControlTypeII 1962
SF_TwoHandControlTypeIII 1964

SAMA (Scientific Apparatus Makers
Association)

debugging programs 1168
display settings, customizing for 236
elements 1169
execution order 1167
main diagram format 1166

SAMA (Scientific Apparatus Makers
Association) elements

Alarm Signal 1170
Averaging 1171
Difference 1177
Dividing 1178
Equal To 1179
Exponential 1180
Greater Than 1181
High Selecting 1182
Lesser Than 1190
Logical AND 1191
Logical OR 1193
Logical Signal 1195
Low Selecting 1196

Measuring or Readout 1197
Multiplying 1198
NOT 1199
Root Extraction 1200
SAMA Variable 1201
Server Monitored Variable 1202
Signal Monitor 1203
Summing 1205
Variable Signal Generator 1208

SAMA (Scientific Apparatus Makers
Association) elements and functions

Bias 1173
Derivative 1175
High Limiting 1871
HighLimit 1871
HighSignalLimiter 1902
Integral 1183
Integrate or Totalize 1872
IPID 1185
IPIDController 1185
Low Limiting 1874
LowLimit 1874
MATranferSet 1877
MATransfer 1875
MemBasic 1879
Memory (Basic) 1879
Memory (Ro Dominant) 1883
Memory (So Dominant) 1881
MemRS 1883
MemSR 1881
PD 1888
Proportional 1885
Proportional and Integral 1886
Pulse Duration 1890
Pulse Duration of the Lesser Time 1892
RemoteTunedPI 1886
Time Delay On Inititiation 1896
Time Delay On Termination 1898
Totalizer 1872
Transfer 1206
TransferSwitch 1206
Tri-State Signal 1900
Automation Collaborative Platform 2003

TriState 1900
Velocity Limiting 1902

saving
changes to solutions and projects 12

SCALAR_F_MATRIX function block 1767
SCALAR_I_MATRIX function block 1765
SCALAR_MATRIX, MATRIX2 operation 1720
SCALER function block 1692
scope

of variables (CAM 3) 529
of variables (CAM 5) 1221

screens, ISaVIEW
aligning objects 85
cutting, copying, and pasting objects 80
deleting objects 81
moving objects 82
moving objects to the front or back 86
previewing 101
resizing objects 83

secondary device, defining for failover
mechanisms 931

sections template 212
SEL function (CAM 5) 1363
SEL function(CAM 3) 638
selecting

blocks, displaying parameters when 129
elements in language containers 29
ISaVIEW objects 78

selection convergences
basic function blocks, in IEC 61499 964
inserting (CAM 5) 1144

selection divergences
basic function blocks, in IEC 61499 962
inserting (CAM 5) 1142

selections, previewing (non-editable animation
effects) 102

SEMA function block 670
sending objects to the back, ISaVIEW screens 86
sequence controls

inserting (CAM 5) 1141
inserting in IEC 61499 basic function blocks

961

sequential programs, SFC (CAM 5) 1122
Serial 285
serial communications

ISA_SERIAL_CLOSE 1580
ISA_SERIAL_CONNECT 1581
ISA_SERIAL_DISCONNECT 1584
ISA_SERIAL_OPEN 1585
ISA_SERIAL_RECEIVE 1587
ISA_SERIAL_SEND 1589
ISA_SERIAL_SET 1591
ISA_SERIAL_STATUS 1593

Serial network 287
Server Monitored Variable (SAMA elements)

1202
Set coil

for FBD (CAM 3) 433
for FBD (CAM 5) 1020
for LD (CAM 3) 467
for LD (CAM 5) 1060

SET_PRIORITY function 1613
SETPOINT function block 1693
setting

Serial network connection properties 287
TCP/IP network connection properties 286

setting passwords
for elements in the solution explorer 728
for targets in the solution explorer 730

settings
exporting environment 172
importing environment 175
managing environment 171
reverting environment 179

settings files, options for saving 192
SF_AND function block 1906
SF_Antivalent function block 1907
SF_EDM function block 1909
SF_EmergencyStop function block 1912
SF_EnableSwitch function block 1915
SF_Equivalent function block 1918
SF_ESPE function block 1920
SF_GuardLocking function block 1922
SF_GuardMonitoring function block 1925
2004 ISaGRAF 5 Concrete Automation Model - Index

SF_ModeSelector function block 1928
SF_MutingPar function block 1934
SF_MutingPar_2Sensor function block 1938
SF_MutingSeq function block 1942
SF_OutControl function block 1946
SF_SafelyLimitedSpeed function block 1949
SF_SafeStop1 function block 1952
SF_SafeStop2 function block 1954
SF_SafetyRequest function block 1956
SF_TestableSafetySensor function block 1958
SF_TwoHandControlTypeII function block 1962
SF_TwoHandControlTypeIII function block

1964
SFC (Sequential Function Chart)

breakpoints on step activation (CAM 5)
1131

customizing display settings for 238
GFREEZE statement in actions (CAM 3)

512
GFREEZE statement in actions (CAM 5)

1108
GKILL statement in actions (CAM 3) 513
GKILL statement in actions (CAM 5) 1110
GRST statement in actions (CAM 3) 516
GRST statement in actions (CAM 5) 1114
GSTART statement in actions (CAM 3) 511
GSTART statement in actions (CAM 5)

1106
GSTATUS statement in actions (CAM 3)

514
GSTATUS statement in actions (CAM 5)

1112
TSTART statement in actions 507
TSTOP statement in actions 509

SFC language
breakpoints on step deactivation (CAM 5)

1132
breakpoints on transition (CAM 5) 1134
child POUs (CAM 5) 1128
debugging programs (CAM 5) 1129
execution behavior, stages of (CAM 5) 1124

format, behavior, and execution of programs
(CAM 5) 1122

keyboards shortcuts for (CAM 5) 1163
SFC programs

actions in steps 1156
child and parent, hierarchy of (CAM 5) 1126
coding action blocks for steps (CAM 5) 1149
elements available for (CAM 5) 1136
initial steps and steps (CAM 5) 1138
jumps (CAM 5) 1147
selection convergences (CAM 5) 1144
selection divergences (CAM 5) 1142
sequence controls (CAM 5) 1141
simultaneous convergences (CAM 5) 1146
simultaneous divergences (CAM 5) 1145
transitions (CAM 5) 1140

SHL function (CAM 3) 639
SHL function (CAM 5) 1364
SHL_BYTE function 1614
SHL_DWORD function 1615
SHL_LWORD function 1616
SHL_WORD function 1617
shortcuts, keyboard 194
SHR function 1365
SHR function (CAM 3) 640
SHR_BYTE function 1618
SHR_DWORD function 1619
SHR_LWORD function 1620
SHR_WORD function 1621
signal generation

BLINK function block (CAM 3) 650
BLINK function block (CAM 5) 1378
SIG_GEN function block (CAM 3) 673
SIG_GEN function block (CAM 5) 1402

Signal Monitor (SAMA elements) 1203
SIGNALSELECTOR function block 1695
simulation mode

debugging targets during (CAM 3) 306
debugging targets during (CAM 5) 755
running an application (CAM 3) 311
running an application (CAM 5) 768

simultaneous convergences
Automation Collaborative Platform 2005

in IEC 61499 basic function blocks 966
inserting (CAM 5) 1146

simultaneous divergences
in IEC 61499 basic function blocks 965
inserting (CAM 5) 1145

SIN function (CAM 3) 642
SIN function (CAM 5) 1367
SIN_LREAL function 1622
SINT, data types as variables and literal

expressions 1233
size, animation effect for ISaVIEW objects 96
slider objects

inserting 70
setting default properties for 262

solution configurations
creating 21
editing 22

solution explorer, accessing and managing
elements in 3

solution platforms, renaming 23
solutions

building (CAM 3) 300
building (CAM 5) 741
cleaning (CAM 3) 303
cleaning (CAM 5) 744
existing projects, adding to 11
new projects, adding to a 9
opening 8
properties, accessing for 13
rebuilding (CAM 3) 302
rebuilding (CAM 5) 743
saving changes to 12

sorting
arrays in the grid 881
block library 35
blocks list, the 125
columns in the variable selector 123
defined words (CAM 3) 385
defined words (CAM 5) 888
errors 160
structures 885

source control

accessing from the working copy explorer
851

canceling local modifications 876
committing pending changes 855
comparing versions from 873
environment options for 205
getting versions of elements 858
history of items, viewing 871
locking and unlocking items 870
plug-in selection for 204
repositories, defining for 854
repository explorer, accessing from 848
reverting versions of elements 861
settings for 203
subversion user tools, specifying for 207
versions, managing for elements 845
working copy from a repository, creating

868
spy list

accessing and usage 147
dependency variables, adding to 43
grid settings, defining offline 266
grid settings, defining offline and online 265
grid settings, defining online 267

SQRT function (CAM 3) 643
SQRT function (CAM 5) 1368
SQRT_LREAL function 1623
SR function block (CAM 3) 671
SR function block (CAM 5) 1400
ST (Structured Text)

assignment basic statements for (CAM 3)
496

assignment basic statements for (CAM 5)
1094

basic elements and statements (CAM 3) 495
basic elements and statements (CAM 5)

1093
calling function blocks from (CAM 3) 493
calling function blocks from (CAM 5) 1089
calling functions from (CAM 3) 492
calling functions from (CAM 5) 1088
2006 ISaGRAF 5 Concrete Automation Model - Index

CASE, OF, ELSE, END_CASE basic
statements for (CAM 3) 497

CASE, OF, ELSE, END_CASE basic
statements for (CAM 5) 1095

debugging programs (CAM 3) 494
debugging programs (CAM 5) 1090
display settings, customizing for 242
EXIT basic statements for (CAM 3) 498
EXIT basic statements for (CAM 5) 1097
expressions and parentheses in (CAM 3) 490
expressions and parentheses in (CAM 5)

1086
extensions for SFC child execution (CAM 3)

506
extensions for SFC child execution (CAM 5)

1105
FOR, TO, BY, DO, END_FOR basic

statements for (CAM 3) 499
FOR, TO, BY, DO, END_FOR basic

statements for (CAM 5) 1098
IF, THEN, ELSE, ELSIF, END_IF basic

statements for (CAM 3) 501
IF, THEN, ELSE, ELSIF, END_IF basic

statements for (CAM 5) 1100
main syntax of programs in (CAM 3) 486
main syntax of programs in (CAM 5) 1082
programming conditions for transitions in

975
REPEAT, UNTIL, END_REPEAT basic

statements for (CAM 3) 503
REPEAT, UNTIL, END_REPEAT basic

statements for (CAM 5) 1102
return statements for (CAM 3) 504
return statements for (CAM 5) 1103
WHILE, DO, END_WHILE basic

statements for (CAM 3) 505
WHILE, DO, END_WHILE basic

statements for (CAM 5) 1104
ST language

conditions for transitions (CAM 5) 1159
STACKINT function block (CAM 3) 675
STACKINT function block (CAM 5) 1404

stages of SFC execution behavior (CAM 5) 1124
standard functions

ABS_LREAL 1569
ACOS_LREAL 1570
AND_MASK_BYTE 1571
AND_MASK_DWORD 1572
AND_MASK_LWORD 1573
AND_MASK_WORD 1574
ASIN_LREAL 1575
ATAN_LREAL 1576
COS_LREAL 1577
EXPT_LREAL 1578
LOG_LREAL 1595
NOT_MASK_BYTE 1596
NOT_MASK_DWORD 1597
NOT_MASK_LWORD 1598
NOT_MASK_WORD 1599
OR_MASK_BYTE 1600
OR_MASK_DWORD 1601
OR_MASK_LWORD 1602
OR_MASK_WORD 1603
POW_LREAL 1604
ROL_BYTE 1605
ROL_DWORD 1606
ROL_LWORD 1607
ROL_WORD 1608
ROR_BYTE 1609
ROR_DWORD 1610
ROR_LWORD 1611
ROR_WORD 1612
SET_PRIORITY 1613
SHL_BYTE 1614
SHL_DWORD 1615
SHL_LWORD 1616
SHL_WORD 1617
SHR_BYTE 1618
SHR_DWORD 1619
SHR_LWORD 1620
SHR_WORD 1621
SIN_LREAL 1622
SQRT_LREAL 1623
TAN_LREAL 1624
Automation Collaborative Platform 2007

TRUNC_LREAL 1625
XOR_MASK_BYTE 1626
XOR_MASK_DWORD 1627
XOR_MASK_LWORD 1628
XOR_MASK_WORD 1629

standard operators, SYSTEM 560
starting resources on targets 750
startup options 197
startup projects, setting 14
statements

for ST, summary of basic (CAM 3) 495
statements, basic

for ST, summary of (CAM 5) 1093
states for IEC 61499 basic function blocks 957
status information, accessing for controllers 905
status messages, reviewing in the output window

158
status of items using source control 845
stepping

into code (CAM 3) 451
into code (CAM 5) 1041

steps
attaching action blocks to 968
boolean actions in 1151
coding action blocks for (CAM 5) 1149
inserting, in SFC (CAM 5) 1138
jumping to, in IEC programs (CAM 5) 967
non-stored actions in (CAM 5) 1154
pulse actions in (CAM 5) 1152
SFC actions 1156

stopping resources on targets 750
STRING, data types as variables and literal

expressions 1246
string manipulation

ASCII function (CAM 3) 585
ASCII function (CAM 5) 1324
CHAR function (CAM 3) 588
CHAR function (CAM 5) 1327
DELETE function (CAM 3) 591
DELETE function (CAM 5) 1330
FIND function (CAM 3) 608
FIND function (CAM 5) 1333

GET_TIME_STRING function 1579
INSERT function (CAM 3) 609
INSERT function (CAM 5) 1334
LEFT function (CAM 3) 611
LEFT function (CAM 5) 1336
MID function (CAM 3) 616
MID function (CAM 5) 1342
MLEN function (CAM 3) 619
MLEN function (CAM 5) 1345
REPLACE function (CAM 3) 632
REPLACE function (CAM 5) 1357
RIGHT function (CAM 3) 634
RIGHT function (CAM 5) 1359

strings
locating with Quick Find 142
replacing with the Quick Replace utility 144

structures
derived types 1251

structures grid
customizing color options for 219
managing, sorting, and filtering 885

SUB_DATE_DATE function 1369
SUBTRACT_MATRIX function block 1761
SUBTRACT_MATRIX, MATRIX2 operation

1714
subtraction operator (CAM 3) 546
subtraction operator (CAM 5) 1259
Subversion

environment options for source control,
specifying 205

settings for source control 203
user tools for source control 207

Summing (SAMA elements) 1205
syntax

of ST programs (CAM 3) 486
of ST programs (CAM 5) 1082

system operations
LOCK_CPU function 1339
UNLOCK_CPU function 1372

SYSTEM operator 560
system requirements (CAM 3) 325
system requirements (CAM 5) 773
2008 ISaGRAF 5 Concrete Automation Model - Index

system variables 758

T
tables, conversion for analog variables 404
TAN function (CAM 3) 644
TAN function (CAM 5) 1370
TAN_LREAL function 1624
target control, SET_PRIORITY function 1613
target features

ISAFREE-TGT 1473
targets

access control, setting password protection
730

CC86M 284
debugging in real-time or simulation (CAM

3) 306
debugging in real-time or simulation (CAM

5) 755
definitions, importing into projects 732
downloading code to (CAM 3) 305
downloading code to (CAM 5) 747
error messages (Events logger and

ISaGRAF) 1523
error messages (system, application, and

programs) 313
ISA68M 284
ISA86M 284
ISAFREE-TGT, files 1471
logging execution events for 762
management operations for (CAM 5) 746
performing online changes on 751
project templates for 722
running applications online (CAM 3) 304
running applications online (CAM 5) 745
SCC 284
SIMULATE 284
starting and stopping resources on 750
type of, effect on libraries 292
types of, effect on libraries (CAM 5) 724
uploading code from 749

TCP/IP 285
TCP/IP network 286
templates

exporting ISaVIEW screens as 55
for projects, features of 722

temporary projects, adding 9
terms

glossary of (CAM 3) 681
glossary of (CAM 5) 1445

text, animation effect for ISaVIEW objects 98
third-party libraries, dependencies on (CAM 5)

726
TIME

data type, variables and literal expressions
(CAM 3) 539

data type, variables and literal expressions
(CAM 5) 1243

Time Delay On Inititiation (SAMA elements and
functions) 1896

Time Delay On Termination (SAMA elements
and functions) 1898

time operations
CURRENT_ISA_DATE function 1329
DAY_TIME function 590
GET_TIME_STRUCT function block 1634
NOW function block 1636
SUB_DATE_DATE function 1369
TOF function block (CAM 3) 677
TOF function block (CAM 5) 1406
TON function block (CAM 3) 678
TON function block (CAM 5) 1408
TP function block (CAM 3) 679
TP function block (CAM 5) 1410

TMR operator 572
toolbars

creating 166
cross reference browser 897
customizing 165
ISaVIEW 51
modifying images for commands in 167
output window, for 158
properties window, for the 47
Automation Collaborative Platform 2009

toolbox
accessing and managing 107
coils types available for FBD (CAM 3) 429
coils types available for FBD (CAM 5) 1016
coils types available for LD (CAM 5) 1053
contact elements available for LD diagrams

(CAM 3) 471
contact elements available for LD diagrams

(CAM 5) 1064
contact elements for FBD (CAM 3) 437
contact elements for FBD (CAM 5) 1024

Totalizer (SAMA functions) 1872
TP function block (CAM 3) 679
TP function block (CAM 5) 1410
TRACKANDHOLD function block 1696
Transfer (SAMA elements) 1206
TransferSwitch (SAMA functions) 1206
TRANSFERSWITCH function block 1697
transitions

attaching conditions to 974
calling function blocks from 978
calling functions from, in IEC 61499

language 977
clearing forcing (CAM 5) 1135
coding conditions for (CAM 5) 1158
IEC 61499 basic function blocks, for 959
jump to steps (CAM 5) 1147
LD programming for conditions in IEC

61499 language 976
LD programming for conditions of (CAM 5)

1160
SFC programs, inserting in (CAM 5) 1140
ST programming for conditions in IEC

61499 language 975
ST programming for conditions of (CAM 5)

1159
TRANSPOSE_MATRIX function block 1755
TRANSPOSE_MATRIX, MATRIX2 operation

1706
Tri-State Signal (SAMA elements) 1900
triangle objects

inserting 62

setting default properties for 263
TriState (SAMA functions) 1900
TRUNC function (CAM 3) 645
TRUNC function (CAM 5) 1371
TRUNC_LREAL function 1625
TSTART statement 507
TSTOP statement 509
TYPE_MATRIX function block 1749
types

action blocks, of 968
data 534
derived, arrays 1250
derived, structures 1251
elementary IEC 61131-3 1228
safety 1248

U
UDINT, data types as variables and literal

expressions 1238
UINT, data types as variables and literal

expressions 1236
ULINT, data types as variables and literal

expressions 1240
ungrouping ISaVIEW objects 84
unified differences, when comparing from source

control history 873
UNLOCK_CPU function 1372
unlocking

I/O variables (CAM 3) 400
I/O variables (CAM 5) 912
items for source control 870

unlocking variables
enabling prompts when monitoring 202
forcing values of (CAM 3) 309
forcing values of (CAM 5) 764
while debugging 49

uploading, code from targets 749
URCV_S function block 1412
USEND_S function block 1414
user types, defining 1228
2010 ISaGRAF 5 Concrete Automation Model - Index

USINT, data types as variables and literal
expressions 1234

V
values

forcing variables (CAM 3) 309
forcing variables (CAM 5) 764

variable bindings 919
variable groups view

customizing color options for 220
variable selector

accessing and managing display settings for
the 113

color options for, customizing 221
creating variables 117
cutting, copying, pasting in 121
deleting variables 122
editing variables with 120
sorting the columns of 123

Variable Signal Generator (SAMA elements)
1208

variables
access system 758
Alarm Signal (SAMA) 1170
analog, conversion functions for 406
analog, conversion tables for 404
binding errors 919
BOOL (CAM 3) 535
BOOL (CAM 5) 1232
DATE 1245
DINT 1237
directly represented (CAM 3) 531
directly represented (CAM 5) 1224
double integer 536
editing variables using the variable selector

120
exporting 296, 736
filtering using the variable selector 124
forcing values of (CAM 3) 309
forcing values of (CAM 5) 764

grouping 283, 720
I/O, forcing values of 400
importing 296, 736
inserting in FB diagrams (CAM 3) 418
inserting in FB diagrams (CAM5) 1005
inserting in IEC 61499 programs and

composite blocks 981
INT 1235
LINT 1239
Logical Signal (SAMA) 1195
LREAL 1242
managing in the grid (CAM 3) 388
managing in the grid (CAM 5) 891
Measuring or Readout (SAMA) 1197
message 540
quick declaration, creating with 118
real (CAM 3) 537
real (CAM 5) 1241
SAFEBOOL 1249
SAMA Variable (SAMA) 1201
scope and attributes of (CAM 3) 529
scope and attributes of (CAM 5) 1221
Server Monitored Variable (SAMA) 1202
SINT 1233
sorting columns in the variable selector 123
STRING 1246
TIME (CAM 3) 539
TIME (CAM 5) 1243
UDINT and DWORD 1238
UINT and WORD 1236
ULINT and LWORD 1240
USINT and BYTE 1234
variable selector, creating with the 117
Variable Signal Generator (SAMA) 1208
viewing and unlocking locked 49

variables dependencies, viewing 43
Velocity Limiting (SAMA elements) 1902
version source control

canceling local modifications 876
committing pending changes 855
comparing versions from 873
Automation Collaborative Platform 2011

creating a working copy from a repository
868

getting versions of elements 858
locking and unlocking items 870
managing elements in 845
reverting versions of elements 861
viewing the history of items 871

vertical bars
inserting in FBD (CAM 3) 420
inserting in FBD (CAM 5) 1007

viewing
build operations (CAM 3) 300
build operations (CAM 5) 741
dependencies of variables 43
history of items 871
locked variables while debugging 49

virtual attribute
for I/O devices (CAM 3) 397
for I/O devices (CAM 5) 909

visibility, animation effect for ISaVIEW objects
100

W
warning status, controller 905
warnings, viewing in the error list 160
web container objects

inserting 64
setting default properties for 264

WHILE, DO, END_WHILE
ST basic statements (CAM 3) 505
ST basic statements (CAM 5) 1104

wildcards
locating with Quick Find 142
replacing with the Quick Replace utility 144

Windows runtime modules
files used by 1469
format of 1469
installing 1475
network types 1484

wiring

channels of devices (CAM 3) 400
channels of devices (CAM 5) 912
defining for variables (CAM 3) 395
defining for variables (CAM 5) 907

WITH qualifier 952
WORD, data types as variables and literal

expressions 1236
words

defined (CAM 3) 532
defined (CAM 5) 1226

workbench environment, modifying options 188
working copy from a repository, creating a 868
workspace, full-screen and zooming in 27

X
XOR operator (CAM 3) 573
XOR operator (CAM 5) 1316
XOR_MASK function (CAM 3) 646
XOR_MASK function (CAM 5) 1373
XOR_MASK_BYTE function 1626
XOR_MASK_DWORD function 1627
XOR_MASK_LWORD function 1628
XOR_MASK_WORD function 1629

Z
zooming using the focus box 27
2012 ISaGRAF 5 Concrete Automation Model - Index

	Table of Contents
	Introducing the Automation Collaborative Platform
	Solution Explorer
	Creating Projects
	Opening Projects and Solutions
	Adding New Projects
	Adding Existing Projects
	Saving Changes to Solutions and Projects
	Solution Properties
	Setting Startup Projects
	Setting Project Dependencies
	Setting Configuration Properties
	Configuration Manager
	Creating Solution Configurations
	Editing Solution Configurations
	Editing Solution Platforms

	Specifying Debug Source Files

	Navigation Window
	Language Editor
	Editing the Contents of Language Containers

	Block Library
	Deployment View
	Devices
	Networks
	Connections
	Deployment View Keyboard Shortcuts

	Variable Dependencies
	Properties Window
	Collection Editor

	Locked Variables Viewer
	ISaVIEW
	Creating ISaVIEW Screens
	Exporting ISaVIEW Screens as Templates
	Inserting Objects
	Arc
	Arrow
	Ellipse
	Rectangle
	Rounded Rectangle
	Triangle
	Image
	Web Container
	Button
	Edit Box
	Gauge
	Slider
	Line
	Bar Meter
	Polygon

	Editing Objects
	Selecting Objects
	Editing the Properties of Objects
	Cutting, Copying, and Pasting Objects
	Deleting Objects
	Moving Objects
	Resizing Objects
	Grouping Objects
	Aligning Objects
	Moving Objects to the Front and Back

	Defining Animation Effects for Objects
	Action
	Color
	Displacement
	Rotation
	Size
	Text
	Visibility

	Previewing ISaVIEW Screens
	Previewing Selections
	Previewing Animation Effects (Editable)

	Toolbox
	Variable Selector
	Creating Variables
	Creating Multiple Variables Using Quick Declaration
	Editing Existing Variables
	Cutting, Copying, and Pasting Variables
	Deleting Variables
	Sorting Columns
	Filtering Variables

	Block Selector
	Parameters Display

	Parameters View
	Generating Documentation
	Find and Replace Utility
	Quick Find
	Quick Replace

	Spy Lists
	Add-in Manager
	External Tools
	Working in the Development Environment
	Displaying the Output Window
	Using the Error List
	Navigating in the Development Environment
	Customizing Toolbars
	Creating Toolbars
	Customizing Commands
	Importing and Exporting Settings
	Export Selected Environment Settings
	Naming a Settings File
	Settings Export in Progress

	Import Selected Environment Settings
	Choosing a Collection of Settings to Import
	Choosing Settings to Import
	Settings Import in Progress

	Reset all Settings
	Settings Reset in Progress

	Operations Summary

	Development Environment Keyboard Shortcuts

	Options for the Development Environment
	Setting Environment Options
	Find and Replace
	Fonts and Colors
	Import and Export Settings
	International Settings
	Shortcut Keyboard Combinations
	Startup

	Specifying Project Options
	Build Options
	Interrupts Options
	Online Settings

	Specifying Source Control Settings
	Plug-in Selection
	Subversion Environment
	Subversion User Tools

	Specifying Block Library Settings
	Specifying CAM3 Settings
	Specifying Deployment View Settings
	Specifying Device View Options
	Specifying Documentation Generator Options
	Word Settings

	Setting Grid Options
	Arrays View
	Defined Words View
	Dictionary View
	Parameters Grid
	Structures View
	Variable Groups View
	Variable Selector

	Defining CAM 3 I/O Device Settings
	Defining CAM 5 I/O Device Settings
	Setting IEC Language Options
	Function Block Diagram
	IEC 61499
	Ladder Diagram
	SAMA
	Sequential Function Chart
	Structured Text

	Setting ISaVIEW Options
	ISaVIEW Animation Settings
	ISaVIEW Edition Settings
	ISaVIEW Objects Settings
	Arc Settings
	Arrow Settings
	Bar Meter Settings
	Button Settings
	Edit Box Settings
	Ellipse Settings
	Gauge Settings
	Group Settings
	Image Settings
	Line Settings
	Polygon Settings
	Rectangle Settings
	Rounded Rectangle Settings
	Slider Settings
	Triangle Settings
	Web Container Settings

	Defining Spy List Settings
	Offline Grid Settings
	Online Grid Settings

	Description Window

	ISaGRAF 3 Concrete Automation Model
	Creating a Project
	Devices
	Programs
	Functions
	Function Blocks
	Variables
	Targets
	Networks and Connections
	TCP/IP
	Serial

	Importing an ISaGRAF 3 Project
	Creating a Library
	Importing an ISaGRAF 3 Library
	Using a Library in a Project
	Importing and Exporting Variables Data
	Generating Code
	Building Solutions and Project Elements
	Rebuilding Solutions
	Cleaning Solutions and Project Elements

	Running an Application Online
	Downloading Code to Targets
	Debugging
	Forcing the Values of Variables

	Simulating
	Monitoring
	Error Messages

	Getting Started
	System Requirements for Development Platforms
	Naming Conventions and Limitations
	Introducing the Automation Collaborative Platform (ACP)
	Walking Through an Existing Application
	Starting with a Basic Application
	Importing an Existing Application

	Dictionary
	Defined Words Grid
	Variables Grid

	Device View
	I/O Wiring
	I/O Devices
	I/O Channels
	I/O Conversions
	Conversion Tables
	Conversion Functions

	I/O Wiring Keyboard Shortcuts

	FBD Language
	FBD Diagram Main Format
	Execution Order of FBD Programs
	Debugging FBD Programs
	FBD Elements
	Blocks
	Variables
	Vertical Bars
	Labels
	Jumps
	Returns
	Rungs
	Left Power Rails
	Right Power Rails
	Coils
	Direct Coil
	Reverse Coil
	Set Coil
	Reset Coil

	Contacts
	Direct Contact
	Reverse Contact
	Pulse Rising Edge Contact
	Pulse Falling Edge Contact

	Regions
	Comments

	FBD Keyboard Shortcuts

	LD Language
	Debugging LD Programs
	LD Elements
	Rungs
	Blocks
	Coils
	Direct Coil
	Reverse Coil
	Pulse Rising Edge Coil
	Pulse Falling Edge Coil
	Set Coil
	Reset Coil

	Contacts
	Direct Contact
	Reverse Contact
	Pulse Rising Edge Contact
	Pulse Falling Edge Contact

	Jumps
	Returns
	Branches

	LD Keyboard Shortcuts

	ST Language
	ST Main Syntax
	Expressions and Parentheses
	Calling Functions
	Calling Function Blocks
	Debugging ST Programs
	ST Basic Elements and Statements
	Assignments
	CASE Statement
	EXIT Statement
	FOR Statement
	IF-THEN-ELSIF-ELSE-END_IF Statement
	REPEAT Statement
	RETURN Statement
	WHILE Statement

	ST Extensions
	TSTART Statement
	TSTOP Statement
	GSTART Statement in SFC Action
	GFREEZE Statement in SFC Action
	GKILL Statement in SFC Action
	GSTATUS Statement in SFC Action
	GRST Statement in SFC Action

	ST Keyboard Shortcuts

	Language Reference
	Programs
	Functions
	Function Blocks
	Execution Rules
	Reserved Keywords
	Variables
	Directly Represented Variables
	Defined Words
	Data Types
	Boolean Data Type
	Double Integer Data Type
	Real Data Type
	Time Data Type
	Message Data Type

	Operators
	Multiplication
	Addition
	Subtraction
	Division
	1 GAIN
	AND
	BOO
	CAT
	Equal
	Greater Than or Equal
	Greater Than
	ANA
	REAL
	SYSTEM
	Less Than or Equal
	Less Than
	MSG
	NEG
	Not Equal
	OPERATE
	OR
	TMR
	XOR

	Functions
	ABS
	ACOS
	AND_MASK
	ARCREATE
	ARREAD
	ARWRITE
	ASCII
	ASIN
	ATAN
	CHAR
	COS
	DAY_TIME
	DELETE
	EXPT
	F_CLOSE
	F_EOF
	F_ROPEN
	F_WOPEN
	FA_READ
	FA_WRITE
	FM_READ
	FM_WRITE
	FIND
	INSERT
	LEFT
	LIMIT
	LOG
	MAX
	MID
	MIN
	MLEN
	MOD
	MUX4
	MUX8
	NOT_MASK
	ODD
	OR_MASK
	POW
	RAND
	REPLACE
	RIGHT
	ROL
	ROR
	SEL
	SHL
	SHR
	SIN
	SQRT
	TAN
	TRUNC
	XOR_MASK

	Function Blocks
	AVERAGE
	BLINK
	CMP
	CTD
	CTU
	CTUD
	DERIVATE
	F_TRIG
	HYSTER
	INTEGRAL
	LIM_ALRM
	R_TRIG
	RS
	SEMA
	SR
	SIG_GEN
	STACKINT
	TOF
	TON
	TP

	Glossary
	Licensing

	ISaGRAF 5 Concrete Automation Model
	Creating a Project
	Devices
	Resources
	Programs
	Functions
	Function Blocks
	Variables

	Choosing Project Templates for Targets
	Creating a Library
	Using a Library in a Project
	Setting Project Access Control
	Setting Target Access Control
	Importing Target Definitions
	Importing and Exporting Elements
	Importing and Exporting Variables Data
	Generating Code
	Building Solutions and Project Elements
	Rebuilding Solutions
	Cleaning Solutions and Project Elements

	Running an Application Online
	Target Management
	Downloading Code to Targets
	Uploading Code from Targets
	Stopping and Starting Resources
	Performing Online Changes

	Debugging
	Accessing Diagnostic Information (System Variables)
	Logging Target Execution Events
	Forcing the Values of Variables

	Simulating
	Monitoring

	Getting Started
	System Requirements for Development Platforms
	Differences with Previous Versions
	Naming Conventions and Limitations
	Introducing the Automation Collaborative Platform (ACP)
	Walking Through an Existing Application
	Starting with a Basic Application
	Importing an Existing Application

	Version Source Control
	Using the Repository Explorer
	Using the Working Copy Explorer
	Defining a Repository
	Committing Pending Changes
	Getting Versions of Elements
	Reverting Versions of Elements
	Creating a Working Copy from a Repository
	Locking and Unlocking Elements
	Viewing the History of Elements
	Comparing Element Versions
	Canceling Local Modifications
	Version Source Control Keyboard Shortcuts

	Dictionary
	Arrays Grid
	Structures Grid
	Defined Words Grid
	Variables Grid

	Cross Reference Browser
	Device View
	Controller Status
	I/O Wiring
	I/O Devices
	I/O Channels
	I/O Wiring Keyboard Shortcuts

	Bindings
	Bindings View

	Failover Mechanism
	Configuring a Failover Mechanism
	Monitoring the Failover Mechanism
	Implementing Failover Mechanisms on a Windows Platform
	Limitations for Failover Mechanisms

	IEC 61499 Language
	IEC 61499 Program Main Format
	Cycle Execution Time in IEC 61499 Programs
	Debugging IEC 61499 Programs
	IEC 61499 Function Block Main Format
	Basic IEC 61499 Function Blocks
	States
	Transitions
	Sequence Controls
	Selection Divergences
	Selection Convergences
	Simultaneous Divergences
	Simultaneous Convergences

	Jumps to Steps
	Coding Action Blocks for Steps
	Boolean Actions
	Pulse Actions
	Non-Stored Actions

	Coding Conditions for Transitions
	Conditions Programmed in ST
	Conditions Programmed in LD

	Calling Functions from Transitions
	Calling Function Blocks from Transitions

	Composite IEC 61499 Function Blocks
	Function Blocks
	Variables
	Links
	Regions
	Comments

	Execution Control Chart Behavior
	IEC 61499 Keyboard Shortcuts

	FBD Language
	FBD Diagram Main Format
	Execution Order of FBD Programs
	Debugging FBD Programs
	FBD Elements
	Blocks
	Variables
	Vertical Bars
	Labels
	Jumps
	Returns
	Rungs
	Left Power Rails
	Right Power Rails
	Coils
	Direct Coil
	Reverse Coil
	Set Coil
	Reset Coil

	Contacts
	Direct Contact
	Reverse Contact
	Pulse Rising Edge Contact
	Pulse Falling Edge Contact

	Regions
	Comments

	Configuring Function Block Instances
	FBD Keyboard Shortcuts

	LD Language
	Debugging LD Programs
	LD Elements
	Rungs
	Blocks
	Coils
	Direct Coil
	Reverse Coil
	Pulse Rising Edge Coil
	Pulse Falling Edge Coil
	Set Coil
	Reset Coil

	Contacts
	Direct Contact
	Reverse Contact
	Pulse Rising Edge Contact
	Pulse Falling Edge Contact

	Jumps
	Returns
	Branches

	Configuring Function Block Instances
	LD Keyboard Shortcuts

	ST Language
	ST Main Syntax
	Expressions and Parentheses
	Calling Functions
	Calling Function Blocks
	Debugging ST Programs
	ST Basic Elements and Statements
	Assignments
	CASE Statement
	EXIT Statement
	FOR Statement
	IF-THEN-ELSIF-ELSE-END_IF Statement
	REPEAT Statement
	RETURN Statement
	WHILE Statement

	ST Extensions
	GSTART Statement in SFC Action
	GFREEZE Statement in SFC Action
	GKILL Statement in SFC Action
	GSTATUS Statement in SFC Action
	GRST Statement in SFC Action

	ST Keyboard Shortcuts

	SFC Language
	SFC Main Format
	SFC Execution Behavior
	SFC Program Hierarchy
	Child SFC POUs
	Debugging SFC Programs
	Breakpoint on Step Activation
	Breakpoint on Step Deactivation
	Breakpoint on Transition
	Transition Clearing Forcing

	SFC Elements
	Steps
	Transitions
	Sequence Controls
	Selection Divergences
	Selection Convergences
	Simultaneous Divergences
	Simultaneous Convergences

	Jumps to Steps

	Coding Action Blocks for Steps
	Boolean Actions
	Pulse Actions
	Non-Stored Actions
	SFC Actions

	Coding Conditions for Transitions
	Conditions Programmed in ST
	Conditions Programmed in LD

	Calling Functions from Transitions
	Calling Function Blocks from Transitions
	SFC Keyboard Shortcuts

	SAMA Language
	SAMA Diagram Main Format
	Execution Order of SAMA Programs
	Debugging SAMA Programs
	SAMA Elements
	Alarm Signal
	Averaging
	Bias
	Derivative
	Difference
	Dividing
	Equal To
	Exponential
	Greater Than
	High Selecting
	Integral
	IPID
	Lesser Than
	Logical AND
	Logical OR
	Logical Signal
	Low Selecting
	Measuring or Readout
	Multiplying
	NOT
	Root Extraction
	SAMA Variable
	Server Monitored Variable
	Signal Monitor
	Summing
	Transfer
	Variable Signal Generator

	Mapping Chart of SAMA Elements with IEC 61131-3 Elements
	SAMA Keyboard Shortcuts

	Language Reference
	Programs
	Functions
	Function Blocks
	Execution Rules
	Reserved Keywords
	Variables
	Directly Represented Variables
	Defined Words
	Data Types
	Elementary IEC 61131-3 Types
	ANY Data Type
	ANY_ELEMENTARY Data Type
	Boolean Data Type
	Short Integer Data Type
	Unsigned Short Integer or BYTE Data Type
	Integer Data Type
	Unsigned Integer or Word Data Type
	Double Integer Data Type
	Unsigned Double Integer or Double Word Data Type
	Long Integer Data Type
	Unsigned Long Integer or Long Word Data Type
	Real Data Type
	Long Real Data Type
	Time Data Type
	Date Data Type
	String Data Type

	Safety Type
	Safety Boolean Data Type

	Derived Types: Arrays
	Derived Types: Structures

	Literal Values

	Operators
	Multiplication
	Addition
	Subtraction
	Division
	1 GAIN
	AND
	ANY_TO_BOOL
	ANY_TO_SINT
	ANY_TO_USINT
	ANY_TO_BYTE
	ANY_TO_INT
	ANY_TO_UINT
	ANY_TO_WORD
	ANY_TO_DINT
	ANY_TO_UDINT
	ANY_TO_DWORD
	ANY_TO_LINT
	ANY_TO_ULINT
	ANY_TO_LWORD
	ANY_TO_REAL
	ANY_TO_LREAL
	ANY_TO_TIME
	ANY_TO_DATE
	ANY_TO_STRING
	Equal
	Greater Than or Equal
	Greater Than
	Less Than or Equal
	Less Than
	NEG
	NOT
	Not Equal
	OR
	XOR

	Functions
	ABS
	ACOS
	AND_MASK
	ASCII
	ASIN
	ATAN
	CHAR
	COS
	CURRENT_ISA_DATE
	DELETE
	EXPT
	FIND
	INSERT
	LEFT
	LIMIT
	LOCK_CPU
	LOG
	MAX
	MID
	MIN
	MLEN
	MOD
	MUX4
	MUX8
	NOT_MASK
	ODD
	OR_MASK
	POW
	RAND
	REPLACE
	RIGHT
	ROL
	ROR
	SEL
	SHL
	SHR
	SIN
	SQRT
	SUB_DATE_DATE
	TAN
	TRUNC
	UNLOCK_CPU
	XOR_MASK

	Function Blocks
	AVERAGE
	BLINK
	CMP
	CONNECT
	CTD
	CTU
	CTUD
	DERIVATE
	F_TRIG
	HYSTER
	INTEGRAL
	LIM_ALRM
	R_TRIG
	RS
	SR
	SIG_GEN
	STACKINT
	TOF
	TON
	TP
	URCV_S
	USEND_S

	Normative Function Blocks
	E_CTU
	E_CYCLE
	E_D_FF
	E_DELAY
	E_DEMUX
	E_F_TRIG
	E_MERGE
	E_N_TABLE
	E_PERMIT
	E_R_TRIG
	E_REND
	E_RESTART
	E_RS
	E_SELECT
	E_SPLIT
	E_SR
	E_SWITCH
	E_TABLE
	E_TABLE_CTRL
	E_TRAIN
	LocalEventInput

	Glossary
	Licensing

	Windows Runtime Modules
	ISAFREE-TGT
	Target Features

	Installing Windows Run-time Modules
	Setting Networks and Connections
	ETCP
	HSD
	ISaRSI

	Configuring I/O Devices
	Modbus/TCP Client Implementation
	Target Preparation
	Importation of Drivers in the Workbench
	Properties of Modbus/TCP Client Devices
	Modbus/TCP Prefixes
	Modbus/TCP Message Descriptions

	Modbus/TCP Server Implementation
	Target Preparation
	Importation of Drivers in the Workbench
	Properties of Modbus/TCP Server Devices
	Modbus/TCP Prefixes
	Modbus/TCP Message Descriptions
	Modbus/TCP Exception Codes

	Defining Ports Usage
	Error Messages
	Functions
	ABS_LREAL
	ACOS_LREAL
	AND_MASK_BYTE
	AND_MASK_DWORD
	AND_MASK_LWORD
	AND_MASK_WORD
	ASIN_LREAL
	ATAN_LREAL
	COS_LREAL
	EXPT_LREAL
	GET_TIME_STRING
	ISA_SERIAL_CLOSE
	ISA_SERIAL_CONNECT
	ISA_SERIAL_DISCONNECT
	ISA_SERIAL_OPEN
	ISA_SERIAL_RECEIVE
	ISA_SERIAL_SEND
	ISA_SERIAL_SET
	ISA_SERIAL_STATUS
	LOG_LREAL
	NOT_MASK_BYTE
	NOT_MASK_DWORD
	NOT_MASK_LWORD
	NOT_MASK_WORD
	OR_MASK_BYTE
	OR_MASK_DWORD
	OR_MASK_LWORD
	OR_MASK_WORD
	POW_LREAL
	ROL_BYTE
	ROL_DWORD
	ROL_LWORD
	ROL_WORD
	ROR_BYTE
	ROR_DWORD
	ROR_LWORD
	ROR_WORD
	SET_PRIORITY
	SHL_BYTE
	SHL_DWORD
	SHL_LWORD
	SHL_WORD
	SHR_BYTE
	SHR_DWORD
	SHR_LWORD
	SHR_WORD
	SIN_LREAL
	SQRT_LREAL
	TAN_LREAL
	TRUNC_LREAL
	XOR_MASK_BYTE
	XOR_MASK_DWORD
	XOR_MASK_LWORD
	XOR_MASK_WORD

	Function Blocks
	GET_TIME_STRUCT
	NOW
	ANALOGALARM
	BATCHSWITCH
	BATCHTOTALIZER
	BIAS
	BIASCALIBRATION
	CHARACTERIZER
	COMPARATOR
	DIGITALALARM
	FLIPFLOP
	IPIDCONTROLLER
	LEADLAGCONTROLLER
	LEADLAGBACONTROLLER
	LIMITER
	PID_AL
	RATELIMITER
	RATIO
	RATIOCALIBRATION
	RETENTIVEONTIMER
	SCALER
	SETPOINT
	SIGNALSELECTOR
	TRACKANDHOLD
	TRANSFERSWITCH
	Matrix2 Operations
	COPY_ROW_MATRIX
	COPY_COL_MATRIX
	TRANSPOSE_MATRIX
	INVERT_MATRIX
	ADD_MATRIX
	SUBTRACT_MATRIX
	MULTIPLY_MATRIX
	SCALAR_MATRIX
	PRINT_MATRIX
	GET_VERSION

	Matrix Operations
	NEW_MATRIX
	FREE_MATRIX
	GET_I_MATRIX
	PUT_I_MATRIX
	GET_F_MATRIX
	PUT_F_MATRIX
	DUP_MATRIX
	COPY_MATRIX
	COPY_ROW_MATRIX
	COPY_COL_MATRIX
	TYPE_MATRIX
	ROWS_MATRIX
	COLS_MATRIX
	TRANSPOSE_MATRIX
	INVERT_MATRIX
	ADD_MATRIX
	SUBTRACT_MATRIX
	MULTIPLY_MATRIX
	SCALAR_I_MATRIX
	SCALAR_F_MATRIX
	PRINT_MATRIX

	Motion Control Function Blocks
	MC_AbortTrigger
	MC_AccelerationProfile
	MC_CamIn
	MC_CamOut
	MC_CamTableSelect
	MC_DigitalCamSwitch
	MC_GearIn
	MC_GearInPos
	MC_GearOut
	MC_Halt
	MC_Home
	MC_MoveAbsolute
	MC_MoveAdditive
	MC_MoveContinuousAbsolute
	MC_MoveContinuousRelative
	MC_MoveRelative
	MC_MoveSuperimposed
	MC_MoveVelocity
	MC_Phasing
	MC_PositionProfile
	MC_Power
	MC_ReadActualPosition
	MC_ReadActualTorque
	MC_ReadActualVelocity
	MC_ReadAxisError
	MC_ReadBoolParameter
	MC_ReadDigitalInput
	MC_ReadDigitalOutput
	MC_ReadParameter
	MC_ReadStatus
	MC_Reset
	MC_SetOverride
	MC_SetPosition
	MC_Stop
	MC_TorqueControl
	MC_TouchProbe
	MC_VelocityProfile
	MC_WriteBoolParameter
	MC_WriteDigitalOutput
	MC_WriteParameter

	SAMA Elements and Functions
	High Limiting
	Integrate or Totalize
	Low Limiting
	MATransfer
	MATransferSet
	Memory (Basic)
	Memory (So Dominant)
	Memory (Ro Dominant)
	Proportional
	Proportional and Integral
	Proportional and Derivative
	Pulse Duration
	Pulse Duration Of The Lesser Time
	Reverse Proportional
	Time Delay On Initiation
	Time Delay On Termination
	Tri-State Signal
	Velocity Limiting

	Safety Function Blocks
	SF_AND
	SF_Antivalent
	SF_EDM
	SF_EmergencyStop
	SF_EnableSwitch
	SF_Equivalent
	SF_ESPE
	SF_GuardLocking
	SF_GuardMonitoring
	SF_ModeSelector
	SF_MutingPar
	SF_MutingPar_2Sensor
	SF_MutingSeq
	SF_OutControl
	SF_SafelyLimitedSpeed
	SF_SafeStop1
	SF_SafeStop2
	SF_SafetyRequest
	SF_TestableSafetySensor
	SF_TwoHandControlTypeII
	SF_TwoHandControlTypeIII

	Index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

